//===--- PCHReader.cpp - Precompiled Headers Reader -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PCHReader class, which reads a precompiled header. // //===----------------------------------------------------------------------===// #include "clang/Frontend/PCHReader.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "../Sema/Sema.h" // FIXME: move Sema headers elsewhere #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclGroup.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/Expr.h" #include "clang/AST/StmtVisitor.h" #include "clang/AST/Type.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/OnDiskHashTable.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManagerInternals.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/TargetInfo.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/MemoryBuffer.h" #include #include using namespace clang; namespace { /// \brief Helper class that saves the current stream position and /// then restores it when destroyed. struct VISIBILITY_HIDDEN SavedStreamPosition { explicit SavedStreamPosition(llvm::BitstreamReader &Stream) : Stream(Stream), Offset(Stream.GetCurrentBitNo()) { } ~SavedStreamPosition() { Stream.JumpToBit(Offset); } private: llvm::BitstreamReader &Stream; uint64_t Offset; }; } //===----------------------------------------------------------------------===// // Declaration deserialization //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN PCHDeclReader : public DeclVisitor { PCHReader &Reader; const PCHReader::RecordData &Record; unsigned &Idx; public: PCHDeclReader(PCHReader &Reader, const PCHReader::RecordData &Record, unsigned &Idx) : Reader(Reader), Record(Record), Idx(Idx) { } void VisitDecl(Decl *D); void VisitTranslationUnitDecl(TranslationUnitDecl *TU); void VisitNamedDecl(NamedDecl *ND); void VisitTypeDecl(TypeDecl *TD); void VisitTypedefDecl(TypedefDecl *TD); void VisitTagDecl(TagDecl *TD); void VisitEnumDecl(EnumDecl *ED); void VisitRecordDecl(RecordDecl *RD); void VisitValueDecl(ValueDecl *VD); void VisitEnumConstantDecl(EnumConstantDecl *ECD); void VisitFunctionDecl(FunctionDecl *FD); void VisitFieldDecl(FieldDecl *FD); void VisitVarDecl(VarDecl *VD); void VisitParmVarDecl(ParmVarDecl *PD); void VisitOriginalParmVarDecl(OriginalParmVarDecl *PD); void VisitFileScopeAsmDecl(FileScopeAsmDecl *AD); void VisitBlockDecl(BlockDecl *BD); std::pair VisitDeclContext(DeclContext *DC); void VisitObjCMethodDecl(ObjCMethodDecl *D); void VisitObjCContainerDecl(ObjCContainerDecl *D); void VisitObjCInterfaceDecl(ObjCInterfaceDecl *D); void VisitObjCIvarDecl(ObjCIvarDecl *D); void VisitObjCProtocolDecl(ObjCProtocolDecl *D); void VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D); void VisitObjCClassDecl(ObjCClassDecl *D); void VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D); void VisitObjCCategoryDecl(ObjCCategoryDecl *D); void VisitObjCImplDecl(ObjCImplDecl *D); void VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D); void VisitObjCImplementationDecl(ObjCImplementationDecl *D); void VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *D); void VisitObjCPropertyDecl(ObjCPropertyDecl *D); void VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D); }; } void PCHDeclReader::VisitDecl(Decl *D) { D->setDeclContext(cast_or_null(Reader.GetDecl(Record[Idx++]))); D->setLexicalDeclContext( cast_or_null(Reader.GetDecl(Record[Idx++]))); D->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); D->setInvalidDecl(Record[Idx++]); if (Record[Idx++]) D->addAttr(Reader.ReadAttributes()); D->setImplicit(Record[Idx++]); D->setAccess((AccessSpecifier)Record[Idx++]); } void PCHDeclReader::VisitTranslationUnitDecl(TranslationUnitDecl *TU) { VisitDecl(TU); } void PCHDeclReader::VisitNamedDecl(NamedDecl *ND) { VisitDecl(ND); ND->setDeclName(Reader.ReadDeclarationName(Record, Idx)); } void PCHDeclReader::VisitTypeDecl(TypeDecl *TD) { VisitNamedDecl(TD); TD->setTypeForDecl(Reader.GetType(Record[Idx++]).getTypePtr()); } void PCHDeclReader::VisitTypedefDecl(TypedefDecl *TD) { // Note that we cannot use VisitTypeDecl here, because we need to // set the underlying type of the typedef *before* we try to read // the type associated with the TypedefDecl. VisitNamedDecl(TD); TD->setUnderlyingType(Reader.GetType(Record[Idx + 1])); TD->setTypeForDecl(Reader.GetType(Record[Idx]).getTypePtr()); Idx += 2; } void PCHDeclReader::VisitTagDecl(TagDecl *TD) { VisitTypeDecl(TD); TD->setTagKind((TagDecl::TagKind)Record[Idx++]); TD->setDefinition(Record[Idx++]); TD->setTypedefForAnonDecl( cast_or_null(Reader.GetDecl(Record[Idx++]))); } void PCHDeclReader::VisitEnumDecl(EnumDecl *ED) { VisitTagDecl(ED); ED->setIntegerType(Reader.GetType(Record[Idx++])); } void PCHDeclReader::VisitRecordDecl(RecordDecl *RD) { VisitTagDecl(RD); RD->setHasFlexibleArrayMember(Record[Idx++]); RD->setAnonymousStructOrUnion(Record[Idx++]); } void PCHDeclReader::VisitValueDecl(ValueDecl *VD) { VisitNamedDecl(VD); VD->setType(Reader.GetType(Record[Idx++])); } void PCHDeclReader::VisitEnumConstantDecl(EnumConstantDecl *ECD) { VisitValueDecl(ECD); if (Record[Idx++]) ECD->setInitExpr(Reader.ReadExpr()); ECD->setInitVal(Reader.ReadAPSInt(Record, Idx)); } void PCHDeclReader::VisitFunctionDecl(FunctionDecl *FD) { VisitValueDecl(FD); if (Record[Idx++]) FD->setLazyBody(Reader.getStream().GetCurrentBitNo()); FD->setPreviousDeclaration( cast_or_null(Reader.GetDecl(Record[Idx++]))); FD->setStorageClass((FunctionDecl::StorageClass)Record[Idx++]); FD->setInline(Record[Idx++]); FD->setVirtual(Record[Idx++]); FD->setPure(Record[Idx++]); FD->setInheritedPrototype(Record[Idx++]); FD->setHasPrototype(Record[Idx++]); FD->setDeleted(Record[Idx++]); FD->setTypeSpecStartLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); unsigned NumParams = Record[Idx++]; llvm::SmallVector Params; Params.reserve(NumParams); for (unsigned I = 0; I != NumParams; ++I) Params.push_back(cast(Reader.GetDecl(Record[Idx++]))); FD->setParams(Reader.getContext(), &Params[0], NumParams); } void PCHDeclReader::VisitObjCMethodDecl(ObjCMethodDecl *MD) { VisitNamedDecl(MD); if (Record[Idx++]) { // In practice, this won't be executed (since method definitions // don't occur in header files). MD->setBody(cast(Reader.GetStmt(Record[Idx++]))); MD->setSelfDecl(cast(Reader.GetDecl(Record[Idx++]))); MD->setCmdDecl(cast(Reader.GetDecl(Record[Idx++]))); } MD->setInstanceMethod(Record[Idx++]); MD->setVariadic(Record[Idx++]); MD->setSynthesized(Record[Idx++]); MD->setDeclImplementation((ObjCMethodDecl::ImplementationControl)Record[Idx++]); MD->setObjCDeclQualifier((Decl::ObjCDeclQualifier)Record[Idx++]); MD->setResultType(Reader.GetType(Record[Idx++])); MD->setEndLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); unsigned NumParams = Record[Idx++]; llvm::SmallVector Params; Params.reserve(NumParams); for (unsigned I = 0; I != NumParams; ++I) Params.push_back(cast(Reader.GetDecl(Record[Idx++]))); MD->setMethodParams(Reader.getContext(), &Params[0], NumParams); } void PCHDeclReader::VisitObjCContainerDecl(ObjCContainerDecl *CD) { VisitNamedDecl(CD); CD->setAtEndLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); } void PCHDeclReader::VisitObjCInterfaceDecl(ObjCInterfaceDecl *ID) { VisitObjCContainerDecl(ID); ID->setTypeForDecl(Reader.GetType(Record[Idx++]).getTypePtr()); ID->setSuperClass(cast_or_null (Reader.GetDecl(Record[Idx++]))); unsigned NumIvars = Record[Idx++]; llvm::SmallVector IVars; IVars.reserve(NumIvars); for (unsigned I = 0; I != NumIvars; ++I) IVars.push_back(cast(Reader.GetDecl(Record[Idx++]))); ID->setIVarList(&IVars[0], NumIvars, Reader.getContext()); ID->setForwardDecl(Record[Idx++]); ID->setImplicitInterfaceDecl(Record[Idx++]); ID->setClassLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); ID->setSuperClassLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); ID->setAtEndLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); // FIXME: add protocols, categories. } void PCHDeclReader::VisitObjCIvarDecl(ObjCIvarDecl *IVD) { VisitFieldDecl(IVD); IVD->setAccessControl((ObjCIvarDecl::AccessControl)Record[Idx++]); } void PCHDeclReader::VisitObjCProtocolDecl(ObjCProtocolDecl *PD) { VisitObjCContainerDecl(PD); PD->setForwardDecl(Record[Idx++]); PD->setLocEnd(SourceLocation::getFromRawEncoding(Record[Idx++])); unsigned NumProtoRefs = Record[Idx++]; llvm::SmallVector ProtoRefs; ProtoRefs.reserve(NumProtoRefs); for (unsigned I = 0; I != NumProtoRefs; ++I) ProtoRefs.push_back(cast(Reader.GetDecl(Record[Idx++]))); PD->setProtocolList(&ProtoRefs[0], NumProtoRefs, Reader.getContext()); } void PCHDeclReader::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *FD) { VisitFieldDecl(FD); } void PCHDeclReader::VisitObjCClassDecl(ObjCClassDecl *CD) { VisitDecl(CD); unsigned NumClassRefs = Record[Idx++]; llvm::SmallVector ClassRefs; ClassRefs.reserve(NumClassRefs); for (unsigned I = 0; I != NumClassRefs; ++I) ClassRefs.push_back(cast(Reader.GetDecl(Record[Idx++]))); CD->setClassList(Reader.getContext(), &ClassRefs[0], NumClassRefs); } void PCHDeclReader::VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *FPD) { VisitDecl(FPD); unsigned NumProtoRefs = Record[Idx++]; llvm::SmallVector ProtoRefs; ProtoRefs.reserve(NumProtoRefs); for (unsigned I = 0; I != NumProtoRefs; ++I) ProtoRefs.push_back(cast(Reader.GetDecl(Record[Idx++]))); FPD->setProtocolList(&ProtoRefs[0], NumProtoRefs, Reader.getContext()); } void PCHDeclReader::VisitObjCCategoryDecl(ObjCCategoryDecl *CD) { VisitObjCContainerDecl(CD); CD->setClassInterface(cast(Reader.GetDecl(Record[Idx++]))); unsigned NumProtoRefs = Record[Idx++]; llvm::SmallVector ProtoRefs; ProtoRefs.reserve(NumProtoRefs); for (unsigned I = 0; I != NumProtoRefs; ++I) ProtoRefs.push_back(cast(Reader.GetDecl(Record[Idx++]))); CD->setProtocolList(&ProtoRefs[0], NumProtoRefs, Reader.getContext()); CD->setNextClassCategory(cast(Reader.GetDecl(Record[Idx++]))); CD->setLocEnd(SourceLocation::getFromRawEncoding(Record[Idx++])); } void PCHDeclReader::VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *CAD) { VisitNamedDecl(CAD); CAD->setClassInterface(cast(Reader.GetDecl(Record[Idx++]))); } void PCHDeclReader::VisitObjCPropertyDecl(ObjCPropertyDecl *D) { VisitNamedDecl(D); // FIXME: Implement. } void PCHDeclReader::VisitObjCImplDecl(ObjCImplDecl *D) { VisitDecl(D); // FIXME: Implement. } void PCHDeclReader::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) { VisitObjCImplDecl(D); // FIXME: Implement. } void PCHDeclReader::VisitObjCImplementationDecl(ObjCImplementationDecl *D) { VisitObjCImplDecl(D); // FIXME: Implement. } void PCHDeclReader::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) { VisitDecl(D); // FIXME: Implement. } void PCHDeclReader::VisitFieldDecl(FieldDecl *FD) { VisitValueDecl(FD); FD->setMutable(Record[Idx++]); if (Record[Idx++]) FD->setBitWidth(Reader.ReadExpr()); } void PCHDeclReader::VisitVarDecl(VarDecl *VD) { VisitValueDecl(VD); VD->setStorageClass((VarDecl::StorageClass)Record[Idx++]); VD->setThreadSpecified(Record[Idx++]); VD->setCXXDirectInitializer(Record[Idx++]); VD->setDeclaredInCondition(Record[Idx++]); VD->setPreviousDeclaration( cast_or_null(Reader.GetDecl(Record[Idx++]))); VD->setTypeSpecStartLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); if (Record[Idx++]) VD->setInit(Reader.ReadExpr()); } void PCHDeclReader::VisitParmVarDecl(ParmVarDecl *PD) { VisitVarDecl(PD); PD->setObjCDeclQualifier((Decl::ObjCDeclQualifier)Record[Idx++]); // FIXME: default argument (C++ only) } void PCHDeclReader::VisitOriginalParmVarDecl(OriginalParmVarDecl *PD) { VisitParmVarDecl(PD); PD->setOriginalType(Reader.GetType(Record[Idx++])); } void PCHDeclReader::VisitFileScopeAsmDecl(FileScopeAsmDecl *AD) { VisitDecl(AD); AD->setAsmString(cast(Reader.ReadExpr())); } void PCHDeclReader::VisitBlockDecl(BlockDecl *BD) { VisitDecl(BD); BD->setBody(cast_or_null(Reader.ReadStmt())); unsigned NumParams = Record[Idx++]; llvm::SmallVector Params; Params.reserve(NumParams); for (unsigned I = 0; I != NumParams; ++I) Params.push_back(cast(Reader.GetDecl(Record[Idx++]))); BD->setParams(Reader.getContext(), &Params[0], NumParams); } std::pair PCHDeclReader::VisitDeclContext(DeclContext *DC) { uint64_t LexicalOffset = Record[Idx++]; uint64_t VisibleOffset = Record[Idx++]; return std::make_pair(LexicalOffset, VisibleOffset); } //===----------------------------------------------------------------------===// // Statement/expression deserialization //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN PCHStmtReader : public StmtVisitor { PCHReader &Reader; const PCHReader::RecordData &Record; unsigned &Idx; llvm::SmallVectorImpl &StmtStack; public: PCHStmtReader(PCHReader &Reader, const PCHReader::RecordData &Record, unsigned &Idx, llvm::SmallVectorImpl &StmtStack) : Reader(Reader), Record(Record), Idx(Idx), StmtStack(StmtStack) { } /// \brief The number of record fields required for the Stmt class /// itself. static const unsigned NumStmtFields = 0; /// \brief The number of record fields required for the Expr class /// itself. static const unsigned NumExprFields = NumStmtFields + 3; // Each of the Visit* functions reads in part of the expression // from the given record and the current expression stack, then // return the total number of operands that it read from the // expression stack. unsigned VisitStmt(Stmt *S); unsigned VisitNullStmt(NullStmt *S); unsigned VisitCompoundStmt(CompoundStmt *S); unsigned VisitSwitchCase(SwitchCase *S); unsigned VisitCaseStmt(CaseStmt *S); unsigned VisitDefaultStmt(DefaultStmt *S); unsigned VisitLabelStmt(LabelStmt *S); unsigned VisitIfStmt(IfStmt *S); unsigned VisitSwitchStmt(SwitchStmt *S); unsigned VisitWhileStmt(WhileStmt *S); unsigned VisitDoStmt(DoStmt *S); unsigned VisitForStmt(ForStmt *S); unsigned VisitGotoStmt(GotoStmt *S); unsigned VisitIndirectGotoStmt(IndirectGotoStmt *S); unsigned VisitContinueStmt(ContinueStmt *S); unsigned VisitBreakStmt(BreakStmt *S); unsigned VisitReturnStmt(ReturnStmt *S); unsigned VisitDeclStmt(DeclStmt *S); unsigned VisitAsmStmt(AsmStmt *S); unsigned VisitExpr(Expr *E); unsigned VisitPredefinedExpr(PredefinedExpr *E); unsigned VisitDeclRefExpr(DeclRefExpr *E); unsigned VisitIntegerLiteral(IntegerLiteral *E); unsigned VisitFloatingLiteral(FloatingLiteral *E); unsigned VisitImaginaryLiteral(ImaginaryLiteral *E); unsigned VisitStringLiteral(StringLiteral *E); unsigned VisitCharacterLiteral(CharacterLiteral *E); unsigned VisitParenExpr(ParenExpr *E); unsigned VisitUnaryOperator(UnaryOperator *E); unsigned VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E); unsigned VisitArraySubscriptExpr(ArraySubscriptExpr *E); unsigned VisitCallExpr(CallExpr *E); unsigned VisitMemberExpr(MemberExpr *E); unsigned VisitCastExpr(CastExpr *E); unsigned VisitBinaryOperator(BinaryOperator *E); unsigned VisitCompoundAssignOperator(CompoundAssignOperator *E); unsigned VisitConditionalOperator(ConditionalOperator *E); unsigned VisitImplicitCastExpr(ImplicitCastExpr *E); unsigned VisitExplicitCastExpr(ExplicitCastExpr *E); unsigned VisitCStyleCastExpr(CStyleCastExpr *E); unsigned VisitCompoundLiteralExpr(CompoundLiteralExpr *E); unsigned VisitExtVectorElementExpr(ExtVectorElementExpr *E); unsigned VisitInitListExpr(InitListExpr *E); unsigned VisitDesignatedInitExpr(DesignatedInitExpr *E); unsigned VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); unsigned VisitVAArgExpr(VAArgExpr *E); unsigned VisitAddrLabelExpr(AddrLabelExpr *E); unsigned VisitStmtExpr(StmtExpr *E); unsigned VisitTypesCompatibleExpr(TypesCompatibleExpr *E); unsigned VisitChooseExpr(ChooseExpr *E); unsigned VisitGNUNullExpr(GNUNullExpr *E); unsigned VisitShuffleVectorExpr(ShuffleVectorExpr *E); unsigned VisitBlockExpr(BlockExpr *E); unsigned VisitBlockDeclRefExpr(BlockDeclRefExpr *E); unsigned VisitObjCStringLiteral(ObjCStringLiteral *E); unsigned VisitObjCEncodeExpr(ObjCEncodeExpr *E); unsigned VisitObjCSelectorExpr(ObjCSelectorExpr *E); unsigned VisitObjCProtocolExpr(ObjCProtocolExpr *E); }; } unsigned PCHStmtReader::VisitStmt(Stmt *S) { assert(Idx == NumStmtFields && "Incorrect statement field count"); return 0; } unsigned PCHStmtReader::VisitNullStmt(NullStmt *S) { VisitStmt(S); S->setSemiLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitCompoundStmt(CompoundStmt *S) { VisitStmt(S); unsigned NumStmts = Record[Idx++]; S->setStmts(Reader.getContext(), &StmtStack[StmtStack.size() - NumStmts], NumStmts); S->setLBracLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); S->setRBracLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return NumStmts; } unsigned PCHStmtReader::VisitSwitchCase(SwitchCase *S) { VisitStmt(S); Reader.RecordSwitchCaseID(S, Record[Idx++]); return 0; } unsigned PCHStmtReader::VisitCaseStmt(CaseStmt *S) { VisitSwitchCase(S); S->setLHS(cast(StmtStack[StmtStack.size() - 3])); S->setRHS(cast_or_null(StmtStack[StmtStack.size() - 2])); S->setSubStmt(StmtStack.back()); S->setCaseLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 3; } unsigned PCHStmtReader::VisitDefaultStmt(DefaultStmt *S) { VisitSwitchCase(S); S->setSubStmt(StmtStack.back()); S->setDefaultLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 1; } unsigned PCHStmtReader::VisitLabelStmt(LabelStmt *S) { VisitStmt(S); S->setID(Reader.GetIdentifierInfo(Record, Idx)); S->setSubStmt(StmtStack.back()); S->setIdentLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); Reader.RecordLabelStmt(S, Record[Idx++]); return 1; } unsigned PCHStmtReader::VisitIfStmt(IfStmt *S) { VisitStmt(S); S->setCond(cast(StmtStack[StmtStack.size() - 3])); S->setThen(StmtStack[StmtStack.size() - 2]); S->setElse(StmtStack[StmtStack.size() - 1]); S->setIfLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 3; } unsigned PCHStmtReader::VisitSwitchStmt(SwitchStmt *S) { VisitStmt(S); S->setCond(cast(StmtStack[StmtStack.size() - 2])); S->setBody(StmtStack.back()); S->setSwitchLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); SwitchCase *PrevSC = 0; for (unsigned N = Record.size(); Idx != N; ++Idx) { SwitchCase *SC = Reader.getSwitchCaseWithID(Record[Idx]); if (PrevSC) PrevSC->setNextSwitchCase(SC); else S->setSwitchCaseList(SC); PrevSC = SC; } return 2; } unsigned PCHStmtReader::VisitWhileStmt(WhileStmt *S) { VisitStmt(S); S->setCond(cast_or_null(StmtStack[StmtStack.size() - 2])); S->setBody(StmtStack.back()); S->setWhileLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 2; } unsigned PCHStmtReader::VisitDoStmt(DoStmt *S) { VisitStmt(S); S->setCond(cast_or_null(StmtStack[StmtStack.size() - 2])); S->setBody(StmtStack.back()); S->setDoLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 2; } unsigned PCHStmtReader::VisitForStmt(ForStmt *S) { VisitStmt(S); S->setInit(StmtStack[StmtStack.size() - 4]); S->setCond(cast_or_null(StmtStack[StmtStack.size() - 3])); S->setInc(cast_or_null(StmtStack[StmtStack.size() - 2])); S->setBody(StmtStack.back()); S->setForLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 4; } unsigned PCHStmtReader::VisitGotoStmt(GotoStmt *S) { VisitStmt(S); Reader.SetLabelOf(S, Record[Idx++]); S->setGotoLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); S->setLabelLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitIndirectGotoStmt(IndirectGotoStmt *S) { VisitStmt(S); S->setGotoLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); S->setTarget(cast_or_null(StmtStack.back())); return 1; } unsigned PCHStmtReader::VisitContinueStmt(ContinueStmt *S) { VisitStmt(S); S->setContinueLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitBreakStmt(BreakStmt *S) { VisitStmt(S); S->setBreakLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitReturnStmt(ReturnStmt *S) { VisitStmt(S); S->setRetValue(cast_or_null(StmtStack.back())); S->setReturnLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 1; } unsigned PCHStmtReader::VisitDeclStmt(DeclStmt *S) { VisitStmt(S); S->setStartLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); S->setEndLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); if (Idx + 1 == Record.size()) { // Single declaration S->setDeclGroup(DeclGroupRef(Reader.GetDecl(Record[Idx++]))); } else { llvm::SmallVector Decls; Decls.reserve(Record.size() - Idx); for (unsigned N = Record.size(); Idx != N; ++Idx) Decls.push_back(Reader.GetDecl(Record[Idx])); S->setDeclGroup(DeclGroupRef(DeclGroup::Create(Reader.getContext(), &Decls[0], Decls.size()))); } return 0; } unsigned PCHStmtReader::VisitAsmStmt(AsmStmt *S) { VisitStmt(S); unsigned NumOutputs = Record[Idx++]; unsigned NumInputs = Record[Idx++]; unsigned NumClobbers = Record[Idx++]; S->setAsmLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); S->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); S->setVolatile(Record[Idx++]); S->setSimple(Record[Idx++]); unsigned StackIdx = StmtStack.size() - (NumOutputs*2 + NumInputs*2 + NumClobbers + 1); S->setAsmString(cast_or_null(StmtStack[StackIdx++])); // Outputs and inputs llvm::SmallVector Names; llvm::SmallVector Constraints; llvm::SmallVector Exprs; for (unsigned I = 0, N = NumOutputs + NumInputs; I != N; ++I) { Names.push_back(Reader.ReadString(Record, Idx)); Constraints.push_back(cast_or_null(StmtStack[StackIdx++])); Exprs.push_back(StmtStack[StackIdx++]); } S->setOutputsAndInputs(NumOutputs, NumInputs, &Names[0], &Constraints[0], &Exprs[0]); // Constraints llvm::SmallVector Clobbers; for (unsigned I = 0; I != NumClobbers; ++I) Clobbers.push_back(cast_or_null(StmtStack[StackIdx++])); S->setClobbers(&Clobbers[0], NumClobbers); assert(StackIdx == StmtStack.size() && "Error deserializing AsmStmt"); return NumOutputs*2 + NumInputs*2 + NumClobbers + 1; } unsigned PCHStmtReader::VisitExpr(Expr *E) { VisitStmt(E); E->setType(Reader.GetType(Record[Idx++])); E->setTypeDependent(Record[Idx++]); E->setValueDependent(Record[Idx++]); assert(Idx == NumExprFields && "Incorrect expression field count"); return 0; } unsigned PCHStmtReader::VisitPredefinedExpr(PredefinedExpr *E) { VisitExpr(E); E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setIdentType((PredefinedExpr::IdentType)Record[Idx++]); return 0; } unsigned PCHStmtReader::VisitDeclRefExpr(DeclRefExpr *E) { VisitExpr(E); E->setDecl(cast(Reader.GetDecl(Record[Idx++]))); E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitIntegerLiteral(IntegerLiteral *E) { VisitExpr(E); E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setValue(Reader.ReadAPInt(Record, Idx)); return 0; } unsigned PCHStmtReader::VisitFloatingLiteral(FloatingLiteral *E) { VisitExpr(E); E->setValue(Reader.ReadAPFloat(Record, Idx)); E->setExact(Record[Idx++]); E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitImaginaryLiteral(ImaginaryLiteral *E) { VisitExpr(E); E->setSubExpr(cast(StmtStack.back())); return 1; } unsigned PCHStmtReader::VisitStringLiteral(StringLiteral *E) { VisitExpr(E); unsigned Len = Record[Idx++]; assert(Record[Idx] == E->getNumConcatenated() && "Wrong number of concatenated tokens!"); ++Idx; E->setWide(Record[Idx++]); // Read string data llvm::SmallVector Str(&Record[Idx], &Record[Idx] + Len); E->setStrData(Reader.getContext(), &Str[0], Len); Idx += Len; // Read source locations for (unsigned I = 0, N = E->getNumConcatenated(); I != N; ++I) E->setStrTokenLoc(I, SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitCharacterLiteral(CharacterLiteral *E) { VisitExpr(E); E->setValue(Record[Idx++]); E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setWide(Record[Idx++]); return 0; } unsigned PCHStmtReader::VisitParenExpr(ParenExpr *E) { VisitExpr(E); E->setLParen(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParen(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setSubExpr(cast(StmtStack.back())); return 1; } unsigned PCHStmtReader::VisitUnaryOperator(UnaryOperator *E) { VisitExpr(E); E->setSubExpr(cast(StmtStack.back())); E->setOpcode((UnaryOperator::Opcode)Record[Idx++]); E->setOperatorLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 1; } unsigned PCHStmtReader::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) { VisitExpr(E); E->setSizeof(Record[Idx++]); if (Record[Idx] == 0) { E->setArgument(cast(StmtStack.back())); ++Idx; } else { E->setArgument(Reader.GetType(Record[Idx++])); } E->setOperatorLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return E->isArgumentType()? 0 : 1; } unsigned PCHStmtReader::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { VisitExpr(E); E->setLHS(cast(StmtStack[StmtStack.size() - 2])); E->setRHS(cast(StmtStack[StmtStack.size() - 2])); E->setRBracketLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 2; } unsigned PCHStmtReader::VisitCallExpr(CallExpr *E) { VisitExpr(E); E->setNumArgs(Reader.getContext(), Record[Idx++]); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setCallee(cast(StmtStack[StmtStack.size() - E->getNumArgs() - 1])); for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) E->setArg(I, cast(StmtStack[StmtStack.size() - N + I])); return E->getNumArgs() + 1; } unsigned PCHStmtReader::VisitMemberExpr(MemberExpr *E) { VisitExpr(E); E->setBase(cast(StmtStack.back())); E->setMemberDecl(cast(Reader.GetDecl(Record[Idx++]))); E->setMemberLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setArrow(Record[Idx++]); return 1; } unsigned PCHStmtReader::VisitCastExpr(CastExpr *E) { VisitExpr(E); E->setSubExpr(cast(StmtStack.back())); return 1; } unsigned PCHStmtReader::VisitBinaryOperator(BinaryOperator *E) { VisitExpr(E); E->setLHS(cast(StmtStack.end()[-2])); E->setRHS(cast(StmtStack.end()[-1])); E->setOpcode((BinaryOperator::Opcode)Record[Idx++]); E->setOperatorLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 2; } unsigned PCHStmtReader::VisitCompoundAssignOperator(CompoundAssignOperator *E) { VisitBinaryOperator(E); E->setComputationLHSType(Reader.GetType(Record[Idx++])); E->setComputationResultType(Reader.GetType(Record[Idx++])); return 2; } unsigned PCHStmtReader::VisitConditionalOperator(ConditionalOperator *E) { VisitExpr(E); E->setCond(cast(StmtStack[StmtStack.size() - 3])); E->setLHS(cast_or_null(StmtStack[StmtStack.size() - 2])); E->setRHS(cast_or_null(StmtStack[StmtStack.size() - 1])); return 3; } unsigned PCHStmtReader::VisitImplicitCastExpr(ImplicitCastExpr *E) { VisitCastExpr(E); E->setLvalueCast(Record[Idx++]); return 1; } unsigned PCHStmtReader::VisitExplicitCastExpr(ExplicitCastExpr *E) { VisitCastExpr(E); E->setTypeAsWritten(Reader.GetType(Record[Idx++])); return 1; } unsigned PCHStmtReader::VisitCStyleCastExpr(CStyleCastExpr *E) { VisitExplicitCastExpr(E); E->setLParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 1; } unsigned PCHStmtReader::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { VisitExpr(E); E->setLParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setInitializer(cast(StmtStack.back())); E->setFileScope(Record[Idx++]); return 1; } unsigned PCHStmtReader::VisitExtVectorElementExpr(ExtVectorElementExpr *E) { VisitExpr(E); E->setBase(cast(StmtStack.back())); E->setAccessor(Reader.GetIdentifierInfo(Record, Idx)); E->setAccessorLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 1; } unsigned PCHStmtReader::VisitInitListExpr(InitListExpr *E) { VisitExpr(E); unsigned NumInits = Record[Idx++]; E->reserveInits(NumInits); for (unsigned I = 0; I != NumInits; ++I) E->updateInit(I, cast(StmtStack[StmtStack.size() - NumInits - 1 + I])); E->setSyntacticForm(cast_or_null(StmtStack.back())); E->setLBraceLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRBraceLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setInitializedFieldInUnion( cast_or_null(Reader.GetDecl(Record[Idx++]))); E->sawArrayRangeDesignator(Record[Idx++]); return NumInits + 1; } unsigned PCHStmtReader::VisitDesignatedInitExpr(DesignatedInitExpr *E) { typedef DesignatedInitExpr::Designator Designator; VisitExpr(E); unsigned NumSubExprs = Record[Idx++]; assert(NumSubExprs == E->getNumSubExprs() && "Wrong number of subexprs"); for (unsigned I = 0; I != NumSubExprs; ++I) E->setSubExpr(I, cast(StmtStack[StmtStack.size() - NumSubExprs + I])); E->setEqualOrColonLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setGNUSyntax(Record[Idx++]); llvm::SmallVector Designators; while (Idx < Record.size()) { switch ((pch::DesignatorTypes)Record[Idx++]) { case pch::DESIG_FIELD_DECL: { FieldDecl *Field = cast(Reader.GetDecl(Record[Idx++])); SourceLocation DotLoc = SourceLocation::getFromRawEncoding(Record[Idx++]); SourceLocation FieldLoc = SourceLocation::getFromRawEncoding(Record[Idx++]); Designators.push_back(Designator(Field->getIdentifier(), DotLoc, FieldLoc)); Designators.back().setField(Field); break; } case pch::DESIG_FIELD_NAME: { const IdentifierInfo *Name = Reader.GetIdentifierInfo(Record, Idx); SourceLocation DotLoc = SourceLocation::getFromRawEncoding(Record[Idx++]); SourceLocation FieldLoc = SourceLocation::getFromRawEncoding(Record[Idx++]); Designators.push_back(Designator(Name, DotLoc, FieldLoc)); break; } case pch::DESIG_ARRAY: { unsigned Index = Record[Idx++]; SourceLocation LBracketLoc = SourceLocation::getFromRawEncoding(Record[Idx++]); SourceLocation RBracketLoc = SourceLocation::getFromRawEncoding(Record[Idx++]); Designators.push_back(Designator(Index, LBracketLoc, RBracketLoc)); break; } case pch::DESIG_ARRAY_RANGE: { unsigned Index = Record[Idx++]; SourceLocation LBracketLoc = SourceLocation::getFromRawEncoding(Record[Idx++]); SourceLocation EllipsisLoc = SourceLocation::getFromRawEncoding(Record[Idx++]); SourceLocation RBracketLoc = SourceLocation::getFromRawEncoding(Record[Idx++]); Designators.push_back(Designator(Index, LBracketLoc, EllipsisLoc, RBracketLoc)); break; } } } E->setDesignators(&Designators[0], Designators.size()); return NumSubExprs; } unsigned PCHStmtReader::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { VisitExpr(E); return 0; } unsigned PCHStmtReader::VisitVAArgExpr(VAArgExpr *E) { VisitExpr(E); E->setSubExpr(cast(StmtStack.back())); E->setBuiltinLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 1; } unsigned PCHStmtReader::VisitAddrLabelExpr(AddrLabelExpr *E) { VisitExpr(E); E->setAmpAmpLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setLabelLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); Reader.SetLabelOf(E, Record[Idx++]); return 0; } unsigned PCHStmtReader::VisitStmtExpr(StmtExpr *E) { VisitExpr(E); E->setLParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setSubStmt(cast_or_null(StmtStack.back())); return 1; } unsigned PCHStmtReader::VisitTypesCompatibleExpr(TypesCompatibleExpr *E) { VisitExpr(E); E->setArgType1(Reader.GetType(Record[Idx++])); E->setArgType2(Reader.GetType(Record[Idx++])); E->setBuiltinLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitChooseExpr(ChooseExpr *E) { VisitExpr(E); E->setCond(cast(StmtStack[StmtStack.size() - 3])); E->setLHS(cast_or_null(StmtStack[StmtStack.size() - 2])); E->setRHS(cast_or_null(StmtStack[StmtStack.size() - 1])); E->setBuiltinLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 3; } unsigned PCHStmtReader::VisitGNUNullExpr(GNUNullExpr *E) { VisitExpr(E); E->setTokenLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { VisitExpr(E); unsigned NumExprs = Record[Idx++]; E->setExprs((Expr **)&StmtStack[StmtStack.size() - NumExprs], NumExprs); E->setBuiltinLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return NumExprs; } unsigned PCHStmtReader::VisitBlockExpr(BlockExpr *E) { VisitExpr(E); E->setBlockDecl(cast_or_null(Reader.GetDecl(Record[Idx++]))); E->setHasBlockDeclRefExprs(Record[Idx++]); return 0; } unsigned PCHStmtReader::VisitBlockDeclRefExpr(BlockDeclRefExpr *E) { VisitExpr(E); E->setDecl(cast(Reader.GetDecl(Record[Idx++]))); E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setByRef(Record[Idx++]); return 0; } //===----------------------------------------------------------------------===// // Objective-C Expressions and Statements unsigned PCHStmtReader::VisitObjCStringLiteral(ObjCStringLiteral *E) { VisitExpr(E); E->setString(cast(StmtStack.back())); E->setAtLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 1; } unsigned PCHStmtReader::VisitObjCEncodeExpr(ObjCEncodeExpr *E) { VisitExpr(E); E->setEncodedType(Reader.GetType(Record[Idx++])); E->setAtLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitObjCSelectorExpr(ObjCSelectorExpr *E) { VisitExpr(E); // FIXME: Selectors. E->setAtLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitObjCProtocolExpr(ObjCProtocolExpr *E) { VisitExpr(E); E->setProtocol(cast(Reader.GetDecl(Record[Idx++]))); E->setAtLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } //===----------------------------------------------------------------------===// // PCH reader implementation //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN PCHIdentifierLookupTrait { PCHReader &Reader; // If we know the IdentifierInfo in advance, it is here and we will // not build a new one. Used when deserializing information about an // identifier that was constructed before the PCH file was read. IdentifierInfo *KnownII; public: typedef IdentifierInfo * data_type; typedef const std::pair external_key_type; typedef external_key_type internal_key_type; explicit PCHIdentifierLookupTrait(PCHReader &Reader, IdentifierInfo *II = 0) : Reader(Reader), KnownII(II) { } static bool EqualKey(const internal_key_type& a, const internal_key_type& b) { return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0 : false; } static unsigned ComputeHash(const internal_key_type& a) { return BernsteinHash(a.first, a.second); } // This