//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SimpleConstraintManager, a class that holds code shared // between BasicConstraintManager and RangeConstraintManager. // //===----------------------------------------------------------------------===// #include "SimpleConstraintManager.h" #include "clang/Checker/PathSensitive/GRExprEngine.h" #include "clang/Checker/PathSensitive/GRState.h" #include "clang/Checker/PathSensitive/Checker.h" namespace clang { SimpleConstraintManager::~SimpleConstraintManager() {} bool SimpleConstraintManager::canReasonAbout(SVal X) const { if (nonloc::SymExprVal *SymVal = dyn_cast(&X)) { const SymExpr *SE = SymVal->getSymbolicExpression(); if (isa(SE)) return true; if (const SymIntExpr *SIE = dyn_cast(SE)) { switch (SIE->getOpcode()) { // We don't reason yet about bitwise-constraints on symbolic values. case BinaryOperator::And: case BinaryOperator::Or: case BinaryOperator::Xor: return false; // We don't reason yet about these arithmetic constraints on // symbolic values. case BinaryOperator::Mul: case BinaryOperator::Div: case BinaryOperator::Rem: case BinaryOperator::Shl: case BinaryOperator::Shr: return false; // All other cases. default: return true; } } return false; } return true; } const GRState *SimpleConstraintManager::Assume(const GRState *state, DefinedSVal Cond, bool Assumption) { if (isa(Cond)) return Assume(state, cast(Cond), Assumption); else return Assume(state, cast(Cond), Assumption); } const GRState *SimpleConstraintManager::Assume(const GRState *state, Loc cond, bool assumption) { state = AssumeAux(state, cond, assumption); return SU.ProcessAssume(state, cond, assumption); } const GRState *SimpleConstraintManager::AssumeAux(const GRState *state, Loc Cond, bool Assumption) { BasicValueFactory &BasicVals = state->getBasicVals(); switch (Cond.getSubKind()) { default: assert (false && "'Assume' not implemented for this Loc."); return state; case loc::MemRegionKind: { // FIXME: Should this go into the storemanager? const MemRegion *R = cast(Cond).getRegion(); const SubRegion *SubR = dyn_cast(R); while (SubR) { // FIXME: now we only find the first symbolic region. if (const SymbolicRegion *SymR = dyn_cast(SubR)) { const llvm::APSInt &zero = BasicVals.getZeroWithPtrWidth(); if (Assumption) return AssumeSymNE(state, SymR->getSymbol(), zero, zero); else return AssumeSymEQ(state, SymR->getSymbol(), zero, zero); } SubR = dyn_cast(SubR->getSuperRegion()); } // FALL-THROUGH. } case loc::GotoLabelKind: return Assumption ? state : NULL; case loc::ConcreteIntKind: { bool b = cast(Cond).getValue() != 0; bool isFeasible = b ? Assumption : !Assumption; return isFeasible ? state : NULL; } } // end switch } const GRState *SimpleConstraintManager::Assume(const GRState *state, NonLoc cond, bool assumption) { state = AssumeAux(state, cond, assumption); return SU.ProcessAssume(state, cond, assumption); } static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) { // FIXME: This should probably be part of BinaryOperator, since this isn't // the only place it's used. (This code was copied from SimpleSValuator.cpp.) switch (op) { default: assert(false && "Invalid opcode."); case BinaryOperator::LT: return BinaryOperator::GE; case BinaryOperator::GT: return BinaryOperator::LE; case BinaryOperator::LE: return BinaryOperator::GT; case BinaryOperator::GE: return BinaryOperator::LT; case BinaryOperator::EQ: return BinaryOperator::NE; case BinaryOperator::NE: return BinaryOperator::EQ; } } const GRState *SimpleConstraintManager::AssumeAux(const GRState *state, NonLoc Cond, bool Assumption) { // We cannot reason about SymSymExprs, // and can only reason about some SymIntExprs. if (!canReasonAbout(Cond)) { // Just return the current state indicating that the path is feasible. // This may be an over-approximation of what is possible. return state; } BasicValueFactory &BasicVals = state->getBasicVals(); SymbolManager &SymMgr = state->getSymbolManager(); switch (Cond.getSubKind()) { default: assert(false && "'Assume' not implemented for this NonLoc"); case nonloc::SymbolValKind: { nonloc::SymbolVal& SV = cast(Cond); SymbolRef sym = SV.getSymbol(); QualType T = SymMgr.getType(sym); const llvm::APSInt &zero = BasicVals.getValue(0, T); if (Assumption) return AssumeSymNE(state, sym, zero, zero); else return AssumeSymEQ(state, sym, zero, zero); } case nonloc::SymExprValKind: { nonloc::SymExprVal V = cast(Cond); // For now, we only handle expressions whose RHS is an integer. // All other expressions are assumed to be feasible. const SymIntExpr *SE = dyn_cast(V.getSymbolicExpression()); if (!SE) return state; BinaryOperator::Opcode op = SE->getOpcode(); // Implicitly compare non-comparison expressions to 0. if (!BinaryOperator::isComparisonOp(op)) { QualType T = SymMgr.getType(SE); const llvm::APSInt &zero = BasicVals.getValue(0, T); op = (Assumption ? BinaryOperator::NE : BinaryOperator::EQ); return AssumeSymRel(state, SE, op, zero); } // From here on out, op is the real comparison we'll be testing. if (!Assumption) op = NegateComparison(op); return AssumeSymRel(state, SE->getLHS(), op, SE->getRHS()); } case nonloc::ConcreteIntKind: { bool b = cast(Cond).getValue() != 0; bool isFeasible = b ? Assumption : !Assumption; return isFeasible ? state : NULL; } case nonloc::LocAsIntegerKind: return AssumeAux(state, cast(Cond).getLoc(), Assumption); } // end switch } const GRState *SimpleConstraintManager::AssumeSymRel(const GRState *state, const SymExpr *LHS, BinaryOperator::Opcode op, const llvm::APSInt& Int) { assert(BinaryOperator::isComparisonOp(op) && "Non-comparison ops should be rewritten as comparisons to zero."); // We only handle simple comparisons of the form "$sym == constant" // or "($sym+constant1) == constant2". // The adjustment is "constant1" in the above expression. It's used to // "slide" the solution range around for modular arithmetic. For example, // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to // the subclasses of SimpleConstraintManager to handle the adjustment. llvm::APSInt Adjustment; // First check if the LHS is a simple symbol reference. SymbolRef Sym = dyn_cast(LHS); if (Sym) { Adjustment = 0; } else { // Next, see if it's a "($sym+constant1)" expression. const SymIntExpr *SE = dyn_cast(LHS); // We don't handle "($sym1+$sym2)". // Give up and assume the constraint is feasible. if (!SE) return state; // We don't handle "(+constant1)". // Give up and assume the constraint is feasible. Sym = dyn_cast(SE->getLHS()); if (!Sym) return state; // Get the constant out of the expression "($sym+constant1)". switch (SE->getOpcode()) { case BinaryOperator::Add: Adjustment = SE->getRHS(); break; case BinaryOperator::Sub: Adjustment = -SE->getRHS(); break; default: // We don't handle non-additive operators. // Give up and assume the constraint is feasible. return state; } } // FIXME: This next section is a hack. It silently converts the integers to // be of the same type as the symbol, which is not always correct. Really the // comparisons should be performed using the Int's type, then mapped back to // the symbol's range of values. GRStateManager &StateMgr = state->getStateManager(); ASTContext &Ctx = StateMgr.getContext(); QualType T = Sym->getType(Ctx); assert(T->isIntegerType() || Loc::IsLocType(T)); unsigned bitwidth = Ctx.getTypeSize(T); bool isSymUnsigned = T->isUnsignedIntegerType() || Loc::IsLocType(T); // Convert the adjustment. Adjustment.setIsUnsigned(isSymUnsigned); Adjustment.extOrTrunc(bitwidth); // Convert the right-hand side integer. llvm::APSInt ConvertedInt(Int, isSymUnsigned); ConvertedInt.extOrTrunc(bitwidth); switch (op) { default: // No logic yet for other operators. Assume the constraint is feasible. return state; case BinaryOperator::EQ: return AssumeSymEQ(state, Sym, ConvertedInt, Adjustment); case BinaryOperator::NE: return AssumeSymNE(state, Sym, ConvertedInt, Adjustment); case BinaryOperator::GT: return AssumeSymGT(state, Sym, ConvertedInt, Adjustment); case BinaryOperator::GE: return AssumeSymGE(state, Sym, ConvertedInt, Adjustment); case BinaryOperator::LT: return AssumeSymLT(state, Sym, ConvertedInt, Adjustment); case BinaryOperator::LE: return AssumeSymLE(state, Sym, ConvertedInt, Adjustment); } // end switch } } // end of namespace clang