//===--- ParseStmt.cpp - Statement and Block Parser -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Statement and Block portions of the Parser // interface. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "ExtensionRAIIObject.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/SourceManager.h" #include "clang/Parse/DeclSpec.h" #include "clang/Parse/Scope.h" using namespace clang; //===----------------------------------------------------------------------===// // C99 6.8: Statements and Blocks. //===----------------------------------------------------------------------===// /// ParseStatementOrDeclaration - Read 'statement' or 'declaration'. /// StatementOrDeclaration: /// statement /// declaration /// /// statement: /// labeled-statement /// compound-statement /// expression-statement /// selection-statement /// iteration-statement /// jump-statement /// [C++] declaration-statement /// [OBC] objc-throw-statement /// [OBC] objc-try-catch-statement /// [OBC] objc-synchronized-statement /// [GNU] asm-statement /// [OMP] openmp-construct [TODO] /// /// labeled-statement: /// identifier ':' statement /// 'case' constant-expression ':' statement /// 'default' ':' statement /// /// selection-statement: /// if-statement /// switch-statement /// /// iteration-statement: /// while-statement /// do-statement /// for-statement /// /// expression-statement: /// expression[opt] ';' /// /// jump-statement: /// 'goto' identifier ';' /// 'continue' ';' /// 'break' ';' /// 'return' expression[opt] ';' /// [GNU] 'goto' '*' expression ';' /// /// [OBC] objc-throw-statement: /// [OBC] '@' 'throw' expression ';' /// [OBC] '@' 'throw' ';' /// Parser::StmtResult Parser::ParseStatementOrDeclaration(bool OnlyStatement) { const char *SemiError = 0; Parser::StmtResult Res; // Cases in this switch statement should fall through if the parser expects // the token to end in a semicolon (in which case SemiError should be set), // or they directly 'return;' if not. tok::TokenKind Kind = Tok.getKind(); SourceLocation AtLoc; switch (Kind) { case tok::at: // May be a @try or @throw statement { AtLoc = ConsumeToken(); // consume @ return ParseObjCAtStatement(AtLoc); } case tok::identifier: if (NextToken().is(tok::colon)) { // C99 6.8.1: labeled-statement // identifier ':' statement return ParseLabeledStatement(); } // PASS THROUGH. default: if ((getLang().CPlusPlus || !OnlyStatement) && isDeclarationStatement()) { SourceLocation DeclStart = Tok.getLocation(); DeclTy *Res = ParseDeclaration(Declarator::BlockContext); // FIXME: Pass in the right location for the end of the declstmt. return Actions.ActOnDeclStmt(Res, DeclStart, DeclStart); } else if (Tok.is(tok::r_brace)) { Diag(Tok, diag::err_expected_statement); return true; } else { // expression[opt] ';' ExprResult Res = ParseExpression(); if (Res.isInvalid) { // If the expression is invalid, skip ahead to the next semicolon. Not // doing this opens us up to the possibility of infinite loops if // ParseExpression does not consume any tokens. SkipUntil(tok::semi); return true; } // Otherwise, eat the semicolon. ExpectAndConsume(tok::semi, diag::err_expected_semi_after_expr); return Actions.ActOnExprStmt(Res.Val); } case tok::kw_case: // C99 6.8.1: labeled-statement return ParseCaseStatement(); case tok::kw_default: // C99 6.8.1: labeled-statement return ParseDefaultStatement(); case tok::l_brace: // C99 6.8.2: compound-statement return ParseCompoundStatement(); case tok::semi: // C99 6.8.3p3: expression[opt] ';' return Actions.ActOnNullStmt(ConsumeToken()); case tok::kw_if: // C99 6.8.4.1: if-statement return ParseIfStatement(); case tok::kw_switch: // C99 6.8.4.2: switch-statement return ParseSwitchStatement(); case tok::kw_while: // C99 6.8.5.1: while-statement return ParseWhileStatement(); case tok::kw_do: // C99 6.8.5.2: do-statement Res = ParseDoStatement(); SemiError = "do/while loop"; break; case tok::kw_for: // C99 6.8.5.3: for-statement return ParseForStatement(); case tok::kw_goto: // C99 6.8.6.1: goto-statement Res = ParseGotoStatement(); SemiError = "goto statement"; break; case tok::kw_continue: // C99 6.8.6.2: continue-statement Res = ParseContinueStatement(); SemiError = "continue statement"; break; case tok::kw_break: // C99 6.8.6.3: break-statement Res = ParseBreakStatement(); SemiError = "break statement"; break; case tok::kw_return: // C99 6.8.6.4: return-statement Res = ParseReturnStatement(); SemiError = "return statement"; break; case tok::kw_asm: bool msAsm = false; Res = ParseAsmStatement(msAsm); if (msAsm) return Res; SemiError = "asm statement"; break; } // If we reached this code, the statement must end in a semicolon. if (Tok.is(tok::semi)) { ConsumeToken(); } else { Diag(Tok, diag::err_expected_semi_after, SemiError); SkipUntil(tok::semi); } return Res; } /// ParseLabeledStatement - We have an identifier and a ':' after it. /// /// labeled-statement: /// identifier ':' statement /// [GNU] identifier ':' attributes[opt] statement /// Parser::StmtResult Parser::ParseLabeledStatement() { assert(Tok.is(tok::identifier) && Tok.getIdentifierInfo() && "Not an identifier!"); Token IdentTok = Tok; // Save the whole token. ConsumeToken(); // eat the identifier. assert(Tok.is(tok::colon) && "Not a label!"); // identifier ':' statement SourceLocation ColonLoc = ConsumeToken(); // Read label attributes, if present. DeclTy *AttrList = 0; if (Tok.is(tok::kw___attribute)) // TODO: save these somewhere. AttrList = ParseAttributes(); StmtResult SubStmt = ParseStatement(); // Broken substmt shouldn't prevent the label from being added to the AST. if (SubStmt.isInvalid) SubStmt = Actions.ActOnNullStmt(ColonLoc); return Actions.ActOnLabelStmt(IdentTok.getLocation(), IdentTok.getIdentifierInfo(), ColonLoc, SubStmt.Val); } /// ParseCaseStatement /// labeled-statement: /// 'case' constant-expression ':' statement /// [GNU] 'case' constant-expression '...' constant-expression ':' statement /// /// Note that this does not parse the 'statement' at the end. /// Parser::StmtResult Parser::ParseCaseStatement() { assert(Tok.is(tok::kw_case) && "Not a case stmt!"); SourceLocation CaseLoc = ConsumeToken(); // eat the 'case'. ExprResult LHS = ParseConstantExpression(); if (LHS.isInvalid) { SkipUntil(tok::colon); return true; } // GNU case range extension. SourceLocation DotDotDotLoc; ExprTy *RHSVal = 0; if (Tok.is(tok::ellipsis)) { Diag(Tok, diag::ext_gnu_case_range); DotDotDotLoc = ConsumeToken(); ExprResult RHS = ParseConstantExpression(); if (RHS.isInvalid) { SkipUntil(tok::colon); return true; } RHSVal = RHS.Val; } if (Tok.isNot(tok::colon)) { Diag(Tok, diag::err_expected_colon_after, "'case'"); SkipUntil(tok::colon); return true; } SourceLocation ColonLoc = ConsumeToken(); // Diagnose the common error "switch (X) { case 4: }", which is not valid. if (Tok.is(tok::r_brace)) { Diag(Tok, diag::err_label_end_of_compound_statement); return true; } StmtResult SubStmt = ParseStatement(); // Broken substmt shouldn't prevent the case from being added to the AST. if (SubStmt.isInvalid) SubStmt = Actions.ActOnNullStmt(ColonLoc); return Actions.ActOnCaseStmt(CaseLoc, LHS.Val, DotDotDotLoc, RHSVal, ColonLoc, SubStmt.Val); } /// ParseDefaultStatement /// labeled-statement: /// 'default' ':' statement /// Note that this does not parse the 'statement' at the end. /// Parser::StmtResult Parser::ParseDefaultStatement() { assert(Tok.is(tok::kw_default) && "Not a default stmt!"); SourceLocation DefaultLoc = ConsumeToken(); // eat the 'default'. if (Tok.isNot(tok::colon)) { Diag(Tok, diag::err_expected_colon_after, "'default'"); SkipUntil(tok::colon); return true; } SourceLocation ColonLoc = ConsumeToken(); // Diagnose the common error "switch (X) {... default: }", which is not valid. if (Tok.is(tok::r_brace)) { Diag(Tok, diag::err_label_end_of_compound_statement); return true; } StmtResult SubStmt = ParseStatement(); if (SubStmt.isInvalid) return true; return Actions.ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt.Val, CurScope); } /// ParseCompoundStatement - Parse a "{}" block. /// /// compound-statement: [C99 6.8.2] /// { block-item-list[opt] } /// [GNU] { label-declarations block-item-list } [TODO] /// /// block-item-list: /// block-item /// block-item-list block-item /// /// block-item: /// declaration /// [GNU] '__extension__' declaration /// statement /// [OMP] openmp-directive [TODO] /// /// [GNU] label-declarations: /// [GNU] label-declaration /// [GNU] label-declarations label-declaration /// /// [GNU] label-declaration: /// [GNU] '__label__' identifier-list ';' /// /// [OMP] openmp-directive: [TODO] /// [OMP] barrier-directive /// [OMP] flush-directive /// Parser::StmtResult Parser::ParseCompoundStatement(bool isStmtExpr) { assert(Tok.is(tok::l_brace) && "Not a compount stmt!"); // Enter a scope to hold everything within the compound stmt. Compound // statements