Граф коммитов

43 Коммитов

Автор SHA1 Сообщение Дата
Douglas Gregor 495c35d291 Improve support for out-of-line definitions of nested templates and
their members, including member class template, member function
templates, and member classes and functions of member templates.

To actually parse the nested-name-specifiers that qualify the name of
an out-of-line definition of a member template, e.g.,

  template<typename X> template<typename Y>
  X Outer<X>::Inner1<Y>::foo(Y) {
    return X();
  }

we need to look for the template names (e.g., "Inner1") as a member of
the current instantiation (Outer<X>), even before we have entered the
scope of the current instantiation. Since we can't do this in general
(i.e., we should not be looking into all dependent
nested-name-specifiers as if they were the current instantiation), we
rely on the parser to tell us when it is parsing a declaration
specifier sequence, and, therefore, when we should consider the
current scope specifier to be a current instantiation.

Printing of complicated, dependent nested-name-specifiers may be
somewhat broken by this commit; I'll add tests for this issue and fix
the problem (if it still exists) in a subsequent commit.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@80044 91177308-0d34-0410-b5e6-96231b3b80d8
2009-08-25 22:51:20 +00:00
Argyrios Kyrtzidis e8661906d4 Use Sema's LocInfoType to pass and preserve type source info through the Parser.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@79395 91177308-0d34-0410-b5e6-96231b3b80d8
2009-08-19 01:28:28 +00:00
Nate Begeman 2ef13e5abe Take 2 on AltiVec-style vector initializers.
Fixes PR4704 problems

Addresses Eli's patch feedback re: ugly cast code

Updates all postfix operators to remove ParenListExprs.  While this is awful,
no better solution (say, in the parser) is obvious to me.  Better solutions
welcome.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@78621 91177308-0d34-0410-b5e6-96231b3b80d8
2009-08-10 23:49:36 +00:00
Douglas Gregor fe85cedd58 Support nested-name-specifiers for C++ member access expressions, e.g.,
this->Base::foo

from James Porter!


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@78278 91177308-0d34-0410-b5e6-96231b3b80d8
2009-08-06 03:17:00 +00:00
Douglas Gregor 1560def1f7 Remove a redundant getCanonicalType call
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@77702 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-31 18:32:42 +00:00
Douglas Gregor c5b8c9b660 What luck! Clang obtains support for refering to members of the
current instantiation when that current instantiation is a class
template partial specialization.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@77609 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-30 17:50:56 +00:00
Douglas Gregor b88e888404 Support out-of-line definitions of the members of class template
partial specializations.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@77606 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-30 17:40:51 +00:00
Ted Kremenek 6217b80b7a Change uses of:
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
  Type::getAsRecordType() -> Type::getAs<RecordType>()
  Type::getAsPointerType() -> Type::getAs<PointerType>()
  Type::getAsBlockPointerType() -> Type::getAs<BlockPointerType>()
  Type::getAsLValueReferenceType() -> Type::getAs<LValueReferenceType>()
  Type::getAsRValueReferenceType() -> Type::getAs<RValueReferenceType>()
  Type::getAsMemberPointerType() -> Type::getAs<MemberPointerType>()
  Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
  Type::getAsTagType() -> Type::getAs<TagType>()
  
And remove Type::getAsReferenceType(), etc.

This change is similar to one I made a couple weeks ago, but that was partly
reverted pending some additional design discussion. With Doug's pending smart
pointer changes for Types, it seemed natural to take this approach.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@77510 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-29 21:53:49 +00:00
Douglas Gregor 7cdbc58320 Implement support for out-of-line definitions of the class members of class
templates, e.g.,

  template<typename T>
  struct Outer {
    struct Inner;
  };

  template<typename T>
  struct Outer<T>::Inner {
    // ...
  };

Implementing this feature required some extensions to ActOnTag, which
now takes a set of template parameter lists, and is the precursor to
removing the ActOnClassTemplate function from the parser Action
interface. The reason for this approach is simple: the parser cannot
tell the difference between a class template definition and the
definition of a member of a class template; both have template
parameter lists, and semantic analysis determines what that template
parameter list means.

