//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ expressions. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ASTContext.h" #include "clang/Parse/DeclSpec.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/Diagnostic.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Debug.h" using namespace clang; /// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's. Action::ExprResult Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, SourceLocation LAngleBracketLoc, TypeTy *Ty, SourceLocation RAngleBracketLoc, SourceLocation LParenLoc, ExprTy *E, SourceLocation RParenLoc) { Expr *Ex = (Expr*)E; QualType DestType = QualType::getFromOpaquePtr(Ty); switch (Kind) { default: assert(0 && "Unknown C++ cast!"); case tok::kw_const_cast: CheckConstCast(OpLoc, Ex, DestType); return new CXXConstCastExpr(DestType.getNonReferenceType(), Ex, DestType, OpLoc); case tok::kw_dynamic_cast: return new CXXDynamicCastExpr(DestType.getNonReferenceType(), Ex, DestType, OpLoc); case tok::kw_reinterpret_cast: CheckReinterpretCast(OpLoc, Ex, DestType); return new CXXReinterpretCastExpr(DestType.getNonReferenceType(), Ex, DestType, OpLoc); case tok::kw_static_cast: return new CXXStaticCastExpr(DestType.getNonReferenceType(), Ex, DestType, OpLoc); } return true; } /// CheckConstCast - Check that a const_cast\(SrcExpr) is valid. /// Refer to C++ 5.2.11 for details. const_cast is typically used in code /// like this: /// const char *str = "literal"; /// legacy_function(const_cast\(str)); void Sema::CheckConstCast(SourceLocation OpLoc, Expr *&SrcExpr, QualType DestType) { QualType OrigDestType = DestType, OrigSrcType = SrcExpr->getType(); DestType = Context.getCanonicalType(DestType); QualType SrcType = SrcExpr->getType(); if (const ReferenceType *DestTypeTmp = DestType->getAsReferenceType()) { if (SrcExpr->isLvalue(Context) != Expr::LV_Valid) { // Cannot cast non-lvalue to reference type. Diag(OpLoc, diag::err_bad_cxx_cast_rvalue, "const_cast", OrigDestType.getAsString()); return; } // C++ 5.2.11p4: An lvalue of type T1 can be [cast] to an lvalue of type T2 // [...] if a pointer to T1 can be [cast] to the type pointer to T2. DestType = Context.getPointerType(DestTypeTmp->getPointeeType()); SrcType = Context.getPointerType(SrcType); } else { // C++ 5.2.11p1: Otherwise, the result is an rvalue and the // lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard // conversions are performed on the expression. DefaultFunctionArrayConversion(SrcExpr); SrcType = SrcExpr->getType(); } if (!DestType->isPointerType()) { // Cannot cast to non-pointer, non-reference type. Note that, if DestType // was a reference type, we converted it to a pointer above. // C++ 5.2.11p3: For two pointer types [...] Diag(OpLoc, diag::err_bad_const_cast_dest, OrigDestType.getAsString()); return; } if (DestType->isFunctionPointerType()) { // Cannot cast direct function pointers. // C++ 5.2.11p2: [...] where T is any object type or the void type [...] // T is the ultimate pointee of source and target type. Diag(OpLoc, diag::err_bad_const_cast_dest, OrigDestType.getAsString()); return; } SrcType = Context.getCanonicalType(SrcType); // Unwrap the pointers. Ignore qualifiers. Terminate early if the types are // completely equal. // FIXME: const_cast should probably not be able to convert between pointers // to different address spaces. // C++ 5.2.11p3 describes the core semantics of const_cast. All cv specifiers // in multi-level pointers may change, but the level count must be the same, // as must be the final pointee type. while (SrcType != DestType && UnwrapSimilarPointerTypes(SrcType, DestType)) { SrcType = SrcType.getUnqualifiedType(); DestType = DestType.getUnqualifiedType(); } // Doug Gregor said to disallow this until users complain. #if 0 // If we end up with constant arrays of equal size, unwrap those too. A cast // from const int [N] to int (&)[N] is invalid by my reading of the // standard, but g++ accepts it even with -ansi -pedantic. // No more than one level, though, so don't embed this in the unwrap loop // above. const ConstantArrayType *SrcTypeArr, *DestTypeArr; if ((SrcTypeArr = Context.getAsConstantArrayType(SrcType)) && (DestTypeArr = Context.getAsConstantArrayType(DestType))) { if (SrcTypeArr->getSize() != DestTypeArr->getSize()) { // Different array sizes. Diag(OpLoc, diag::err_bad_cxx_cast_generic, "const_cast", OrigDestType.getAsString(), OrigSrcType.getAsString()); return; } SrcType = SrcTypeArr->getElementType().getUnqualifiedType(); DestType = DestTypeArr->getElementType().getUnqualifiedType(); } #endif // Since we're dealing in canonical types, the remainder must be the same. if (SrcType != DestType) { // Cast between unrelated types. Diag(OpLoc, diag::err_bad_cxx_cast_generic, "const_cast", OrigDestType.getAsString(), OrigSrcType.getAsString()); return; } } /// CheckReinterpretCast - Check that a reinterpret_cast\(SrcExpr) is /// valid. /// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code /// like this: /// char *bytes = reinterpret_cast\(int_ptr); void Sema::CheckReinterpretCast(SourceLocation OpLoc, Expr *&SrcExpr, QualType DestType) { QualType OrigDestType = DestType, OrigSrcType = SrcExpr->getType(); DestType = Context.getCanonicalType(DestType); QualType SrcType = SrcExpr->getType(); if (const ReferenceType *DestTypeTmp = DestType->getAsReferenceType()) { if (SrcExpr->isLvalue(Context) != Expr::LV_Valid) { // Cannot cast non-lvalue to reference type. Diag(OpLoc, diag::err_bad_cxx_cast_rvalue, "reinterpret_cast", OrigDestType.getAsString()); return; } // C++ 5.2.10p10: [...] a reference cast reinterpret_cast(x) has the // same effect as the conversion *reinterpret_cast(&x) with the // built-in & and * operators. // This code does this transformation for the checked types. DestType = Context.getPointerType(DestTypeTmp->getPointeeType()); SrcType = Context.getPointerType(SrcType); } else { // C++ 5.2.10p1: [...] the lvalue-to-rvalue, array-to-pointer, and // function-to-pointer standard conversions are performed on the // expression v. DefaultFunctionArrayConversion(SrcExpr); SrcType = SrcExpr->getType(); } // Canonicalize source for comparison. SrcType = Context.getCanonicalType(SrcType); bool destIsPtr = DestType->isPointerType(); bool srcIsPtr = SrcType->isPointerType(); if (!destIsPtr && !srcIsPtr) { // Except for std::nullptr_t->integer, which is not supported yet, and // lvalue->reference, which is handled above, at least one of the two // arguments must be a pointer. Diag(OpLoc, diag::err_bad_cxx_cast_generic, "reinterpret_cast", OrigDestType.getAsString(), OrigSrcType.getAsString()); return; } if (SrcType == DestType) { // C++ 5.2.10p2 has a note that mentions that, subject to all other // restrictions, a cast to the same type is allowed. The intent is not // entirely clear here, since all other paragraphs explicitly forbid casts // to the same type. However, the behavior of compilers is pretty consistent // on this point: allow same-type conversion if the involved are pointers, // disallow otherwise. return; } // Note: Clang treats enumeration types as integral types. If this is ever // changed for C++, the additional check here will be redundant. if (DestType->isIntegralType() && !DestType->isEnumeralType()) { assert(srcIsPtr); // C++ 5.2.10p4: A pointer can be explicitly converted to any integral // type large enough to hold it. if (Context.getTypeSize(SrcType) > Context.getTypeSize(DestType)) { Diag(OpLoc, diag::err_bad_reinterpret_cast_small_int, OrigDestType.getAsString()); } return; } if (SrcType->isIntegralType() || SrcType->isEnumeralType()) { assert(destIsPtr); // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly // converted to a pointer. return; } if (!destIsPtr || !srcIsPtr) { // With the valid non-pointer conversions out of the way, we can be even // more stringent. Diag(OpLoc, diag::err_bad_cxx_cast_generic, "reinterpret_cast", OrigDestType.getAsString(), OrigSrcType.getAsString()); return; } // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness. if (CastsAwayConstness(SrcType, DestType)) { Diag(OpLoc, diag::err_bad_cxx_cast_const_away, "reinterpret_cast", OrigDestType.getAsString(), OrigSrcType.getAsString()); return; } // Not casting away constness, so the only remaining check is for compatible // pointer categories. if (SrcType->isFunctionPointerType()) { if (DestType->isFunctionPointerType()) { // C++ 5.2.10p6: A pointer to a function can be explicitly converted to // a pointer to a function of a different type. return; } // FIXME: Handle member pointers. // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to // an object type or vice versa is conditionally-supported. // Compilers support it in C++03 too, though, because it's necessary for // casting the return value of dlsym() and GetProcAddress(). // FIXME: Conditionally-supported behavior should be configurable in the // TargetInfo or similar. if (!getLangOptions().CPlusPlus0x) { Diag(OpLoc, diag::ext_reinterpret_cast_fn_obj); } return; } // FIXME: Handle member