can always hold declarations. EnterScope(Scope::DeclScope); // Parse the statements in the body. StmtResult Body = ParseCompoundStatementBody(isStmtExpr); ExitScope(); return Body; } /// ParseCompoundStatementBody - Parse a sequence of statements and invoke the /// ActOnCompoundStmt action. This expects the '{' to be the current token, and /// consume the '}' at the end of the block. It does not manipulate the scope /// stack. Parser::StmtResult Parser::ParseCompoundStatementBody(bool isStmtExpr) { SourceLocation LBraceLoc = ConsumeBrace(); // eat the '{'. // TODO: "__label__ X, Y, Z;" is the GNU "Local Label" extension. These are // only allowed at the start of a compound stmt regardless of the language. llvm::SmallVector Stmts; while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { StmtResult R; if (Tok.isNot(tok::kw___extension__)) { R = ParseStatementOrDeclaration(false); } else { // __extension__ can start declarations and it can also be a unary // operator for expressions. Consume multiple __extension__ markers here // until we can determine which is which. SourceLocation ExtLoc = ConsumeToken(); while (Tok.is(tok::kw___extension__)) ConsumeToken(); // __extension__ silences extension warnings in the subexpression. ExtensionRAIIObject O(Diags); // Use RAII to do this. // If this is the start of a declaration, parse it as such. if (isDeclarationStatement()) { // FIXME: Save the __extension__ on the decl as a node somehow. SourceLocation DeclStart = Tok.getLocation(); DeclTy *Res = ParseDeclaration(Declarator::BlockContext); // FIXME: Pass in the right location for the end of the declstmt. R = Actions.ActOnDeclStmt(Res, DeclStart, DeclStart); } else { // Otherwise this was a unary __extension__ marker. Parse the // subexpression and add the __extension__ unary op. ExprResult Res = ParseCastExpression(false); if (Res.isInvalid) { SkipUntil(tok::semi); continue; } // Add the __extension__ node to the AST. Res = Actions.ActOnUnaryOp(ExtLoc, tok::kw___extension__, Res.Val); if (Res.isInvalid) continue; // Eat the semicolon at the end of stmt and convert the expr into a // statement. ExpectAndConsume(tok::semi, diag::err_expected_semi_after_expr); R = Actions.ActOnExprStmt(Res.Val); } } if (!R.isInvalid && R.Val) Stmts.push_back(R.Val); } // We broke out of the while loop because we found a '}' or EOF. if (Tok.isNot(tok::r_brace)) { Diag(Tok, diag::err_expected_rbrace); return true; } SourceLocation RBraceLoc = ConsumeBrace(); return Actions.ActOnCompoundStmt(LBraceLoc, RBraceLoc, &Stmts[0], Stmts.size(), isStmtExpr); } /// ParseIfStatement /// if-statement: [C99 6.8.4.1] /// 'if' '(' expression ')' statement /// 'if' '(' expression ')' statement 'else' statement /// [C++] 'if' '(' condition ')' statement /// [C++] 'if' '(' condition ')' statement 'else' statement /// Parser::StmtResult Parser::ParseIfStatement() { assert(Tok.is(tok::kw_if) && "Not an if stmt!"); SourceLocation IfLoc = ConsumeToken(); // eat the 'if'. if (Tok.isNot(tok::l_paren)) { Diag(Tok, diag::err_expected_lparen_after, "if"); SkipUntil(tok::semi); return true; } bool C99orCXX = getLang().C99 || getLang().CPlusPlus; // C99 6.8.4p3 - In C99, the if statement is a block. This is not // the case for C90. // // C++ 6.4p3: // A name introduced by a declaration in a condition is in scope from its // point of declaration until the end of the substatements controlled by the // condition. // C++ 3.3.2p4: // Names declared in the for-init-statement, and in the condition of if, // while, for, and switch statements are local to the if, while, for, or // switch statement (including the controlled statement). // if (C99orCXX) EnterScope(Scope::DeclScope | Scope::ControlScope); // Parse the condition. ExprResult CondExp; if (getLang().CPlusPlus) { SourceLocation LParenLoc = ConsumeParen(); CondExp = ParseCXXCondition(); MatchRHSPunctuation(tok::r_paren, LParenLoc); } else { CondExp = ParseSimpleParenExpression(); } if (CondExp.isInvalid) { SkipUntil(tok::semi); if (C99orCXX) ExitScope(); return true; } // C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if // there is no compound stmt. C90 does not have this clause. We only do this // if the body isn't a compound statement to avoid push/pop in common cases. // // C++ 6.4p1: // The substatement in a selection-statement (each substatement, in the else // form of the if statement) implicitly defines a local scope. // // For C++ we create a scope for the condition and a new scope for // substatements because: // -When the 'then' scope exits, we want the condition declaration to still be // active for the 'else' scope too. // -Sema will detect name clashes by considering declarations of a // 'ControlScope' as part of its direct subscope. // -If we wanted the condition and substatement to be in the same scope, we // would have to notify ParseStatement not to create a new scope. It's // simpler to let it create a new scope. // bool NeedsInnerScope = C99orCXX && Tok.isNot(tok::l_brace); if (NeedsInnerScope) EnterScope(Scope::DeclScope); // Read the 'then' stmt. SourceLocation ThenStmtLoc = Tok.getLocation(); StmtResult ThenStmt = ParseStatement(); // Pop the 'if' scope if needed. if (NeedsInnerScope) ExitScope(); // If it has an else, parse it. SourceLocation ElseLoc; SourceLocation ElseStmtLoc; StmtResult ElseStmt(false); if (Tok.is(tok::kw_else)) { ElseLoc = ConsumeToken(); // C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if // there is no compound stmt. C90 does not have this clause. We only do // this if the body isn't a compound statement to avoid push/pop in common // cases. // // C++ 6.4p1: // The substatement in a selection-statement (each substatement, in the else // form of the if statement) implicitly defines a local scope. // NeedsInnerScope = C99orCXX && Tok.isNot(tok::l_brace); if (NeedsInnerScope) EnterScope(Scope::DeclScope); ElseStmtLoc = Tok.getLocation(); ElseStmt = ParseStatement(); // Pop the 'else' scope if needed. if (NeedsInnerScope) ExitScope(); } if (C99orCXX) ExitScope(); // If the then or else stmt is invalid and the other is valid (and present), // make turn the invalid one into a null stmt to avoid dropping the other // part. If both are invalid, return error. if ((ThenStmt.isInvalid && ElseStmt.isInvalid) || (ThenStmt.isInvalid && ElseStmt.Val == 0) || (ThenStmt.Val == 0 && ElseStmt.isInvalid)) { // Both invalid, or one is invalid and other is non-present: delete cond and // return error. Actions.DeleteExpr(CondExp.Val); return true; } // Now if either are invalid, replace with a ';'. if (ThenStmt.isInvalid) ThenStmt = Actions.ActOnNullStmt(ThenStmtLoc); if (ElseStmt.isInvalid) ElseStmt = Actions.ActOnNullStmt(ElseStmtLoc); return Actions.ActOnIfStmt(IfLoc, CondExp.Val, ThenStmt.Val, ElseLoc, ElseStmt.Val); } /// ParseSwitchStatement /// switch-statement: /// 'switch' '(' expression ')' statement /// [C++] 'switch' '(' condition ')' statement Parser::StmtResult Parser::ParseSwitchStatement() { assert(Tok.is(tok::kw_switch) && "Not a switch stmt!"); SourceLocation SwitchLoc = ConsumeToken(); // eat the 'switch'. if (Tok.isNot(tok::l_paren)) { Diag(Tok, diag::err_expected_lparen_after, "switch"); SkipUntil(tok::semi); return true; } bool C99orCXX = getLang().C99 || getLang().CPlusPlus; // C99 6.8.4p3 - In C99, the switch statement is a block. This is // not the case for C90. Start the switch scope. // // C++ 6.4p3: // A name introduced by a declaration in a condition is in scope from its // point of declaration until the end of the substatements controlled by the // condition. // C++ 3.3.2p4: // Names declared in the for-init-statement, and in the condition of if, // while, for, and switch statements are local to the if, while, for, or // switch statement (including the controlled statement). // if (C99orCXX) EnterScope(Scope::BreakScope | Scope::DeclScope | Scope::ControlScope); else EnterScope(Scope::BreakScope); // Parse the condition. ExprResult Cond; if (getLang().CPlusPlus) { SourceLocation LParenLoc = ConsumeParen(); Cond = ParseCXXCondition(); MatchRHSPunctuation(tok::r_paren, LParenLoc); } else { Cond = ParseSimpleParenExpression(); } if (Cond.isInvalid) { ExitScope(); return true; } StmtResult Switch = Actions.ActOnStartOfSwitchStmt(Cond.Val); // C99 6.8.4p3 - In C99, the body of the switch statement is a scope, even if // there is no compound stmt. C90 does not have this clause. We only do this // if the body isn't a compound statement to avoid push/pop in common cases. // // C++ 6.4p1: // The substatement in a selection-statement (each substatement, in the else // form of the if statement) implicitly defines a local scope. // // See comments in ParseIfStatement for why we create a scope for the // condition and a new scope for substatement in C++. // bool NeedsInnerScope = C99orCXX && Tok.isNot(tok::l_brace); if (NeedsInnerScope) EnterScope(Scope::DeclScope); // Read the body statement. StmtResult Body = ParseStatement(); // Pop the body scope if needed. if (NeedsInnerScope) ExitScope(); if (Body.isInvalid) { Body = Actions.ActOnNullStmt(Tok.getLocation()); // FIXME: Remove the case statement list from the Switch statement. } ExitScope(); return Actions.ActOnFinishSwitchStmt(SwitchLoc, Switch.Val, Body.Val); } /// ParseWhileStatement /// while-statement: [C99 6.8.5.1] /// 'while' '(' expression ')' statement /// [C++] 'while' '(' condition ')' statement Parser::StmtResult Parser::ParseWhileStatement() { assert(Tok.is(tok::kw_while) && "Not a while stmt!"); SourceLocation WhileLoc = Tok.getLocation(); ConsumeToken(); // eat the 'while'. if (Tok.isNot(tok::l_paren)) { Diag(Tok, diag::err_expected_lparen_after, "while"); SkipUntil(tok::semi); return true; } bool C99orCXX = getLang().C99 || getLang().CPlusPlus; // C99 6.8.5p5 - In C99, the while statement is a block. This is not // the case for C90. Start the loop scope. // // C++ 6.4p3: // A name introduced by a declaration in a condition is in scope from its // point of declaration until the end of the substatements controlled by the // condition. // C++ 3.3.2p4: // Names declared in the for-init-statement, and in the condition of if, // while, for, and switch statements are local to the if, while, for, or // switch statement (including the controlled statement). // if (C99orCXX) EnterScope(Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope | Scope::ControlScope); else EnterScope(Scope::BreakScope | Scope::ContinueScope); // Parse the condition. ExprResult Cond; if (getLang().CPlusPlus) { SourceLocation LParenLoc = ConsumeParen(); Cond = ParseCXXCondition(); MatchRHSPunctuation(tok::r_paren, LParenLoc); } else { Cond = ParseSimpleParenExpression(); } // C99 6.8.5p5 - In C99, the body of the if statement is a scope, even if // there is no compound stmt. C90 does not have this clause. We only do this // if the body isn't a compound statement to avoid push/pop in common cases. // // C++ 6.5p2: // The substatement in an iteration-statement implicitly defines a local scope // which is entered and exited each time through the loop. // // See comments in ParseIfStatement for why we create a scope for the // condition and a new scope for substatement in C++. // bool NeedsInnerScope = C99orCXX && Tok.isNot(tok::l_brace); if (NeedsInnerScope) EnterScope(Scope::DeclScope); // Read the body statement. StmtResult Body = ParseStatement(); // Pop the body scope if needed. if (NeedsInnerScope) ExitScope(); ExitScope(); if (Cond.isInvalid || Body.isInvalid) return true; return Actions.ActOnWhileStmt(WhileLoc, Cond.Val, Body.Val); } /// ParseDoStatement /// do-statement: [C99 6.8.5.2] /// 'do' statement 'while' '(' expression ')' ';' /// Note: this lets the caller parse the end ';'. Parser::StmtResult Parser::ParseDoStatement() { assert(Tok.is(tok::kw_do) && "Not a do stmt!"); SourceLocation DoLoc = ConsumeToken(); // eat the 'do'. // C99 6.8.5p5 - In C99, the do statement is a block. This is not // the case for C90. Start the loop scope. if (getLang().C99) EnterScope(Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope); else EnterScope(Scope::BreakScope | Scope::ContinueScope); // C99 6.8.5p5 - In C99, the body of the if statement is a scope, even if // there is no compound stmt. C90 does not have this clause. We only do this // if the body isn't a compound statement to avoid push/pop in common cases. // // C++ 6.5p2: // The substatement in an iteration-statement implicitly defines a local scope // which is entered and exited each time through the loop. // bool NeedsInnerScope = (getLang().C99 || getLang().CPlusPlus) && Tok.isNot(tok::l_brace); if (NeedsInnerScope) EnterScope(Scope::DeclScope); // Read the body statement. StmtResult Body = ParseStatement(); // Pop the body scope if needed. if (NeedsInnerScope) ExitScope(); if (Tok.isNot(tok::kw_while)) { ExitScope(); Diag(Tok, diag::err_expected_while); Diag(DoLoc, diag::err_matching, "do"); SkipUntil(tok::semi); return true; } SourceLocation WhileLoc = ConsumeToken(); if (Tok.isNot(tok::l_paren)) { ExitScope(); Diag(Tok, diag::err_expected_lparen_after, "do/while"); SkipUntil(tok::semi); return true; } // Parse the condition. ExprResult Cond = ParseSimpleParenExpression(); ExitScope(); if (Cond.isInvalid || Body.isInvalid) return true; return