There is still some cleanup to do with ActOnTag and
ActOnClassTemplate. This commit provides the basic functionality we
need, however.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@76820 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-22 23:48:44 +00:00
Douglas Gregor 7551c183e8 Complain if we're entering the context of a dependent nested-name-specifier but
cannot match that nested-name-specifier to a class template or class template
partial specialization.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@76704 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-22 00:28:09 +00:00
Douglas Gregor f59a56e180 Basic parsing and semantic analysis for out-of-line definitions of the
member functions of class templates, e.g.,

  template<typename T> 
  struct X {
    void f(T);
  };

  template<typename T> X<T>::f(T) { /* ... */ }



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@76692 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-21 23:53:31 +00:00
Douglas Gregor 3fdbed594f Make Sema::ActOnCXXEnterDeclaratorScope robust against failures to compute
the declaration context, as occurs with out-of-line class template member
definitions.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@76622 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-21 18:59:28 +00:00
Ted Kremenek 35366a67ba Per offline discussion with Steve Naroff, add back Type::getAsXXXType() methods
until Doug Gregor's Type smart pointer code lands (or more discussion occurs).
These methods just call the new Type::getAs<XXX> methods, so we still have
reduced implementation redundancy. Having explicit getAsXXXType() methods makes
it easier to set breakpoints in the debugger.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@76193 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-17 17:50:17 +00:00
Ted Kremenek 5cad1f7446 Replaced Type::getAsLValueReferenceType(), Type::getAsRValueReferenceType(), Type::getAsMemberPointerType(), Type::getAsTagType(), and Type::getAsRecordType() with their Type::getAs<XXX> equivalents.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@76139 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-17 01:20:38 +00:00
Argyrios Kyrtzidis 1d1755348d Factor out some common code into Sema::EnterDeclaratorContext/ExitDeclaratorContext.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@73655 91177308-0d34-0410-b5e6-96231b3b80d8
2009-06-17 23:15:40 +00:00
Douglas Gregor 3f5b61c394 Implement explicit instantiations of member classes of class templates, e.g.,
template<typename T>
  struct X {
    struct Inner;
  };

  template struct X<int>::Inner;

This change is larger than it looks because it also fixes some
a problem with nested-name-specifiers and tags. We weren't requiring
the DeclContext associated with the scope specifier of a tag to be
complete. Therefore, when looking for something like "struct
X<int>::Inner", we weren't instantiating X<int>. 

This, naturally, uncovered a problem with member pointers, where we
were requiring the left-hand side of a member pointer access
expression (e.g., x->*) to be a complete type. However, this is wrong:
the semantics of this expression does not require a complete type (EDG
agrees).

Stuart vouched for me. Blame him.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@71756 91177308-0d34-0410-b5e6-96231b3b80d8
2009-05-14 00:28:11 +00:00
Douglas Gregor 42af25f865 Implement the notions of the "current instantiation" and "unknown
specialization" within a C++ template, and permit name lookup into the
current instantiation. For example, given:

  template<typename T, typename U>
  struct X {
    typedef T type;

    X* x1;  // current instantiation
    X<T, U> *x2; // current instantiation
    X<U, T> *x3; // not current instantiation
    ::X<type, U> *x4; // current instantiation
    X<typename X<type, U>::type, U>: *x5; // current instantiation
  };



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@71471 91177308-0d34-0410-b5e6-96231b3b80d8
2009-05-11 19:58:34 +00:00
Anders Carlsson 81c85c4211 More improvements to namespace aliases. We now support everything except aliases in using directives.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67966 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-28 23:53:49 +00:00
Douglas Gregor d57959af02 Initial implementation of parsing, semantic analysis, and template
instantiation for C++ typename-specifiers such as

  typename T::type

The parsing of typename-specifiers is relatively easy thanks to
annotation tokens. When we see the "typename", we parse the
typename-specifier and produce a typename annotation token. There are
only a few places where we need to handle this. We currently parse the
typename-specifier form that terminates in an identifier, but not the
simple-template-id form, e.g.,

  typename T::template apply<U, V>

Parsing of nested-name-specifiers has a similar problem, since at this
point we don't have any representation of a class template
specialization whose template-name is unknown.

