//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements decl-related attribute processing. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/Basic/TargetInfo.h" #include "clang/Parse/DeclSpec.h" #include using namespace clang; //===----------------------------------------------------------------------===// // Helper functions //===----------------------------------------------------------------------===// static const FunctionType *getFunctionType(Decl *d) { QualType Ty; if (ValueDecl *decl = dyn_cast(d)) Ty = decl->getType(); else if (FieldDecl *decl = dyn_cast(d)) Ty = decl->getType(); else if (TypedefDecl* decl = dyn_cast(d)) Ty = decl->getUnderlyingType(); else return 0; if (Ty->isFunctionPointerType()) Ty = Ty->getAsPointerType()->getPointeeType(); return Ty->getAsFunctionType(); } // FIXME: We should provide an abstraction around a method or function // to provide the following bits of information. /// isFunctionOrMethod - Return true if the given decl has function /// type (function or function-typed variable) or an Objective-C /// method. static bool isFunctionOrMethod(Decl *d) { return getFunctionType(d) || isa(d); } /// hasFunctionProto - Return true if the given decl has a argument /// information. This decl should have already passed /// isFunctionOrMethod. static bool hasFunctionProto(Decl *d) { if (const FunctionType *FnTy = getFunctionType(d)) { return isa(FnTy); } else { assert(isa(d)); return true; } } /// getFunctionOrMethodNumArgs - Return number of function or method /// arguments. It is an error to call this on a K&R function (use /// hasFunctionProto first). static unsigned getFunctionOrMethodNumArgs(Decl *d) { if (const FunctionType *FnTy = getFunctionType(d)) { const FunctionTypeProto *proto = cast(FnTy); return proto->getNumArgs(); } else { return cast(d)->getNumParams(); } } static QualType getFunctionOrMethodArgType(Decl *d, unsigned Idx) { if (const FunctionType *FnTy = getFunctionType(d)) { const FunctionTypeProto *proto = cast(FnTy); return proto->getArgType(Idx); } else { return cast(d)->getParamDecl(Idx)->getType(); } } static bool isFunctionOrMethodVariadic(Decl *d) { if (const FunctionType *FnTy = getFunctionType(d)) { const FunctionTypeProto *proto = cast(FnTy); return proto->isVariadic(); } else { return cast(d)->isVariadic(); } } static inline bool isNSStringType(QualType T, ASTContext &Ctx) { const PointerType *PT = T->getAsPointerType(); if (!PT) return false; const ObjCInterfaceType *ClsT =PT->getPointeeType()->getAsObjCInterfaceType(); if (!ClsT) return false; IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier(); // FIXME: Should we walk the chain of classes? return ClsName == &Ctx.Idents.get("NSString") || ClsName == &Ctx.Idents.get("NSMutableString"); } static inline bool isCFStringType(QualType T, ASTContext &Ctx) { const PointerType *PT = T->getAsPointerType(); if (!PT) return false; const RecordType *RT = PT->getPointeeType()->getAsRecordType(); if (!RT) return false; const RecordDecl *RD = RT->getDecl(); if (RD->getTagKind() != TagDecl::TK_struct) return false; return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); } //===----------------------------------------------------------------------===// // Attribute Implementations //===----------------------------------------------------------------------===// // FIXME: All this manual attribute parsing code is gross. At the // least add some helper functions to check most argument patterns (# // and types of args). static void HandleExtVectorTypeAttr(Decl *d, const AttributeList &Attr, Sema &S) { TypedefDecl *tDecl = dyn_cast(d); if (tDecl == 0) { S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef); return; } QualType curType = tDecl->getUnderlyingType(); // check the attribute arguments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } Expr *sizeExpr = static_cast(Attr.getArg(0)); llvm::APSInt vecSize(32); if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "ext_vector_type" << sizeExpr->getSourceRange(); return; } // unlike gcc's vector_size attribute, we do not allow vectors to be defined // in conjunction with complex types (pointers, arrays, functions, etc.). if (!curType->isIntegerType() && !curType->isRealFloatingType()) { S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << curType; return; } // unlike gcc's vector_size attribute, the size is specified as the // number of elements, not the number of bytes. unsigned