Actions.ActOnDoStmt(DoLoc, Body.Val, WhileLoc, Cond.Val); } /// ParseForStatement /// for-statement: [C99 6.8.5.3] /// 'for' '(' expr[opt] ';' expr[opt] ';' expr[opt] ')' statement /// 'for' '(' declaration expr[opt] ';' expr[opt] ')' statement /// [C++] 'for' '(' for-init-statement condition[opt] ';' expression[opt] ')' /// [C++] statement /// [OBJC2] 'for' '(' declaration 'in' expr ')' statement /// [OBJC2] 'for' '(' expr 'in' expr ')' statement /// /// [C++] for-init-statement: /// [C++] expression-statement /// [C++] simple-declaration /// Parser::StmtResult Parser::ParseForStatement() { assert(Tok.is(tok::kw_for) && "Not a for stmt!"); SourceLocation ForLoc = ConsumeToken(); // eat the 'for'. if (Tok.isNot(tok::l_paren)) { Diag(Tok, diag::err_expected_lparen_after, "for"); SkipUntil(tok::semi); return true; } bool C99orCXX = getLang().C99 || getLang().CPlusPlus; // C99 6.8.5p5 - In C99, the for statement is a block. This is not // the case for C90. Start the loop scope. // // C++ 6.4p3: // A name introduced by a declaration in a condition is in scope from its // point of declaration until the end of the substatements controlled by the // condition. // C++ 3.3.2p4: // Names declared in the for-init-statement, and in the condition of if, // while, for, and switch statements are local to the if, while, for, or // switch statement (including the controlled statement). // C++ 6.5.3p1: // Names declared in the for-init-statement are in the same declarative-region // as those declared in the condition. // if (C99orCXX) EnterScope(Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope | Scope::ControlScope); else EnterScope(Scope::BreakScope | Scope::ContinueScope); SourceLocation LParenLoc = ConsumeParen(); ExprResult Value; StmtTy *FirstPart = 0; ExprTy *SecondPart = 0; StmtTy *ThirdPart = 0; bool ForEach = false; // Parse the first part of the for specifier. if (Tok.is(tok::semi)) { // for (; // no first part, eat the ';'. ConsumeToken(); } else if (isSimpleDeclaration()) { // for (int X = 4; // Parse declaration, which eats the ';'. if (!C99orCXX) // Use of C99-style for loops in C90 mode? Diag(Tok, diag::ext_c99_variable_decl_in_for_loop); SourceLocation DeclStart = Tok.getLocation(); DeclTy *aBlockVarDecl = ParseSimpleDeclaration(Declarator::ForContext); // FIXME: Pass in the right location for the end of the declstmt. StmtResult stmtResult = Actions.ActOnDeclStmt(aBlockVarDecl, DeclStart, DeclStart); FirstPart = stmtResult.isInvalid ? 0 : stmtResult.Val; if ((ForEach = isTokIdentifier_in())) { ConsumeToken(); // consume 'in' Value = ParseExpression(); if (!Value.isInvalid) SecondPart = Value.Val; } } else { Value = ParseExpression(); // Turn the expression into a stmt. if (!Value.isInvalid) { StmtResult R = Actions.ActOnExprStmt(Value.Val); if (!R.isInvalid) FirstPart = R.Val; } if (Tok.is(tok::semi)) { ConsumeToken(); } else if ((ForEach = isTokIdentifier_in())) { ConsumeToken(); // consume 'in' Value = ParseExpression(); if (!Value.isInvalid) SecondPart = Value.Val; } else { if (!Value.isInvalid) Diag(Tok, diag::err_expected_semi_for); SkipUntil(tok::semi); } } if (!ForEach) { // Parse the second part of the for specifier. if (Tok.is(tok::semi)) { // for (...;; // no second part. Value = ExprResult(); } else { Value = getLang().CPlusPlus ? ParseCXXCondition() : ParseExpression(); if (!Value.isInvalid) SecondPart = Value.Val; } if (Tok.is(tok::semi)) { ConsumeToken(); } else { if (!Value.isInvalid) Diag(Tok, diag::err_expected_semi_for); SkipUntil(tok::semi); } // Parse the third part of the for specifier. if (Tok.is(tok::r_paren)) { // for (...;...;) // no third part. Value = ExprResult(); } else { Value = ParseExpression(); if (!Value.isInvalid) { // Turn the expression into a stmt. StmtResult R = Actions.ActOnExprStmt(Value.Val); if (!R.isInvalid) ThirdPart = R.Val; } } } // Match the ')'. SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc); // C99 6.8.5p5 - In C99, the body of the if statement is a scope, even if // there is no compound stmt. C90 does not have this clause. We only do this // if the body isn't a compound statement to avoid push/pop in common cases. // // C++ 6.5p2: // The substatement in an iteration-statement implicitly defines a local scope // which is entered and exited each time through the loop. // // See comments in ParseIfStatement for why we create a scope for // for-init-statement/condition and a new scope for substatement in C++. // bool NeedsInnerScope = C99orCXX && Tok.isNot(tok::l_brace); if (NeedsInnerScope) EnterScope(Scope::DeclScope); // Read the body statement. StmtResult Body = ParseStatement(); // Pop the body scope if needed. if (NeedsInnerScope) ExitScope(); // Leave the for-scope. ExitScope(); if (Body.isInvalid) return Body; if (!ForEach) return Actions.ActOnForStmt(ForLoc, LParenLoc, FirstPart, SecondPart, ThirdPart, RParenLoc, Body.Val); else return Actions.ActOnObjCForCollectionStmt(ForLoc, LParenLoc, FirstPart, SecondPart, RParenLoc, Body.Val); } /// ParseGotoStatement /// jump-statement: /// 'goto' identifier ';' /// [GNU] 'goto' '*' expression ';' /// /// Note: this lets the caller parse the end ';'. /// Parser::StmtResult Parser::ParseGotoStatement() { assert(Tok.is(tok::kw_goto) && "Not a goto stmt!"); SourceLocation GotoLoc = ConsumeToken(); // eat the 'goto'. StmtResult Res; if (Tok.is(tok::identifier)) { Res = Actions.ActOnGotoStmt(GotoLoc, Tok.getLocation(), Tok.getIdentifierInfo()); ConsumeToken(); } else if (Tok.is(tok::star) && !getLang().NoExtensions) { // GNU indirect goto extension. Diag(Tok, diag::ext_gnu_indirect_goto); SourceLocation StarLoc = ConsumeToken(); ExprResult R = ParseExpression(); if (R.isInvalid) { // Skip to the semicolon, but don't consume it. SkipUntil(tok::semi, false, true); return true; } Res = Actions.ActOnIndirectGotoStmt(GotoLoc, StarLoc, R.Val); } else { Diag(Tok, diag::err_expected_ident); return true; } return Res; } /// ParseContinueStatement /// jump-statement: /// 'continue' ';' /// /// Note: this lets the caller parse the end ';'. /// Parser::StmtResult Parser::ParseContinueStatement() { SourceLocation ContinueLoc = ConsumeToken(); // eat the 'continue'. return Actions.ActOnContinueStmt(ContinueLoc, CurScope); } /// ParseBreakStatement /// jump-statement: /// 'break' ';' /// /// Note: this lets the caller parse the end ';'. /// Parser::StmtResult Parser::ParseBreakStatement() { SourceLocation BreakLoc = ConsumeToken(); // eat the 'break'. return Actions.ActOnBreakStmt(BreakLoc, CurScope); } /// ParseReturnStatement /// jump-statement: /// 'return' expression[opt] ';' Parser::StmtResult Parser::ParseReturnStatement() { assert(Tok.is(tok::kw_return) && "Not a return stmt!"); SourceLocation ReturnLoc = ConsumeToken(); // eat the 'return'. ExprResult R(0); if (Tok.isNot(tok::semi)) { R = ParseExpression(); if (R.isInvalid) { // Skip to the semicolon, but don't consume it. SkipUntil(tok::semi, false, true); return true; } } return Actions.ActOnReturnStmt(ReturnLoc, R.Val); } /// FuzzyParseMicrosoftAsmStatement. When -fms-extensions is enabled, this /// routine is called to skip/ignore tokens that comprise the MS asm statement. Parser::StmtResult Parser::FuzzyParseMicrosoftAsmStatement() { if (Tok.is(tok::l_brace)) { unsigned short savedBraceCount = BraceCount; do { ConsumeAnyToken(); } while (BraceCount > savedBraceCount && Tok.isNot(tok::eof)); } else { // From the MS website: If used without braces, the __asm keyword means // that the rest of the line is an assembly-language statement. SourceManager &SrcMgr = PP.getSourceManager(); SourceLocation TokLoc = Tok.getLocation(); unsigned lineNo = SrcMgr.getLogicalLineNumber(TokLoc); do { ConsumeAnyToken(); TokLoc = Tok.getLocation(); } while ((SrcMgr.getLogicalLineNumber(TokLoc) == lineNo) && Tok.isNot(tok::r_brace) && Tok.isNot(tok::semi) && Tok.isNot(tok::eof)); } return Actions.ActOnNullStmt(Tok.getLocation()); } /// ParseAsmStatement - Parse a GNU extended asm statement. /// asm-statement: /// gnu-asm-statement /// ms-asm-statement /// /// [GNU] gnu-asm-statement: /// 'asm' type-qualifier[opt] '(' asm-argument ')' ';' /// /// [GNU] asm-argument: /// asm-string-literal /// asm-string-literal ':' asm-operands[opt] /// asm-string-literal ':' asm-operands[opt] ':' asm-operands[opt] /// asm-string-literal ':' asm-operands[opt] ':' asm-operands[opt] /// ':' asm-clobbers /// /// [GNU] asm-clobbers: /// asm-string-literal /// asm-clobbers ',' asm-string-literal /// /// [MS] ms-asm-statement: /// '__asm' assembly-instruction ';'[opt] /// '__asm' '{' assembly-instruction-list '}' ';'[opt] /// /// [MS] assembly-instruction-list: /// assembly-instruction ';'[opt] /// assembly-instruction-list ';' assembly-instruction ';'[opt] /// Parser::StmtResult Parser::ParseAsmStatement(bool &msAsm) { assert(Tok.is(tok::kw_asm) && "Not an asm stmt"); SourceLocation AsmLoc = ConsumeToken(); if (getLang().Microsoft && Tok.isNot(tok::l_paren) && !isTypeQualifier()) { msAsm = true; return FuzzyParseMicrosoftAsmStatement(); } DeclSpec DS; SourceLocation Loc = Tok.getLocation(); ParseTypeQualifierListOpt(DS); // GNU asms accept, but warn, about type-qualifiers other than volatile. if (DS.getTypeQualifiers() & DeclSpec::TQ_const) Diag(Loc, diag::w_asm_qualifier_ignored, "const"); if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) Diag(Loc, diag::w_asm_qualifier_ignored, "restrict"); // Remember if this was a volatile asm. bool isVolatile = DS.getTypeQualifiers() & DeclSpec::TQ_volatile; bool isSimple = false; if (Tok.isNot(tok::l_paren)) { Diag(Tok, diag::err_expected_lparen_after, "asm"); SkipUntil(tok::r_paren); return true; } Loc = ConsumeParen(); ExprResult AsmString = ParseAsmStringLiteral(); if (AsmString.isInvalid) return true; llvm::SmallVector Names; llvm::SmallVector Constraints; llvm::SmallVector Exprs; llvm::SmallVector Clobbers; unsigned NumInputs = 0, NumOutputs = 0; SourceLocation RParenLoc; if (Tok.is(tok::r_paren)) { // We have a simple asm expression isSimple = true; RParenLoc = ConsumeParen(); } else { // Parse Outputs, if present. if (ParseAsmOperandsOpt(Names, Constraints, Exprs)) return true; NumOutputs = Names.size(); // Parse Inputs, if present. if (ParseAsmOperandsOpt(Names, Constraints, Exprs)) return true; assert(Names.size() == Constraints.size() && Constraints.size() == Exprs.size() && "Input operand size mismatch!"); NumInputs = Names.size() - NumOutputs; // Parse the clobbers, if present. if (Tok.is(tok::colon)) { ConsumeToken(); // Parse the asm-string list for clobbers. while (1) { ExprResult Clobber = ParseAsmStringLiteral(); if (Clobber.isInvalid) break; Clobbers.push_back(Clobber.Val); if (Tok.isNot(tok::comma)) break; ConsumeToken(); } } RParenLoc = MatchRHSPunctuation(tok::r_paren, Loc); } return Actions.ActOnAsmStmt(AsmLoc, isSimple, isVolatile, NumOutputs, NumInputs, &Names[0], &Constraints[0], &Exprs[0], AsmString.Val, Clobbers.size(), &Clobbers[0], RParenLoc); } /// ParseAsmOperands - Parse the asm-operands production as used by /// asm-statement. We also parse a leading ':' token. If the leading colon is /// not present, we do not parse anything. /// /// [GNU] asm-operands: /// asm-operand /// asm-operands ',' asm-operand /// /// [GNU] asm-operand: /// asm-string-literal '(' expression ')' /// '[' identifier ']' asm-string-literal '(' expression ')' /// bool Parser::ParseAsmOperandsOpt(llvm::SmallVectorImpl &Names, llvm::SmallVectorImpl &Constraints, llvm::SmallVectorImpl &Exprs) { // Only do anything if this operand is present. if (Tok.isNot(tok::colon)) return false; ConsumeToken(); // 'asm-operands' isn't present? if (!isTokenStringLiteral() && Tok.isNot(tok::l_square)) return false; while (1) { // Read the [id] if present. if (Tok.is(tok::l_square)) { SourceLocation Loc = ConsumeBracket(); if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_ident); SkipUntil(tok::r_paren); return true; } IdentifierInfo *II = Tok.getIdentifierInfo(); ConsumeToken(); Names.push_back(std::string(II->getName(), II->getLength())); MatchRHSPunctuation(tok::r_square, Loc); } else Names.push_back(std::string()); ExprResult Constraint = ParseAsmStringLiteral(); if (Constraint.isInvalid) { SkipUntil(tok::r_paren); return true; } Constraints.push_back(Constraint.Val); if (Tok.isNot(tok::l_paren)) { Diag(Tok, diag::err_expected_lparen_after, "asm operand"); SkipUntil(tok::r_paren); return true; } // Read the parenthesized expression. ExprResult Res = ParseSimpleParenExpression(); if (Res.isInvalid) { SkipUntil(tok::r_paren); return true; } Exprs.push_back(Res.Val); // Eat the comma and continue parsing if it exists. if (Tok.isNot(tok::comma)) return false; ConsumeToken(); } return true; } Parser::DeclTy *Parser::ParseFunctionStatementBody(DeclTy *Decl, SourceLocation L, SourceLocation R) { // Do not enter a scope for the brace, as the arguments are in the same scope // (the function body) as the body itself. Instead, just read the statement // list and put it into a CompoundStmt for safe keeping. StmtResult FnBody = ParseCompoundStatementBody(); // If the function body could not be parsed, make a bogus compoundstmt. if (FnBody.isInvalid) FnBody = Actions.ActOnCompoundStmt(L, R, 0, 0, false); // Leave the function body scope. ExitScope(); return Actions.ActOnFinishFunctionBody(Decl, FnBody.Val); }