pointers. if (DestType->isFunctionPointerType()) { // See above. if (!getLangOptions().CPlusPlus0x) { Diag(OpLoc, diag::ext_reinterpret_cast_fn_obj); } return; } // C++ 5.2.10p7: A pointer to an object can be explicitly converted to // a pointer to an object of different type. // Void pointers are not specified, but supported by every compiler out there. // So we finish by allowing everything that remains - it's got to be two // object pointers. } /// CastsAwayConstness - Check if the pointer conversion from SrcType /// to DestType casts away constness as defined in C++ /// 5.2.11p8ff. This is used by the cast checkers. Both arguments /// must denote pointer types. bool Sema::CastsAwayConstness(QualType SrcType, QualType DestType) { // Casting away constness is defined in C++ 5.2.11p8 with reference to // C++ 4.4. // We piggyback on Sema::IsQualificationConversion for this, since the rules // are non-trivial. So first we construct Tcv *...cv* as described in // C++ 5.2.11p8. SrcType = Context.getCanonicalType(SrcType); DestType = Context.getCanonicalType(DestType); QualType UnwrappedSrcType = SrcType, UnwrappedDestType = DestType; llvm::SmallVector cv1, cv2; // Find the qualifications. while (UnwrapSimilarPointerTypes(UnwrappedSrcType, UnwrappedDestType)) { cv1.push_back(UnwrappedSrcType.getCVRQualifiers()); cv2.push_back(UnwrappedDestType.getCVRQualifiers()); } assert(cv1.size() > 0 && "Must have at least one pointer level."); // Construct void pointers with those qualifiers (in reverse order of // unwrapping, of course). QualType SrcConstruct = Context.VoidTy; QualType DestConstruct = Context.VoidTy; for (llvm::SmallVector::reverse_iterator i1 = cv1.rbegin(), i2 = cv2.rbegin(); i1 != cv1.rend(); ++i1, ++i2) { SrcConstruct = Context.getPointerType(SrcConstruct.getQualifiedType(*i1)); DestConstruct = Context.getPointerType(DestConstruct.getQualifiedType(*i2)); } // Test if they're compatible. return SrcConstruct != DestConstruct && !IsQualificationConversion(SrcConstruct, DestConstruct); } /// CheckStaticCast - Check that a static_cast\(SrcExpr) is valid. void Sema::CheckStaticCast(SourceLocation OpLoc, Expr *&SrcExpr, QualType DestType) { #if 0 // 5.2.9/1 sets the ground rule of disallowing casting away constness. // 5.2.9/2 permits everything allowed for direct-init, deferring to 8.5. // Note: for class destination, that's overload resolution over dest's // constructors. Src's conversions are only considered in overload choice. // For any other destination, that's just the clause 4 standards convs. // 5.2.9/4 permits static_cast<cv void>(anything), which is a no-op. // 5.2.9/5 permits explicit non-dynamic downcasts for lvalue-to-reference. // 5.2.9/6 permits reversing all implicit conversions except lvalue-to-rvalue, // function-to-pointer, array decay and to-bool, with some further // restrictions. Defers to 4. // 5.2.9/7 permits integer-to-enum conversion. Interesting note: if the // integer does not correspond to an enum value, the result is unspecified - // but it still has to be some value of the enum. I don't think any compiler // complies with that. // 5.2.9/8 is 5.2.9/5 for pointers. // 5.2.9/9 messes with member pointers. TODO. No need to think about that yet. // 5.2.9/10 permits void* to T*. QualType OrigDestType = DestType, OrigSrcType = SrcExpr->getType(); DestType = Context.getCanonicalType(DestType); // Tests are ordered by simplicity and a wild guess at commonness. if (const BuiltinType *BuiltinDest = DestType->getAsBuiltinType()) { // 5.2.9/4 if (BuiltinDest->getKind() == BuiltinType::Void) { return; } // Primitive conversions for 5.2.9/2 and 6. } #endif } /// ActOnCXXBoolLiteral - Parse {true,false} literals. Action::ExprResult Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { assert((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"); return new CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); } /// ActOnCXXThrow - Parse throw expressions. Action::ExprResult Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprTy *E) { return new CXXThrowExpr((Expr*)E, Context.VoidTy, OpLoc); } Action::ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) { /// C++ 9.3.2: In the body of a non-static member function, the keyword this /// is a non-lvalue expression whose value is the address of the object for /// which the function is called. if (!isa(CurContext)) { Diag(ThisLoc, diag::err_invalid_this_use); return ExprResult(true); } if (CXXMethodDecl *MD = dyn_cast(CurContext)) if (MD->isInstance()) return