vectorSize = static_cast(vecSize.getZExtValue()); if (vectorSize == 0) { S.Diag(Attr.getLoc(), diag::err_attribute_zero_size) << sizeExpr->getSourceRange(); return; } // Instantiate/Install the vector type, the number of elements is > 0. tDecl->setUnderlyingType(S.Context.getExtVectorType(curType, vectorSize)); // Remember this typedef decl, we will need it later for diagnostics. S.ExtVectorDecls.push_back(tDecl); } /// HandleVectorSizeAttribute - this attribute is only applicable to /// integral and float scalars, although arrays, pointers, and function /// return values are allowed in conjunction with this construct. Aggregates /// with this attribute are invalid, even if they are of the same size as a /// corresponding scalar. /// The raw attribute should contain precisely 1 argument, the vector size /// for the variable, measured in bytes. If curType and rawAttr are well /// formed, this routine will return a new vector type. static void HandleVectorSizeAttr(Decl *D, const AttributeList &Attr, Sema &S) { QualType CurType; if (ValueDecl *VD = dyn_cast(D)) CurType = VD->getType(); else if (TypedefDecl *TD = dyn_cast(D)) CurType = TD->getUnderlyingType(); else { S.Diag(D->getLocation(), diag::err_attr_wrong_decl) << "vector_size" << SourceRange(Attr.getLoc(), Attr.getLoc()); return; } // Check the attribute arugments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } Expr *sizeExpr = static_cast(Attr.getArg(0)); llvm::APSInt vecSize(32); if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "vector_size" << sizeExpr->getSourceRange(); return; } // navigate to the base type - we need to provide for vector pointers, // vector arrays, and functions returning vectors. if (CurType->isPointerType() || CurType->isArrayType() || CurType->isFunctionType()) { assert(0 && "HandleVector(): Complex type construction unimplemented"); /* FIXME: rebuild the type from the inside out, vectorizing the inner type. do { if (PointerType *PT = dyn_cast(canonType)) canonType = PT->getPointeeType().getTypePtr(); else if (ArrayType *AT = dyn_cast(canonType)) canonType = AT->getElementType().getTypePtr(); else if (FunctionType *FT = dyn_cast(canonType)) canonType = FT->getResultType().getTypePtr(); } while (canonType->isPointerType() || canonType->isArrayType() || canonType->isFunctionType()); */ } // the base type must be integer or float. if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) { S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType; return; } unsigned typeSize = static_cast(S.Context.getTypeSize(CurType)); // vecSize is specified in bytes - convert to bits. unsigned vectorSize = static_cast(vecSize.getZExtValue() * 8); // the vector size needs to be an integral multiple of the type size. if (vectorSize % typeSize) { S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size) << sizeExpr->getSourceRange(); return; } if (vectorSize == 0) { S.Diag(Attr.getLoc(), diag::err_attribute_zero_size) << sizeExpr->getSourceRange(); return; } // Success! Instantiate the vector type, the number of elements is > 0, and // not required to be a power of 2, unlike GCC. CurType = S.Context.getVectorType(CurType, vectorSize/typeSize); if (ValueDecl *VD = dyn_cast(D)) VD->setType(CurType); else cast(D)->setUnderlyingType(CurType); } static void HandlePackedAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() > 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (TagDecl *TD = dyn_cast(d)) TD->addAttr(new PackedAttr(1)); else if (FieldDecl *FD = dyn_cast(d)) { // If the alignment is less than or equal to 8 bits, the packed attribute // has no effect. if (!FD->getType()->isIncompleteType() && S.Context.getTypeAlign(FD->getType()) <= 8) S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type) << Attr.getName() << FD->getType(); else FD->addAttr(new PackedAttr(1)); } else S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); } static void HandleIBOutletAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() > 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // The IBOutlet attribute only applies to instance variables of Objective-C // classes. if (ObjCIvarDecl *ID = dyn_cast(d)) ID->addAttr(new IBOutletAttr()); else S.Diag(Attr.getLoc(), diag::err_attribute_iboutlet_non_ivar); } static void HandleNonNullAttr(Decl *d, const AttributeList &Attr, Sema &S) { // GCC ignores the nonnull attribute on K&R style function // prototypes, so we ignore it as well if (!isFunctionOrMethod(d) || !hasFunctionProto(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "nonnull" << "function"; return; } unsigned NumArgs = getFunctionOrMethodNumArgs(d); // The nonnull attribute only applies to pointers. llvm::SmallVector NonNullArgs; for (AttributeList::arg_iterator I=Attr.arg_begin(), E=Attr.arg_end(); I!