//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides Sema routines for C++ exception specification testing. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/Basic/Diagnostic.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "llvm/ADT/SmallPtrSet.h" namespace clang { static const FunctionProtoType *GetUnderlyingFunction(QualType T) { if (const PointerType *PtrTy = T->getAs()) T = PtrTy->getPointeeType(); else if (const ReferenceType *RefTy = T->getAs()) T = RefTy->getPointeeType(); else if (const MemberPointerType *MPTy = T->getAs()) T = MPTy->getPointeeType(); return T->getAs(); } /// CheckSpecifiedExceptionType - Check if the given type is valid in an /// exception specification. Incomplete types, or pointers to incomplete types /// other than void are not allowed. bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) { // FIXME: This may not correctly work with the fix for core issue 437, // where a class's own type is considered complete within its body. But // perhaps RequireCompleteType itself should contain this logic? // C++ 15.4p2: A type denoted in an exception-specification shall not denote // an incomplete type. if (RequireCompleteType(Range.getBegin(), T, PDiag(diag::err_incomplete_in_exception_spec) << /*direct*/0 << Range)) return true; // C++ 15.4p2: A type denoted in an exception-specification shall not denote // an incomplete type a pointer or reference to an incomplete type, other // than (cv) void*. int kind; if (const PointerType* IT = T->getAs()) { T = IT->getPointeeType(); kind = 1; } else if (const ReferenceType* IT = T->getAs()) { T = IT->getPointeeType(); kind = 2; } else return false; if (!T->isVoidType() && RequireCompleteType(Range.getBegin(), T, PDiag(diag::err_incomplete_in_exception_spec) << /*direct*/kind << Range)) return true; return false; } /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer /// to member to a function with an exception specification. This means that /// it is invalid to add another level of indirection. bool Sema::CheckDistantExceptionSpec(QualType T) { if (const PointerType *PT = T->getAs()) T = PT->getPointeeType(); else if (const MemberPointerType *PT = T->getAs()) T = PT->getPointeeType(); else return false; const FunctionProtoType *FnT = T->getAs(); if (!FnT) return false; return FnT->hasExceptionSpec(); } /// CheckEquivalentExceptionSpec - Check if the two types have equivalent /// exception specifications. Exception specifications are equivalent if /// they allow exactly the same set of exception types. It does not matter how /// that is achieved. See C++ [except.spec]p2. bool Sema::CheckEquivalentExceptionSpec( const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc) { return CheckEquivalentExceptionSpec(diag::err_mismatched_exception_spec, diag::note_previous_declaration, Old, OldLoc, New, NewLoc); } /// CheckEquivalentExceptionSpec - Check if the two types have equivalent /// exception specifications. Exception specifications are equivalent if /// they allow exactly the same set of exception types. It does not matter how /// that is achieved. See C++ [except.spec]p2. bool Sema::CheckEquivalentExceptionSpec( const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc) { bool OldAny = !Old->hasExceptionSpec() || Old->hasAnyExceptionSpec(); bool NewAny = !New->hasExceptionSpec() || New->hasAnyExceptionSpec(); if (OldAny && NewAny) return false; if (OldAny || NewAny) { Diag(NewLoc, DiagID); if (NoteID.getDiagID() != 0) Diag(OldLoc, NoteID); return true; } bool Success = true; // Both have a definite exception spec. Collect the first set, then compare // to the second. llvm::SmallPtrSet OldTypes, NewTypes; for (FunctionProtoType::exception_iterator I = Old->exception_begin(), E = Old->exception_end(); I != E; ++I) OldTypes.insert(Context.getCanonicalType(*I).getUnqualifiedType()); for (FunctionProtoType::exception_iterator I = New->exception_begin(), E = New->exception_end(); I != E && Success; ++I) { CanQualType TypePtr = Context.getCanonicalType(*I).getUnqualifiedType(); if(OldTypes.count(TypePtr)) NewTypes.insert(TypePtr); else Success = false; } Success = Success && OldTypes.size() == NewTypes.size(); if (Success) { return false; } Diag(NewLoc, DiagID); if (NoteID.getDiagID() != 0) Diag(OldLoc, NoteID); return true; } /// CheckExceptionSpecSubset - Check whether the second function type's /// exception specification is a subset (or equivalent) of the first function /// type. This is used by override and pointer assignment checks. bool Sema::CheckExceptionSpecSubset( const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, const FunctionProtoType *Superset, SourceLocation SuperLoc, const FunctionProtoType *Subset, SourceLocation SubLoc) { // FIXME: As usual, we could be more specific in our error messages, but // that better waits until we've got types with source locations. if (!SubLoc.isValid()) SubLoc = SuperLoc; // If superset contains everything, we're done. if (!Superset->hasExceptionSpec() || Superset->hasAnyExceptionSpec()) return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc); // It does not. If the