new PredefinedExpr(ThisLoc, MD->getThisType(Context), PredefinedExpr::CXXThis); return Diag(ThisLoc, diag::err_invalid_this_use); } /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). Action::ExprResult Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, SourceLocation LParenLoc, ExprTy **ExprTys, unsigned NumExprs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { assert(TypeRep && "Missing type!"); QualType Ty = QualType::getFromOpaquePtr(TypeRep); Expr **Exprs = (Expr**)ExprTys; SourceLocation TyBeginLoc = TypeRange.getBegin(); SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc); if (const RecordType *RT = Ty->getAsRecordType()) { // C++ 5.2.3p1: // If the simple-type-specifier specifies a class type, the class type shall // be complete. // if (!RT->getDecl()->isDefinition()) return Diag(TyBeginLoc, diag::err_invalid_incomplete_type_use, Ty.getAsString(), FullRange); unsigned DiagID = PP.getDiagnostics().getCustomDiagID(Diagnostic::Error, "class constructors are not supported yet"); return Diag(TyBeginLoc, DiagID); } // C++ 5.2.3p1: // If the expression list is a single expression, the type conversion // expression is equivalent (in definedness, and if defined in meaning) to the // corresponding cast expression. // if (NumExprs == 1) { if (CheckCastTypes(TypeRange, Ty, Exprs[0])) return true; return new CXXFunctionalCastExpr(Ty.getNonReferenceType(), Ty, TyBeginLoc, Exprs[0], RParenLoc); } // C++ 5.2.3p1: // If the expression list specifies more than a single value, the type shall // be a class with a suitably declared constructor. // if (NumExprs > 1) return Diag(CommaLocs[0], diag::err_builtin_func_cast_more_than_one_arg, FullRange); assert(NumExprs == 0 && "Expected 0 expressions"); // C++ 5.2.3p2: // The expression T(), where T is a simple-type-specifier for a non-array // complete object type or the (possibly cv-qualified) void type, creates an // rvalue of the specified type, which is value-initialized. // if (Ty->isArrayType()) return Diag(TyBeginLoc, diag::err_value_init_for_array_type, FullRange); if (Ty->isIncompleteType() && !Ty->isVoidType()) return Diag(TyBeginLoc, diag::err_invalid_incomplete_type_use, Ty.getAsString(), FullRange); return new CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc); } /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a /// C++ if/switch/while/for statement. /// e.g: "if (int x = f()) {...}" Action::ExprResult Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc, Declarator &D, SourceLocation EqualLoc, ExprTy *AssignExprVal) { assert(AssignExprVal && "Null assignment expression"); // C++ 6.4p2: // The declarator shall not specify a function or an array. // The type-specifier-seq shall not contain typedef and shall not declare a // new class or enumeration. assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."); QualType Ty = GetTypeForDeclarator(D, S); if (Ty->isFunctionType()) { // The declarator shall not specify a function... // We exit without creating a CXXConditionDeclExpr because a FunctionDecl // would be created and CXXConditionDeclExpr wants a VarDecl. return Diag(StartLoc, diag::err_invalid_use_of_function_type, SourceRange(StartLoc, EqualLoc)); } else if (Ty->isArrayType()) { // ...or an array. Diag(StartLoc, diag::err_invalid_use_of_array_type, SourceRange(StartLoc, EqualLoc)); } else if (const RecordType *RT = Ty->getAsRecordType()) { RecordDecl *RD = RT->getDecl(); // The type-specifier-seq shall not declare a new class... if (RD->isDefinition() && (RD->getIdentifier() == 0 || S->isDeclScope(RD))) Diag(RD->getLocation(), diag::err_type_defined_in_condition); } else if (const EnumType *ET = Ty->getAsEnumType()) { EnumDecl *ED = ET->getDecl(); // ...or enumeration. if (ED->isDefinition() && (ED->getIdentifier() == 0 || S->isDeclScope(ED))) Diag(ED->getLocation(), diag::err_type_defined_in_condition); } DeclTy *Dcl = ActOnDeclarator(S, D, 0); if (!Dcl) return true; AddInitializerToDecl(Dcl, AssignExprVal); return new CXXConditionDeclExpr(StartLoc, EqualLoc, cast(static_cast(Dcl))); } /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) { // C++ 6.4p4: // The value of a condition that is an initialized declaration in a statement // other than a switch statement is the value of the declared variable // implicitly converted to type bool. If that conversion is ill-formed, the // program is ill-formed. // The value of a condition that is an expression is the value of the // expression, implicitly converted to bool. // QualType Ty = CondExpr->getType(); // Save the type. AssignConvertType ConvTy = CheckSingleAssignmentConstraints(Context.BoolTy, CondExpr); if (ConvTy == Incompatible) return Diag(CondExpr->getLocStart(), diag::err_typecheck_bool_condition, Ty.getAsString(), CondExpr->getSourceRange()); return false; } /// Helper function to determine whether this is the (deprecated) C++ /// conversion from a string literal to a pointer to non-const char or /// non-const wchar_t (for narrow and wide string literals, /// respectively). bool Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { // Look inside the implicit cast, if it exists. if (ImplicitCastExpr *Cast = dyn_cast(From)) From = Cast->getSubExpr(); // A string literal (2.13.4) that is not a wide string literal can // be converted to an rvalue of type "pointer to char"; a wide // string literal can be converted to an rvalue of type "pointer // to wchar_t" (C++ 4.2p2). if (StringLiteral *StrLit = dyn_cast(From)) if (const PointerType *ToPtrType = ToType->getAsPointerType()) if (const BuiltinType *ToPointeeType = ToPtrType->getPointeeType()->getAsBuiltinType()) { // This conversion is considered only when there is an // explicit appropriate pointer target type (C++ 4.2p2). if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 && ((StrLit->isWide() && ToPointeeType->isWideCharType()) || (!StrLit->isWide() && (ToPointeeType->getKind() == BuiltinType::Char_U || ToPointeeType->getKind() == BuiltinType::Char_S)))) return true; } return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType. Returns true if there was an /// error, false otherwise. The expression From is replaced with the /// converted expression. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType) { ImplicitConversionSequence ICS = TryCopyInitialization(From, ToType); switch (ICS.ConversionKind) { case ImplicitConversionSequence::StandardConversion: if (PerformImplicitConversion(From, ToType, ICS.Standard)) return true; break; case ImplicitConversionSequence::UserDefinedConversion: // FIXME: This is, of course, wrong. We'll need to actually call // the constructor or conversion operator, and then cope with the // standard conversions. ImpCastExprToType(From, ToType); break; case ImplicitConversionSequence::EllipsisConversion: assert(false && "Cannot perform an ellipsis conversion"); break; case ImplicitConversionSequence::BadConversion: return true; } // Everything went well. return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType by following the standard /// conversion sequence SCS. Returns true if there was an error, false /// otherwise. The expression From is replaced with the converted /// expression. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, const StandardConversionSequence& SCS) { // Overall FIXME: we are recomputing too many types here and doing // far too much extra work. What this means is that we need to keep // track of more information that is computed when we try the // implicit conversion initially, so that we don't need to recompute // anything here. QualType FromType = From->getType(); // Perform the first implicit conversion. switch (SCS.First) { case ICK_Identity: case ICK_Lvalue_To_Rvalue: // Nothing to do. break; case ICK_Array_To_Pointer: FromType = Context.getArrayDecayedType(FromType); ImpCastExprToType(From, FromType); break; case ICK_Function_To_Pointer: FromType = Context.getPointerType(FromType); ImpCastExprToType(From, FromType); break; default: assert(false && "Improper first standard conversion"); break; } // Perform the second implicit conversion switch (SCS.Second) { case ICK_Identity: // Nothing to do. break; case ICK_Integral_Promotion: case ICK_Floating_Promotion: case ICK_Integral_Conversion: case ICK_Floating_Conversion: case ICK_Floating_Integral: FromType = ToType.getUnqualifiedType(); ImpCastExprToType(From, FromType); break; case ICK_Pointer_Conversion: if (CheckPointerConversion(From, ToType)) return true; ImpCastExprToType(From, ToType); break; case ICK_Pointer_Member: // FIXME: Implement pointer-to-member conversions. assert(false && "Pointer-to-member conversions are unsupported"); break; case ICK_Boolean_Conversion: FromType = Context.BoolTy; ImpCastExprToType(From, FromType); break; default: assert(false && "Improper second standard conversion"); break; } switch (SCS.Third) { case ICK_Identity: // Nothing to do. break; case ICK_Qualification: ImpCastExprToType(From, ToType); break; default: assert(false && "Improper second standard conversion"); break; } return false; }