Semantic analysis is only partially complete, with some support for
template instantiation that works for simple examples. 



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-27 23:10:48 +00:00
Douglas Gregor 3507369940 Simplify CXXScopeSpec a lot. No more weird SmallVector-like hacks here
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67800 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-26 23:56:24 +00:00
Douglas Gregor ab452ba832 Revamp our representation of C++ nested-name-specifiers. We now have a
uniqued representation that should both save some memory and make it
far easier to properly build canonical types for types involving
dependent nested-name-specifiers, e.g., "typename T::Nested::type".

This approach will greatly simplify the representation of
CXXScopeSpec. That'll be next.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67799 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-26 23:50:42 +00:00
Douglas Gregor 5953d8b37f Introduce a new expression type, UnresolvedDeclRefExpr, that describes
dependent qualified-ids such as

  Fibonacci<N - 1>::value

where N is a template parameter. These references are "unresolved"
because the name is dependent and, therefore, cannot be resolved to a
declaration node (as we would do for a DeclRefExpr or
QualifiedDeclRefExpr). UnresolvedDeclRefExprs instantiate to
DeclRefExprs, QualifiedDeclRefExprs, etc.

Also, be a bit more careful about keeping only a single set of
specializations for a class template, and instantiating from the
definition of that template rather than a previous declaration. In
general, we need a better solution for this for all TagDecls, because
it's too easy to accidentally look at a declaration that isn't the
definition.

We can now process a simple Fibonacci computation described as a
template metaprogram.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67308 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-19 17:26:29 +00:00
Douglas Gregor e4e5b054b4 Introduce a representation for types that we referred to via a
qualified name, e.g., 

  foo::x

so that we retain the nested-name-specifier as written in the source
code and can reproduce that qualified name when printing the types
back (e.g., in diagnostics). This is PR3493, which won't be complete
until finished the other tasks mentioned near the end of this commit.

The parser's representation of nested-name-specifiers, CXXScopeSpec,
is now a bit fatter, because it needs to contain the scopes that
precede each '::' and keep track of whether the global scoping
operator '::' was at the beginning. For example, we need to keep track
of the leading '::', 'foo', and 'bar' in
 
  ::foo::bar::x

The Action's CXXScopeTy * is no longer a DeclContext *. It's now the
opaque version of the new NestedNameSpecifier, which contains a single
component of a nested-name-specifier (either a DeclContext * or a Type
*, bitmangled). 

The new sugar type QualifiedNameType composes a sequence of
NestedNameSpecifiers with a representation of the type we're actually
referring to. At present, we only build QualifiedNameType nodes within
Sema::getTypeName. This will be extended to other type-constructing
actions (e.g., ActOnClassTemplateId).

Also on the way: QualifiedDeclRefExprs will also store a sequence of
NestedNameSpecifiers, so that we can print out the property
nested-name-specifier. I expect to also use this for handling
dependent names like Fibonacci<I - 1>::value.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67265 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-19 00:18:19 +00:00
Douglas Gregor ca5e77fefc The scope representation can now be either a DeclContext pointer or a
Type pointer. This allows our nested-name-specifiers to retain more
information about the actual spelling (e.g., which typedef did the
user name, or what exact template arguments were used in the
template-id?). It will also allow us to have dependent
nested-name-specifiers that don't map to any DeclContext.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@67140 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-18 00:36:05 +00:00
Douglas Gregor 4fdf1faedb Add basic, hackish support for instantiation of typedefs in a class
template. More importantly, start to sort out the issues regarding
complete types and nested-name-specifiers, especially the question of:
when do we instantiate a class template specialization that occurs to
the left of a '::' in a nested-name-specifier?