subset contains everything, we've failed. if (!Subset->hasExceptionSpec() || Subset->hasAnyExceptionSpec()) { Diag(SubLoc, DiagID); if (NoteID.getDiagID() != 0) Diag(SuperLoc, NoteID); return true; } // Neither contains everything. Do a proper comparison. for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(), SubE = Subset->exception_end(); SubI != SubE; ++SubI) { // Take one type from the subset. QualType CanonicalSubT = Context.getCanonicalType(*SubI); // Unwrap pointers and references so that we can do checks within a class // hierarchy. Don't unwrap member pointers; they don't have hierarchy // conversions on the pointee. bool SubIsPointer = false; if (const ReferenceType *RefTy = CanonicalSubT->getAs()) CanonicalSubT = RefTy->getPointeeType(); if (const PointerType *PtrTy = CanonicalSubT->getAs()) { CanonicalSubT = PtrTy->getPointeeType(); SubIsPointer = true; } bool SubIsClass = CanonicalSubT->isRecordType(); CanonicalSubT = CanonicalSubT.getUnqualifiedType(); CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); bool Contained = false; // Make sure it's in the superset. for (FunctionProtoType::exception_iterator SuperI = Superset->exception_begin(), SuperE = Superset->exception_end(); SuperI != SuperE; ++SuperI) { QualType CanonicalSuperT = Context.getCanonicalType(*SuperI); // SubT must be SuperT or derived from it, or pointer or reference to // such types. if (const ReferenceType *RefTy = CanonicalSuperT->getAs()) CanonicalSuperT = RefTy->getPointeeType(); if (SubIsPointer) { if (const PointerType *PtrTy = CanonicalSuperT->getAs()) CanonicalSuperT = PtrTy->getPointeeType(); else { continue; } } CanonicalSuperT = CanonicalSuperT.getUnqualifiedType(); // If the types are the same, move on to the next type in the subset. if (CanonicalSubT == CanonicalSuperT) { Contained = true; break; } // Otherwise we need to check the inheritance. if (!SubIsClass || !CanonicalSuperT->isRecordType()) continue; Paths.clear(); if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths)) continue; if (Paths.isAmbiguous(CanonicalSuperT)) continue; if (FindInaccessibleBase(CanonicalSubT, CanonicalSuperT, Paths, true)) continue; Contained = true; break; } if (!Contained) { Diag(SubLoc, DiagID); if (NoteID.getDiagID() != 0) Diag(SuperLoc, NoteID); return true; } } // We've run half the gauntlet. return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc); } static bool CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, QualType Target, SourceLocation TargetLoc, QualType Source, SourceLocation SourceLoc) { const FunctionProtoType *TFunc = GetUnderlyingFunction(Target); if (!TFunc) return false; const FunctionProtoType *SFunc = GetUnderlyingFunction(Source); if (!SFunc) return false; return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc, SFunc, SourceLoc); } /// CheckParamExceptionSpec - Check if the parameter and return types of the /// two functions have equivalent exception specs. This is part of the /// assignment and override compatibility check. We do not check the parameters /// of parameter function pointers recursively, as no sane programmer would /// even be able to write such a function type. bool Sema::CheckParamExceptionSpec(const PartialDiagnostic & NoteID, const FunctionProtoType *Target, SourceLocation TargetLoc, const FunctionProtoType *Source, SourceLocation SourceLoc) { if (CheckSpecForTypesEquivalent(*this, PDiag(diag::err_deep_exception_specs_differ) << 0, 0, Target->getResultType(), TargetLoc, Source->getResultType(), SourceLoc)) return true; // We shouldn't even be testing this unless the arguments are otherwise // compatible. assert(Target->getNumArgs() == Source->getNumArgs() && "Functions have different argument counts."); for (unsigned i = 0, E = Target->getNumArgs(); i != E; ++i) { if (CheckSpecForTypesEquivalent(*this, PDiag(diag::err_deep_exception_specs_differ) << 1, 0, Target->getArgType(i), TargetLoc, Source->getArgType(i), SourceLoc)) return true; } return false; } bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) { // First we check for applicability. // Target type must be a function, function pointer or function reference. const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType); if (!ToFunc) return false; // SourceType must be a function or function pointer. const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType()); if (!FromFunc) return false; // Now we've got the correct types on both sides, check their compatibility. // This means that the source of the conversion can only throw a subset of // the exceptions of the target, and any exception specs on arguments or // return types must be equivalent. return CheckExceptionSpecSubset(diag::err_incompatible_exception_specs, 0, ToFunc, From->getSourceRange().getBegin(), FromFunc, SourceLocation()); } bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, const CXXMethodDecl *Old) { return CheckExceptionSpecSubset(diag::err_override_exception_spec, diag::note_overridden_virtual_function, Old->getType()->getAs(), Old->getLocation(), New->getType()->getAs(), New->getLocation()); } } // end namespace clang