// CFRefCount.cpp - Transfer functions for tracking simple values -*- C++ -*--// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the methods for CFRefCount, which implements // a reference count checker for Core Foundation (Mac OS X). // //===----------------------------------------------------------------------===// #include "GRSimpleVals.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/SourceManager.h" #include "clang/Analysis/PathSensitive/GRExprEngineBuilders.h" #include "clang/Analysis/PathSensitive/GRStateTrait.h" #include "clang/Analysis/PathDiagnostic.h" #include "clang/Analysis/LocalCheckers.h" #include "clang/Analysis/PathDiagnostic.h" #include "clang/Analysis/PathSensitive/BugReporter.h" #include "clang/Analysis/PathSensitive/SymbolManager.h" #include "clang/AST/DeclObjC.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/ImmutableList.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace clang; //===----------------------------------------------------------------------===// // Utility functions. //===----------------------------------------------------------------------===// // The "fundamental rule" for naming conventions of methods: // (url broken into two lines) // http://developer.apple.com/documentation/Cocoa/Conceptual/ // MemoryMgmt/Tasks/MemoryManagementRules.html // // "You take ownership of an object if you create it using a method whose name // begins with “alloc” or “new” or contains “copy” (for example, alloc, // newObject, or mutableCopy), or if you send it a retain message. You are // responsible for relinquishing ownership of objects you own using release // or autorelease. Any other time you receive an object, you must // not release it." // using llvm::CStrInCStrNoCase; using llvm::StringsEqualNoCase; enum NamingConvention { NoConvention, CreateRule, InitRule }; static inline bool isWordEnd(char ch, char prev, char next) { return ch == '\0' || (islower(prev) && isupper(ch)) // xxxC || (isupper(prev) && isupper(ch) && islower(next)) // XXCreate || !isalpha(ch); } static inline const char* parseWord(const char* s) { char ch = *s, prev = '\0'; assert(ch != '\0'); char next = *(s+1); while (!isWordEnd(ch, prev, next)) { prev = ch; ch = next; next = *((++s)+1); } return s; } static NamingConvention deriveNamingConvention(const char* s) { // A method/function name may contain a prefix. We don't know it is there, // however, until we encounter the first '_'. bool InPossiblePrefix = true; bool AtBeginning = true; NamingConvention C = NoConvention; while (*s != '\0') { // Skip '_'. if (*s == '_') { if (InPossiblePrefix) { InPossiblePrefix = false; AtBeginning = true; // Discard whatever 'convention' we // had already derived since it occurs // in the prefix. C = NoConvention; } ++s; continue; } // Skip numbers, ':', etc. if (!isalpha(*s)) { ++s; continue; } const char *wordEnd = parseWord(s); assert(wordEnd > s); unsigned len = wordEnd - s; switch (len) { default: break; case 3: // Methods starting with 'new' follow the create rule. if (AtBeginning && StringsEqualNoCase("new", s, len)) C = CreateRule; break; case 4: // Methods starting with 'alloc' or contain 'copy' follow the // create rule if (C == NoConvention && StringsEqualNoCase("copy", s, len)) C = CreateRule; else // Methods starting with 'init' follow the init rule. if (AtBeginning && StringsEqualNoCase("init", s, len)) C = InitRule; break; case 5: if (AtBeginning && StringsEqualNoCase("alloc", s, len)) C = CreateRule; break; } // If we aren't in the prefix and have a derived convention then just // return it now. if (!InPossiblePrefix && C != NoConvention) return C; AtBeginning = false; s = wordEnd; } // We will get here if there wasn't more than one word // after the prefix. return C; } static bool followsFundamentalRule(const char* s) { return deriveNamingConvention(s) == CreateRule; } static const ObjCMethodDecl* ResolveToInterfaceMethodDecl(const ObjCMethodDecl *MD, ASTContext &Context) { ObjCInterfaceDecl *ID = const_cast(MD->getClassInterface()); return MD->isInstanceMethod() ? ID->lookupInstanceMethod(Context, MD->getSelector()) : ID->lookupClassMethod(Context, MD->getSelector()); } //===----------------------------------------------------------------------===// // Selector creation functions. //===----------------------------------------------------------------------===// static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { IdentifierInfo* II = &Ctx.Idents.get(name); return Ctx.Selectors.getSelector(0, &II); } static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) { IdentifierInfo* II = &Ctx.Idents.get(name); return Ctx.Selectors.getSelector(1, &II); } //===----------------------------------------------------------------------===// // Type querying functions. //===----------------------------------------------------------------------===// static bool hasPrefix(const char* s, const char* prefix) { if (!prefix) return true; char c = *s; char cP = *prefix; while (c != '\0' && cP != '\0') { if (c != cP) break; c = *(++s); cP = *(++prefix); } return cP == '\0'; } static bool hasSuffix(const char* s, const char* suffix) { const char* loc = strstr(s, suffix); return loc && strcmp(suffix, loc) == 0; } static bool isRefType(QualType RetTy, const char* prefix, ASTContext* Ctx = 0, const char* name = 0) { if (TypedefType* TD = dyn_cast(RetTy.getTypePtr())) { const char* TDName = TD->getDecl()->getIdentifier()->getName(); return hasPrefix(TDName, prefix) && hasSuffix(TDName, "Ref"); } if (!Ctx || !name) return false; // Is the type void*? const PointerType* PT = RetTy->getAsPointerType(); if (!(PT->getPointeeType().getUnqualifiedType() == Ctx->VoidTy)) return false; // Does the name start with the prefix? return hasPrefix(name, prefix); } //===----------------------------------------------------------------------===// // Primitives used for constructing summaries for function/method calls. //===----------------------------------------------------------------------===// /// ArgEffect is used to summarize a function/method call's effect on a /// particular argument. enum ArgEffect { Autorelease, Dealloc, DecRef, DecRefMsg, DoNothing, DoNothingByRef, IncRefMsg, IncRef, MakeCollectable, MayEscape, NewAutoreleasePool, SelfOwn, StopTracking }; namespace llvm { template <> struct FoldingSetTrait { static inline void Profile(const ArgEffect X, FoldingSetNodeID& ID) { ID.AddInteger((unsigned) X); } }; } // end llvm namespace /// ArgEffects summarizes the effects of a function/method call on all of /// its arguments. typedef llvm::ImmutableMap ArgEffects; namespace { /// RetEffect is used to summarize a function/method call's behavior with /// respect to its return value. class VISIBILITY_HIDDEN RetEffect { public: enum Kind { NoRet, Alias, OwnedSymbol, OwnedAllocatedSymbol, NotOwnedSymbol, GCNotOwnedSymbol, ReceiverAlias }; enum ObjKind { CF, ObjC, AnyObj }; private: Kind K; ObjKind O; unsigned index; RetEffect(Kind k, unsigned idx = 0) : K(k), O(AnyObj), index(idx) {} RetEffect(Kind k, ObjKind o) : K(k), O(o), index(0) {} public: Kind getKind() const { return K; } ObjKind getObjKind() const { return O; } unsigned getIndex() const { assert(getKind() == Alias); return index; } bool isOwned() const { return K == OwnedSymbol || K == OwnedAllocatedSymbol; } static RetEffect MakeAlias(unsigned Idx) { return RetEffect(Alias, Idx); } static RetEffect MakeReceiverAlias() { return RetEffect(ReceiverAlias); } static RetEffect MakeOwned(ObjKind o, bool isAllocated = false) { return RetEffect(isAllocated ? OwnedAllocatedSymbol : OwnedSymbol, o); } static RetEffect MakeNotOwned(ObjKind o) { return RetEffect(NotOwnedSymbol, o); } static RetEffect MakeGCNotOwned() { return RetEffect(GCNotOwnedSymbol, ObjC); } static RetEffect MakeNoRet() { return RetEffect(NoRet); } void Profile(llvm::FoldingSetNodeID& ID) const { ID.AddInteger((unsigned)K); ID.AddInteger((unsigned)O); ID.AddInteger(index); } }; class VISIBILITY_HIDDEN RetainSummary { /// Args - an ordered vector of (index, ArgEffect) pairs, where index /// specifies the argument (starting from 0). This can be sparsely /// populated; arguments with no entry in Args use 'DefaultArgEffect'. ArgEffects Args; /// DefaultArgEffect - The default ArgEffect to apply to arguments that /// do not have an entry in Args. ArgEffect DefaultArgEffect; /// Receiver - If this summary applies to an Objective-C message expression, /// this is the effect applied to the state of the receiver. ArgEffect Receiver; /// Ret - The effect on the return value. Used to indicate if the /// function/method call returns a new tracked symbol, returns an /// alias of one of the arguments in the call, and so on. RetEffect Ret; /// EndPath - Indicates that execution of this method/function should /// terminate the simulation of a path. bool EndPath; public: RetainSummary(ArgEffects A, RetEffect R, ArgEffect defaultEff, ArgEffect ReceiverEff, bool endpath = false) : Args(A), DefaultArgEffect(defaultEff), Receiver(ReceiverEff), Ret(R), EndPath(endpath) {} /// getArg - Return the argument effect on the argument specified by /// idx (starting from 0). ArgEffect getArg(unsigned idx) const { if (const ArgEffect *AE = Args.lookup(idx)) return *AE; return DefaultArgEffect; } /// setDefaultArgEffect - Set the default argument effect. void setDefaultArgEffect(ArgEffect E) { DefaultArgEffect = E; } /// setArg - Set the argument effect on the argument specified by idx. void setArgEffect(ArgEffects::Factory& AF, unsigned idx, ArgEffect E) { Args = AF.Add(Args, idx, E); } /// getRetEffect - Returns the effect on the return value of the call. RetEffect getRetEffect() const { return Ret; } /// setRetEffect - Set the effect of the return value of the call. void setRetEffect(RetEffect E) { Ret = E; } /// isEndPath - Returns true if executing the given method/function should /// terminate the path. bool isEndPath() const { return EndPath; } /// getReceiverEffect - Returns the effect on the receiver of the call. /// This is only meaningful if the summary applies to an ObjCMessageExpr*. ArgEffect getReceiverEffect() const { return Receiver; } /// setReceiverEffect - Set the effect on the receiver of the call. void setReceiverEffect(ArgEffect E) { Receiver = E; } typedef ArgEffects::iterator ExprIterator; ExprIterator begin_args() const { return Args.begin(); } ExprIterator end_args() const { return Args.end(); } static void Profile(llvm::FoldingSetNodeID& ID, ArgEffects A, RetEffect RetEff, ArgEffect DefaultEff, ArgEffect ReceiverEff, bool EndPath) { ID.Add(A); ID.Add(RetEff); ID.AddInteger((unsigned) DefaultEff); ID.AddInteger((unsigned) ReceiverEff); ID.AddInteger((unsigned) EndPath); } void Profile(llvm::FoldingSetNodeID& ID) const { Profile(ID, Args, Ret, DefaultArgEffect, Receiver, EndPath); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Data structures for constructing summaries. //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN ObjCSummaryKey { IdentifierInfo* II; Selector S; public: ObjCSummaryKey(IdentifierInfo* ii, Selector s) : II(ii), S(s) {} ObjCSummaryKey(const ObjCInterfaceDecl* d, Selector s) : II(d ? d->getIdentifier() : 0), S(s) {} ObjCSummaryKey(Selector s) : II(0), S(s) {} IdentifierInfo* getIdentifier() const { return II; } Selector getSelector() const { return S; } }; } namespace llvm { template <> struct DenseMapInfo { static inline ObjCSummaryKey getEmptyKey() { return ObjCSummaryKey(DenseMapInfo::getEmptyKey(), DenseMapInfo::getEmptyKey()); } static