//===--- Overload.h - C++ Overloading ---------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the data structures and types used in C++ // overload resolution. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_SEMA_OVERLOAD_H #define LLVM_CLANG_SEMA_OVERLOAD_H #include "clang/AST/Decl.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/TemplateBase.h" #include "clang/AST/Type.h" #include "clang/AST/UnresolvedSet.h" #include "clang/Sema/SemaFixItUtils.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Allocator.h" namespace clang { class ASTContext; class CXXConstructorDecl; class CXXConversionDecl; class FunctionDecl; class Sema; /// OverloadingResult - Capture the result of performing overload /// resolution. enum OverloadingResult { OR_Success, ///< Overload resolution succeeded. OR_No_Viable_Function, ///< No viable function found. OR_Ambiguous, ///< Ambiguous candidates found. OR_Deleted ///< Succeeded, but refers to a deleted function. }; enum OverloadCandidateDisplayKind { /// Requests that all candidates be shown. Viable candidates will /// be printed first. OCD_AllCandidates, /// Requests that only viable candidates be shown. OCD_ViableCandidates }; /// ImplicitConversionKind - The kind of implicit conversion used to /// convert an argument to a parameter's type. The enumerator values /// match with Table 9 of (C++ 13.3.3.1.1) and are listed such that /// better conversion kinds have smaller values. enum ImplicitConversionKind { ICK_Identity = 0, ///< Identity conversion (no conversion) ICK_Lvalue_To_Rvalue, ///< Lvalue-to-rvalue conversion (C++ 4.1) ICK_Array_To_Pointer, ///< Array-to-pointer conversion (C++ 4.2) ICK_Function_To_Pointer, ///< Function-to-pointer (C++ 4.3) ICK_NoReturn_Adjustment, ///< Removal of noreturn from a type (Clang) ICK_Qualification, ///< Qualification conversions (C++ 4.4) ICK_Integral_Promotion, ///< Integral promotions (C++ 4.5) ICK_Floating_Promotion, ///< Floating point promotions (C++ 4.6) ICK_Complex_Promotion, ///< Complex promotions (Clang extension) ICK_Integral_Conversion, ///< Integral conversions (C++ 4.7) ICK_Floating_Conversion, ///< Floating point conversions (C++ 4.8) ICK_Complex_Conversion, ///< Complex conversions (C99 6.3.1.6) ICK_Floating_Integral, ///< Floating-integral conversions (C++ 4.9) ICK_Pointer_Conversion, ///< Pointer conversions (C++ 4.10) ICK_Pointer_Member, ///< Pointer-to-member conversions (C++ 4.11) ICK_Boolean_Conversion, ///< Boolean conversions (C++ 4.12) ICK_Compatible_Conversion, ///< Conversions between compatible types in C99 ICK_Derived_To_Base, ///< Derived-to-base (C++ [over.best.ics]) ICK_Vector_Conversion, ///< Vector conversions ICK_Vector_Splat, ///< A vector splat from an arithmetic type ICK_Complex_Real, ///< Complex-real conversions (C99 6.3.1.7) ICK_Block_Pointer_Conversion, ///< Block Pointer conversions ICK_TransparentUnionConversion, /// Transparent Union Conversions ICK_Writeback_Conversion, ///< Objective-C ARC writeback conversion ICK_Num_Conversion_Kinds ///< The number of conversion kinds }; /// ImplicitConversionCategory - The category of an implicit /// conversion kind. The enumerator values match with Table 9 of /// (C++ 13.3.3.1.1) and are listed such that better conversion /// categories have smaller values. enum ImplicitConversionCategory { ICC_Identity = 0, ///< Identity ICC_Lvalue_Transformation, ///< Lvalue transformation ICC_Qualification_Adjustment, ///< Qualification adjustment ICC_Promotion, ///< Promotion ICC_Conversion ///< Conversion }; ImplicitConversionCategory GetConversionCategory(ImplicitConversionKind Kind); /// ImplicitConversionRank - The rank of an implicit conversion /// kind. The enumerator values match with Table 9 of (C++ /// 13.3.3.1.1) and are listed such that better conversion ranks /// have smaller values. enum ImplicitConversionRank { ICR_Exact_Match = 0, ///< Exact Match ICR_Promotion, ///< Promotion ICR_Conversion, ///< Conversion