git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@66662 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-11 16:48:53 +00:00
Douglas Gregor 39a8de10c1 Implement parsing of nested-name-specifiers that involve template-ids, e.g.,
std::vector<int>::allocator_type

When we parse a template-id that names a type, it will become either a
template-id annotation (which is a parsed representation of a
template-id that has not yet been through semantic analysis) or a
typename annotation (where semantic analysis has resolved the
template-id to an actual type), depending on the context. We only
produce a type in contexts where we know that we only need type
information, e.g., in a type specifier. Otherwise, we create a
template-id annotation that can later be "upgraded" by transforming it
into a typename annotation when the parser needs a type. This occurs,
for example, when we've parsed "std::vector<int>" above and then see
the '::' after it. However, it means that when writing something like
this:

  template<> class Outer::Inner<int> { ... };

We have two tokens to represent Outer::Inner<int>: one token for the
nested name specifier Outer::, and one template-id annotation token
for Inner<int>, which will be passed to semantic analysis to define
the class template specialization.

Most of the churn in the template tests in this patch come from an
improvement in our error recovery from ill-formed template-ids.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@65467 91177308-0d34-0410-b5e6-96231b3b80d8
2009-02-25 19:37:18 +00:00
Cedric Venet 3d658640ab Add svn:eol-style=native to some files
Correct two files with inconsistent lines endings.

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@64564 91177308-0d34-0410-b5e6-96231b3b80d8
2009-02-14 20:20:19 +00:00
Douglas Gregor 47b9a1ca55 Some name-lookup-related fixes, from Piotr Rak!
- Changes Lookup*Name functions to return NamedDecls, instead of
Decls. Unfortunately my recent statement that it will simplify lot of
code, was not quite right, but it simplifies some...
- Makes MergeLookupResult SmallPtrSet instead of vector, following
Douglas suggestions.
- Adds %qN format for printing qualified names to Diagnostic.
- Avoids searching for using-directives in Scopes, which are not
DeclScope, during unqualified name lookup.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63739 91177308-0d34-0410-b5e6-96231b3b80d8
2009-02-04 17:27:36 +00:00
Douglas Gregor 4c921ae760 Eliminated LookupCriteria, whose creation was causing a bottleneck for
LookupName et al. Instead, use an enum and a bool to describe its
contents.

Optimized the C/Objective-C path through LookupName, eliminating any
unnecessarily C++isms. Simplify IdentifierResolver::iterator, removing
some code and arguments that are no longer used.

Eliminated LookupDeclInScope/LookupDeclInContext, moving all callers
over to LookupName, LookupQualifiedName, or LookupParsedName, as
appropriate.

All together, I'm seeing a 0.2% speedup on Cocoa.h with PTH and
-disable-free. Plus, we're down to three name-lookup routines.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63354 91177308-0d34-0410-b5e6-96231b3b80d8
2009-01-30 01:04:22 +00:00
Chris Lattner 500d3297d2 move library-specific diagnostic headers into library private dirs. Reduce
redundant #includes.  Patch by Anders Johnsen!


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63271 91177308-0d34-0410-b5e6-96231b3b80d8
2009-01-29 05:15:15 +00:00
Chris Lattner 20c6b3b85e Split the single monolithic DiagnosticKinds.def file into one
.def file for each library.  This means that adding a diagnostic
to sema doesn't require all the other libraries to be rebuilt.

Patch by Anders Johnsen!


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@63111 91177308-0d34-0410-b5e6-96231b3b80d8
2009-01-27 18:30:58 +00:00
Sebastian Redl f30208ad5b Add support for declaring pointers to members.
Add serialization support for ReferenceType.

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@62934 91177308-0d34-0410-b5e6-96231b3b80d8
2009-01-24 21:16:55 +00:00
Douglas Gregor eb11cd078b Refactor name lookup.
This change refactors and cleans up our handling of name lookup with
LookupDecl. There are several aspects to this refactoring:

  - The criteria for name lookup is now encapsulated into the class
  LookupCriteria, which replaces the hideous set of boolean values
  that LookupDecl currently has.