hopefully will just get inlined and removed by the optimizer. static const internal_key_type& GetInternalKey(const external_key_type& x) { return x; } static std::pair ReadKeyDataLength(const unsigned char*& d) { using namespace clang::io; unsigned KeyLen = ReadUnalignedLE16(d); unsigned DataLen = ReadUnalignedLE16(d); return std::make_pair(KeyLen, DataLen); } static std::pair ReadKey(const unsigned char* d, unsigned n) { assert(n >= 2 && d[n-1] == '\0'); return std::make_pair((const char*) d, n-1); } IdentifierInfo *ReadData(const internal_key_type& k, const unsigned char* d, unsigned DataLen) { using namespace clang::io; uint32_t Bits = ReadUnalignedLE32(d); // FIXME: use these? bool CPlusPlusOperatorKeyword = Bits & 0x01; Bits >>= 1; bool Poisoned = Bits & 0x01; Bits >>= 1; bool ExtensionToken = Bits & 0x01; Bits >>= 1; bool hasMacroDefinition = Bits & 0x01; Bits >>= 1; unsigned ObjCOrBuiltinID = Bits & 0x3FF; Bits >>= 10; unsigned TokenID = Bits & 0xFF; Bits >>= 8; pch::IdentID ID = ReadUnalignedLE32(d); assert(Bits == 0 && "Extra bits in the identifier?"); DataLen -= 8; // Build the IdentifierInfo itself and link the identifier ID with // the new IdentifierInfo. IdentifierInfo *II = KnownII; if (!II) II = &Reader.getIdentifierTable().CreateIdentifierInfo( k.first, k.first + k.second); Reader.SetIdentifierInfo(ID, II); // Set or check the various bits in the IdentifierInfo structure. // FIXME: Load token IDs lazily, too? assert((unsigned)II->getTokenID() == TokenID && "Incorrect token ID loaded"); (void)TokenID; II->setObjCOrBuiltinID(ObjCOrBuiltinID); assert(II->isExtensionToken() == ExtensionToken && "Incorrect extension token flag"); (void)ExtensionToken; II->setIsPoisoned(Poisoned); assert(II->isCPlusPlusOperatorKeyword() == CPlusPlusOperatorKeyword && "Incorrect C++ operator keyword flag"); (void)CPlusPlusOperatorKeyword; // If this identifier is a macro, deserialize the macro // definition. if (hasMacroDefinition) { uint32_t Offset = ReadUnalignedLE64(d); Reader.ReadMacroRecord(Offset); DataLen -= 8; } // Read all of the declarations visible at global scope with this // name. Sema *SemaObj = Reader.getSema(); while (DataLen > 0) { NamedDecl *D = cast(Reader.GetDecl(ReadUnalignedLE32(d))); if (SemaObj) { // Introduce this declaration into the translation-unit scope // and add it to the declaration chain for this identifier, so // that (unqualified) name lookup will find it. SemaObj->TUScope->AddDecl(Action::DeclPtrTy::make(D)); SemaObj->IdResolver.AddDeclToIdentifierChain(II, D); } else { // Queue this declaration so that it will be added to the // translation unit scope and identifier's declaration chain // once a Sema object is known. // FIXME: This is a temporary hack. It will go away once we have // lazy deserialization of macros. Reader.TUDecls.push_back(D); } DataLen -= 4; } return II; } }; } // end anonymous namespace /// \brief The on-disk hash table used to contain information about /// all of the identifiers in the program. typedef OnDiskChainedHashTable PCHIdentifierLookupTable; // FIXME: use the diagnostics machinery static bool Error(const char *Str) { std::fprintf(stderr, "%s\n", Str); return true; } /// \brief Check the contents of the predefines buffer against the /// contents of the predefines buffer used to build the PCH file. /// /// The contents of the two predefines buffers should be the same. If /// not, then some command-line option changed the preprocessor state /// and we must reject the PCH file. /// /// \param PCHPredef The start of the predefines buffer in the PCH /// file. /// /// \param PCHPredefLen The length of the predefines buffer in the PCH /// file. /// /// \param PCHBufferID The FileID for the PCH predefines buffer. /// /// \returns true if there was a mismatch (in which case the PCH file /// should be ignored), or false otherwise. bool PCHReader::CheckPredefinesBuffer(const char *PCHPredef, unsigned PCHPredefLen, FileID PCHBufferID) { const char *Predef = PP.getPredefines().c_str(); unsigned PredefLen = PP.getPredefines().size(); // If the two predefines buffers compare equal, we're done!. if (PredefLen == PCHPredefLen && strncmp(Predef, PCHPredef, PCHPredefLen) == 0) return false; // The predefines buffers are different. Produce a reasonable // diagnostic showing where they are different. // The source locations (potentially in the two different predefines // buffers) SourceLocation Loc1, Loc2; SourceManager &SourceMgr = PP.getSourceManager(); // Create a source buffer for our predefines string, so // that we can build a diagnostic that points into that // source buffer. FileID BufferID; if (Predef && Predef[0]) { llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(Predef, Predef + PredefLen, ""); BufferID = SourceMgr.createFileIDForMemBuffer(Buffer); } unsigned MinLen = std::min(PredefLen, PCHPredefLen); std::pair Locations = std::mismatch(Predef, Predef + MinLen, PCHPredef); if (Locations.first != Predef + MinLen) { // We found the location in the two buffers where there is a // difference. Form source locations to point there (in both // buffers). unsigned Offset = Locations.first - Predef; Loc1 = SourceMgr.getLocForStartOfFile(BufferID) .getFileLocWithOffset(Offset); Loc2 = SourceMgr.getLocForStartOfFile(PCHBufferID) .getFileLocWithOffset(Offset); } else if (PredefLen > PCHPredefLen) { Loc1 = SourceMgr.getLocForStartOfFile(BufferID) .getFileLocWithOffset(MinLen); } else { Loc1 = SourceMgr.getLocForStartOfFile(PCHBufferID) .getFileLocWithOffset(MinLen); } Diag(Loc1, diag::warn_pch_preprocessor); if (Loc2.isValid()) Diag(Loc2, diag::note_predef_in_pch); Diag(diag::note_ignoring_pch) << FileName; return true; } /// \brief Read the line table in the source manager block. /// \returns true if ther was an error. static bool ParseLineTable(SourceManager &SourceMgr, llvm::SmallVectorImpl &Record) { unsigned Idx = 0; LineTableInfo &LineTable = SourceMgr.getLineTable(); // Parse the file names std::map FileIDs; for (int I = 0, N = Record[Idx++]; I != N; ++I) { // Extract the file name unsigned FilenameLen = Record[Idx++]; std::string Filename(&Record[Idx], &Record[Idx] + FilenameLen); Idx += FilenameLen; FileIDs[I] = LineTable.getLineTableFilenameID(Filename.c_str(), Filename.size()); } // Parse the line entries std::vector Entries; while (Idx < Record.size()) { int FID = FileIDs[Record[Idx++]]; // Extract the line entries unsigned NumEntries = Record[Idx++]; Entries.clear(); Entries.reserve(NumEntries); for (unsigned I = 0; I != NumEntries; ++I) { unsigned FileOffset = Record[Idx++]; unsigned LineNo = Record[Idx++]; int FilenameID = Record[Idx++]; SrcMgr::CharacteristicKind FileKind = (SrcMgr::CharacteristicKind)Record[Idx++]; unsigned IncludeOffset = Record[Idx++]; Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID, FileKind, IncludeOffset)); } LineTable.AddEntry(FID, Entries); } return false; } /// \brief Read the source manager block PCHReader::PCHReadResult PCHReader::ReadSourceManagerBlock() { using namespace SrcMgr; if (Stream.EnterSubBlock(pch::SOURCE_MANAGER_BLOCK_ID)) { Error("Malformed source manager block record"); return Failure; } SourceManager &SourceMgr = Context.getSourceManager(); RecordData Record; while (true) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) { Error("Error at end of Source Manager block"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) { Error("Malformed block record"); return Failure; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. const char *BlobStart; unsigned BlobLen; Record.clear(); switch (Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case pch::SM_SLOC_FILE_ENTRY: { // FIXME: We would really like to delay the creation of this // FileEntry until it is actually required, e.g., when producing // a diagnostic with a source location in this file. const FileEntry *File = PP.getFileManager().getFile(BlobStart, BlobStart + BlobLen); // FIXME: Error recovery if file cannot be found. FileID ID = SourceMgr.createFileID(File, SourceLocation::getFromRawEncoding(Record[1]), (CharacteristicKind)Record[2]); if (Record[3]) const_cast(SourceMgr.getSLocEntry(ID).getFile()) .setHasLineDirectives(); break; } case pch::SM_SLOC_BUFFER_ENTRY: { const char *Name = BlobStart; unsigned Code = Stream.ReadCode(); Record.clear(); unsigned RecCode = Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen); assert(RecCode == pch::SM_SLOC_BUFFER_BLOB && "Ill-formed PCH file"); (void)RecCode; llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(BlobStart, BlobStart + BlobLen - 1, Name); FileID BufferID = SourceMgr.createFileIDForMemBuffer(Buffer); if (strcmp(Name, "") == 0 && CheckPredefinesBuffer(BlobStart, BlobLen - 1, BufferID)) return IgnorePCH; break; } case pch::SM_SLOC_INSTANTIATION_ENTRY: { SourceLocation SpellingLoc = SourceLocation::getFromRawEncoding(Record[1]); SourceMgr.createInstantiationLoc( SpellingLoc, SourceLocation::getFromRawEncoding(Record[2]), SourceLocation::getFromRawEncoding(Record[3]), Record[4]); break; } case pch::SM_LINE_TABLE: if (ParseLineTable(SourceMgr, Record)) return Failure; break; } } } void PCHReader::ReadMacroRecord(uint64_t Offset) { // Keep track of where we are in the stream, then jump back there // after reading this macro. SavedStreamPosition SavedPosition(Stream); Stream.JumpToBit(Offset); RecordData Record; llvm::SmallVector MacroArgs; MacroInfo *Macro = 0; while (true) { unsigned Code = Stream.ReadCode(); switch (Code) { case llvm::bitc::END_BLOCK: return; case llvm::bitc::ENTER_SUBBLOCK: // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) { Error("Malformed block record"); return; } continue; case llvm::bitc::DEFINE_ABBREV: Stream.ReadAbbrevRecord(); continue; default: break; } // Read a record. Record.clear(); pch::PreprocessorRecordTypes RecType = (pch::PreprocessorRecordTypes)Stream.ReadRecord(Code, Record); switch (RecType) { case pch::PP_COUNTER_VALUE: // Skip this record. break; case pch::PP_MACRO_OBJECT_LIKE: case pch::PP_MACRO_FUNCTION_LIKE: { // If we already have a macro, that means that we've hit the end // of the definition of the macro we were looking for. We're // done. if (Macro) return; IdentifierInfo *II = DecodeIdentifierInfo(Record[0]); if (II == 0) { Error("Macro must have a name"); return; } SourceLocation Loc = SourceLocation::getFromRawEncoding(Record[1]); bool isUsed = Record[2]; MacroInfo *MI = PP.AllocateMacroInfo(Loc); MI->setIsUsed(isUsed); if (RecType == pch::PP_MACRO_FUNCTION_LIKE) { // Decode function-like macro info. bool isC99VarArgs = Record[3]; bool isGNUVarArgs = Record[4]; MacroArgs.clear(); unsigned NumArgs = Record[5]; for (unsigned i = 0; i != NumArgs; ++i) MacroArgs.push_back(DecodeIdentifierInfo(Record[6+i])); // Install function-like macro info. MI->setIsFunctionLike(); if (isC99VarArgs) MI->setIsC99Varargs(); if (isGNUVarArgs) MI->setIsGNUVarargs(); MI->setArgumentList(&MacroArgs[0], MacroArgs.size(), PP.getPreprocessorAllocator()); } // Finally, install the macro. PP.setMacroInfo(II, MI); // Remember that we saw this macro last so that we add the tokens that // form its body to it. Macro = MI; ++NumMacrosRead; break; } case pch::PP_TOKEN: { // If we see a TOKEN before a PP_MACRO_*, then the file is // erroneous, just pretend we didn't see this. if (Macro == 0) break; Token Tok; Tok.startToken(); Tok.setLocation(SourceLocation::getFromRawEncoding(Record[0])); Tok.setLength(Record[1]); if (IdentifierInfo *II = DecodeIdentifierInfo(Record[2])) Tok.setIdentifierInfo(II); Tok.setKind((tok::TokenKind)Record[3]); Tok.setFlag((Token::TokenFlags)Record[4]); Macro->AddTokenToBody(Tok); break; } } } } bool PCHReader::ReadPreprocessorBlock() { if (Stream.EnterSubBlock(pch::PREPROCESSOR_BLOCK_ID)) return Error("Malformed preprocessor block record"); RecordData Record; while (true) { unsigned Code = Stream.ReadCode(); switch (Code) { case llvm::bitc::END_BLOCK: if (Stream.ReadBlockEnd()) return Error("Error at end of preprocessor block"); return false; case llvm::bitc::ENTER_SUBBLOCK: // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error("Malformed block record"); continue; case llvm::bitc::DEFINE_ABBREV: Stream.ReadAbbrevRecord(); continue; default: break; } // Read a record. Record.clear(); pch::PreprocessorRecordTypes RecType = (pch::PreprocessorRecordTypes)Stream.ReadRecord(Code, Record); switch (RecType) { default: // Default behavior: ignore unknown records. break; case pch::PP_COUNTER_VALUE: if (!Record.empty()) PP.setCounterValue(Record[0]); break; case pch::PP_MACRO_OBJECT_LIKE: case pch::PP_MACRO_FUNCTION_LIKE: case pch::PP_TOKEN: // Once we've hit a macro definition or a token, we're done. return false; } } } PCHReader::PCHReadResult PCHReader::ReadPCHBlock(uint64_t &PreprocessorBlockOffset) { if (Stream.EnterSubBlock(pch::PCH_BLOCK_ID)) { Error("Malformed block record"); return Failure; } // Read all of the records and blocks for the PCH file. RecordData Record; while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) { Error("Error at end of module block"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { switch (Stream.ReadSubBlockID()) { case pch::DECLS_BLOCK_ID: // Skip decls block (lazily loaded) case pch::TYPES_BLOCK_ID: // Skip types block (lazily loaded) default: // Skip unknown content. if (Stream.SkipBlock()) { Error("Malformed block record"); return Failure; } break; case pch::PREPROCESSOR_BLOCK_ID: // Skip the preprocessor block for now, but remember where it is. We // want to read it in after the identifier table. if (PreprocessorBlockOffset) { Error("Multiple preprocessor blocks found."); return Failure; } PreprocessorBlockOffset = Stream.GetCurrentBitNo(); if (Stream.SkipBlock()) { Error("Malformed block record"); return Failure; } break; case pch::SOURCE_MANAGER_BLOCK_ID: switch (ReadSourceManagerBlock()) { case Success: break; case Failure: Error("Malformed source manager block"); return Failure; case IgnorePCH: return IgnorePCH; } break; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read and process a record. Record.clear(); const char *BlobStart = 0; unsigned BlobLen = 0; switch ((pch::PCHRecordTypes)Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case pch::TYPE_OFFSET: if (!TypeOffsets.empty()) { Error("Duplicate TYPE_OFFSET record in PCH file"); return Failure; } TypeOffsets.swap(Record); TypeAlreadyLoaded.resize(TypeOffsets.size(), false); break; case pch::DECL_OFFSET: if (!DeclOffsets.empty()) { Error("Duplicate DECL_OFFSET record in PCH file"); return Failure; } DeclOffsets.swap(Record); DeclAlreadyLoaded.resize(DeclOffsets.size(), false); break; case pch::LANGUAGE_OPTIONS: if (ParseLanguageOptions(Record)) return IgnorePCH; break; case pch::TARGET_TRIPLE: { std::string TargetTriple(BlobStart, BlobLen); if (TargetTriple != Context.Target.getTargetTriple()) { Diag(diag::warn_pch_target_triple) << TargetTriple << Context.Target.getTargetTriple(); Diag(diag::note_ignoring_pch) << FileName; return IgnorePCH; } break; } case pch::IDENTIFIER_TABLE: IdentifierTableData = BlobStart; IdentifierLookupTable = PCHIdentifierLookupTable::Create( (const unsigned char *)IdentifierTableData + Record[0], (const unsigned char *)IdentifierTableData, PCHIdentifierLookupTrait(*this)); // FIXME: What about any identifiers already placed into the // identifier table? Should we load decls with those names now? PP.getIdentifierTable().setExternalIdentifierLookup(this); break; case pch::IDENTIFIER_OFFSET: if (!IdentifierData.empty()) { Error("Duplicate IDENTIFIER_OFFSET record in PCH file"); return Failure; } IdentifierData.swap(Record); #ifndef NDEBUG for (unsigned I = 0, N = IdentifierData.size(); I != N; ++I) { if ((IdentifierData[I] & 0x01) == 0) { Error("Malformed identifier table in the precompiled header"); return Failure; } } #endif break; case pch::EXTERNAL_DEFINITIONS: if (!ExternalDefinitions.empty()) { Error("Duplicate EXTERNAL_DEFINITIONS record in PCH file"); return Failure; } ExternalDefinitions.swap(Record); break; case pch::SPECIAL_TYPES: SpecialTypes.swap(Record); break; case pch::STATISTICS: TotalNumStatements = Record[0]; TotalNumMacros = Record[1]; break; } } Error("Premature end of bitstream"); return Failure; } PCHReader::PCHReadResult PCHReader::ReadPCH(const std::string &FileName) { // Set the PCH file name. this->FileName = FileName; // Open the PCH file. std::string ErrStr; Buffer.reset(llvm::MemoryBuffer::getFile(FileName.c_str(), &ErrStr)); if (!Buffer) { Error(ErrStr.c_str()); return IgnorePCH; } // Initialize the stream Stream.init((const unsigned char *)Buffer->getBufferStart(), (const unsigned char *)Buffer->getBufferEnd()); // Sniff for the signature. if (Stream.Read(8) != 'C' || Stream.Read(8) != 'P' || Stream.Read(8) != 'C' || Stream.Read(8) != 'H') { Error("Not a PCH file"); return IgnorePCH; } // We expect a number of well-defined blocks, though we don't necessarily // need to understand them all. uint64_t PreprocessorBlockOffset = 0; while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code != llvm::bitc::ENTER_SUBBLOCK) { Error("Invalid record at top-level"); return Failure; } unsigned BlockID = Stream.ReadSubBlockID(); // We only know the PCH subblock ID. switch (BlockID) { case llvm::bitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) { Error("Malformed BlockInfoBlock"); return Failure; } break; case pch::PCH_BLOCK_ID: switch (ReadPCHBlock(PreprocessorBlockOffset)) { case Success: break; case Failure: return Failure; case IgnorePCH: // FIXME: We could consider reading through to the end of this // PCH block, skipping subblocks, to see if there are other // PCH blocks elsewhere. return IgnorePCH; } break; default: if (Stream.SkipBlock()) { Error("Malformed block record"); return Failure; } break; } } // Load the translation unit declaration ReadDeclRecord(DeclOffsets[0], 0); // Initialization of builtins and library builtins occurs before the // PCH file is read, so there may be some identifiers that were // loaded into the IdentifierTable before we intercepted the // creation of identifiers. Iterate through the list of known // identifiers and determine whether we have to establish // preprocessor definitions or top-level identifier declaration // chains for those identifiers. // // We copy the IdentifierInfo pointers to a small vector first, // since de-serializing declarations or macro definitions can add // new entries into the identifier table, invalidating the // iterators. llvm::SmallVector Identifiers; for (IdentifierTable::iterator Id = PP.getIdentifierTable().begin(), IdEnd = PP.getIdentifierTable().end(); Id != IdEnd; ++Id) Identifiers.push_back(Id->second); PCHIdentifierLookupTable *IdTable = (PCHIdentifierLookupTable *)IdentifierLookupTable; for (unsigned I = 0, N = Identifiers.size(); I != N; ++I) { IdentifierInfo *II = Identifiers[I]; // Look in the on-disk hash table for an entry for PCHIdentifierLookupTrait Info(*this, II); std::pair Key(II->getName(), II->getLength()); PCHIdentifierLookupTable::iterator Pos = IdTable->find(Key, &Info); if (Pos == IdTable->end()) continue; // Dereferencing the iterator has the effect of populating the // IdentifierInfo node with the various declarations it needs. (void)*Pos; } // Load the special types. Context.setBuiltinVaListType( GetType(SpecialTypes[pch::SPECIAL_TYPE_BUILTIN_VA_LIST])); // If we saw the preprocessor block, read it now. if (PreprocessorBlockOffset) { SavedStreamPosition SavedPos(Stream); Stream.JumpToBit(PreprocessorBlockOffset); if (ReadPreprocessorBlock()) { Error("Malformed preprocessor block"); return Failure; } } return Success; } /// \brief Parse the record that corresponds to a LangOptions data /// structure. /// /// This routine compares the language options used to generate the /// PCH file against the language options set for the current /// compilation. For each option, we classify differences between the /// two compiler states as either "benign" or "important". Benign /// differences don't matter, and we accept them without complaint /// (and without modifying the language options). Differences between /// the states for important options cause the PCH file to be /// unusable, so we emit a warning and return true to indicate that /// there was an error. /// /// \returns true if the PCH file is unacceptable, false otherwise. bool PCHReader::ParseLanguageOptions( const llvm::SmallVectorImpl &Record) { const LangOptions &LangOpts = Context.getLangOptions(); #define PARSE_LANGOPT_BENIGN(Option) ++Idx #define PARSE_LANGOPT_IMPORTANT(Option, DiagID) \ if (Record[Idx] != LangOpts.Option) { \ Diag(DiagID) << (unsigned)Record[Idx] << LangOpts.Option; \ Diag(diag::note_ignoring_pch) << FileName; \ return true; \ } \ ++Idx unsigned Idx = 0; PARSE_LANGOPT_BENIGN(Trigraphs); PARSE_LANGOPT_BENIGN(BCPLComment); PARSE_LANGOPT_BENIGN(DollarIdents); PARSE_LANGOPT_BENIGN(AsmPreprocessor); PARSE_LANGOPT_IMPORTANT(GNUMode, diag::warn_pch_gnu_extensions); PARSE_LANGOPT_BENIGN(ImplicitInt); PARSE_LANGOPT_BENIGN(Digraphs); PARSE_LANGOPT_BENIGN(HexFloats); PARSE_LANGOPT_IMPORTANT(C99, diag::warn_pch_c99); PARSE_LANGOPT_IMPORTANT(Microsoft, diag::warn_pch_microsoft_extensions); PARSE_LANGOPT_IMPORTANT(CPlusPlus, diag::warn_pch_cplusplus); PARSE_LANGOPT_IMPORTANT(CPlusPlus0x, diag::warn_pch_cplusplus0x); PARSE_LANGOPT_IMPORTANT(NoExtensions, diag::warn_pch_extensions); PARSE_LANGOPT_BENIGN(CXXOperatorName); PARSE_LANGOPT_IMPORTANT(ObjC1, diag::warn_pch_objective_c); PARSE_LANGOPT_IMPORTANT(ObjC2, diag::warn_pch_objective_c2); PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI, diag::warn_pch_nonfragile_abi); PARSE_LANGOPT_BENIGN(PascalStrings); PARSE_LANGOPT_BENIGN(Boolean); PARSE_LANGOPT_BENIGN(WritableStrings); PARSE_LANGOPT_IMPORTANT(LaxVectorConversions, diag::warn_pch_lax_vector_conversions); PARSE_LANGOPT_IMPORTANT(Exceptions, diag::warn_pch_exceptions); PARSE_LANGOPT_IMPORTANT(NeXTRuntime, diag::warn_pch_objc_runtime); PARSE_LANGOPT_IMPORTANT(Freestanding, diag::warn_pch_freestanding); PARSE_LANGOPT_IMPORTANT(NoBuiltin, diag::warn_pch_builtins); PARSE_LANGOPT_IMPORTANT(ThreadsafeStatics, diag::warn_pch_thread_safe_statics); PARSE_LANGOPT_IMPORTANT(Blocks, diag::warn_pch_blocks); PARSE_LANGOPT_BENIGN(EmitAllDecls); PARSE_LANGOPT_IMPORTANT(MathErrno, diag::warn_pch_math_errno); PARSE_LANGOPT_IMPORTANT(OverflowChecking, diag::warn_pch_overflow_checking); PARSE_LANGOPT_IMPORTANT(HeinousExtensions, diag::warn_pch_heinous_extensions); // FIXME: Most of the options below are benign if the macro wasn't // used. Unfortunately, this means that a PCH compiled without // optimization can't be used with optimization turned on, even // though the only thing that changes is whether __OPTIMIZE__ was // defined... but if __OPTIMIZE__ never showed up in the header, it // doesn't matter. We could consider making this some special kind // of check. PARSE_LANGOPT_IMPORTANT(Optimize, diag::warn_pch_optimize); PARSE_LANGOPT_IMPORTANT(OptimizeSize, diag::warn_pch_optimize_size); PARSE_LANGOPT_IMPORTANT(Static, diag::warn_pch_static); PARSE_LANGOPT_IMPORTANT(PICLevel, diag::warn_pch_pic_level); PARSE_LANGOPT_IMPORTANT(GNUInline, diag::warn_pch_gnu_inline); PARSE_LANGOPT_IMPORTANT(NoInline, diag::warn_pch_no_inline); if ((LangOpts.getGCMode() != 0) != (Record[Idx] != 0)) { Diag(diag::warn_pch_gc_mode) << (unsigned)Record[Idx] << LangOpts.getGCMode(); Diag(diag::note_ignoring_pch) << FileName; return true; } ++Idx; PARSE_LANGOPT_BENIGN(getVisibilityMode()); PARSE_LANGOPT_BENIGN(InstantiationDepth); #undef PARSE_LANGOPT_IRRELEVANT #undef PARSE_LANGOPT_BENIGN return false; } /// \brief Read and return the type at the given offset. /// /// This routine actually reads the record corresponding to the type /// at the given offset in the bitstream. It is a helper routine for /// GetType, which deals with reading type IDs. QualType PCHReader::ReadTypeRecord(uint64_t Offset) { // Keep track of where we are in the stream, then jump back there // after reading this type. SavedStreamPosition SavedPosition(Stream); Stream.JumpToBit(Offset); RecordData Record; unsigned Code = Stream.ReadCode(); switch ((pch::TypeCode)Stream.ReadRecord(Code, Record)) { case pch::TYPE_EXT_QUAL: { assert(Record.size() == 3 && "Incorrect encoding of extended qualifier type"); QualType Base = GetType(Record[0]); QualType::GCAttrTypes GCAttr = (QualType::GCAttrTypes)Record[1]; unsigned AddressSpace = Record[2]; QualType T = Base; if (GCAttr != QualType::GCNone) T = Context.getObjCGCQualType(T, GCAttr); if (AddressSpace) T = Context.getAddrSpaceQualType(T, AddressSpace); return T; } case pch::TYPE_FIXED_WIDTH_INT: { assert(Record.size() == 2 && "Incorrect encoding of fixed-width int type"); return Context.getFixedWidthIntType(Record[0], Record[1]); } case pch::TYPE_COMPLEX: { assert(Record.size() == 1 && "Incorrect encoding of complex type"); QualType ElemType = GetType(Record[0]); return Context.getComplexType(ElemType); } case pch::TYPE_POINTER: { assert(Record.size() == 1 && "Incorrect encoding of pointer type"); QualType PointeeType = GetType(Record[0]); return Context.getPointerType(PointeeType); } case pch::TYPE_BLOCK_POINTER: { assert(Record.size() == 1 && "Incorrect encoding of block pointer type"); QualType PointeeType = GetType(Record[0]); return Context.getBlockPointerType(PointeeType); } case pch::TYPE_LVALUE_REFERENCE: { assert(Record.size() == 1 && "Incorrect encoding of lvalue reference type"); QualType PointeeType = GetType(Record[0]); return Context.getLValueReferenceType(PointeeType); } case pch::TYPE_RVALUE_REFERENCE: { assert(Record.size() == 1 && "Incorrect encoding of rvalue reference type"); QualType PointeeType = GetType(Record[0]); return Context.getRValueReferenceType(PointeeType); } case pch::TYPE_MEMBER_POINTER: { assert(Record.size() == 1 && "Incorrect encoding of member pointer type"); QualType PointeeType = GetType(Record[0]); QualType ClassType = GetType(Record[1]); return Context.getMemberPointerType(PointeeType, ClassType.getTypePtr()); } case pch::TYPE_CONSTANT_ARRAY: { QualType ElementType = GetType(Record[0]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; unsigned Idx = 3; llvm::APInt Size = ReadAPInt(Record, Idx); return Context.getConstantArrayType(ElementType, Size, ASM, IndexTypeQuals); } case pch::TYPE_INCOMPLETE_ARRAY: { QualType ElementType = GetType(Record[0]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; return Context.getIncompleteArrayType(ElementType, ASM, IndexTypeQuals); } case pch::TYPE_VARIABLE_ARRAY: { QualType ElementType = GetType(Record[0]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; return Context.getVariableArrayType(ElementType, ReadExpr(), ASM, IndexTypeQuals); } case pch::TYPE_VECTOR: { if (Record.size() != 2) { Error("Incorrect encoding of vector type in PCH file"); return QualType(); } QualType ElementType = GetType(Record[0]); unsigned NumElements = Record[1]; return Context.getVectorType(ElementType, NumElements); } case pch::TYPE_EXT_VECTOR: { if (Record.size() != 2) { Error("Incorrect encoding of extended vector type in PCH file"); return QualType(); } QualType ElementType = GetType(Record[0]); unsigned NumElements = Record[1]; return Context.getExtVectorType(ElementType, NumElements); } case pch::TYPE_FUNCTION_NO_PROTO: { if (Record.size() != 1) { Error("Incorrect encoding of no-proto function type"); return QualType(); } QualType ResultType = GetType(Record[0]); return Context.getFunctionNoProtoType(ResultType); } case pch::TYPE_FUNCTION_PROTO: { QualType ResultType = GetType(Record[0]); unsigned Idx = 1; unsigned NumParams = Record[Idx++]; llvm::SmallVector ParamTypes; for (unsigned I = 0; I != NumParams; ++I) ParamTypes.push_back(GetType(Record[Idx++])); bool isVariadic = Record[Idx++]; unsigned Quals = Record[Idx++]; return Context.getFunctionType(ResultType, &ParamTypes[0], NumParams, isVariadic, Quals); } case pch::TYPE_TYPEDEF: assert(Record.size() == 1 && "Incorrect encoding of typedef type"); return Context.getTypeDeclType(cast(GetDecl(Record[0]))); case pch::TYPE_TYPEOF_EXPR: return Context.getTypeOfExprType(ReadExpr()); case pch::TYPE_TYPEOF: { if (Record.size() != 1) { Error("Incorrect encoding of typeof(type) in PCH file"); return QualType(); } QualType UnderlyingType = GetType(Record[0]); return Context.getTypeOfType(UnderlyingType); } case pch::TYPE_RECORD: assert(Record.size() == 1 && "Incorrect encoding of record type"); return Context.getTypeDeclType(cast(GetDecl(Record[0]))); case pch::TYPE_ENUM: assert(Record.size() == 1 && "Incorrect encoding of enum type"); return Context.getTypeDeclType(cast(GetDecl(Record[0]))); case pch::TYPE_OBJC_INTERFACE: assert(Record.size() == 1 && "Incorrect encoding of objc interface type"); return Context.getObjCInterfaceType( cast(GetDecl(Record[0]))); case pch::TYPE_OBJC_QUALIFIED_INTERFACE: { unsigned Idx = 0; ObjCInterfaceDecl *ItfD = cast(GetDecl(Record[Idx++])); unsigned NumProtos = Record[Idx++]; llvm::SmallVector Protos; for (unsigned I = 0; I != NumProtos; ++I) Protos.push_back(cast(GetDecl(Record[Idx++]))); return Context.getObjCQualifiedInterfaceType(ItfD, &Protos[0], NumProtos); } case pch::TYPE_OBJC_QUALIFIED_ID: { unsigned Idx = 0; unsigned NumProtos = Record[Idx++]; llvm::SmallVector Protos; for (unsigned I = 0; I != NumProtos; ++I) Protos.push_back(cast(GetDecl(Record[Idx++]))); return Context.getObjCQualifiedIdType(&Protos[0], NumProtos); } } // Suppress a GCC warning return QualType(); } /// \brief Note that we have loaded the declaration with the given /// Index. /// /// This routine notes that this declaration has already been loaded, /// so that future GetDecl calls will return this declaration rather /// than trying to load a new declaration. inline void PCHReader::LoadedDecl(unsigned Index, Decl *D) { assert(!DeclAlreadyLoaded[Index] && "Decl loaded twice?"); DeclAlreadyLoaded[Index] = true; DeclOffsets[Index] = reinterpret_cast(D); } /// \brief Read the declaration at the given offset from the PCH file. Decl *PCHReader::ReadDeclRecord(uint64_t Offset, unsigned Index) { // Keep track of where we are in the stream, then jump back there // after reading this declaration. SavedStreamPosition SavedPosition(Stream); Decl *D = 0; Stream.JumpToBit(Offset); RecordData Record; unsigned Code = Stream.ReadCode(); unsigned Idx = 0; PCHDeclReader Reader(*this, Record, Idx); switch ((pch::DeclCode)Stream.ReadRecord(Code, Record)) { case pch::DECL_ATTR: case pch::DECL_CONTEXT_LEXICAL: case pch::DECL_CONTEXT_VISIBLE: assert(false && "Record cannot be de-serialized with ReadDeclRecord"); break; case pch::DECL_TRANSLATION_UNIT: assert(Index == 0 && "Translation unit must be at index 0"); D = Context.getTranslationUnitDecl(); break; case pch::DECL_TYPEDEF: { D = TypedefDecl::Create(Context, 0, SourceLocation(), 0, QualType()); break; } case pch::DECL_ENUM: { D = EnumDecl::Create(Context, 0, SourceLocation(), 0, 0); break; } case pch::DECL_RECORD: { D = RecordDecl::Create(Context, TagDecl::TK_struct, 0, SourceLocation(), 0, 0); break; } case pch::DECL_ENUM_CONSTANT: { D = EnumConstantDecl::Create(Context, 0, SourceLocation(), 0, QualType(), 0, llvm::APSInt()); break; } case pch::DECL_FUNCTION: { D = FunctionDecl::Create(Context, 0, SourceLocation(), DeclarationName(), QualType()); break; } case pch::DECL_OBJC_METHOD: { D = ObjCMethodDecl::Create(Context, SourceLocation(), SourceLocation(), Selector(), QualType(), 0); break; } case pch::DECL_OBJC_INTERFACE: { D = ObjCInterfaceDecl::Create(Context, 0, SourceLocation(), 0); break; } case pch::DECL_OBJC_IVAR: { D = ObjCIvarDecl::Create(Context, 0, SourceLocation(), 0, QualType(), ObjCIvarDecl::None); break; } case pch::DECL_OBJC_PROTOCOL: { D = ObjCProtocolDecl::Create(Context, 0, SourceLocation(), 0); break; } case pch::DECL_OBJC_AT_DEFS_FIELD: { D = ObjCAtDefsFieldDecl::Create(Context, 0, SourceLocation(), 0, QualType(), 0); break; } case pch::DECL_OBJC_CLASS: { D = ObjCClassDecl::Create(Context, 0, SourceLocation()); break; } case pch::DECL_OBJC_FORWARD_PROTOCOL: { D = ObjCForwardProtocolDecl::Create(Context, 0, SourceLocation()); break; } case pch::DECL_OBJC_CATEGORY: { D = ObjCCategoryDecl::Create(Context, 0, SourceLocation(), 0); break; } case pch::DECL_OBJC_CATEGORY_IMPL: { // FIXME: Implement. break; } case pch::DECL_OBJC_IMPLEMENTATION: { // FIXME: Implement. break; } case pch::DECL_OBJC_COMPATIBLE_ALIAS: { // FIXME: Implement. break; } case pch::DECL_OBJC_PROPERTY: { // FIXME: Implement. break; } case pch::DECL_OBJC_PROPERTY_IMPL: { // FIXME: Implement. break; } case pch::DECL_FIELD: { D = FieldDecl::Create(Context, 0, SourceLocation(), 0, QualType(), 0, false); break; } case pch::DECL_VAR: { D = VarDecl::Create(Context, 0, SourceLocation(), 0, QualType(), VarDecl::None, SourceLocation()); break; } case pch::DECL_PARM_VAR: { D = ParmVarDecl::Create(Context, 0, SourceLocation(), 0, QualType(), VarDecl::None, 0); break; } case pch::DECL_ORIGINAL_PARM_VAR: { D = OriginalParmVarDecl::Create(Context, 0, SourceLocation(), 0, QualType(), QualType(), VarDecl::None, 0); break; } case pch::DECL_FILE_SCOPE_ASM: { D = FileScopeAsmDecl::Create(Context, 0, SourceLocation(), 0); break; } case pch::DECL_BLOCK: { D = BlockDecl::Create(Context, 0, SourceLocation()); break; } } assert(D && "Unknown declaration reading PCH file"); if (D) { LoadedDecl(Index, D); Reader.Visit(D); } // If this declaration is