=E; ++I) { // The argument must be an integer constant expression. Expr *Ex = static_cast(*I); llvm::APSInt ArgNum(32); if (!Ex->isIntegerConstantExpr(ArgNum, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "nonnull" << Ex->getSourceRange(); return; } unsigned x = (unsigned) ArgNum.getZExtValue(); if (x < 1 || x > NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "nonnull" << I.getArgNum() << Ex->getSourceRange(); return; } --x; // Is the function argument a pointer type? QualType T = getFunctionOrMethodArgType(d, x); if (!T->isPointerType() && !T->isBlockPointerType()) { // FIXME: Should also highlight argument in decl. S.Diag(Attr.getLoc(), diag::err_nonnull_pointers_only) << "nonnull" << Ex->getSourceRange(); continue; } NonNullArgs.push_back(x); } // If no arguments were specified to __attribute__((nonnull)) then all // pointer arguments have a nonnull attribute. if (NonNullArgs.empty()) { for (unsigned I = 0, E = getFunctionOrMethodNumArgs(d); I != E; ++I) { QualType T = getFunctionOrMethodArgType(d, I); if (T->isPointerType() || T->isBlockPointerType()) NonNullArgs.push_back(I); } if (NonNullArgs.empty()) { S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers); return; } } unsigned* start = &NonNullArgs[0]; unsigned size = NonNullArgs.size(); std::sort(start, start + size); d->addAttr(new NonNullAttr(start, size)); } static void HandleAliasAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } Expr *Arg = static_cast(Attr.getArg(0)); Arg = Arg->IgnoreParenCasts(); StringLiteral *Str = dyn_cast(Arg); if (Str == 0 || Str->isWide()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "alias" << 1; return; } const char *Alias = Str->getStrData(); unsigned AliasLen = Str->getByteLength(); // FIXME: check if target symbol exists in current file d->addAttr(new AliasAttr(std::string(Alias, AliasLen))); } static void HandleAlwaysInlineAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } d->addAttr(new AlwaysInlineAttr()); } static void HandleNoReturnAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isFunctionOrMethod(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "noreturn" << "function"; return; } d->addAttr(new NoReturnAttr()); } static void HandleUnusedAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isa(d) && !isFunctionOrMethod(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "unused" << "variable and function"; return; } d->addAttr(new UnusedAttr()); } static void HandleConstructorAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0 && Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << "0 or 1"; return; } int priority = 65535; // FIXME: Do not hardcode such constants. if (Attr.getNumArgs() > 0) { Expr *E = static_cast(Attr.getArg(0)); llvm::APSInt Idx(32); if (!E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "constructor" << 1 << E->getSourceRange(); return; } priority = Idx.getZExtValue(); } FunctionDecl *Fn = dyn_cast(d); if (!Fn) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "constructor" << "function"; return; } d->addAttr(new ConstructorAttr(priority)); } static void HandleDestructorAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0 && Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << "0 or 1"; return; } int priority = 65535; // FIXME: Do not hardcode such constants. if (Attr.getNumArgs() > 0) { Expr *E = static_cast(Attr.getArg(0)); llvm::APSInt Idx(32); if (!E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "destructor" << 1 << E->getSourceRange(); return; } priority = Idx.getZExtValue(); } if (!isa(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "destructor" << "function"; return; } d->addAttr(new DestructorAttr(priority)); } static void HandleDeprecatedAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } d->addAttr(new DeprecatedAttr()); } static void HandleUnavailableAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } d->addAttr(new UnavailableAttr()); } static void HandleVisibilityAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } Expr *Arg = static_cast(Attr.getArg(0)); Arg = Arg->IgnoreParenCasts(); StringLiteral *Str = dyn_cast(Arg); if (Str == 0 || Str->isWide()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "visibility" << 1; return; } const char *TypeStr = Str->getStrData(); unsigned TypeLen = Str->getByteLength(); VisibilityAttr::VisibilityTypes type; if (TypeLen == 7 && !memcmp(TypeStr, "default", 7)) type = VisibilityAttr::DefaultVisibility; else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6)) type = VisibilityAttr::HiddenVisibility; else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8)) type = VisibilityAttr::HiddenVisibility; // FIXME else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9)) type = VisibilityAttr::ProtectedVisibility; else { S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr; return; } d->addAttr(new VisibilityAttr(type)); } static void HandleObjCGCAttr(Decl *d, const AttributeList &Attr, Sema &S) { if (!Attr.getParameterName()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "objc_gc" << 1; return; } if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } ObjCGCAttr::GCAttrTypes type; if (Attr.getParameterName()->isStr("weak")) { if (isa(d) && !isa(d)) S.Diag(Attr.getLoc(), diag::warn_attribute_weak_on_field); type = ObjCGCAttr::Weak; } else if (Attr.getParameterName()->isStr("strong")) type = ObjCGCAttr::Strong; else { S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) << "objc_gc" << Attr.getParameterName(); return; } d->addAttr(new ObjCGCAttr(type)); } static void HandleObjCNSObject(Decl *d, const AttributeList &Attr, Sema &S) { if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } if (TypedefDecl *TD = dyn_cast(d)) { QualType T = TD->getUnderlyingType(); if (!T->isPointerType() || !T->getAsPointerType()->getPointeeType()->isRecordType()) { S.Diag(TD->getLocation(), diag::err_nsobject_attribute); return; } } d->addAttr(new ObjCNSObjectAttr); } static void HandleBlocksAttr(Decl *d, const AttributeList &Attr, Sema &S) { if (!Attr.getParameterName()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "blocks" << 1; return; } if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } BlocksAttr::BlocksAttrTypes type; if (Attr.getParameterName()->isStr("byref")) type = BlocksAttr::ByRef; else { S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) << "blocks" << Attr.getParameterName(); return; } d->addAttr(new BlocksAttr(type)); } static void HandleSentinelAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() > 2) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << "0, 1 or 2"; return; } int sentinel = 0; if (Attr.getNumArgs() > 0) { Expr *E = static_cast(Attr.getArg(0)); llvm::APSInt Idx(32); if (!E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "sentinel" << 1 << E->getSourceRange(); return; } sentinel = Idx.getZExtValue(); if (sentinel < 0) { S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero) << E->getSourceRange(); return; } } int nullPos = 0; if (Attr.getNumArgs() > 1) { Expr *E = static_cast(Attr.getArg(1)); llvm::APSInt Idx(32); if (!E->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "sentinel" << 2 << E->getSourceRange(); return; } nullPos = Idx.getZExtValue(); if (nullPos > 1 || nullPos < 0) { // FIXME: This error message could be improved, it would be nice // to say what the bounds actually are. S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) << E->getSourceRange(); return; } } if (FunctionDecl *FD = dyn_cast(d)) { QualType FT = FD->getType(); if (!FT->getAsFunctionTypeProto()->isVariadic()) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic); return; } } else if (ObjCMethodDecl *MD = dyn_cast(d)) { if (!MD->isVariadic()) { S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic); return; } } else { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "sentinel" << "function or method"; return; } // FIXME: Actually create the attribute. } static void HandleWeakAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } d->addAttr(new WeakAttr()); } static void HandleDLLImportAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // Attribute can be applied only to functions or variables. if (isa(d)) { d->addAttr(new DLLImportAttr()); return; } FunctionDecl *FD = dyn_cast(d); if (!FD) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "dllimport" << "function or variable"; return; } // Currently, the dllimport attribute is ignored for inlined functions. // Warning is emitted. if (FD->isInline()) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllimport"; return; } // The