  - The results of name lookup are returned in a new class
  LookupResult, which can lazily build OverloadedFunctionDecls for
  overloaded function sets (and, eventually, eliminate the need to
  allocate member for OverloadedFunctionDecls) and contains a
  placeholder for handling ambiguous name lookup (for C++).

  - The primary entry points for name lookup are now LookupName (for
    unqualified name lookup) and LookupQualifiedName (for qualified
    name lookup). There is also a convenience function
    LookupParsedName that handles qualified/unqualified name lookup
    when given a scope specifier. Together, these routines are meant
    to gradually replace the kludgy LookupDecl, but this won't happen
    until after we have base class lookup (which forces us to cope
    with ambiguities).

  - Documented the heck out of name lookup. Experimenting a little
    with using Doxygen's member groups to make some sense of the Sema
    class. Feedback welcome!

  - Fixes some lingering issues with name lookup for
  nested-name-specifiers, which now goes through
  LookupName/LookupQualifiedName. 



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@62245 91177308-0d34-0410-b5e6-96231b3b80d8
2009-01-14 22:20:51 +00:00
Douglas Gregor 72de6676bd Unify the code for defining tags in C and C++, so that we always
introduce a Scope for the body of a tag. This reduces the number of
semantic differences between C and C++ structs and unions, and will
help with other features (e.g., anonymous unions) in C. Some important
points:

  - Fields are now in the "member" namespace (IDNS_Member), to keep
    them separate from tags and ordinary names in C. See the new test
    in Sema/member-reference.c for an example of why this matters. In
    C++, ordinary and member name lookup will find members in both the
    ordinary and member namespace, so the difference between
    IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but
    only in C++!). 
  - We always introduce a Scope and push a DeclContext when we're
    defining a tag, in both C and C++. Previously, we had different
    actions and different Scope/CurContext behavior for enums, C
    structs/unions, and C++ structs/unions/classes. Now, it's one pair
    of actions. (Yay!)

There's still some fuzziness in the handling of struct/union/enum
definitions within other struct/union/enum definitions in C. We'll
need to do some more cleanup to eliminate some reliance on CurContext
before we can solve this issue for real. What we want is for something
like this:

  struct X {
    struct T { int x; } t;
  };

to introduce T into translation unit scope (placing it at the
appropriate point in the IdentifierResolver chain, too), but it should
still have struct X as its lexical declaration
context. PushOnScopeChains isn't smart enough to do that yet, though,
so there's a FIXME test in nested-redef.c



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61940 91177308-0d34-0410-b5e6-96231b3b80d8
2009-01-08 20:45:30 +00:00
Steve Naroff 0701bbb228 This is a large/messy diff that unifies the ObjC AST's with DeclContext.
- ObjCContainerDecl's (ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl), ObjCCategoryImpl, & ObjCImplementation are all DeclContexts.
- ObjCMethodDecl is now a ScopedDecl (so it can play nicely with DeclContext).
- ObjCContainerDecl now does iteration/lookup using DeclContext infrastructure (no more linear search:-)
- Removed ASTContext argument to DeclContext::lookup(). It wasn't being used and complicated it's use from an ObjC AST perspective.
- Added Sema::ProcessPropertyDecl() and removed Sema::diagnosePropertySetterGetterMismatch().
- Simplified Sema::ActOnAtEnd() considerably. Still more work to do.
- Fixed an incorrect casting assumption in Sema::getCurFunctionOrMethodDecl(), now that ObjCMethodDecl is a ScopedDecl.
- Removed addPropertyMethods from ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl.

This passes all the tests on my machine. Since many of the changes are central to the way ObjC finds it's methods, I expect some fallout (and there are still a handful of FIXME's). Nevertheless, this should be a step in the right direction.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61929 91177308-0d34-0410-b5e6-96231b3b80d8
2009-01-08 17:28:14 +00:00
Douglas Gregor 72b505b790 Delay parsing of default arguments of member functions until the class
is completely defined (C++ [class.mem]p2).