inline ObjCSummaryKey getTombstoneKey() { return ObjCSummaryKey(DenseMapInfo::getTombstoneKey(), DenseMapInfo::getTombstoneKey()); } static unsigned getHashValue(const ObjCSummaryKey &V) { return (DenseMapInfo::getHashValue(V.getIdentifier()) & 0x88888888) | (DenseMapInfo::getHashValue(V.getSelector()) & 0x55555555); } static bool isEqual(const ObjCSummaryKey& LHS, const ObjCSummaryKey& RHS) { return DenseMapInfo::isEqual(LHS.getIdentifier(), RHS.getIdentifier()) && DenseMapInfo::isEqual(LHS.getSelector(), RHS.getSelector()); } static bool isPod() { return DenseMapInfo::isPod() && DenseMapInfo::isPod(); } }; } // end llvm namespace namespace { class VISIBILITY_HIDDEN ObjCSummaryCache { typedef llvm::DenseMap MapTy; MapTy M; public: ObjCSummaryCache() {} typedef MapTy::iterator iterator; iterator find(const ObjCInterfaceDecl* D, IdentifierInfo *ClsName, Selector S) { // Lookup the method using the decl for the class @interface. If we // have no decl, lookup using the class name. return D ? find(D, S) : find(ClsName, S); } iterator find(const ObjCInterfaceDecl* D, Selector S) { // Do a lookup with the (D,S) pair. If we find a match return // the iterator. ObjCSummaryKey K(D, S); MapTy::iterator I = M.find(K); if (I != M.end() || !D) return I; // Walk the super chain. If we find a hit with a parent, we'll end // up returning that summary. We actually allow that key (null,S), as // we cache summaries for the null ObjCInterfaceDecl* to allow us to // generate initial summaries without having to worry about NSObject // being declared. // FIXME: We may change this at some point. for (ObjCInterfaceDecl* C=D->getSuperClass() ;; C=C->getSuperClass()) { if ((I = M.find(ObjCSummaryKey(C, S))) != M.end()) break; if (!C) return I; } // Cache the summary with original key to make the next lookup faster // and return the iterator. M[K] = I->second; return I; } iterator find(Expr* Receiver, Selector S) { return find(getReceiverDecl(Receiver), S); } iterator find(IdentifierInfo* II, Selector S) { // FIXME: Class method lookup. Right now we dont' have a good way // of going between IdentifierInfo* and the class hierarchy. iterator I = M.find(ObjCSummaryKey(II, S)); return I == M.end() ? M.find(ObjCSummaryKey(S)) : I; } ObjCInterfaceDecl* getReceiverDecl(Expr* E) { const PointerType* PT = E->getType()->getAsPointerType(); if (!PT) return 0; ObjCInterfaceType* OI = dyn_cast(PT->getPointeeType()); if (!OI) return 0; return OI ? OI->getDecl() : 0; } iterator end() { return M.end(); } RetainSummary*& operator[](ObjCMessageExpr* ME) { Selector S = ME->getSelector(); if (Expr* Receiver = ME->getReceiver()) { ObjCInterfaceDecl* OD = getReceiverDecl(Receiver); return OD ? M[ObjCSummaryKey(OD->getIdentifier(), S)] : M[S]; } return M[ObjCSummaryKey(ME->getClassName(), S)]; } RetainSummary*& operator[](ObjCSummaryKey K) { return M[K]; } RetainSummary*& operator[](Selector S) { return M[ ObjCSummaryKey(S) ]; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Data structures for managing collections of summaries. //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN RetainSummaryManager { //==-----------------------------------------------------------------==// // Typedefs. //==-----------------------------------------------------------------==// typedef llvm::DenseMap FuncSummariesTy; typedef ObjCSummaryCache ObjCMethodSummariesTy; //==-----------------------------------------------------------------==// // Data. //==-----------------------------------------------------------------==// /// Ctx - The ASTContext object for the analyzed ASTs. ASTContext& Ctx; /// CFDictionaryCreateII - An IdentifierInfo* representing the indentifier /// "CFDictionaryCreate". IdentifierInfo* CFDictionaryCreateII; /// GCEnabled - Records whether or not the analyzed code runs in GC mode. const bool GCEnabled; /// FuncSummaries - A map from FunctionDecls to summaries. FuncSummariesTy FuncSummaries; /// ObjCClassMethodSummaries - A map from selectors (for instance methods) /// to summaries. ObjCMethodSummariesTy ObjCClassMethodSummaries; /// ObjCMethodSummaries - A map from selectors to summaries. ObjCMethodSummariesTy ObjCMethodSummaries; /// BPAlloc - A BumpPtrAllocator used for allocating summaries, ArgEffects, /// and all other data used by the checker. llvm::BumpPtrAllocator BPAlloc; /// AF - A factory for ArgEffects objects. ArgEffects::Factory AF; /// ScratchArgs - A holding buffer for construct ArgEffects. ArgEffects ScratchArgs; RetainSummary DefaultSummary; RetainSummary* StopSummary; //==-----------------------------------------------------------------==// // Methods. //==-----------------------------------------------------------------==// /// getArgEffects - Returns a persistent ArgEffects object based on the /// data in ScratchArgs. ArgEffects getArgEffects(); enum UnaryFuncKind { cfretain, cfrelease, cfmakecollectable }; public: RetainSummary *getDefaultSummary() { RetainSummary *Summ = (RetainSummary*) BPAlloc.Allocate(); return new (Summ) RetainSummary(DefaultSummary); } RetainSummary* getUnarySummary(const FunctionType* FT, UnaryFuncKind func); RetainSummary* getCFSummaryCreateRule(FunctionDecl* FD); RetainSummary* getCFSummaryGetRule(FunctionDecl* FD); RetainSummary* getCFCreateGetRuleSummary(FunctionDecl* FD, const char* FName); RetainSummary* getPersistentSummary(ArgEffects AE, RetEffect RetEff, ArgEffect ReceiverEff = DoNothing, ArgEffect DefaultEff = MayEscape, bool isEndPath = false); RetainSummary* getPersistentSummary(RetEffect RE, ArgEffect ReceiverEff = DoNothing, ArgEffect DefaultEff = MayEscape) { return getPersistentSummary(getArgEffects(), RE, ReceiverEff, DefaultEff); } RetainSummary *getPersistentStopSummary() { if (StopSummary) return StopSummary; StopSummary = getPersistentSummary(RetEffect::MakeNoRet(), StopTracking, StopTracking); return StopSummary; } RetainSummary *getInitMethodSummary(QualType RetTy); void InitializeClassMethodSummaries(); void InitializeMethodSummaries(); bool isTrackedObjCObjectType(QualType T); bool isTrackedCFObjectType(QualType T); private: void addClsMethSummary(IdentifierInfo* ClsII, Selector S, RetainSummary* Summ) { ObjCClassMethodSummaries[ObjCSummaryKey(ClsII, S)] = Summ; } void addNSObjectClsMethSummary(Selector S, RetainSummary *Summ) { ObjCClassMethodSummaries[S] = Summ; } void addNSObjectMethSummary(Selector S, RetainSummary *Summ) { ObjCMethodSummaries[S] = Summ; } void addClassMethSummary(const char* Cls, const char* nullaryName, RetainSummary *Summ) { IdentifierInfo* ClsII = &Ctx.Idents.get(Cls); Selector S = GetNullarySelector(nullaryName, Ctx); ObjCClassMethodSummaries[ObjCSummaryKey(ClsII, S)] = Summ; } void addInstMethSummary(const char* Cls, const char* nullaryName, RetainSummary *Summ) { IdentifierInfo* ClsII = &Ctx.Idents.get(Cls); Selector S = GetNullarySelector(nullaryName, Ctx); ObjCMethodSummaries[ObjCSummaryKey(ClsII, S)] = Summ; } Selector generateSelector(va_list argp) { llvm::SmallVector II; while (const char* s = va_arg(argp, const char*)) II.push_back(&Ctx.Idents.get(s)); return Ctx.Selectors.getSelector(II.size(), &II[0]); } void addMethodSummary(IdentifierInfo *ClsII, ObjCMethodSummariesTy& Summaries, RetainSummary* Summ, va_list argp) { Selector S = generateSelector(argp); Summaries[ObjCSummaryKey(ClsII, S)] = Summ; } void addInstMethSummary(const char* Cls, RetainSummary* Summ, ...) { va_list argp; va_start(argp, Summ); addMethodSummary(&Ctx.Idents.get(Cls), ObjCMethodSummaries, Summ, argp); va_end(argp); } void addClsMethSummary(const char* Cls, RetainSummary* Summ, ...) { va_list argp; va_start(argp, Summ); addMethodSummary(&Ctx.Idents.get(Cls),ObjCClassMethodSummaries, Summ, argp); va_end(argp); } void addClsMethSummary(IdentifierInfo *II, RetainSummary* Summ, ...) { va_list argp; va_start(argp, Summ); addMethodSummary(II, ObjCClassMethodSummaries, Summ, argp); va_end(argp); } void addPanicSummary(const char* Cls, ...) { RetainSummary* Summ = getPersistentSummary(AF.GetEmptyMap(), RetEffect::MakeNoRet(), DoNothing, DoNothing, true); va_list argp; va_start (argp, Cls); addMethodSummary(&Ctx.Idents.get(Cls), ObjCMethodSummaries, Summ, argp); va_end(argp); } public: RetainSummaryManager(ASTContext& ctx, bool gcenabled) : Ctx(ctx), CFDictionaryCreateII(&ctx.Idents.get("CFDictionaryCreate")), GCEnabled(gcenabled), AF(BPAlloc), ScratchArgs(AF.GetEmptyMap()), DefaultSummary(AF.GetEmptyMap() /* per-argument effects (none) */, RetEffect::MakeNoRet() /* return effect */, DoNothing /* receiver effect */, MayEscape /* default argument effect */), StopSummary(0) { InitializeClassMethodSummaries(); InitializeMethodSummaries(); } ~RetainSummaryManager(); RetainSummary* getSummary(FunctionDecl* FD); RetainSummary* getInstanceMethodSummary(ObjCMessageExpr* ME, const ObjCInterfaceDecl* ID) { return getInstanceMethodSummary(ME->getSelector(), ME->getClassName(), ID, ME->getMethodDecl(), ME->getType()); } RetainSummary* getInstanceMethodSummary(Selector S, IdentifierInfo *ClsName, const ObjCInterfaceDecl* ID, const ObjCMethodDecl *MD, QualType RetTy); RetainSummary *getClassMethodSummary(Selector S, IdentifierInfo *ClsName, const ObjCInterfaceDecl *ID, const ObjCMethodDecl *MD, QualType RetTy); RetainSummary *getClassMethodSummary(ObjCMessageExpr *ME) { return getClassMethodSummary(ME->getSelector(), ME->getClassName(), ME->getClassInfo().first, ME->getMethodDecl(), ME->getType()); } /// getMethodSummary - This version of getMethodSummary is used to query /// the summary for the current method being analyzed. RetainSummary *getMethodSummary(const ObjCMethodDecl *MD) { // FIXME: Eventually this should be unneeded. const ObjCInterfaceDecl *ID = MD->getClassInterface(); Selector S = MD->getSelector(); IdentifierInfo *ClsName = ID->getIdentifier(); QualType ResultTy = MD->getResultType(); // Resolve the method decl last. if (const ObjCMethodDecl *InterfaceMD = ResolveToInterfaceMethodDecl(MD, Ctx)) MD = InterfaceMD; if (MD->isInstanceMethod()) return getInstanceMethodSummary(S, ClsName, ID, MD, ResultTy); else return getClassMethodSummary(S, ClsName, ID, MD, ResultTy); } RetainSummary* getCommonMethodSummary(const ObjCMethodDecl* MD, Selector S, QualType RetTy); void updateSummaryArgEffFromAnnotations(RetainSummary &Summ, const Decl *D, unsigned argIdx = 0); void updateSummaryFromAnnotations(RetainSummary &Summ, const ObjCMethodDecl *MD); void updateSummaryFromAnnotations(RetainSummary &Summ, const FunctionDecl *FD); bool isGCEnabled() const { return GCEnabled; } RetainSummary *copySummary(RetainSummary *OldSumm) { RetainSummary *Summ = (RetainSummary*) BPAlloc.Allocate(); new (Summ) RetainSummary(*OldSumm); return Summ; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Implementation of checker data structures. //===----------------------------------------------------------------------===// RetainSummaryManager::~RetainSummaryManager() {} ArgEffects RetainSummaryManager::getArgEffects() { ArgEffects AE = ScratchArgs; ScratchArgs = AF.GetEmptyMap(); return AE; } RetainSummary* RetainSummaryManager::getPersistentSummary(ArgEffects AE, RetEffect RetEff, ArgEffect ReceiverEff, ArgEffect DefaultEff, bool isEndPath) { // Create the summary and return it. RetainSummary *Summ = (RetainSummary*) BPAlloc.Allocate(); new (Summ) RetainSummary(AE, RetEff, DefaultEff, ReceiverEff, isEndPath); return Summ; } //===----------------------------------------------------------------------===// // Predicates. //===----------------------------------------------------------------------===// bool RetainSummaryManager::isTrackedObjCObjectType(QualType Ty) { if (!Ctx.isObjCObjectPointerType(Ty)) return false; // We assume that id<..