also a declaration context, get the // offsets for its tables of lexical and visible declarations. if (DeclContext *DC = dyn_cast(D)) { std::pair Offsets = Reader.VisitDeclContext(DC); if (Offsets.first || Offsets.second) { DC->setHasExternalLexicalStorage(Offsets.first != 0); DC->setHasExternalVisibleStorage(Offsets.second != 0); DeclContextOffsets[DC] = Offsets; } } assert(Idx == Record.size()); if (Consumer) { // If we have deserialized a declaration that has a definition the // AST consumer might need to know about, notify the consumer // about that definition now. if (VarDecl *Var = dyn_cast(D)) { if (Var->isFileVarDecl() && Var->getInit()) { DeclGroupRef DG(Var); Consumer->HandleTopLevelDecl(DG); } } else if (FunctionDecl *Func = dyn_cast(D)) { if (Func->isThisDeclarationADefinition()) { DeclGroupRef DG(Func); Consumer->HandleTopLevelDecl(DG); } } } return D; } QualType PCHReader::GetType(pch::TypeID ID) { unsigned Quals = ID & 0x07; unsigned Index = ID >> 3; if (Index < pch::NUM_PREDEF_TYPE_IDS) { QualType T; switch ((pch::PredefinedTypeIDs)Index) { case pch::PREDEF_TYPE_NULL_ID: return QualType(); case pch::PREDEF_TYPE_VOID_ID: T = Context.VoidTy; break; case pch::PREDEF_TYPE_BOOL_ID: T = Context.BoolTy; break; case pch::PREDEF_TYPE_CHAR_U_ID: case pch::PREDEF_TYPE_CHAR_S_ID: // FIXME: Check that the signedness of CharTy is correct! T = Context.CharTy; break; case pch::PREDEF_TYPE_UCHAR_ID: T = Context.UnsignedCharTy; break; case pch::PREDEF_TYPE_USHORT_ID: T = Context.UnsignedShortTy; break; case pch::PREDEF_TYPE_UINT_ID: T = Context.UnsignedIntTy; break; case pch::PREDEF_TYPE_ULONG_ID: T = Context.UnsignedLongTy; break; case pch::PREDEF_TYPE_ULONGLONG_ID: T = Context.UnsignedLongLongTy; break; case pch::PREDEF_TYPE_SCHAR_ID: T = Context.SignedCharTy; break; case pch::PREDEF_TYPE_WCHAR_ID: T = Context.WCharTy; break; case pch::PREDEF_TYPE_SHORT_ID: T = Context.ShortTy; break; case pch::PREDEF_TYPE_INT_ID: T = Context.IntTy; break; case pch::PREDEF_TYPE_LONG_ID: T = Context.LongTy; break; case pch::PREDEF_TYPE_LONGLONG_ID: T = Context.LongLongTy; break; case pch::PREDEF_TYPE_FLOAT_ID: T = Context.FloatTy; break; case pch::PREDEF_TYPE_DOUBLE_ID: T = Context.DoubleTy; break; case pch::PREDEF_TYPE_LONGDOUBLE_ID: T = Context.LongDoubleTy; break; case pch::PREDEF_TYPE_OVERLOAD_ID: T = Context.OverloadTy; break; case pch::PREDEF_TYPE_DEPENDENT_ID: T = Context.DependentTy; break; } assert(!T.isNull() && "Unknown predefined type"); return T.getQualifiedType(Quals); } Index -= pch::NUM_PREDEF_TYPE_IDS; if (!TypeAlreadyLoaded[Index]) { // Load the type from the PCH file. TypeOffsets[Index] = reinterpret_cast( ReadTypeRecord(TypeOffsets[Index]).getTypePtr()); TypeAlreadyLoaded[Index] = true; } return QualType(reinterpret_cast(TypeOffsets[Index]), Quals); } Decl *PCHReader::GetDecl(pch::DeclID ID) { if (ID == 0) return 0; unsigned Index = ID - 1; if (DeclAlreadyLoaded[Index]) return reinterpret_cast(DeclOffsets[Index]); // Load the declaration from the PCH file. return ReadDeclRecord(DeclOffsets[Index], Index); } Stmt *PCHReader::GetStmt(uint64_t Offset) { // Keep track of where we are in the stream, then jump back there // after reading this declaration. SavedStreamPosition SavedPosition(Stream); Stream.JumpToBit(Offset); return ReadStmt(); } bool PCHReader::ReadDeclsLexicallyInContext(DeclContext *DC, llvm::SmallVectorImpl &Decls) { assert(DC->hasExternalLexicalStorage() && "DeclContext has no lexical decls in storage"); uint64_t Offset = DeclContextOffsets[DC].first; assert(Offset && "DeclContext has no lexical decls in storage"); // Keep track of where we are in the stream, then jump back there // after reading this context. SavedStreamPosition SavedPosition(Stream); // Load the record containing all of the declarations lexically in // this context. Stream.JumpToBit(Offset); RecordData Record; unsigned Code = Stream.ReadCode(); unsigned RecCode = Stream.ReadRecord(Code, Record); (void)RecCode; assert(RecCode == pch::DECL_CONTEXT_LEXICAL && "Expected lexical block"); // Load all of the declaration IDs Decls.clear(); Decls.insert(Decls.end(), Record.begin(), Record.end()); return false; } bool PCHReader::ReadDeclsVisibleInContext(DeclContext *DC, llvm::SmallVectorImpl & Decls) { assert(DC->hasExternalVisibleStorage() && "DeclContext has no visible decls in storage"); uint64_t Offset = DeclContextOffsets[DC].second; assert(Offset && "DeclContext has no visible decls in storage"); // Keep track of where we are in the stream, then jump back there // after reading this context. SavedStreamPosition SavedPosition(Stream); // Load the record containing all of the declarations visible in // this context. Stream.JumpToBit(Offset); RecordData Record; unsigned Code = Stream.ReadCode(); unsigned RecCode = Stream.ReadRecord(Code, Record); (void)RecCode; assert(RecCode == pch::DECL_CONTEXT_VISIBLE && "Expected visible block"); if (Record.size() == 0) return false; Decls.clear(); unsigned Idx = 0; while (Idx < Record.size()) { Decls.push_back(VisibleDeclaration()); Decls.back().Name = ReadDeclarationName(Record, Idx); unsigned Size = Record[Idx++]; llvm::SmallVector & LoadedDecls = Decls.back().Declarations; LoadedDecls.reserve(Size); for (unsigned I = 0; I < Size; ++I) LoadedDecls.push_back(Record[Idx++]); } return false; } void PCHReader::StartTranslationUnit(ASTConsumer *Consumer) { this->Consumer = Consumer; if (!Consumer) return; for (unsigned I = 0, N = ExternalDefinitions.size(); I != N; ++I) { Decl *D = GetDecl(ExternalDefinitions[I]); DeclGroupRef DG(D); Consumer->HandleTopLevelDecl(DG); } } void PCHReader::PrintStats() { std::fprintf(stderr, "*** PCH Statistics:\n"); unsigned NumTypesLoaded = std::count(TypeAlreadyLoaded.begin(), TypeAlreadyLoaded.end(), true); unsigned NumDeclsLoaded = std::count(DeclAlreadyLoaded.begin(), DeclAlreadyLoaded.end(), true); unsigned NumIdentifiersLoaded = 0; for (unsigned I = 0; I < IdentifierData.size(); ++I) { if ((IdentifierData[I] & 0x01) == 0) ++NumIdentifiersLoaded; } std::fprintf(stderr, " %u/%u types read (%f%%)\n", NumTypesLoaded, (unsigned)TypeAlreadyLoaded.size(), ((float)NumTypesLoaded/TypeAlreadyLoaded.size() * 100)); std::fprintf(stderr, " %u/%u declarations read (%f%%)\n", NumDeclsLoaded, (unsigned)DeclAlreadyLoaded.size(), ((float)NumDeclsLoaded/DeclAlreadyLoaded.size() * 100)); std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n", NumIdentifiersLoaded, (unsigned)IdentifierData.size(), ((float)NumIdentifiersLoaded/IdentifierData.size() * 100)); std::fprintf(stderr, " %u/%u statements read (%f%%)\n", NumStatementsRead, TotalNumStatements, ((float)NumStatementsRead/TotalNumStatements * 100)); std::fprintf(stderr, " %u/%u macros read (%f%%)\n", NumMacrosRead, TotalNumMacros, ((float)NumMacrosRead/TotalNumMacros * 100)); std::fprintf(stderr, "\n"); } void PCHReader::InitializeSema(Sema &S) { SemaObj = &S; // FIXME: this makes sure any declarations that were deserialized // "too early" still get added to the identifier's declaration // chains. for (unsigned I = 0, N = TUDecls.size(); I != N; ++I) { SemaObj->TUScope->AddDecl(Action::DeclPtrTy::make(TUDecls[I])); SemaObj->IdResolver.AddDecl(TUDecls[I]); } TUDecls.clear(); } IdentifierInfo* PCHReader::get(const char *NameStart, const char *NameEnd) { // Try to find this name within our on-disk hash table PCHIdentifierLookupTable *IdTable = (PCHIdentifierLookupTable *)IdentifierLookupTable; std::pair Key(NameStart, NameEnd - NameStart); PCHIdentifierLookupTable::iterator Pos = IdTable->find(Key); if (Pos == IdTable->end()) return 0; // Dereferencing the iterator has the effect of building the // IdentifierInfo node and populating it with the various // declarations it needs. return *Pos; } void PCHReader::SetIdentifierInfo(unsigned ID, const IdentifierInfo *II) { assert(ID && "Non-zero identifier ID required"); IdentifierData[ID - 1] = reinterpret_cast(II); } IdentifierInfo *PCHReader::DecodeIdentifierInfo(unsigned ID) { if (ID == 0) return 0; if (!IdentifierTableData || IdentifierData.empty()) { Error("No identifier table in PCH file"); return 0; } if (IdentifierData[ID - 1] & 0x01) { uint64_t Offset = IdentifierData[ID - 1] >> 1; IdentifierData[ID - 1] = reinterpret_cast( &Context.Idents.get(IdentifierTableData + Offset)); } return reinterpret_cast(IdentifierData[ID - 1]); } DeclarationName PCHReader::ReadDeclarationName(const RecordData &Record, unsigned &Idx) { DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++]; switch (Kind) { case DeclarationName::Identifier: return DeclarationName(GetIdentifierInfo(Record, Idx)); case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: assert(false && "Unable to de-serialize Objective-C selectors"); break; case DeclarationName::CXXConstructorName: return Context.DeclarationNames.getCXXConstructorName( GetType(Record[Idx++])); case DeclarationName::CXXDestructorName: return Context.DeclarationNames.getCXXDestructorName( GetType(Record[Idx++])); case DeclarationName::CXXConversionFunctionName: return Context.DeclarationNames.getCXXConversionFunctionName( GetType(Record[Idx++])); case DeclarationName::CXXOperatorName: return Context.DeclarationNames.getCXXOperatorName( (OverloadedOperatorKind)Record[Idx++]); case DeclarationName::CXXUsingDirective: return DeclarationName::getUsingDirectiveName(); } // Required to silence GCC warning return DeclarationName(); } /// \brief Read an integral value llvm::APInt PCHReader::ReadAPInt(const RecordData &Record, unsigned &Idx) { unsigned BitWidth = Record[Idx++]; unsigned NumWords = llvm::APInt::getNumWords(BitWidth); llvm::APInt Result(BitWidth, NumWords, &Record[Idx]); Idx += NumWords; return Result; } /// \brief Read a signed integral value llvm::APSInt PCHReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) { bool isUnsigned = Record[Idx++]; return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned); } /// \brief Read a floating-point value llvm::APFloat PCHReader::ReadAPFloat(const RecordData &Record, unsigned &Idx) { return llvm::APFloat(ReadAPInt(Record, Idx)); } // \brief Read a string std::string PCHReader::ReadString(const RecordData &Record, unsigned &Idx) { unsigned Len = Record[Idx++]; std::string Result(&Record[Idx], &Record[Idx] + Len); Idx += Len; return Result; } /// \brief Reads attributes from the current stream position. Attr *PCHReader::ReadAttributes() { unsigned Code = Stream.ReadCode(); assert(Code == llvm::bitc::UNABBREV_RECORD && "Expected unabbreviated record"); (void)Code; RecordData Record; unsigned Idx = 0; unsigned RecCode = Stream.ReadRecord(Code, Record); assert(RecCode == pch::DECL_ATTR && "Expected attribute record"); (void)RecCode; #define SIMPLE_ATTR(Name) \ case Attr::Name: \ New = ::new (Context) Name##Attr(); \ break #define STRING_ATTR(Name) \ case Attr::Name: \ New = ::new (Context) Name##Attr(ReadString(Record, Idx)); \ break #define UNSIGNED_ATTR(Name) \ case Attr::Name: \ New = ::new (Context) Name##Attr(Record[Idx++]); \ break Attr *Attrs = 0; while (Idx < Record.size()) { Attr *New = 0; Attr::Kind Kind = (Attr::Kind)Record[Idx++]; bool IsInherited = Record[Idx++]; switch (Kind) { STRING_ATTR(Alias); UNSIGNED_ATTR(Aligned); SIMPLE_ATTR(AlwaysInline); SIMPLE_ATTR(AnalyzerNoReturn); STRING_ATTR(Annotate); STRING_ATTR(AsmLabel); case Attr::Blocks: New = ::new (Context) BlocksAttr( (BlocksAttr::BlocksAttrTypes)Record[Idx++]); break; case Attr::Cleanup: New = ::new (Context) CleanupAttr( cast(GetDecl(Record[Idx++]))); break; SIMPLE_ATTR(Const); UNSIGNED_ATTR(Constructor); SIMPLE_ATTR(DLLExport); SIMPLE_ATTR(DLLImport); SIMPLE_ATTR(Deprecated); UNSIGNED_ATTR(Destructor); SIMPLE_ATTR(FastCall); case Attr::Format: { std::string Type = ReadString(Record, Idx); unsigned FormatIdx = Record[Idx++]; unsigned FirstArg = Record[Idx++]; New = ::new (Context) FormatAttr(Type, FormatIdx, FirstArg); break; } SIMPLE_ATTR(GNUInline); case Attr::IBOutletKind: New = ::new (Context) IBOutletAttr(); break; SIMPLE_ATTR(NoReturn); SIMPLE_ATTR(NoThrow); SIMPLE_ATTR(Nodebug); SIMPLE_ATTR(Noinline); case Attr::NonNull: { unsigned Size = Record[Idx++]; llvm::SmallVector ArgNums; ArgNums.insert(ArgNums.end(), &Record[Idx], &Record[Idx] + Size); Idx += Size; New = ::new (Context) NonNullAttr(&ArgNums[0], Size); break; } SIMPLE_ATTR(ObjCException); SIMPLE_ATTR(ObjCNSObject); SIMPLE_ATTR(Overloadable); UNSIGNED_ATTR(Packed); SIMPLE_ATTR(Pure); UNSIGNED_ATTR(Regparm); STRING_ATTR(Section); SIMPLE_ATTR(StdCall); SIMPLE_ATTR(TransparentUnion); SIMPLE_ATTR(Unavailable); SIMPLE_ATTR(Unused); SIMPLE_ATTR(Used); case Attr::Visibility: New = ::new (Context) VisibilityAttr( (VisibilityAttr::VisibilityTypes)Record[Idx++]); break; SIMPLE_ATTR(WarnUnusedResult); SIMPLE_ATTR(Weak); SIMPLE_ATTR(WeakImport); } assert(New && "Unable to decode attribute?"); New->setInherited(IsInherited); New->setNext(Attrs); Attrs = New; } #undef UNSIGNED_ATTR #undef STRING_ATTR #undef SIMPLE_ATTR // The list of attributes was built backwards. Reverse the list // before returning it. Attr *PrevAttr = 0, *NextAttr = 0; while (Attrs) { NextAttr = Attrs->getNext(); Attrs->setNext(PrevAttr); PrevAttr = Attrs; Attrs = NextAttr; } return PrevAttr; } Stmt *PCHReader::ReadStmt() { // Within the bitstream, expressions are stored in Reverse Polish // Notation, with each of the subexpressions preceding the // expression they are stored in. To evaluate expressions, we // continue reading expressions and placing them on the stack, with // expressions having operands removing those operands from the // stack. Evaluation terminates when we see a STMT_STOP record, and // the single remaining expression on the stack is our result. RecordData Record; unsigned Idx; llvm::SmallVector StmtStack; PCHStmtReader Reader(*this, Record, Idx, StmtStack); Stmt::EmptyShell Empty; while (true) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) { Error("Error at end of Source Manager block"); return 0; } break; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) { Error("Malformed block record"); return 0; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } Stmt *S = 0; Idx = 0; Record.clear(); bool Finished = false; switch ((pch::StmtCode)Stream.ReadRecord(Code, Record)) { case pch::STMT_STOP: Finished = true; break; case pch::STMT_NULL_PTR: S = 0; break; case pch::STMT_NULL: S = new (Context) NullStmt(Empty); break; case pch::STMT_COMPOUND: S = new (Context) CompoundStmt(Empty); break; case pch::STMT_CASE: S = new (Context) CaseStmt(Empty); break; case pch::STMT_DEFAULT: S = new (Context) DefaultStmt(Empty); break; case pch::STMT_LABEL: S = new (Context) LabelStmt(Empty); break; case pch::STMT_IF: S = new (Context) IfStmt(Empty); break; case pch::STMT_SWITCH: S = new (Context) SwitchStmt(Empty); break; case pch::STMT_WHILE: S = new (Context) WhileStmt(Empty); break; case pch::STMT_DO: S = new (Context) DoStmt(Empty); break; case pch::STMT_FOR: S = new (Context) ForStmt(Empty); break; case pch::STMT_GOTO: S = new (Context) GotoStmt(Empty); break; case pch::STMT_INDIRECT_GOTO: S = new (Context) IndirectGotoStmt(Empty); break; case pch::STMT_CONTINUE: S = new (Context) ContinueStmt(Empty); break; case pch::STMT_BREAK: S = new (Context) BreakStmt(Empty); break; case pch::STMT_RETURN: S = new (Context) ReturnStmt(Empty); break; case pch::STMT_DECL: S = new (Context) DeclStmt(Empty); break; case pch::STMT_ASM: S = new (Context) AsmStmt(Empty); break; case pch::EXPR_PREDEFINED: S = new (Context) PredefinedExpr(Empty); break; case pch::EXPR_DECL_REF: S = new (Context) DeclRefExpr(Empty); break; case pch::EXPR_INTEGER_LITERAL: S = new (Context) IntegerLiteral(Empty); break; case pch::EXPR_FLOATING_LITERAL: S = new (Context) FloatingLiteral(Empty); break; case pch::EXPR_IMAGINARY_LITERAL: S = new (Context) ImaginaryLiteral(Empty); break; case pch::EXPR_STRING_LITERAL: S = StringLiteral::CreateEmpty(Context, Record[PCHStmtReader::NumExprFields + 1]); break; case pch::EXPR_CHARACTER_LITERAL: S = new (Context) CharacterLiteral(Empty); break; case pch::EXPR_PAREN: S = new (Context) ParenExpr(Empty); break; case pch::EXPR_UNARY_OPERATOR: S = new (Context) UnaryOperator(Empty); break; case pch::EXPR_SIZEOF_ALIGN_OF: S = new (Context) SizeOfAlignOfExpr(Empty); break; case pch::EXPR_ARRAY_SUBSCRIPT: S = new (Context) ArraySubscriptExpr(Empty); break; case pch::EXPR_CALL: S = new (Context) CallExpr(Context, Empty); break; case pch::EXPR_MEMBER: S = new (Context) MemberExpr(Empty); break; case pch::EXPR_BINARY_OPERATOR: S = new (Context) BinaryOperator(Empty); break; case pch::EXPR_COMPOUND_ASSIGN_OPERATOR: S = new (Context) CompoundAssignOperator(Empty); break; case pch::EXPR_CONDITIONAL_OPERATOR: S = new (Context) ConditionalOperator(Empty); break; case pch::EXPR_IMPLICIT_CAST: S = new (Context) ImplicitCastExpr(Empty); break; case pch::EXPR_CSTYLE_CAST: S = new (Context) CStyleCastExpr(Empty); break; case pch::EXPR_COMPOUND_LITERAL: S = new (Context) CompoundLiteralExpr(Empty); break; case pch::EXPR_EXT_VECTOR_ELEMENT: S = new (Context) ExtVectorElementExpr(Empty); break; case pch::EXPR_INIT_LIST: S = new (Context) InitListExpr(Empty); break; case pch::EXPR_DESIGNATED_INIT: S = DesignatedInitExpr::CreateEmpty(Context, Record[PCHStmtReader::NumExprFields] - 1); break; case pch::EXPR_IMPLICIT_VALUE_INIT: S = new (Context) ImplicitValueInitExpr(Empty); break; case pch::EXPR_VA_ARG: S = new (Context) VAArgExpr(Empty); break; case pch::EXPR_ADDR_LABEL: S = new (Context) AddrLabelExpr(Empty); break; case pch::EXPR_STMT: S = new (Context) StmtExpr(Empty); break; case pch::EXPR_TYPES_COMPATIBLE: S = new (Context) TypesCompatibleExpr(Empty); break; case pch::EXPR_CHOOSE: S = new (Context) ChooseExpr(Empty); break; case pch::EXPR_GNU_NULL: S = new (Context) GNUNullExpr(Empty); break; case pch::EXPR_SHUFFLE_VECTOR: S = new (Context) ShuffleVectorExpr(Empty); break; case pch::EXPR_BLOCK: S = new (Context) BlockExpr(Empty); break; case pch::EXPR_BLOCK_DECL_REF: S = new (Context) BlockDeclRefExpr(Empty); break; case pch::EXPR_OBJC_STRING_LITERAL: S = new (Context) ObjCStringLiteral(Empty); break; case pch::EXPR_OBJC_ENCODE: S = new (Context) ObjCEncodeExpr(Empty); break; case pch::EXPR_OBJC_SELECTOR_EXPR: S = new (Context) ObjCSelectorExpr(Empty); break; case pch::EXPR_OBJC_PROTOCOL_EXPR: S = new (Context) ObjCProtocolExpr(Empty); break; } // We hit a STMT_STOP, so we're done with this expression. if (Finished) break; ++NumStatementsRead; if (S) { unsigned NumSubStmts = Reader.Visit(S); while (NumSubStmts > 0) { StmtStack.pop_back(); --NumSubStmts; } } assert(Idx == Record.size() && "Invalid deserialization of statement"); StmtStack.push_back(S); } assert(StmtStack.size() == 1 && "Extra expressions on stack!"); SwitchCaseStmts.clear(); return StmtStack.back(); } Expr *PCHReader::ReadExpr() { return dyn_cast_or_null(ReadStmt()); } DiagnosticBuilder PCHReader::Diag(unsigned DiagID) { return Diag(SourceLocation(), DiagID); } DiagnosticBuilder PCHReader::Diag(SourceLocation Loc, unsigned DiagID) { return PP.getDiagnostics().Report(FullSourceLoc(Loc, Context.getSourceManager()), DiagID); } /// \brief Retrieve the identifier table associated with the /// preprocessor. IdentifierTable &PCHReader::getIdentifierTable() { return PP.getIdentifierTable(); } /// \brief Record that the given ID maps to the given switch-case /// statement. void PCHReader::RecordSwitchCaseID(SwitchCase *SC, unsigned ID) { assert(SwitchCaseStmts[ID] == 0 && "Already have a SwitchCase with this ID"); SwitchCaseStmts[ID] = SC; } /// \brief Retrieve the switch-case statement with the given ID. SwitchCase *PCHReader::getSwitchCaseWithID(unsigned ID) { assert(SwitchCaseStmts[ID] != 0 && "No SwitchCase with this ID"); return SwitchCaseStmts[ID]; } /// \brief Record that the given label statement has been /// deserialized and has the given ID. void PCHReader::RecordLabelStmt(LabelStmt *S, unsigned ID) { assert(LabelStmts.find(ID) == LabelStmts.end() && "Deserialized label twice"); LabelStmts[ID] = S; // If we've already seen any goto statements that point to this // label, resolve them now. typedef std::multimap::iterator GotoIter; std::pair Gotos = UnresolvedGotoStmts.equal_range(ID); for (GotoIter Goto = Gotos.first; Goto != Gotos.second; ++Goto) Goto->second->setLabel(S); UnresolvedGotoStmts.erase(Gotos.first, Gotos.second); // If we've already seen any address-label statements that point to // this label, resolve them now. typedef std::multimap::iterator AddrLabelIter; std::pair AddrLabels = UnresolvedAddrLabelExprs.equal_range(ID); for (AddrLabelIter AddrLabel = AddrLabels.first; AddrLabel != AddrLabels.second; ++AddrLabel) AddrLabel->second->setLabel(S); UnresolvedAddrLabelExprs.erase(AddrLabels.first, AddrLabels.second); } /// \brief Set the label of the given statement to the label /// identified by ID. /// /// Depending on the order in which the label and other statements /// referencing that label occur, this operation may complete /// immediately (updating the statement) or it may queue the /// statement to be back-patched later. void PCHReader::SetLabelOf(GotoStmt *S, unsigned ID) { std::map::iterator Label = LabelStmts.find(ID); if (Label != LabelStmts.end()) { // We've already seen this label, so set the label of the goto and // we're done. S->setLabel(Label->second); } else { // We haven't seen this label yet, so add this goto to the set of // unresolved goto statements. UnresolvedGotoStmts.insert(std::make_pair(ID, S)); } } /// \brief Set the label of the given expression to the label /// identified by ID. /// /// Depending on the order in which the label and other statements /// referencing that label occur, this operation may complete /// immediately (updating the statement) or it may queue the /// statement to be back-patched later. void PCHReader::SetLabelOf(AddrLabelExpr *S, unsigned ID) { std::map::iterator Label = LabelStmts.find(ID); if (Label != LabelStmts.end()) { // We've already seen this label, so set the label of the // label-address expression and we're done. S->setLabel(Label->second); } else { // We haven't seen this label yet, so add this label-address // expression to the set of unresolved label-address expressions. UnresolvedAddrLabelExprs.insert(std::make_pair(ID, S)); } }