attribute is also overridden by a subsequent declaration as dllexport. // Warning is emitted. for (AttributeList *nextAttr = Attr.getNext(); nextAttr; nextAttr = nextAttr->getNext()) { if (nextAttr->getKind() == AttributeList::AT_dllexport) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllimport"; return; } } if (d->getAttr()) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllimport"; return; } d->addAttr(new DLLImportAttr()); } static void HandleDLLExportAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // Attribute can be applied only to functions or variables. if (isa(d)) { d->addAttr(new DLLExportAttr()); return; } FunctionDecl *FD = dyn_cast(d); if (!FD) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "dllexport" << "function or variable"; return; } // Currently, the dllexport attribute is ignored for inlined functions, // unless the -fkeep-inline-functions flag has been used. Warning is emitted; if (FD->isInline()) { // FIXME: ... unless the -fkeep-inline-functions flag has been used. S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllexport"; return; } d->addAttr(new DLLExportAttr()); } static void HandleStdCallAttr(Decl *d, const AttributeList &Attr, Sema &S) { // Attribute has no arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // Attribute can be applied only to functions. if (!isa(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "stdcall" << "function"; return; } // stdcall and fastcall attributes are mutually incompatible. if (d->getAttr()) { S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible) << "stdcall" << "fastcall"; return; } d->addAttr(new StdCallAttr()); } static void HandleFastCallAttr(Decl *d, const AttributeList &Attr, Sema &S) { // Attribute has no arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } if (!isa(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "fastcall" << "function"; return; } // stdcall and fastcall attributes are mutually incompatible. if (d->getAttr()) { S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible) << "fastcall" << "stdcall"; return; } d->addAttr(new FastCallAttr()); } static void HandleNothrowAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } d->addAttr(new NoThrowAttr()); } static void HandleConstAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } d->addAttr(new ConstAttr()); } static void HandlePureAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } d->addAttr(new PureAttr()); } static void HandleCleanupAttr(Decl *d, const AttributeList &Attr, Sema &S) { if (!Attr.getParameterName()) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } VarDecl *VD = dyn_cast(d); if (!VD || !VD->hasLocalStorage()) { S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup"; return; } // Look up the function Decl *CleanupDecl = S.LookupName(S.TUScope, Attr.getParameterName(), Sema::LookupOrdinaryName); if (!CleanupDecl) { S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_arg_not_found) << Attr.getParameterName(); return; } FunctionDecl *FD = dyn_cast(CleanupDecl); if (!FD) { S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_arg_not_function) << Attr.getParameterName(); return; } // FIXME: This needs to work with C++ overloading. // FIXME: This should verify that the function type is compatible if (FD->getNumParams() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_arg_must_take_one_arg)<< Attr.getParameterName(); return; } d->addAttr(new CleanupAttr(FD)); } /// Handle __attribute__((format(type,idx,firstarg))) attributes /// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html static void HandleFormatAttr(Decl *d, const AttributeList &Attr, Sema &S) { if (!Attr.getParameterName()) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) << "format" << 1; return; } if (Attr.getNumArgs() != 2) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3; return; } if (!isFunctionOrMethod(d) || !hasFunctionProto(d)) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "format" << "function"; return; } // FIXME: in C++ the implicit 'this' function parameter also counts. // this is needed in order to be compatible with GCC // the index must start in 1 and the limit is numargs+1 unsigned NumArgs = getFunctionOrMethodNumArgs(d); unsigned FirstIdx = 1; const char *Format = Attr.getParameterName()->getName(); unsigned FormatLen = Attr.getParameterName()->getLength(); // Normalize the argument, __foo__ becomes