>, id, and "Class" all represent tracked objects. const PointerType *PT = Ty->getAsPointerType(); if (PT == 0) return true; const ObjCInterfaceType *OT = PT->getPointeeType()->getAsObjCInterfaceType(); // We assume that id<..>, id, and "Class" all represent tracked objects. if (!OT) return true; // Does the interface subclass NSObject? // FIXME: We can memoize here if this gets too expensive. IdentifierInfo* NSObjectII = &Ctx.Idents.get("NSObject"); ObjCInterfaceDecl* ID = OT->getDecl(); for ( ; ID ; ID = ID->getSuperClass()) if (ID->getIdentifier() == NSObjectII) return true; return false; } bool RetainSummaryManager::isTrackedCFObjectType(QualType T) { return isRefType(T, "CF") || // Core Foundation. isRefType(T, "CG") || // Core Graphics. isRefType(T, "DADisk") || // Disk Arbitration API. isRefType(T, "DADissenter") || isRefType(T, "DASessionRef"); } //===----------------------------------------------------------------------===// // Summary creation for functions (largely uses of Core Foundation). //===----------------------------------------------------------------------===// static bool isRetain(FunctionDecl* FD, const char* FName) { const char* loc = strstr(FName, "Retain"); return loc && loc[sizeof("Retain")-1] == '\0'; } static bool isRelease(FunctionDecl* FD, const char* FName) { const char* loc = strstr(FName, "Release"); return loc && loc[sizeof("Release")-1] == '\0'; } RetainSummary* RetainSummaryManager::getSummary(FunctionDecl* FD) { // Look up a summary in our cache of FunctionDecls -> Summaries. FuncSummariesTy::iterator I = FuncSummaries.find(FD); if (I != FuncSummaries.end()) return I->second; // No summary? Generate one. RetainSummary *S = 0; do { // We generate "stop" summaries for implicitly defined functions. if (FD->isImplicit()) { S = getPersistentStopSummary(); break; } // [PR 3337] Use 'getAsFunctionType' to strip away any typedefs on the // function's type. const FunctionType* FT = FD->getType()->getAsFunctionType(); const char* FName = FD->getIdentifier()->getName(); // Strip away preceding '_'. Doing this here will effect all the checks // down below. while (*FName == '_') ++FName; // Inspect the result type. QualType RetTy = FT->getResultType(); // FIXME: This should all be refactored into a chain of "summary lookup" // filters. if (strcmp(FName, "IOServiceGetMatchingServices") == 0) { // FIXES: // This should be addressed using a API table. This strcmp is also // a little gross, but there is no need to super optimize here. assert (ScratchArgs.isEmpty()); ScratchArgs = AF.Add(ScratchArgs, 1, DecRef); S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); break; } // Enable this code once the semantics of NSDeallocateObject are resolved // for GC. #if 0 // Handle: NSDeallocateObject(id anObject); // This method does allow 'nil' (although we don't check it now). if (strcmp(FName, "NSDeallocateObject") == 0) { return RetTy == Ctx.VoidTy ? getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, Dealloc) : getPersistentStopSummary(); } #endif // Handle: id NSMakeCollectable(CFTypeRef) if (strcmp(FName, "NSMakeCollectable") == 0) { S = (RetTy == Ctx.getObjCIdType()) ? getUnarySummary(FT, cfmakecollectable) : getPersistentStopSummary(); break; } if (RetTy->isPointerType()) { // For CoreFoundation ('CF') types. if (isRefType(RetTy, "CF", &Ctx, FName)) { if (isRetain(FD, FName)) S = getUnarySummary(FT, cfretain); else if (strstr(FName, "MakeCollectable")) S = getUnarySummary(FT, cfmakecollectable); else S = getCFCreateGetRuleSummary(FD, FName); break; } // For CoreGraphics ('CG') types. if (isRefType(RetTy, "CG", &Ctx, FName)) { if (isRetain(FD, FName)) S = getUnarySummary(FT, cfretain); else S = getCFCreateGetRuleSummary(FD, FName); break; } // For the Disk Arbitration API (DiskArbitration/DADisk.h) if (isRefType(RetTy, "DADisk") || isRefType(RetTy, "DADissenter") || isRefType(RetTy, "DASessionRef")) { S = getCFCreateGetRuleSummary(FD, FName); break; } break; } // Check for release functions, the only kind of functions that we care // about that don't return a pointer type. if (FName[0] == 'C' && (FName[1] == 'F' || FName[1] == 'G')) { // Test for 'CGCF'. if (FName[1] == 'G' && FName[2] == 'C' && FName[3] == 'F') FName += 4; else FName += 2; if (isRelease(FD, FName)) S = getUnarySummary(FT, cfrelease); else { assert (ScratchArgs.isEmpty()); // Remaining CoreFoundation and CoreGraphics functions. // We use to assume that they all strictly followed the ownership idiom // and that ownership cannot be transferred. While this is technically // correct, many methods allow a tracked object to escape. For example: // // CFMutableDictionaryRef x = CFDictionaryCreateMutable(...); // CFDictionaryAddValue(y, key, x); // CFRelease(x); // ... it is okay to use 'x' since 'y' has a reference to it // // We handle this and similar cases with the follow heuristic. If the // function name contains "InsertValue", "SetValue" or "AddValue" then // we assume that arguments may "escape." // ArgEffect E = (CStrInCStrNoCase(FName, "InsertValue") || CStrInCStrNoCase(FName, "AddValue") || CStrInCStrNoCase(FName, "SetValue") || CStrInCStrNoCase(FName, "AppendValue")) ? MayEscape : DoNothing; S = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, E); } } } while (0); if (!S) S = getDefaultSummary(); // Annotations override defaults. assert(S); updateSummaryFromAnnotations(*S, FD); FuncSummaries[FD] = S; return S; } RetainSummary* RetainSummaryManager::getCFCreateGetRuleSummary(FunctionDecl* FD, const char* FName) { if (strstr(FName, "Create") || strstr(FName, "Copy")) return getCFSummaryCreateRule(FD); if (strstr(FName, "Get")) return getCFSummaryGetRule(FD); return getDefaultSummary(); } RetainSummary* RetainSummaryManager::getUnarySummary(const FunctionType* FT, UnaryFuncKind func) { // Sanity check that this is *really* a unary function. This can // happen if people do weird things. const FunctionProtoType* FTP = dyn_cast(FT); if (!FTP || FTP->getNumArgs() != 1) return getPersistentStopSummary(); assert (ScratchArgs.isEmpty()); switch (func) { case cfretain: { ScratchArgs = AF.Add(ScratchArgs, 0, IncRef); return getPersistentSummary(RetEffect::MakeAlias(0), DoNothing, DoNothing); } case cfrelease: { ScratchArgs = AF.Add(ScratchArgs, 0, DecRef); return getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, DoNothing); } case cfmakecollectable: { ScratchArgs = AF.Add(ScratchArgs, 0, MakeCollectable); return getPersistentSummary(RetEffect::MakeAlias(0),DoNothing, DoNothing); } default: assert (false && "Not a supported unary function."); return getDefaultSummary(); } } RetainSummary* RetainSummaryManager::getCFSummaryCreateRule(FunctionDecl* FD) { assert (ScratchArgs.isEmpty()); if (FD->getIdentifier() == CFDictionaryCreateII) { ScratchArgs = AF.Add(ScratchArgs, 1, DoNothingByRef); ScratchArgs = AF.Add(ScratchArgs, 2, DoNothingByRef); } return getPersistentSummary(RetEffect::MakeOwned(RetEffect::CF, true)); } RetainSummary* RetainSummaryManager::getCFSummaryGetRule(FunctionDecl* FD) { assert (ScratchArgs.isEmpty()); return getPersistentSummary(RetEffect::MakeNotOwned(RetEffect::CF), DoNothing, DoNothing); } //===----------------------------------------------------------------------===// // Summary creation for Selectors. //===----------------------------------------------------------------------===// RetainSummary* RetainSummaryManager::getInitMethodSummary(QualType RetTy) { assert(ScratchArgs.isEmpty()); // 'init' methods only return an alias if the return type is a location type. return getPersistentSummary(Loc::IsLocType(RetTy) ? RetEffect::MakeReceiverAlias() : RetEffect::MakeNoRet()); } void RetainSummaryManager::updateSummaryArgEffFromAnnotations(RetainSummary &Summ, const Decl *D, unsigned i) { ArgEffect E = DoNothing; if (D->getAttr()) E = IncRefMsg; else if (D->getAttr()) E = IncRef; else if (D->getAttr()) E = DecRefMsg; else if (D->getAttr()) E = DecRef; else if (D->getAttr()) E = Autorelease; else return; if (isa(D)) Summ.setArgEffect(AF, i, E); else Summ.setReceiverEffect(E); } void RetainSummaryManager::updateSummaryFromAnnotations(RetainSummary &Summ, const FunctionDecl *FD) { if (!FD) return; // Determine if there is a special return effect for this method. if (isTrackedObjCObjectType(FD->getResultType())) { if (FD->getAttr()) { Summ.setRetEffect(isGCEnabled() ? RetEffect::MakeGCNotOwned() : RetEffect::MakeOwned(RetEffect::ObjC, true)); } else if (FD->getAttr()) { Summ.setRetEffect(RetEffect::MakeOwned(RetEffect::CF, true)); } } // Determine if there are any arguments with a specific ArgEffect. unsigned i = 0; for (FunctionDecl::param_const_iterator I = FD->param_begin(), E = FD->param_end(); I != E; ++I, ++i) updateSummaryArgEffFromAnnotations(Summ, *I, i); } void RetainSummaryManager::updateSummaryFromAnnotations(RetainSummary &Summ, const ObjCMethodDecl *MD) { if (!MD) return; // Determine if there is a special return effect for this method. if (isTrackedObjCObjectType(MD->getResultType())) { if (MD->getAttr()) { Summ.setRetEffect(isGCEnabled() ? RetEffect::MakeGCNotOwned() : RetEffect::MakeOwned(RetEffect::ObjC, true)); } else if (MD->getAttr()) { Summ.setRetEffect(RetEffect::MakeOwned(RetEffect::CF, true)); } } // Determine if there are any arguments with a specific ArgEffect. unsigned i = 0; for (ObjCMethodDecl::param_iterator I = MD->param_begin(), E = MD->param_end(); I != E; ++I, ++i) updateSummaryArgEffFromAnnotations(Summ, *I, i); // Determine any effects on the receiver. updateSummaryArgEffFromAnnotations(Summ, MD); } RetainSummary* RetainSummaryManager::getCommonMethodSummary(const ObjCMethodDecl* MD, Selector S, QualType RetTy) { if (MD) { // Scan the method decl for 'void*' arguments. These should be treated // as 'StopTracking' because they are often used with delegates. // Delegates are a frequent form of false positives with the retain // count checker. unsigned i = 0; for (ObjCMethodDecl::param_iterator I = MD->param_begin(), E = MD->param_end(); I != E; ++I, ++i) if (ParmVarDecl *PD = *I) { QualType Ty = Ctx.getCanonicalType(PD->getType()); if (Ty.getUnqualifiedType() == Ctx.VoidPtrTy) ScratchArgs = AF.Add(ScratchArgs, i, StopTracking); } } // Any special effect for the receiver? ArgEffect ReceiverEff = DoNothing; // If one of the arguments in the selector has the keyword 'delegate' we // should stop tracking the reference count for the receiver. This is // because the reference count is quite possibly handled by a delegate // method. if (S.isKeywordSelector()) { const std::string &str = S.getAsString(); assert(!str.empty()); if (CStrInCStrNoCase(&str[0], "delegate:")) ReceiverEff = StopTracking; } // Look for methods that return an owned object. if (isTrackedObjCObjectType(RetTy)) { // EXPERIMENTAL: Assume the Cocoa conventions for all objects returned // by instance methods. RetEffect E = followsFundamentalRule(S.getIdentifierInfoForSlot(0)->getName()) ? (isGCEnabled() ? RetEffect::MakeGCNotOwned() : RetEffect::MakeOwned(RetEffect::ObjC, true)) : RetEffect::MakeNotOwned(RetEffect::ObjC); return getPersistentSummary(E, ReceiverEff, MayEscape); } // Look for methods that return an owned core foundation object. if (isTrackedCFObjectType(RetTy)) { RetEffect E = followsFundamentalRule(S.getIdentifierInfoForSlot(0)->getName()) ? RetEffect::MakeOwned(RetEffect::CF, true) : RetEffect::MakeNotOwned(RetEffect::CF); return getPersistentSummary(E, ReceiverEff, MayEscape); } if (ScratchArgs.isEmpty() && ReceiverEff == DoNothing) return getDefaultSummary(); return getPersistentSummary(RetEffect::MakeNoRet(), ReceiverEff, MayEscape); } RetainSummary* RetainSummaryManager::getInstanceMethodSummary(Selector S, IdentifierInfo *ClsName, const ObjCInterfaceDecl* ID, const ObjCMethodDecl *MD, QualType RetTy) { // Look up a summary in our summary cache. ObjCMethodSummariesTy::iterator I = ObjCMethodSummaries.find(ID, ClsName, S); if (I != ObjCMethodSummaries.end()) return I->second; assert(ScratchArgs.isEmpty()); RetainSummary *Summ = 0; // "initXXX": pass-through for receiver. if (deriveNamingConvention(S.getIdentifierInfoForSlot(0)->getName()) == InitRule) Summ = getInitMethodSummary(RetTy); else Summ = getCommonMethodSummary(MD, S, RetTy); // Annotations override defaults. updateSummaryFromAnnotations(*Summ, MD); // Memoize the summary. ObjCMethodSummaries[ObjCSummaryKey(ClsName, S)] = Summ; return Summ; } RetainSummary* RetainSummaryManager::getClassMethodSummary(Selector S, IdentifierInfo *ClsName, const ObjCInterfaceDecl *ID, const ObjCMethodDecl *MD, QualType RetTy) { assert(ClsName && "Class name must be specified."); ObjCMethodSummariesTy::iterator I = ObjCClassMethodSummaries.find(ID, ClsName, S); if (I != ObjCClassMethodSummaries.end()) return I->second; RetainSummary *Summ = getCommonMethodSummary(MD, S, RetTy); // Annotations override defaults. updateSummaryFromAnnotations(*Summ, MD); // Memoize the summary. ObjCClassMethodSummaries[ObjCSummaryKey(ClsName, S)] = Summ; return Summ; } void RetainSummaryManager::InitializeClassMethodSummaries() { assert (ScratchArgs.isEmpty()); RetEffect E = isGCEnabled() ? RetEffect::MakeGCNotOwned() : RetEffect::MakeOwned(RetEffect::ObjC, true); RetainSummary* Summ = getPersistentSummary(E); // Create the summaries for "alloc", "new", and "allocWithZone:" for // NSObject and its derivatives. addNSObjectClsMethSummary(GetNullarySelector("alloc", Ctx), Summ); addNSObjectClsMethSummary(GetNullarySelector("new", Ctx), Summ); addNSObjectClsMethSummary(GetUnarySelector("allocWithZone", Ctx), Summ); // Create the [NSAssertionHandler currentHander] summary. addClsMethSummary(&Ctx.Idents.get("NSAssertionHandler"), GetNullarySelector("currentHandler", Ctx), getPersistentSummary(RetEffect::MakeNotOwned(RetEffect::ObjC))); // Create the [NSAutoreleasePool addObject:] summary. ScratchArgs = AF.Add(ScratchArgs, 0, Autorelease); addClsMethSummary(&Ctx.Idents.get("NSAutoreleasePool"), GetUnarySelector("addObject", Ctx), getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, Autorelease)); // Create the summaries for [NSObject performSelector...]. We treat // these as 'stop tracking' for the arguments because they are often // used for delegates that can release the object. When we have better // inter-procedural analysis we can potentially do something better. This // workaround is to remove false positives. Summ = getPersistentSummary(RetEffect::MakeNoRet(), DoNothing, StopTracking); IdentifierInfo *NSObjectII = &Ctx.Idents.get("NSObject"); addClsMethSummary(NSObjectII, Summ, "performSelector", "withObject", "afterDelay", NULL); addClsMethSummary(NSObjectII, Summ, "performSelector", "withObject", "afterDelay", "inModes", NULL); addClsMethSummary(NSObjectII, Summ, "performSelectorOnMainThread", "withObject", "waitUntilDone", NULL); addClsMethSummary(NSObjectII, Summ, "performSelectorOnMainThread", "withObject", "waitUntilDone", "modes", NULL); addClsMethSummary(NSObjectII, Summ, "performSelector", "onThread", "withObject", "waitUntilDone", NULL); addClsMethSummary(NSObjectII, Summ, "performSelector", "onThread", "withObject", "waitUntilDone", "modes", NULL); addClsMethSummary(NSObjectII, Summ, "performSelectorInBackground", "withObject", NULL); } void RetainSummaryManager::InitializeMethodSummaries() { assert (ScratchArgs.isEmpty()); // Create the "init" selector. It just acts as a pass-through for the // receiver. RetainSummary* InitSumm = getPersistentSummary(RetEffect::MakeReceiverAlias()); addNSObjectMethSummary(GetNullarySelector("init", Ctx), InitSumm); // The next methods are allocators. RetEffect E = isGCEnabled() ? RetEffect::MakeGCNotOwned() : RetEffect::MakeOwned(RetEffect::ObjC, true); RetainSummary* Summ = getPersistentSummary(E); // Create the "copy" selector. addNSObjectMethSummary(GetNullarySelector("copy", Ctx), Summ); // Create the "mutableCopy" selector. addNSObjectMethSummary(GetNullarySelector("mutableCopy", Ctx), Summ); // Create the "retain" selector. E = RetEffect::MakeReceiverAlias(); Summ = getPersistentSummary(E, IncRefMsg); addNSObjectMethSummary(GetNullarySelector("retain", Ctx), Summ); // Create the "release" selector. Summ = getPersistentSummary(E, DecRefMsg); addNSObjectMethSummary(GetNullarySelector("release", Ctx), Summ); // Create the "drain" selector. Summ = getPersistentSummary(E, isGCEnabled() ? DoNothing : DecRef); addNSObjectMethSummary(GetNullarySelector("drain", Ctx), Summ); // Create the -dealloc summary. Summ = getPersistentSummary(RetEffect::MakeNoRet(), Dealloc); addNSObjectMethSummary(GetNullarySelector("dealloc", Ctx), Summ); // Create the "autorelease" selector. Summ = getPersistentSummary(E, Autorelease); addNSObjectMethSummary(GetNullarySelector("autorelease", Ctx), Summ); // Specially handle NSAutoreleasePool. addInstMethSummary("NSAutoreleasePool", "init", getPersistentSummary(RetEffect::MakeReceiverAlias(), NewAutoreleasePool)); // For NSWindow, allocated objects are (initially) self-owned. // FIXME: For now we opt for false negatives with NSWindow, as these objects // self-own themselves. However, they only do this once they are displayed. // Thus, we need to track an NSWindow's display status. // This is tracked in . // See also http://llvm.org/bugs/show_bug.cgi?id=3714. RetainSummary *NoTrackYet = getPersistentSummary(RetEffect::MakeNoRet()); addClassMethSummary("NSWindow", "alloc", NoTrackYet); #if 0 RetainSummary *NSWindowSumm = getPersistentSummary(RetEffect::MakeReceiverAlias(), StopTracking); addInstMethSummary("NSWindow", NSWindowSumm, "initWithContentRect", "styleMask", "backing", "defer", NULL); addInstMethSummary("NSWindow", NSWindowSumm, "initWithContentRect", "styleMask", "backing", "defer", "screen", NULL); #endif // For NSPanel (which subclasses NSWindow), allocated objects are not // self-owned. // FIXME: For now we don't track NSPanels. object for the same reason // as for NSWindow objects. addClassMethSummary("NSPanel", "alloc", NoTrackYet); addInstMethSummary("NSPanel", InitSumm, "initWithContentRect", "styleMask", "backing", "defer", NULL); addInstMethSummary("NSPanel", InitSumm, "initWithContentRect", "styleMask", "backing", "defer", "screen", NULL); // Create NSAssertionHandler summaries. addPanicSummary("NSAssertionHandler", "handleFailureInFunction", "file", "lineNumber", "description", NULL); addPanicSummary("NSAssertionHandler", "handleFailureInMethod", "object", "file", "lineNumber", "description", NULL); } //===----------------------------------------------------------------------===// // Reference-counting logic (typestate + counts). //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN RefVal { public: enum Kind { Owned = 0, // Owning reference. NotOwned, // Reference is not owned by still valid (not freed). Released, // Object has been released. ReturnedOwned, // Returned object passes ownership to caller. ReturnedNotOwned, // Return object does not pass ownership to caller. ERROR_START, ErrorDeallocNotOwned, // -dealloc called on non-owned object. ErrorDeallocGC, // Calling -dealloc with GC enabled. ErrorUseAfterRelease, // Object used after released. ErrorReleaseNotOwned, // Release of an object that was not owned. ERROR_LEAK_START, ErrorLeak, // A memory leak due to excessive reference counts. ErrorLeakReturned // A memory leak due to the returning method not having // the correct naming conventions. }; private: Kind kind; RetEffect::ObjKind okind; unsigned Cnt; QualType T; RefVal(Kind k, RetEffect::ObjKind o, unsigned cnt, QualType t) : kind(k), okind(o), Cnt(cnt), T(t) {} RefVal(Kind k, unsigned cnt = 0) : kind(k), okind(RetEffect::AnyObj), Cnt(cnt) {} public: Kind getKind() const { return kind; } RetEffect::ObjKind getObjKind() const { return okind; } unsigned getCount() const { return Cnt; } void clearCounts() { Cnt = 0; } QualType getType() const { return T; } // Useful predicates. static bool isError(Kind k) { return k >= ERROR_START; } static bool isLeak(Kind k) { return k >= ERROR_LEAK_START; } bool isOwned() const { return getKind() == Owned; } bool isNotOwned() const { return getKind() == NotOwned; } bool isReturnedOwned() const { return getKind() == ReturnedOwned; } bool isReturnedNotOwned() const { return getKind() == ReturnedNotOwned; } bool isNonLeakError() const { Kind k = getKind(); return isError(k) && !isLeak(k); } static RefVal makeOwned(RetEffect::ObjKind o, QualType t, unsigned Count = 1) { return RefVal(Owned, o, Count, t); } static RefVal makeNotOwned(RetEffect::ObjKind o, QualType t, unsigned Count = 0) { return RefVal(NotOwned, o, Count, t); } static RefVal makeReturnedOwned(unsigned Count) { return RefVal(ReturnedOwned, Count); } static RefVal makeReturnedNotOwned() { return RefVal(ReturnedNotOwned); } // Comparison, profiling, and pretty-printing. bool operator==(const RefVal& X) const { return kind == X.kind && Cnt == X.Cnt && T == X.T; } RefVal operator-(size_t i) const { return RefVal(getKind(), getObjKind(), getCount() - i, getType()); } RefVal operator+(size_t i) const { return RefVal(getKind(), getObjKind(), getCount() + i, getType()); } RefVal operator^(Kind k) const { return RefVal(k, getObjKind(), getCount(), getType()); } void Profile(llvm::FoldingSetNodeID& ID) const { ID.AddInteger((unsigned) kind); ID.AddInteger(Cnt); ID.Add(T); } void print(std::ostream& Out) const; }; void RefVal::print(std::ostream& Out) const { if (!T.isNull()) Out << "Tracked Type:" << T.getAsString() << '\n'; switch (getKind()) { default: assert(false); case Owned: { Out << "Owned"; unsigned cnt = getCount(); if (cnt) Out << " (+ " << cnt << ")"; break; } case NotOwned: { Out << "NotOwned"; unsigned cnt = getCount(); if (cnt) Out << " (+ " << cnt << ")"; break; } case ReturnedOwned: { Out << "ReturnedOwned"; unsigned cnt = getCount(); if (cnt) Out << " (+ " << cnt << ")"; break; } case ReturnedNotOwned: { Out << "ReturnedNotOwned"; unsigned cnt = getCount(); if (cnt) Out << " (+ " << cnt << ")"; break; } case Released: Out << "Released"; break; case ErrorDeallocGC: Out << "-dealloc (GC)"; break; case ErrorDeallocNotOwned: Out << "-dealloc (not-owned)"; break; case ErrorLeak: Out << "Leaked"; break; case ErrorLeakReturned: Out << "Leaked (Bad naming)"; break; case ErrorUseAfterRelease: Out << "Use-After-Release [ERROR]"; break; case ErrorReleaseNotOwned: Out << "Release of Not-Owned [ERROR]"; break; } } } // end anonymous namespace //===----------------------------------------------------------------------===// // RefBindings - State used to track object reference counts. //===----------------------------------------------------------------------===// typedef llvm::ImmutableMap RefBindings; static int RefBIndex = 0; static std::pair LeakProgramPointTag(&RefBIndex, 0); namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait { static inline void* GDMIndex() { return &RefBIndex; } }; } //===----------------------------------------------------------------------===// // AutoreleaseBindings - State used to track objects in autorelease pools. //===----------------------------------------------------------------------===// typedef llvm::ImmutableMap ARCounts; typedef llvm::ImmutableMap ARPoolContents; typedef llvm::ImmutableList ARStack; static int AutoRCIndex = 0; static int AutoRBIndex = 0; namespace { class VISIBILITY_HIDDEN AutoreleasePoolContents {}; } namespace { class VISIBILITY_HIDDEN AutoreleaseStack {}; } namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait { static inline void* GDMIndex() { return &AutoRBIndex; } }; template<> struct GRStateTrait : public GRStatePartialTrait { static inline void* GDMIndex() { return &AutoRCIndex; } }; } // end clang namespace static SymbolRef GetCurrentAutoreleasePool(const GRState* state) { ARStack stack = state->get(); return stack.isEmpty() ? SymbolRef() : stack.getHead(); } static GRStateRef SendAutorelease(GRStateRef state, ARCounts::Factory &F, SymbolRef sym) { SymbolRef pool = GetCurrentAutoreleasePool(state); const ARCounts *cnts = state.get(pool); ARCounts newCnts(0); if (cnts) { const unsigned *cnt = (*cnts).lookup(sym); newCnts = F.Add(*cnts, sym, cnt ? *cnt + 1 : 1); } else newCnts = F.Add(F.GetEmptyMap(), sym, 1); return state.set(pool, newCnts); } //===----------------------------------------------------------------------===// // Transfer functions. //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN CFRefCount : public GRSimpleVals { public: class BindingsPrinter : public GRState::Printer { public: virtual void Print(std::ostream& Out, const GRState* state, const char* nl, const char* sep); }; private: typedef llvm::DenseMap SummaryLogTy; RetainSummaryManager Summaries; SummaryLogTy SummaryLog; const LangOptions& LOpts; ARCounts::Factory ARCountFactory; BugType *useAfterRelease, *releaseNotOwned; BugType *deallocGC, *deallocNotOwned; BugType *leakWithinFunction, *leakAtReturn; BugReporter *BR; GRStateRef Update(GRStateRef state, SymbolRef sym, RefVal V, ArgEffect E, RefVal::Kind& hasErr); void ProcessNonLeakError(ExplodedNodeSet& Dst, GRStmtNodeBuilder& Builder, Expr* NodeExpr, Expr* ErrorExpr, ExplodedNode* Pred, const GRState* St, RefVal::Kind hasErr, SymbolRef Sym); std::pair HandleSymbolDeath(GRStateManager& VMgr, const GRState* St, const Decl* CD, SymbolRef sid, RefVal V, bool& hasLeak); public: CFRefCount(ASTContext& Ctx, bool gcenabled, const LangOptions& lopts) : Summaries(Ctx, gcenabled), LOpts(lopts), useAfterRelease(0), releaseNotOwned(0), deallocGC(0), deallocNotOwned(0), leakWithinFunction(0), leakAtReturn(0), BR(0) {} virtual ~CFRefCount() {} void RegisterChecks(BugReporter &BR); virtual void RegisterPrinters(std::vector& Printers) { Printers.push_back(new BindingsPrinter()); } bool isGCEnabled() const { return Summaries.isGCEnabled(); } const LangOptions& getLangOptions() const { return LOpts; } const RetainSummary *getSummaryOfNode(const ExplodedNode *N) const { SummaryLogTy::const_iterator I = SummaryLog.find(N); return I == SummaryLog.end() ? 0 : I->second; } // Calls. void EvalSummary(ExplodedNodeSet& Dst, GRExprEngine& Eng, GRStmtNodeBuilder& Builder, Expr* Ex, Expr* Receiver, const RetainSummary& Summ, ExprIterator arg_beg, ExprIterator arg_end, ExplodedNode* Pred); virtual void EvalCall(ExplodedNodeSet& Dst, GRExprEngine& Eng, GRStmtNodeBuilder& Builder, CallExpr* CE, SVal L, ExplodedNode* Pred); virtual void EvalObjCMessageExpr(ExplodedNodeSet& Dst, GRExprEngine& Engine, GRStmtNodeBuilder& Builder, ObjCMessageExpr* ME, ExplodedNode* Pred); bool EvalObjCMessageExprAux(ExplodedNodeSet& Dst, GRExprEngine& Engine, GRStmtNodeBuilder& Builder, ObjCMessageExpr* ME, ExplodedNode* Pred); // Stores. virtual void EvalBind(GRStmtNodeBuilderRef& B, SVal location, SVal val); // End-of-path. virtual void EvalEndPath(GRExprEngine& Engine, GREndPathNodeBuilder& Builder); virtual void EvalDeadSymbols(ExplodedNodeSet& Dst, GRExprEngine& Engine, GRStmtNodeBuilder& Builder, ExplodedNode* Pred, Stmt* S, const GRState* state, SymbolReaper& SymReaper); // Return statements. virtual void EvalReturn(ExplodedNodeSet& Dst, GRExprEngine& Engine, GRStmtNodeBuilder& Builder, ReturnStmt* S, ExplodedNode* Pred); // Assumptions. virtual const GRState* EvalAssume(GRStateManager& VMgr, const GRState* St, SVal Cond, bool Assumption, bool& isFeasible); }; } // end anonymous namespace static void PrintPool(std::ostream &Out, SymbolRef Sym, const GRState *state) { Out << ' '; if (Sym) Out << Sym->getSymbolID(); else Out << ""; Out << ":{"; // Get the contents of the pool. if (const ARCounts *cnts = state->get(Sym)) for (ARCounts::iterator J=cnts->begin(), EJ=cnts->end(); J != EJ; ++J) Out << '(' << J.getKey() << ',' << J.getData() << ')'; Out << '}'; } void CFRefCount::BindingsPrinter::Print(std::ostream& Out, const GRState* state, const char* nl, const char* sep) { RefBindings B = state->get(); if (!B.isEmpty()) Out << sep << nl; for (RefBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) { Out << (*I).first << " : "; (*I).second.print(Out); Out << nl; } // Print the autorelease stack. Out << sep << nl << "AR pool stack:"; ARStack stack = state->get(); PrintPool(Out, SymbolRef(), state); // Print the caller's pool. for (ARStack::iterator I=stack.begin(), E=stack.end(); I!=E; ++I) PrintPool(Out, *I, state); Out << nl; } //===----------------------------------------------------------------------===// // Error reporting. //===----------------------------------------------------------------------===// namespace { //===-------------===// // Bug Descriptions. // //===-------------===// class VISIBILITY_HIDDEN CFRefBug : public BugType { protected: CFRefCount& TF; CFRefBug(CFRefCount* tf, const char* name) : BugType(name, "Memory (Core Foundation/Objective-C)"), TF(*tf) {} public: CFRefCount& getTF() { return TF; } const CFRefCount& getTF() const { return TF; } // FIXME: Eventually remove. virtual const char* getDescription() const = 0; virtual bool isLeak() const { return false; } }; class VISIBILITY_HIDDEN UseAfterRelease : public CFRefBug { public: UseAfterRelease(CFRefCount* tf) : CFRefBug(tf, "Use-after-release") {} const char* getDescription() const { return "Reference-counted object is used after it is released"; } }; class VISIBILITY_HIDDEN BadRelease : public CFRefBug { public: BadRelease(CFRefCount* tf) : CFRefBug(tf, "Bad release") {} const char* getDescription() const { return "Incorrect decrement of the reference count of an " "object is not owned at this point by the caller"; } }; class VISIBILITY_HIDDEN DeallocGC : public CFRefBug { public: DeallocGC(CFRefCount *tf) : CFRefBug(tf, "-dealloc called while using GC") {} const char *getDescription() const { return "-dealloc called while using GC"; } }; class VISIBILITY_HIDDEN DeallocNotOwned : public CFRefBug { public: DeallocNotOwned(CFRefCount *tf) : CFRefBug(tf, "-dealloc sent to non-exclusively owned object") {} const char *getDescription() const { return "-dealloc sent to object that may be referenced elsewhere"; } }; class VISIBILITY_HIDDEN Leak : public CFRefBug { const bool isReturn; protected: Leak(CFRefCount* tf, const char* name, bool isRet) : CFRefBug(tf, name), isReturn(isRet) {} public: const char* getDescription() const { return ""; } bool isLeak() const { return true; } }; class VISIBILITY_HIDDEN LeakAtReturn : public Leak { public: LeakAtReturn(CFRefCount* tf, const char* name) : Leak(tf, name, true) {} }; class VISIBILITY_HIDDEN LeakWithinFunction : public Leak { public: LeakWithinFunction(CFRefCount* tf, const char* name) : Leak(tf, name, false) {} }; //===---------===// // Bug Reports. // //===---------===// class VISIBILITY_HIDDEN CFRefReport : public RangedBugReport { protected: SymbolRef Sym; const CFRefCount &TF; public: CFRefReport(CFRefBug& D, const CFRefCount &tf, ExplodedNode *n, SymbolRef sym) : RangedBugReport(D, D.getDescription(), n), Sym(sym), TF(tf) {} virtual ~CFRefReport() {} CFRefBug& getBugType() { return (CFRefBug&) RangedBugReport::getBugType(); } const CFRefBug& getBugType() const { return (const CFRefBug&) RangedBugReport::getBugType(); } virtual void getRanges(BugReporter& BR, const SourceRange*& beg, const SourceRange*& end) { if (!getBugType().isLeak()) RangedBugReport::getRanges(BR, beg, end); else beg = end = 0; } SymbolRef getSymbol() const { return Sym; } PathDiagnosticPiece* getEndPath(BugReporterContext& BRC, const ExplodedNode* N); std::pair getExtraDescriptiveText(); PathDiagnosticPiece* VisitNode(const ExplodedNode* N, const ExplodedNode* PrevN, BugReporterContext& BRC); }; class VISIBILITY_HIDDEN CFRefLeakReport : public CFRefReport { SourceLocation AllocSite; const MemRegion* AllocBinding; public: CFRefLeakReport(CFRefBug& D, const CFRefCount &tf, ExplodedNode *n, SymbolRef sym, GRExprEngine& Eng); PathDiagnosticPiece* getEndPath(BugReporterContext& BRC, const ExplodedNode* N); SourceLocation getLocation() const { return AllocSite; } }; } // end anonymous namespace void CFRefCount::RegisterChecks(BugReporter& BR) { useAfterRelease = new UseAfterRelease(this); BR.Register(useAfterRelease); releaseNotOwned = new BadRelease(this); BR.Register(releaseNotOwned); deallocGC = new DeallocGC(this); BR.Register(deallocGC); deallocNotOwned = new DeallocNotOwned(this); BR.Register(deallocNotOwned); // First register "return" leaks. const char* name = 0; if (isGCEnabled()) name = "Leak of returned object when using garbage collection"; else if (getLangOptions().getGCMode() == LangOptions::HybridGC) name = "Leak of returned object when not using garbage collection (GC) in " "dual GC/non-GC code"; else { assert(getLangOptions().getGCMode() == LangOptions::NonGC); name = "Leak of returned object"; } leakAtReturn = new LeakAtReturn(this, name); BR.Register(leakAtReturn); // Second, register leaks within a function/method. if (isGCEnabled()) name = "Leak of object when using garbage collection"; else if (getLangOptions().getGCMode() == LangOptions::HybridGC) name = "Leak of object when not using garbage collection (GC) in " "dual GC/non-GC code"; else { assert(getLangOptions().getGCMode() == LangOptions::NonGC); name = "Leak"; } leakWithinFunction = new LeakWithinFunction(this, name); BR.Register(leakWithinFunction); // Save the reference to the BugReporter. this->BR = &BR; } static const char* Msgs[] = { // GC only "Code is compiled to only use garbage collection", // No GC. "Code is compiled to use reference counts", // Hybrid, with GC. "Code is compiled to use either garbage collection (GC) or reference counts" " (non-GC). The bug occurs with GC enabled", // Hybrid, without GC "Code is compiled to use either garbage collection (GC) or reference counts" " (non-GC). The bug occurs in non-GC mode" }; std::pair CFRefReport::getExtraDescriptiveText() { CFRefCount& TF = static_cast(getBugType()).getTF(); switch (TF.getLangOptions().getGCMode()) { default: assert(false); case LangOptions::GCOnly: assert (TF.isGCEnabled()); return std::make_pair(&Msgs[0], &Msgs[0]+1); case LangOptions::NonGC: assert (!TF.isGCEnabled()); return std::make_pair(&Msgs[1], &Msgs[1]+1); case LangOptions::HybridGC: if (TF.isGCEnabled()) return std::make_pair(&Msgs[2], &Msgs[2]+1); else return std::make_pair(&Msgs[3], &Msgs[3]+1); } } static inline bool contains(const llvm::SmallVectorImpl& V, ArgEffect X) { for (llvm::SmallVectorImpl::const_iterator I=V.begin(), E=V.end(); I!