Reverse the order in which we process the definitions of member
functions specified inline. This way, we'll get diagnostics in the
order in which the member functions were declared in the class.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61103 91177308-0d34-0410-b5e6-96231b3b80d8
2008-12-16 21:30:33 +00:00
Douglas Gregor 3dde5a3fa2 Partial fix for qualified name lookup, such that the lookup of N in
N::X only skips those entities specified in C++ [basic.lookup.qual]p1.

Note that both EDG and GCC currently get this wrong. EDG has confirmed
that the bug will be fixed in a future version.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61079 91177308-0d34-0410-b5e6-96231b3b80d8
2008-12-16 06:37:47 +00:00
Douglas Gregor 0a59acb9ae Make name lookup when we're inside a declarator's scope, such as ClassName::func, work with the new unqualified name lookup code. Test it with default arguments in out-of-line member definitions
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61060 91177308-0d34-0410-b5e6-96231b3b80d8
2008-12-16 00:38:16 +00:00
Douglas Gregor e267ff35b2 Address some comments on the name lookup/DeclContext patch from Chris
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@60897 91177308-0d34-0410-b5e6-96231b3b80d8
2008-12-11 20:41:00 +00:00
Douglas Gregor 44b4321fea Unifies the name-lookup mechanisms used in various parts of the AST
and separates lexical name lookup from qualified name lookup. In
particular:
  * Make DeclContext the central data structure for storing and
    looking up declarations within existing declarations, e.g., members
    of structs/unions/classes, enumerators in C++0x enums, members of
    C++ namespaces, and (later) members of Objective-C
    interfaces/implementations. DeclContext uses a lazily-constructed
    data structure optimized for fast lookup (array for small contexts,
    hash table for larger contexts). 

  * Implement C++ qualified name lookup in terms of lookup into
    DeclContext.

  * Implement C++ unqualified name lookup in terms of
    qualified+unqualified name lookup (since unqualified lookup is not
    purely lexical in C++!)

  * Limit the use of the chains of declarations stored in
    IdentifierInfo to those names declared lexically.

  * Eliminate CXXFieldDecl, collapsing its behavior into
    FieldDecl. (FieldDecl is now a ScopedDecl).

  * Make RecordDecl into a DeclContext and eliminates its
    Members/NumMembers fields (since one can just iterate through the
    DeclContext to get the fields).



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@60878 91177308-0d34-0410-b5e6-96231b3b80d8
2008-12-11 16:49:14 +00:00
Chris Lattner 3c73c41cef stop calling II::getName() unnecesarily in sema
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59609 91177308-0d34-0410-b5e6-96231b3b80d8
2008-11-19 08:23:25 +00:00
Douglas Gregor 2def48394f Updated IdentifierResolver to deal with DeclarationNames. The names of
C++ constructors, destructors, and conversion functions now have a
FETokenInfo field that IdentifierResolver can access, so that these
special names are handled just like ordinary identifiers. A few other
Sema routines now use DeclarationNames instead of IdentifierInfo*'s.

To validate this design, this code also implements parsing and
semantic analysis for id-expressions that name conversion functions,
e.g.,

  return operator bool();

The new parser action ActOnConversionFunctionExpr takes the result of
parsing "operator type-id" and turning it into an expression, using
the IdentifierResolver with the DeclarationName of the conversion
function. ActOnDeclarator pushes those conversion function names into
scope so that the IdentifierResolver can find them, of course.



git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59462 91177308-0d34-0410-b5e6-96231b3b80d8
2008-11-17 20:34:05 +00:00
Argyrios Kyrtzidis ef6e647b8d Implement Sema support for C++ nested-name-specifiers.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@58916 91177308-0d34-0410-b5e6-96231b3b80d8
2008-11-08 17:17:31 +00:00