foo. if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' && Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') { Format += 2; FormatLen -= 4; } bool Supported = false; bool is_NSString = false; bool is_strftime = false; bool is_CFString = false; switch (FormatLen) { default: break; case 5: Supported = !memcmp(Format, "scanf", 5); break; case 6: Supported = !memcmp(Format, "printf", 6); break; case 7: Supported = !memcmp(Format, "strfmon", 7); break; case 8: Supported = (is_strftime = !memcmp(Format, "strftime", 8)) || (is_NSString = !memcmp(Format, "NSString", 8)) || (is_CFString = !memcmp(Format, "CFString", 8)); break; } if (!Supported) { S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) << "format" << Attr.getParameterName()->getName(); return; } // checks for the 2nd argument Expr *IdxExpr = static_cast(Attr.getArg(0)); llvm::APSInt Idx(32); if (!IdxExpr->isIntegerConstantExpr(Idx, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "format" << 2 << IdxExpr->getSourceRange(); return; } if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "format" << 2 << IdxExpr->getSourceRange(); return; } // FIXME: Do we need to bounds check? unsigned ArgIdx = Idx.getZExtValue() - 1; // make sure the format string is really a string QualType Ty = getFunctionOrMethodArgType(d, ArgIdx); if (is_CFString) { if (!isCFStringType(Ty, S.Context)) { S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << "a CFString" << IdxExpr->getSourceRange(); return; } } else if (is_NSString) { // FIXME: do we need to check if the type is NSString*? What are // the semantics? if (!isNSStringType(Ty, S.Context)) { // FIXME: Should highlight the actual expression that has the // wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << "an NSString" << IdxExpr->getSourceRange(); return; } } else if (!Ty->isPointerType() || !Ty->getAsPointerType()->getPointeeType()->isCharType()) { // FIXME: Should highlight the actual expression that has the // wrong type. S.Diag(Attr.getLoc(), diag::err_format_attribute_not) << "a string type" << IdxExpr->getSourceRange(); return; } // check the 3rd argument Expr *FirstArgExpr = static_cast(Attr.getArg(1)); llvm::APSInt FirstArg(32); if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) << "format" << 3 << FirstArgExpr->getSourceRange(); return; } // check if the function is variadic if the 3rd argument non-zero if (FirstArg != 0) { if (isFunctionOrMethodVariadic(d)) { ++NumArgs; // +1 for ... } else { S.Diag(d->getLocation(), diag::err_format_attribute_requires_variadic); return; } } // strftime requires FirstArg to be 0 because it doesn't read from any // variable the input is just the current time + the format string. if (is_strftime) { if (FirstArg != 0) { S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter) << FirstArgExpr->getSourceRange(); return; } // if 0 it disables parameter checking (to use with e.g. va_list) } else if (FirstArg != 0 && FirstArg != NumArgs) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) << "format" << 3 << FirstArgExpr->getSourceRange(); return; } d->addAttr(new FormatAttr(std::string(Format, FormatLen), Idx.getZExtValue(), FirstArg.getZExtValue())); } static void HandleTransparentUnionAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } // FIXME: This shouldn't be restricted to typedefs TypedefDecl *TD = dyn_cast(d); if (!TD || !TD->getUnderlyingType()->isUnionType()) { S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "transparent_union" << "union"; return; } RecordDecl* RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); // FIXME: Should we do a check for RD->isDefinition()? // FIXME: This isn't supposed to be restricted to pointers, but otherwise // we might silently generate incorrect code; see following code for (RecordDecl::field_iterator Field = RD->field_begin(), FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) { if (!Field->getType()->isPointerType()) { S.Diag(Attr.getLoc(), diag::warn_transparent_union_nonpointer); return; } } // FIXME: This is a complete hack; we should be properly propagating // transparent_union through Sema. That said, this is close enough to // correctly compile all the common cases of transparent_union without // errors or warnings QualType NewTy = S.Context.VoidPtrTy; NewTy.addConst(); TD->setUnderlyingType(NewTy); } static void HandleAnnotateAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() != 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } Expr *argExpr = static_cast(Attr.getArg(0)); StringLiteral *SE = dyn_cast(argExpr); // Make sure that there is a string literal as the annotation's single // argument. if (!SE) { S.Diag(Attr.getLoc(), diag::err_attribute_annotate_no_string); return; } d->addAttr(new AnnotateAttr(std::string(SE->getStrData(), SE->getByteLength()))); } static void HandleAlignedAttr(Decl *d, const AttributeList &Attr, Sema &S) { // check the attribute arguments. if (Attr.getNumArgs() > 1) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; return; } unsigned Align = 0; if (Attr.getNumArgs() == 0) { // FIXME: This should be the target specific maximum alignment. // (For now we just use 128 bits which is the maximum on X86. Align = 128; return; } Expr *alignmentExpr = static_cast(Attr.getArg(0)); llvm::APSInt Alignment(32); if (!alignmentExpr->isIntegerConstantExpr(Alignment, S.Context)) { S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) << "aligned" << alignmentExpr->getSourceRange(); return; } d->addAttr(new AlignedAttr(Alignment.getZExtValue() * 8)); } /// HandleModeAttr - This attribute modifies the width of a decl with /// primitive type. /// /// Despite what would be logical, the mode attribute is a decl attribute, /// not a type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make /// 'G' be HImode, not an intermediate pointer. /// static void HandleModeAttr(Decl *D, const AttributeList &Attr, Sema &S) { // This attribute isn't documented, but glibc uses it. It changes // the width of an int or unsigned int to the specified size. // Check that there aren't any arguments if (Attr.getNumArgs() != 0) { S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; return; } IdentifierInfo *Name = Attr.getParameterName(); if (!Name) { S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name); return; } const char *Str = Name->getName(); unsigned Len = Name->getLength(); // Normalize the attribute name, __foo__ becomes foo. if (Len > 4 && Str[0] == '_' && Str[1] == '_' && Str[Len - 2] == '_' && Str[Len - 1] == '_') { Str += 2; Len -= 4; } unsigned DestWidth = 0; bool IntegerMode = true; switch (Len) { case 2: if (!memcmp(Str, "QI", 2)) { DestWidth = 8; break; } if (!memcmp(Str, "HI", 2)) { DestWidth = 16; break; } if (!memcmp(Str, "SI", 2)) { DestWidth = 32; break; } if (!memcmp(Str, "DI", 2)) { DestWidth = 64; break; } if (!memcmp(Str, "TI", 2)) { DestWidth = 128; break; } if (!memcmp(Str, "SF", 2)) { DestWidth = 32; IntegerMode = false; break; } if (!memcmp(Str, "DF", 2)) { DestWidth = 64; IntegerMode = false; break; } if (!memcmp(Str, "XF", 2)) { DestWidth = 96; IntegerMode = false; break; } if (!memcmp(Str, "TF", 2)) { DestWidth = 128; IntegerMode = false; break; } break; case 4: // FIXME: glibc uses 'word' to define register_t; this is narrower than a // pointer on PIC16 and other embedded platforms. if (!memcmp(Str, "word", 4)) DestWidth = S.Context.Target.getPointerWidth(0); if (!memcmp(Str, "byte", 4)) DestWidth = S.Context.Target.getCharWidth(); break; case 7: if (!memcmp(Str, "pointer", 7)) DestWidth = S.Context.Target.getPointerWidth(0); break; } QualType OldTy; if (TypedefDecl *TD = dyn_cast(D)) OldTy = TD->getUnderlyingType(); else if (ValueDecl *VD = dyn_cast(D)) OldTy = VD->getType(); else { S.Diag(D->getLocation(), diag::err_attr_wrong_decl) << "mode" << SourceRange(Attr.getLoc(), Attr.getLoc()); return; } // FIXME: Need proper fixed-width types QualType NewTy; switch (DestWidth) { case 0: S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name; return; default: S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; return; case 8: assert(IntegerMode); if (OldTy->isSignedIntegerType()) NewTy = S.Context.SignedCharTy; else NewTy = S.Context.UnsignedCharTy; break; case 16: assert(IntegerMode); if (OldTy->isSignedIntegerType()) NewTy = S.Context.ShortTy; else NewTy = S.Context.UnsignedShortTy; break; case 32: if (!IntegerMode) NewTy = S.Context.FloatTy; else if (OldTy->isSignedIntegerType()) NewTy = S.Context.IntTy; else NewTy = S.Context.UnsignedIntTy; break; case 64: if (!IntegerMode) NewTy = S.Context.DoubleTy; else if (OldTy->isSignedIntegerType()) NewTy = S.Context.LongLongTy; else NewTy = S.Context.UnsignedLongLongTy; break; } if (!OldTy->getAsBuiltinType()) S.Diag(Attr.getLoc(), diag::err_mode_not_primitive); else if (!(IntegerMode && OldTy->isIntegerType()) && !