=E; ++I) if (*I == X) return true; return false; } PathDiagnosticPiece* CFRefReport::VisitNode(const ExplodedNode* N, const ExplodedNode* PrevN, BugReporterContext& BRC) { // Check if the type state has changed. GRStateManager &StMgr = BRC.getStateManager(); GRStateRef PrevSt(PrevN->getState(), StMgr); GRStateRef CurrSt(N->getState(), StMgr); const RefVal* CurrT = CurrSt.get(Sym); if (!CurrT) return NULL; const RefVal& CurrV = *CurrT; const RefVal* PrevT = PrevSt.get(Sym); // Create a string buffer to constain all the useful things we want // to tell the user. std::string sbuf; llvm::raw_string_ostream os(sbuf); // This is the allocation site since the previous node had no bindings // for this symbol. if (!PrevT) { Stmt* S = cast(N->getLocation()).getStmt(); if (CallExpr *CE = dyn_cast(S)) { // Get the name of the callee (if it is available). SVal X = CurrSt.GetSValAsScalarOrLoc(CE->getCallee()); if (const FunctionDecl* FD = X.getAsFunctionDecl()) os << "Call to function '" << FD->getNameAsString() <<'\''; else os << "function call"; } else { assert (isa(S)); os << "Method"; } if (CurrV.getObjKind() == RetEffect::CF) { os << " returns a Core Foundation object with a "; } else { assert (CurrV.getObjKind() == RetEffect::ObjC); os << " returns an Objective-C object with a "; } if (CurrV.isOwned()) { os << "+1 retain count (owning reference)."; if (static_cast(getBugType()).getTF().isGCEnabled()) { assert(CurrV.getObjKind() == RetEffect::CF); os << " " "Core Foundation objects are not automatically garbage collected."; } } else { assert (CurrV.isNotOwned()); os << "+0 retain count (non-owning reference)."; } PathDiagnosticLocation Pos(S, BRC.getSourceManager()); return new PathDiagnosticEventPiece(Pos, os.str()); } // Gather up the effects that were performed on the object at this // program point llvm::SmallVector AEffects; if (const RetainSummary *Summ = TF.getSummaryOfNode(BRC.getNodeResolver().getOriginalNode(N))) { // We only have summaries attached to nodes after evaluating CallExpr and // ObjCMessageExprs. Stmt* S = cast(N->getLocation()).getStmt(); if (CallExpr *CE = dyn_cast(S)) { // Iterate through the parameter expressions and see if the symbol // was ever passed as an argument. unsigned i = 0; for (CallExpr::arg_iterator AI=CE->arg_begin(), AE=CE->arg_end(); AI!=AE; ++AI, ++i) { // Retrieve the value of the argument. Is it the symbol // we are interested in? if (CurrSt.GetSValAsScalarOrLoc(*AI).getAsLocSymbol() != Sym) continue; // We have an argument. Get the effect! AEffects.push_back(Summ->getArg(i)); } } else if (ObjCMessageExpr *ME = dyn_cast(S)) { if (Expr *receiver = ME->getReceiver()) if (CurrSt.GetSValAsScalarOrLoc(receiver).getAsLocSymbol() == Sym) { // The symbol we are tracking is the receiver. AEffects.push_back(Summ->getReceiverEffect()); } } } do { // Get the previous type state. RefVal PrevV = *PrevT; // Specially handle -dealloc. if (!TF.isGCEnabled() && contains(AEffects, Dealloc)) { // Determine if the object's reference count was pushed to zero. assert(!(PrevV == CurrV) && "The typestate *must* have changed."); // We may not have transitioned to 'release' if we hit an error. // This case is handled elsewhere. if (CurrV.getKind() == RefVal::Released) { assert(CurrV.getCount() == 0); os << "Object released by directly sending the '-dealloc' message"; break; } } // Specially handle CFMakeCollectable and friends. if (contains(AEffects, MakeCollectable)) { // Get the name of the function. Stmt* S = cast(N->getLocation()).getStmt(); SVal X = CurrSt.GetSValAsScalarOrLoc(cast(S)->getCallee()); const FunctionDecl* FD = X.getAsFunctionDecl(); const std::string& FName = FD->getNameAsString(); if (TF.isGCEnabled()) { // Determine if the object's reference count was pushed to zero. assert(!(PrevV == CurrV) && "The typestate *must* have changed."); os << "In GC mode a call to '" << FName << "' decrements an object's retain count and registers the " "object with the garbage collector. "; if (CurrV.getKind() == RefVal::Released) { assert(CurrV.getCount() == 0); os << "Since it now has a 0 retain count the object can be " "automatically collected by the garbage collector."; } else os << "An object must have a 0 retain count to be garbage collected. " "After this call its retain count is +" << CurrV.getCount() << '.'; } else os << "When GC is not enabled a call to '" << FName << "' has no effect on its argument."; // Nothing more to say. break; } // Determine if the typestate has changed. if (!(PrevV == CurrV)) switch (CurrV.getKind()) { case RefVal::Owned: case RefVal::NotOwned: if (PrevV.getCount() == CurrV.getCount()) return 0; if (PrevV.getCount() > CurrV.getCount()) os << "Reference count decremented."; else os << "Reference count incremented."; if (unsigned Count = CurrV.getCount()) os << " The object now has a +" << Count << " retain count."; if (PrevV.getKind() == RefVal::Released) { assert(TF.isGCEnabled() && CurrV.getCount() > 0); os << " The object is not eligible for garbage collection until the " "retain count reaches 0 again."; } break; case RefVal::Released: os << "Object released."; break; case RefVal::ReturnedOwned: os << "Object returned to caller as an owning reference (single retain " "count transferred to caller)."; break; case RefVal::ReturnedNotOwned: os << "Object returned to caller with a +0 (non-owning) retain count."; break; default: return NULL; } // Emit any remaining diagnostics for the argument effects (if any). for (llvm::SmallVectorImpl::iterator I=AEffects.begin(), E=AEffects.end(); I != E; ++I) { // A bunch of things have alternate behavior under GC. if (TF.isGCEnabled()) switch (*I) { default: break; case Autorelease: os << "In GC mode an 'autorelease' has no effect."; continue; case IncRefMsg: os << "In GC mode the 'retain' message has no effect."; continue; case DecRefMsg: os << "In GC mode the 'release' message has no effect."; continue; } } } while(0); if (os.str().empty()) return 0; // We have nothing to say! Stmt* S = cast(N->getLocation()).getStmt(); PathDiagnosticLocation Pos(S, BRC.getSourceManager()); PathDiagnosticPiece* P = new PathDiagnosticEventPiece(Pos, os.str()); // Add the range by scanning the children of the statement for any bindings // to Sym. for (Stmt::child_iterator I = S->child_begin(), E = S->child_end(); I!=E; ++I) if (Expr* Exp = dyn_cast_or_null(*I)) if (CurrSt.GetSValAsScalarOrLoc(Exp).getAsLocSymbol() == Sym) { P->addRange(Exp->getSourceRange()); break; } return P; } namespace { class VISIBILITY_HIDDEN FindUniqueBinding : public StoreManager::BindingsHandler { SymbolRef Sym; const MemRegion* Binding; bool First; public: FindUniqueBinding(SymbolRef sym) : Sym(sym), Binding(0), First(true) {} bool HandleBinding(StoreManager& SMgr, Store store, const MemRegion* R, SVal val) { SymbolRef SymV = val.getAsSymbol(); if (!SymV || SymV != Sym) return true; if (Binding) { First = false; return false; } else Binding = R; return true; } operator bool() { return First && Binding; } const MemRegion* getRegion() { return Binding; } }; } static std::pair*,const MemRegion*> GetAllocationSite(GRStateManager& StateMgr, const ExplodedNode* N, SymbolRef Sym) { // Find both first node that referred to the tracked symbol and the // memory location that value was store to. const ExplodedNode* Last = N; const MemRegion* FirstBinding = 0; while (N) { const GRState* St = N->getState(); RefBindings B = St->get(); if (!B.lookup(Sym)) break; FindUniqueBinding FB(Sym); StateMgr.iterBindings(St, FB); if (FB) FirstBinding = FB.getRegion(); Last = N; N = N->pred_empty() ? NULL : *(N->pred_begin()); } return std::make_pair(Last, FirstBinding); } PathDiagnosticPiece* CFRefReport::getEndPath(BugReporterContext& BRC, const ExplodedNode* EndN) { // Tell the BugReporterContext to report cases when the tracked symbol is // assigned to different variables, etc. BRC.addNotableSymbol(Sym); return RangedBugReport::getEndPath(BRC, EndN); } PathDiagnosticPiece* CFRefLeakReport::getEndPath(BugReporterContext& BRC, const ExplodedNode* EndN){ // Tell the BugReporterContext to report cases when the tracked symbol is // assigned to different variables, etc. BRC.addNotableSymbol(Sym); // We are reporting a leak. Walk up the graph to get to the first node where // the symbol appeared, and also get the first VarDecl that tracked object // is stored to. const ExplodedNode* AllocNode = 0; const MemRegion* FirstBinding = 0; llvm::tie(AllocNode, FirstBinding) = GetAllocationSite(BRC.getStateManager(), EndN, Sym); // Get the allocate site. assert(AllocNode); Stmt* FirstStmt = cast(AllocNode->getLocation()).getStmt(); SourceManager& SMgr = BRC.getSourceManager(); unsigned AllocLine =SMgr.getInstantiationLineNumber(FirstStmt->getLocStart()); // Compute an actual location for the leak. Sometimes a leak doesn't // occur at an actual statement (e.g., transition between blocks; end // of function) so we need to walk the graph and compute a real location. const ExplodedNode* LeakN = EndN; PathDiagnosticLocation L; while (LeakN) { ProgramPoint P = LeakN->getLocation(); if (const PostStmt *PS = dyn_cast(&P)) { L = PathDiagnosticLocation(PS->getStmt()->getLocStart(), SMgr); break; } else if (const BlockEdge *BE = dyn_cast(&P)) { if (const Stmt* Term = BE->getSrc()->getTerminator()) { L = PathDiagnosticLocation(Term->getLocStart(), SMgr); break; } } LeakN = LeakN->succ_empty() ? 0 : *(LeakN->succ_begin()); } if (!L.isValid()) { const Decl &D = BRC.getCodeDecl(); L = PathDiagnosticLocation(D.getBodyRBrace(BRC.getASTContext()), SMgr); } std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "Object allocated on line " << AllocLine; if (FirstBinding) os << " and stored into '" << FirstBinding->getString() << '\''; // Get the retain count. const RefVal* RV = EndN->getState()->get(Sym); if (RV->getKind() == RefVal::ErrorLeakReturned) { // FIXME: Per comments in rdar://6320065, "create" only applies to CF // ojbects. Only "copy", "alloc", "retain" and "new" transfer ownership // to the caller for NS objects. ObjCMethodDecl& MD = cast(BRC.getCodeDecl()); os << " is returned from a method whose name ('" << MD.getSelector().getAsString() << "') does not contain 'copy' or otherwise starts with" " 'new' or 'alloc'. This violates the naming convention rules given" " in the Memory Management Guide for Cocoa (object leaked)"; } else os << " is no longer referenced after this point and has a retain count of" " +" << RV->getCount() << " (object leaked)"; return new PathDiagnosticEventPiece(L, os.str()); } CFRefLeakReport::CFRefLeakReport(CFRefBug& D, const CFRefCount &tf, ExplodedNode *n, SymbolRef sym, GRExprEngine& Eng) : CFRefReport(D, tf, n, sym) { // Most bug reports are cached at the location where they occured. // With leaks, we want to unique them by the location where they were // allocated, and only report a single path. To do this, we need to find // the allocation site of a piece of tracked memory, which we do via a // call to GetAllocationSite. This will walk the ExplodedGraph backwards. // Note that this is *not* the trimmed graph; we are guaranteed, however, // that all ancestor nodes that represent the allocation site have the // same SourceLocation. const ExplodedNode* AllocNode = 0; llvm::tie(AllocNode, AllocBinding) = // Set AllocBinding. GetAllocationSite(Eng.getStateManager(), getEndNode(), getSymbol()); // Get the SourceLocation for the allocation site. ProgramPoint P = AllocNode->getLocation(); AllocSite = cast(P).getStmt()->getLocStart(); // Fill in the description of the bug. Description.clear(); llvm::raw_string_ostream os(Description); SourceManager& SMgr = Eng.getContext().getSourceManager(); unsigned AllocLine = SMgr.getInstantiationLineNumber(AllocSite); os << "Potential leak "; if (tf.isGCEnabled()) { os << "(when using garbage collection) "; } os << "of an object allocated on line " << AllocLine; // FIXME: AllocBinding doesn't get populated for RegionStore yet. if (AllocBinding) os << " and stored into '" << AllocBinding->getString() << '\''; } //===----------------------------------------------------------------------===// // Main checker logic. //===----------------------------------------------------------------------===// /// GetReturnType - Used to get the return type of a message expression or /// function call with the intention of affixing that type to a tracked symbol. /// While the the return type can be queried directly from RetEx, when /// invoking class methods we augment to the return type to be that of /// a pointer to the class (as opposed it just being id). static QualType GetReturnType(Expr* RetE, ASTContext& Ctx) { QualType RetTy = RetE->getType(); // FIXME: We aren't handling id<...