(!IntegerMode && OldTy->isFloatingType())) { S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); } // Install the new type. if (TypedefDecl *TD = dyn_cast(D)) TD->setUnderlyingType(NewTy); else cast(D)->setType(NewTy); } //===----------------------------------------------------------------------===// // Top Level Sema Entry Points //===----------------------------------------------------------------------===// /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if /// the attribute applies to decls. If the attribute is a type attribute, just /// silently ignore it. static void ProcessDeclAttribute(Decl *D, const AttributeList &Attr, Sema &S) { switch (Attr.getKind()) { case AttributeList::AT_IBOutlet: HandleIBOutletAttr (D, Attr, S); break; case AttributeList::AT_address_space: // Ignore this, this is a type attribute, handled by ProcessTypeAttributes. break; case AttributeList::AT_alias: HandleAliasAttr (D, Attr, S); break; case AttributeList::AT_aligned: HandleAlignedAttr (D, Attr, S); break; case AttributeList::AT_always_inline: HandleAlwaysInlineAttr (D, Attr, S); break; case AttributeList::AT_annotate: HandleAnnotateAttr (D, Attr, S); break; case AttributeList::AT_constructor: HandleConstructorAttr(D, Attr, S); break; case AttributeList::AT_deprecated: HandleDeprecatedAttr(D, Attr, S); break; case AttributeList::AT_destructor: HandleDestructorAttr(D, Attr, S); break; case AttributeList::AT_dllexport: HandleDLLExportAttr (D, Attr, S); break; case AttributeList::AT_dllimport: HandleDLLImportAttr (D, Attr, S); break; case AttributeList::AT_ext_vector_type: HandleExtVectorTypeAttr(D, Attr, S); break; case AttributeList::AT_fastcall: HandleFastCallAttr (D, Attr, S); break; case AttributeList::AT_format: HandleFormatAttr (D, Attr, S); break; case AttributeList::AT_mode: HandleModeAttr (D, Attr, S); break; case AttributeList::AT_nonnull: HandleNonNullAttr (D, Attr, S); break; case AttributeList::AT_noreturn: HandleNoReturnAttr (D, Attr, S); break; case AttributeList::AT_nothrow: HandleNothrowAttr (D, Attr, S); break; case AttributeList::AT_packed: HandlePackedAttr (D, Attr, S); break; case AttributeList::AT_stdcall: HandleStdCallAttr (D, Attr, S); break; case AttributeList::AT_unavailable: HandleUnavailableAttr(D, Attr, S); break; case AttributeList::AT_unused: HandleUnusedAttr (D, Attr, S); break; case AttributeList::AT_vector_size: HandleVectorSizeAttr(D, Attr, S); break; case AttributeList::AT_visibility: HandleVisibilityAttr(D, Attr, S); break; case AttributeList::AT_weak: HandleWeakAttr (D, Attr, S); break; case AttributeList::AT_transparent_union: HandleTransparentUnionAttr(D, Attr, S); break; case AttributeList::AT_objc_gc: HandleObjCGCAttr (D, Attr, S); break; case AttributeList::AT_nsobject: HandleObjCNSObject (D, Attr, S); break; case AttributeList::AT_blocks: HandleBlocksAttr (D, Attr, S); break; case AttributeList::AT_sentinel: HandleSentinelAttr (D, Attr, S); break; case AttributeList::AT_const: HandleConstAttr (D, Attr, S); break; case AttributeList::AT_pure: HandlePureAttr (D, Attr, S); break; case AttributeList::AT_cleanup: HandleCleanupAttr (D, Attr, S); break; default: #if 0 // TODO: when we have the full set of attributes, warn about unknown ones. S.Diag(Attr->getLoc(), diag::warn_attribute_ignored) << Attr->getName(); #endif break; } } /// ProcessDeclAttributeList - Apply all the decl attributes in the specified /// attribute list to the specified decl, ignoring any type attributes. void Sema::ProcessDeclAttributeList(Decl *D, const AttributeList *AttrList) { while (AttrList) { ProcessDeclAttribute(D, *AttrList, *this); AttrList = AttrList->getNext(); } } /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in /// it, apply them to D. This is a bit tricky because PD can have attributes /// specified in many different places, and we need to find and apply them all. void Sema::ProcessDeclAttributes(Decl *D, const Declarator &PD) { // Apply decl attributes from the DeclSpec if present. if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes()) ProcessDeclAttributeList(D, Attrs); // Walk the declarator structure, applying decl attributes that were in a type // position to the decl itself. This handles cases like: // int *__attr__(x)** D; // when X is a decl attribute. for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs()) ProcessDeclAttributeList(D, Attrs); // Finally, apply any attributes on the decl itself. if (const AttributeList *Attrs = PD.getAttributes()) ProcessDeclAttributeList(D, Attrs); }