>. const PointerType* PT = RetTy->getAsPointerType(); if (!PT) return RetTy; // If RetEx is not a message expression just return its type. // If RetEx is a message expression, return its types if it is something /// more specific than id. ObjCMessageExpr* ME = dyn_cast(RetE); if (!ME || !Ctx.isObjCIdStructType(PT->getPointeeType())) return RetTy; ObjCInterfaceDecl* D = ME->getClassInfo().first; // At this point we know the return type of the message expression is id. // If we have an ObjCInterceDecl, we know this is a call to a class method // whose type we can resolve. In such cases, promote the return type to // Class*. return !D ? RetTy : Ctx.getPointerType(Ctx.getObjCInterfaceType(D)); } void CFRefCount::EvalSummary(ExplodedNodeSet& Dst, GRExprEngine& Eng, GRStmtNodeBuilder& Builder, Expr* Ex, Expr* Receiver, const RetainSummary& Summ, ExprIterator arg_beg, ExprIterator arg_end, ExplodedNode* Pred) { // Get the state. GRStateRef state(Builder.GetState(Pred), Eng.getStateManager()); ASTContext& Ctx = Eng.getStateManager().getContext(); // Evaluate the effect of the arguments. RefVal::Kind hasErr = (RefVal::Kind) 0; unsigned idx = 0; Expr* ErrorExpr = NULL; SymbolRef ErrorSym = 0; for (ExprIterator I = arg_beg; I != arg_end; ++I, ++idx) { SVal V = state.GetSValAsScalarOrLoc(*I); SymbolRef Sym = V.getAsLocSymbol(); if (Sym) if (RefBindings::data_type* T = state.get(Sym)) { state = Update(state, Sym, *T, Summ.getArg(idx), hasErr); if (hasErr) { ErrorExpr = *I; ErrorSym = Sym; break; } continue; } if (isa(V)) { if (loc::MemRegionVal* MR = dyn_cast(&V)) { if (Summ.getArg(idx) == DoNothingByRef) continue; // Invalidate the value of the variable passed by reference. // FIXME: Either this logic should also be replicated in GRSimpleVals // or should be pulled into a separate "constraint engine." // FIXME: We can have collisions on the conjured symbol if the // expression *I also creates conjured symbols. We probably want // to identify conjured symbols by an expression pair: the enclosing // expression (the context) and the expression itself. This should // disambiguate conjured symbols. const TypedRegion* R = dyn_cast(MR->getRegion()); if (R) { // Are we dealing with an ElementRegion? If the element type is // a basic integer type (e.g., char, int) and the underying region // is also typed then strip off the ElementRegion. // FIXME: We really need to think about this for the general case // as sometimes we are reasoning about arrays and other times // about (char*), etc., is just a form of passing raw bytes. // e.g., void *p = alloca(); foo((char*)p); if (const ElementRegion *ER = dyn_cast(R)) { // Checking for 'integral type' is probably too promiscuous, but // we'll leave it in for now until we have a systematic way of // handling all of these cases. Eventually we need to come up // with an interface to StoreManager so that this logic can be // approriately delegated to the respective StoreManagers while // still allowing us to do checker-specific logic (e.g., // invalidating reference counts), probably via callbacks. if (ER->getElementType()->isIntegralType()) if (const TypedRegion *superReg = dyn_cast(ER->getSuperRegion())) R = superReg; // FIXME: What about layers of ElementRegions? } // Is the invalidated variable something that we were tracking? SymbolRef Sym = state.GetSValAsScalarOrLoc(R).getAsLocSymbol(); // Remove any existing reference-count binding. if (Sym) state = state.remove(Sym); if (R->isBoundable(Ctx)) { // Set the value of the variable to be a conjured symbol. unsigned Count = Builder.getCurrentBlockCount(); QualType T = R->getRValueType(Ctx); if (Loc::IsLocType(T) || (T->isIntegerType() && T->isScalarType())){ ValueManager &ValMgr = Eng.getValueManager(); SVal V = ValMgr.getConjuredSymbolVal(*I, T, Count); state = state.BindLoc(Loc::MakeVal(R), V); } else if (const RecordType *RT = T->getAsStructureType()) { // Handle structs in a not so awesome way. Here we just // eagerly bind new symbols to the fields. In reality we // should have the store manager handle this. The idea is just // to prototype some basic functionality here. All of this logic // should one day soon just go away. const RecordDecl *RD = RT->getDecl()->getDefinition(Ctx); // No record definition. There is nothing we can do. if (!RD) continue; MemRegionManager &MRMgr = state.getManager().getRegionManager(); // Iterate through the fields and construct new symbols. for (RecordDecl::field_iterator FI=RD->field_begin(Ctx), FE=RD->field_end(Ctx); FI!=FE; ++FI) { // For now just handle scalar fields. FieldDecl *FD = *FI; QualType FT = FD->getType(); if (Loc::IsLocType(FT) || (FT->isIntegerType() && FT->isScalarType())) { const FieldRegion* FR = MRMgr.getFieldRegion(FD, R); ValueManager &ValMgr = Eng.getValueManager(); SVal V = ValMgr.getConjuredSymbolVal(*I, FT, Count); state = state.BindLoc(Loc::MakeVal(FR), V); } } } else { // Just blast away other values. state = state.BindLoc(*MR, UnknownVal()); } } } else state = state.BindLoc(*MR, UnknownVal()); } else { // Nuke all other arguments passed by reference. state = state.Unbind(cast(V)); } } else if (isa(V)) state = state.Unbind(cast(V).getLoc()); } // Evaluate the effect on the message receiver. if (!ErrorExpr && Receiver) { SymbolRef Sym = state.GetSValAsScalarOrLoc(Receiver).getAsLocSymbol(); if (Sym) { if (const RefVal* T = state.get(Sym)) { state = Update(state, Sym, *T, Summ.getReceiverEffect(), hasErr); if (hasErr) { ErrorExpr = Receiver; ErrorSym = Sym; } } } } // Process any errors. if (hasErr) { ProcessNonLeakError(Dst, Builder, Ex, ErrorExpr, Pred, state, hasErr, ErrorSym); return; } // Consult the summary for the return value. RetEffect RE = Summ.getRetEffect(); switch (RE.getKind()) { default: assert (false && "Unhandled RetEffect."); break; case RetEffect::NoRet: { // Make up a symbol for the return value (not reference counted). // FIXME: This is basically copy-and-paste from GRSimpleVals. We // should compose behavior, not copy it. // FIXME: We eventually should handle structs and other compound types // that are returned by value. QualType T = Ex->getType(); if (Loc::IsLocType(T) || (T->isIntegerType() && T->isScalarType())) { unsigned Count = Builder.getCurrentBlockCount(); ValueManager &ValMgr = Eng.getValueManager(); SVal X = ValMgr.getConjuredSymbolVal(Ex, T, Count); state = state.BindExpr(Ex, X, false); } break; } case RetEffect::Alias: { unsigned idx = RE.getIndex(); assert (arg_end >= arg_beg); assert (idx < (unsigned) (arg_end - arg_beg)); SVal V = state.GetSValAsScalarOrLoc(*(arg_beg+idx)); state = state.BindExpr(Ex, V, false); break; } case RetEffect::ReceiverAlias: { assert (Receiver); SVal V = state.GetSValAsScalarOrLoc(Receiver); state = state.BindExpr(Ex, V, false); break; } case RetEffect::OwnedAllocatedSymbol: case RetEffect::OwnedSymbol: { unsigned Count = Builder.getCurrentBlockCount(); ValueManager &ValMgr = Eng.getValueManager(); SymbolRef Sym = ValMgr.getConjuredSymbol(Ex, Count); QualType RetT = GetReturnType(Ex, ValMgr.getContext()); state = state.set(Sym, RefVal::makeOwned(RE.getObjKind(), RetT)); state = state.BindExpr(Ex, ValMgr.makeRegionVal(Sym), false); // FIXME: Add a flag to the checker where allocations are assumed to // *not fail. #if 0 if (RE.getKind() == RetEffect::OwnedAllocatedSymbol) { bool isFeasible; state = state.Assume(loc::SymbolVal(Sym), true, isFeasible); assert(isFeasible && "Cannot assume fresh symbol is non-null."); } #endif break; } case RetEffect::GCNotOwnedSymbol: case RetEffect::NotOwnedSymbol: { unsigned Count = Builder.getCurrentBlockCount(); ValueManager &ValMgr = Eng.getValueManager(); SymbolRef Sym = ValMgr.getConjuredSymbol(Ex, Count); QualType RetT = GetReturnType(Ex, ValMgr.getContext()); state = state.set(Sym, RefVal::makeNotOwned(RE.getObjKind(), RetT)); state = state.BindExpr(Ex, ValMgr.makeRegionVal(Sym), false); break; } } // Generate a sink node if we are at the end of a path. GRExprEngine::NodeTy *NewNode = Summ.isEndPath() ? Builder.MakeSinkNode(Dst, Ex, Pred, state) : Builder.MakeNode(Dst, Ex, Pred, state); // Annotate the edge with summary we used. if (NewNode) SummaryLog[NewNode] = &Summ; } void CFRefCount::EvalCall(ExplodedNodeSet& Dst, GRExprEngine& Eng, GRStmtNodeBuilder& Builder, CallExpr* CE, SVal L, ExplodedNode* Pred) { const FunctionDecl* FD = L.getAsFunctionDecl(); RetainSummary* Summ = !FD ? Summaries.getDefaultSummary() : Summaries.getSummary(const_cast(FD)); assert(Summ); EvalSummary(Dst, Eng, Builder, CE, 0, *Summ, CE->arg_begin(), CE->arg_end(), Pred); } void CFRefCount::EvalObjCMessageExpr(ExplodedNodeSet& Dst, GRExprEngine& Eng, GRStmtNodeBuilder& Builder, ObjCMessageExpr* ME, ExplodedNode* Pred) { RetainSummary* Summ = 0; if (Expr* Receiver = ME->getReceiver()) { // We need the type-information of the tracked receiver object // Retrieve it from the state. ObjCInterfaceDecl* ID = 0; // FIXME: Wouldn't it be great if this code could be reduced? It's just // a chain of lookups. // FIXME: Is this really working as expected? There are cases where // we just use the 'ID' from the message expression. const GRState* St = Builder.GetState(Pred); SVal V = Eng.getStateManager().GetSValAsScalarOrLoc(St, Receiver); SymbolRef Sym = V.getAsLocSymbol(); if (Sym) { if (const RefVal* T = St->get(Sym)) { QualType Ty = T->getType(); if (const PointerType* PT = Ty->getAsPointerType()) { QualType PointeeTy = PT->getPointeeType(); if (ObjCInterfaceType* IT = dyn_cast(PointeeTy)) ID = IT->getDecl(); } } } // FIXME: The receiver could be a reference to a class, meaning that // we should use the class method. Summ = Summaries.getInstanceMethodSummary(ME, ID); // Special-case: are we sending a mesage to "self"? // This is a hack. When we have full-IP this should be removed. if (isa(&Eng.getGraph().getCodeDecl())) { if (Expr* Receiver = ME->getReceiver()) { SVal X = Eng.getStateManager().GetSValAsScalarOrLoc(St, Receiver); if (loc::MemRegionVal* L = dyn_cast(&X)) if (L->getRegion() == Eng.getStateManager().getSelfRegion(St)) { // Update the summary to make the default argument effect // 'StopTracking'. Summ = Summaries.copySummary(Summ); Summ->setDefaultArgEffect(StopTracking); } } } } else Summ = Summaries.getClassMethodSummary(ME); if (!Summ) Summ = Summaries.getDefaultSummary(); EvalSummary(Dst, Eng, Builder, ME, ME->getReceiver(), *Summ, ME->arg_begin(), ME->arg_end(), Pred); } namespace { class VISIBILITY_HIDDEN StopTrackingCallback : public SymbolVisitor { GRStateRef state; public: StopTrackingCallback(GRStateRef st) : state(st) {} GRStateRef getState() { return state; } bool VisitSymbol(SymbolRef sym) { state = state.remove(sym); return true; } const GRState* getState() const { return state.getState(); } }; } // end anonymous namespace void CFRefCount::EvalBind(GRStmtNodeBuilderRef& B, SVal location, SVal val) { // Are we storing to something that causes the value to "escape"? bool escapes = false; // A value escapes in three possible cases (this may change): // // (1) we are binding to something that is not a memory region. // (2) we are binding to a memregion that does not have stack storage // (3) we are binding to a memregion with stack storage that the store // does not understand. GRStateRef state = B.getState(); if (!isa(location)) escapes = true; else { const MemRegion* R = cast(location).getRegion(); escapes = !B.getStateManager().hasStackStorage(R); if (!escapes) { // To test (3), generate a new state with the binding removed. If it is // the same state, then it escapes (since the store cannot represent // the binding). escapes = (state == (state.BindLoc(cast(location), UnknownVal()))); } } // If our store can represent the binding and we aren't storing to something // that doesn't have local storage then just return and have the simulation // state continue as is. if (!escapes) return; // Otherwise, find all symbols referenced by 'val' that we are tracking // and stop tracking them. B.MakeNode(state.scanReachableSymbols(val).getState()); } std::pair CFRefCount::HandleSymbolDeath(GRStateManager& VMgr, const GRState* St, const Decl* CD, SymbolRef sid, RefVal V, bool& hasLeak) { // Any remaining leaks? hasLeak = V.isOwned() || ((V.isNotOwned() || V.isReturnedOwned()) && V.getCount() > 0); GRStateRef state(St, VMgr); if (!hasLeak) return std::make_pair(state.remove(sid), false); return std::make_pair(state.set(sid, V ^ RefVal::ErrorLeak), false); } // Dead symbols. // Return statements. void CFRefCount::EvalReturn(ExplodedNodeSet& Dst, GRExprEngine& Eng, GRStmtNodeBuilder& Builder, ReturnStmt* S, ExplodedNode* Pred) { Expr* RetE = S->getRetValue(); if (!RetE) return; GRStateRef state(Builder.GetState(Pred), Eng.getStateManager()); SymbolRef Sym = state.GetSValAsScalarOrLoc(RetE).getAsLocSymbol(); if (!Sym) return; // Get the reference count binding (if any). const RefVal* T = state.get(Sym); if (!T) return; // Change the reference count. RefVal X = *T; switch (X.getKind()) { case RefVal::Owned: { unsigned cnt = X.getCount(); assert (cnt > 0); X = RefVal::makeReturnedOwned(cnt - 1); break; } case RefVal::NotOwned: { unsigned cnt = X.getCount(); X = cnt ? RefVal::makeReturnedOwned(cnt - 1) : RefVal::makeReturnedNotOwned(); break; } default: return; } // Update the binding. state = state.set(Sym, X); Pred = Builder.MakeNode(Dst, S, Pred, state); // Did we cache out? if (!Pred) return; // Any leaks or other errors? if (X.isReturnedOwned() && X.getCount() == 0) { const Decl *CD = &Eng.getStateManager().getCodeDecl(); if (const ObjCMethodDecl* MD = dyn_cast(CD)) { const RetainSummary &Summ = *Summaries.getMethodSummary(MD); if (!Summ.getRetEffect().isOwned()) { static int ReturnOwnLeakTag = 0; state = state.set(Sym, X ^ RefVal::ErrorLeakReturned); // Generate an error node. if (ExplodedNode *N = Builder.generateNode(PostStmt(S, &ReturnOwnLeakTag), state, Pred)) { CFRefLeakReport *report = new CFRefLeakReport(*static_cast(leakAtReturn), *this, N, Sym, Eng); BR->EmitReport(report); } } } } } // Assumptions. const GRState* CFRefCount::EvalAssume(GRStateManager& VMgr, const GRState* St, SVal Cond, bool Assumption, bool& isFeasible) { // FIXME: We may add to the interface of EvalAssume the list of symbols // whose assumptions have changed. For now we just iterate through the // bindings and check if any of the tracked symbols are NULL. This isn't // too bad since the number of symbols we will track in practice are // probably small and EvalAssume is only called at branches and a few // other places. RefBindings B = St->get(); if (B.isEmpty()) return St; bool changed = false; GRStateRef state(St, VMgr); RefBindings::Factory& RefBFactory = state.get_context(); for (RefBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) { // Check if the symbol is null (or equal to any constant). // If this is the case, stop tracking the symbol. if (VMgr.getSymVal(St, I.getKey())) { changed = true; B = RefBFactory.Remove(B, I.getKey()); } } if (changed) state = state.set(B); return state; } GRStateRef CFRefCount::Update(GRStateRef state, SymbolRef sym, RefVal V, ArgEffect E, RefVal::Kind& hasErr) { // In GC mode [... release] and [... retain] do nothing. switch (E) { default: break; case IncRefMsg: E = isGCEnabled() ? DoNothing : IncRef; break; case DecRefMsg: E = isGCEnabled() ? DoNothing : DecRef; break; case MakeCollectable: E = isGCEnabled() ? DecRef : DoNothing; break; case NewAutoreleasePool: E = isGCEnabled() ? DoNothing : NewAutoreleasePool; break; } // Handle all use-after-releases. if (!isGCEnabled() && V.getKind() == RefVal::Released) { V = V ^ RefVal::ErrorUseAfterRelease; hasErr = V.getKind(); return state.set(sym, V); } switch (E) { default: assert (false && "Unhandled CFRef transition."); case Dealloc: // Any use of -dealloc in GC is *bad*. if (isGCEnabled()) { V = V ^ RefVal::ErrorDeallocGC; hasErr = V.getKind(); break; } switch (V.getKind()) { default: assert(false && "Invalid case."); case RefVal::Owned: // The object immediately transitions to the released state. V = V ^ RefVal::Released; V.clearCounts(); return state.set(sym, V); case RefVal::NotOwned: V = V ^ RefVal::ErrorDeallocNotOwned; hasErr = V.getKind(); break; } break; case NewAutoreleasePool: assert(!isGCEnabled()); return state.add(sym); case MayEscape: if (V.getKind() == RefVal::Owned) { V = V ^ RefVal::NotOwned; break; } // Fall-through. case DoNothingByRef: case DoNothing: return state; case Autorelease: if (isGCEnabled()) return state; // Update the autorelease counts. state = SendAutorelease(state, ARCountFactory, sym); // Fall-through. case StopTracking: return state.remove(sym); case IncRef: switch (V.getKind()) { default: assert(false); case RefVal::Owned: case RefVal::NotOwned: V = V + 1; break; case RefVal::Released: // Non-GC cases are handled above. assert(isGCEnabled()); V = (V ^ RefVal::Owned) + 1; break; } break; case SelfOwn: V = V ^ RefVal::NotOwned; // Fall-through. case DecRef: switch (V.getKind()) { default: // case 'RefVal::Released' handled above. assert (false); case RefVal::Owned: assert(V.getCount() > 0); if (V.getCount() == 1) V = V ^ RefVal::Released; V = V - 1; break; case RefVal::NotOwned: if (V.getCount() > 0) V = V - 1; else { V = V ^ RefVal::ErrorReleaseNotOwned; hasErr = V.getKind(); } break; case RefVal::Released: // Non-GC cases are handled above. assert(isGCEnabled()); V = V ^ RefVal::ErrorUseAfterRelease; hasErr = V.getKind(); break; } break; } return state.set(sym, V); } //===----------------------------------------------------------------------===// // Handle dead symbols and end-of-path. //===----------------------------------------------------------------------===// void CFRefCount::EvalEndPath(GRExprEngine& Eng, GREndPathNodeBuilder& Builder) { const GRState* St = Builder.getState(); RefBindings B = St->get(); llvm::SmallVector, 10> Leaked; const Decl* CodeDecl = &Eng.getGraph().getCodeDecl(); for (RefBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) { bool hasLeak = false; std::pair X = HandleSymbolDeath(Eng.getStateManager(), St, CodeDecl, (*I).first, (*I).second, hasLeak); St = X.first; if (hasLeak) Leaked.push_back(std::make_pair((*I).first, X.second)); } if (Leaked.empty()) return; ExplodedNode* N = Builder.MakeNode(St); if (!N) return; for (llvm::SmallVector, 10>::iterator I = Leaked.begin(), E = Leaked.end(); I != E; ++I) { CFRefBug *BT = static_cast(I->second ? leakAtReturn : leakWithinFunction); assert(BT && "BugType not initialized."); CFRefLeakReport* report = new CFRefLeakReport(*BT, *this, N, I->first, Eng); BR->EmitReport(report); } } void CFRefCount::EvalDeadSymbols(ExplodedNodeSet& Dst, GRExprEngine& Eng, GRStmtNodeBuilder& Builder, ExplodedNode* Pred, Stmt* S, const GRState* St, SymbolReaper& SymReaper) { // FIXME: a lot of copy-and-paste from EvalEndPath. Refactor. RefBindings B = St->get(); llvm::SmallVector, 10> Leaked; for (SymbolReaper::dead_iterator I = SymReaper.dead_begin(), E = SymReaper.dead_end(); I != E; ++I) { const RefVal* T = B.lookup(*I); if (!T) continue; bool hasLeak = false; std::pair X = HandleSymbolDeath(Eng.getStateManager(), St, 0, *I, *T, hasLeak); St = X.first; if (hasLeak) Leaked.push_back(std::make_pair(*I,X.second)); } if (!Leaked.empty()) { // Create a new intermediate node representing the leak point. We // use a special program point that represents this checker-specific // transition. We use the address of RefBIndex as a unique tag for this // checker. We will create another node (if we don't cache out) that // removes the retain-count bindings from the state. // NOTE: We use 'generateNode' so that it does interplay with the // auto-transition logic. ExplodedNode* N = Builder.generateNode(PostStmtCustom(S, &LeakProgramPointTag), St, Pred); if (!N) return; // Generate the bug reports. for (llvm::SmallVectorImpl >::iterator I = Leaked.begin(), E = Leaked.end(); I != E; ++I) { CFRefBug *BT = static_cast(I->second ? leakAtReturn : leakWithinFunction); assert(BT && "BugType not initialized."); CFRefLeakReport* report = new CFRefLeakReport(*BT, *this, N, I->first, Eng); BR->EmitReport(report); } Pred = N; } // Now generate a new node that nukes the old bindings. GRStateRef state(St, Eng.getStateManager()); RefBindings::Factory& F = state.get_context(); for (SymbolReaper::dead_iterator I = SymReaper.dead_begin(), E = SymReaper.dead_end(); I!=E; ++I) B = F.Remove(B, *I); state = state.set(B); Builder.MakeNode(Dst, S, Pred, state); } void CFRefCount::ProcessNonLeakError(ExplodedNodeSet& Dst, GRStmtNodeBuilder& Builder, Expr* NodeExpr, Expr* ErrorExpr, ExplodedNode* Pred, const GRState* St, RefVal::Kind hasErr, SymbolRef Sym) { Builder.BuildSinks = true; GRExprEngine::NodeTy* N = Builder.MakeNode(Dst, NodeExpr, Pred, St); if (!N) return; CFRefBug *BT = 0; switch (hasErr) { default: assert(false && "Unhandled error."); return; case RefVal::ErrorUseAfterRelease: BT = static_cast(useAfterRelease); break; case RefVal::ErrorReleaseNotOwned: BT = static_cast(releaseNotOwned); break; case RefVal::ErrorDeallocGC: BT = static_cast(deallocGC); break; case RefVal::ErrorDeallocNotOwned: BT = static_cast(deallocNotOwned); break; } CFRefReport *report = new CFRefReport(*BT, *this, N, Sym); report->addRange(ErrorExpr->getSourceRange()); BR->EmitReport(report); } //===----------------------------------------------------------------------===// // Transfer function creation for external clients. //===----------------------------------------------------------------------===// GRTransferFuncs* clang::MakeCFRefCountTF(ASTContext& Ctx, bool GCEnabled, const LangOptions& lopts) { return new CFRefCount(Ctx, GCEnabled, lopts); }