ICR_Complex_Real_Conversion, ///< Complex <-> Real conversion ICR_Writeback_Conversion ///< ObjC ARC writeback conversion }; ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind); /// StandardConversionSequence - represents a standard conversion /// sequence (C++ 13.3.3.1.1). A standard conversion sequence /// contains between zero and three conversions. If a particular /// conversion is not needed, it will be set to the identity conversion /// (ICK_Identity). Note that the three conversions are /// specified as separate members (rather than in an array) so that /// we can keep the size of a standard conversion sequence to a /// single word. class StandardConversionSequence { public: /// First -- The first conversion can be an lvalue-to-rvalue /// conversion, array-to-pointer conversion, or /// function-to-pointer conversion. ImplicitConversionKind First : 8; /// Second - The second conversion can be an integral promotion, /// floating point promotion, integral conversion, floating point /// conversion, floating-integral conversion, pointer conversion, /// pointer-to-member conversion, or boolean conversion. ImplicitConversionKind Second : 8; /// Third - The third conversion can be a qualification conversion. ImplicitConversionKind Third : 8; /// \brief Whether this is the deprecated conversion of a /// string literal to a pointer to non-const character data /// (C++ 4.2p2). unsigned DeprecatedStringLiteralToCharPtr : 1; /// \brief Whether the qualification conversion involves a change in the /// Objective-C lifetime (for automatic reference counting). unsigned QualificationIncludesObjCLifetime : 1; /// IncompatibleObjC - Whether this is an Objective-C conversion /// that we should warn about (if we actually use it). unsigned IncompatibleObjC : 1; /// ReferenceBinding - True when this is a reference binding /// (C++ [over.ics.ref]). unsigned ReferenceBinding : 1; /// DirectBinding - True when this is a reference binding that is a /// direct binding (C++ [dcl.init.ref]). unsigned DirectBinding : 1; /// \brief Whether this is an lvalue reference binding (otherwise, it's /// an rvalue reference binding). unsigned IsLvalueReference : 1; /// \brief Whether we're binding to a function lvalue. unsigned BindsToFunctionLvalue : 1; /// \brief Whether we're binding to an rvalue. unsigned BindsToRvalue : 1; /// \brief Whether this binds an implicit object argument to a /// non-static member function without a ref-qualifier. unsigned BindsImplicitObjectArgumentWithoutRefQualifier : 1; /// \brief Whether this binds a reference to an object with a different /// Objective-C lifetime qualifier. unsigned ObjCLifetimeConversionBinding : 1; /// FromType - The type that this conversion is converting /// from. This is an opaque pointer that can be translated into a /// QualType. void *FromTypePtr; /// ToType - The types that this conversion is converting to in /// each step. This is an opaque pointer that can be translated /// into a QualType. void *ToTypePtrs[3]; /// CopyConstructor - The copy constructor that is used to perform /// this conversion, when the conversion is actually just the /// initialization of an object via copy constructor. Such /// conversions are either identity conversions or derived-to-base /// conversions. CXXConstructorDecl *CopyConstructor; void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); } void setToType(unsigned Idx, QualType T) { assert(Idx < 3 && "To type index is out of range"); ToTypePtrs[Idx] = T.getAsOpaquePtr(); } void setAllToTypes(QualType T) { ToTypePtrs[0] = T.getAsOpaquePtr(); ToTypePtrs[1] = ToTypePtrs[0]; ToTypePtrs[2] = ToTypePtrs[0]; } QualType getFromType() const { return QualType::getFromOpaquePtr(FromTypePtr); } QualType getToType(unsigned Idx) const { assert(Idx < 3 && "To type index is out of range"); return QualType::getFromOpaquePtr(ToTypePtrs[Idx]); } void setAsIdentityConversion(); bool isIdentityConversion() const { return Second == ICK_Identity && Third == ICK_Identity; } ImplicitConversionRank getRank() const; bool isPointerConversionToBool() const; bool isPointerConversionToVoidPointer(ASTContext& Context) const; void DebugPrint() const; }; /// UserDefinedConversionSequence - Represents a user-defined /// conversion sequence (C++ 13.3.3.1.2). struct UserDefinedConversionSequence { /// \brief Represents the standard conversion that occurs before /// the actual user-defined conversion. /// /// C++11 13.3.3.1.2p1: /// If the user-defined conversion is specified by a constructor /// (12.3.1), the initial standard conversion sequence converts /// the source type to the type required by the argument of the /// constructor. If the user-defined conversion is specified by /// a conversion function (12.3.2), the initial standard /// conversion sequence converts the source type to the implicit /// object parameter of the conversion function. StandardConversionSequence Before; /// EllipsisConversion - When this is true, it means user-defined /// conversion sequence starts with a ... (elipsis) conversion, instead of /// a standard conversion. In this case, 'Before' field must be ignored. // FIXME. I much rather put this as the first field. But there seems to be // a gcc code gen. bug which causes a crash in a test. Putting it here seems // to work around the crash. bool EllipsisConversion : 1; /// HadMultipleCandidates - When this is true, it means that the /// conversion function was resolved from an overloaded set having /// size greater than 1. bool HadMultipleCandidates : 1; /// After - Represents the standard conversion that occurs after /// the actual user-defined conversion. StandardConversionSequence After; /// ConversionFunction - The function that will perform the /// user-defined conversion. Null if the conversion is an /// aggregate initialization from an initializer list. FunctionDecl* ConversionFunction; /// \brief The declaration that we found via name lookup, which might be /// the same as \c ConversionFunction or it might be a using declaration /// that refers to \c ConversionFunction. DeclAccessPair FoundConversionFunction; void DebugPrint() const; }; /// Represents an ambiguous user-defined conversion sequence. struct AmbiguousConversionSequence { typedef SmallVector ConversionSet; void *FromTypePtr; void *ToTypePtr; char Buffer[sizeof(ConversionSet)]; QualType getFromType() const { return QualType::getFromOpaquePtr(FromTypePtr); } QualType getToType() const { return QualType::getFromOpaquePtr(ToTypePtr); } void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); } void setToType(QualType T) { ToTypePtr = T.getAsOpaquePtr(); } ConversionSet &conversions() { return *reinterpret_cast(Buffer); } const ConversionSet &conversions() const { return *reinterpret_cast(Buffer); } void addConversion(FunctionDecl *D) { conversions().push_back(D); } typedef ConversionSet::iterator iterator; iterator begin() { return conversions().begin(); } iterator end() { return conversions().end(); } typedef ConversionSet::const_iterator const_iterator; const_iterator begin() const { return conversions().begin(); } const_iterator end() const { return conversions().end(); } void construct(); void destruct(); void copyFrom(const AmbiguousConversionSequence &); }; /// BadConversionSequence - Records information about an invalid /// conversion sequence. struct BadConversionSequence { enum FailureKind { no_conversion, unrelated_class, suppressed_user, bad_qualifiers, lvalue_ref_to_rvalue, rvalue_ref_to_lvalue }; // This can be null, e.g. for implicit object arguments. Expr *FromExpr; FailureKind Kind; private: // The type we're converting from (an opaque QualType). void *FromTy; // The type we're converting to (an opaque QualType). void *ToTy; public: void init(FailureKind K, Expr *From, QualType To) { init(K, From->getType(), To); FromExpr = From; } void init(FailureKind K, QualType From, QualType To) { Kind = K; FromExpr = 0; setFromType(From); setToType(To); } QualType getFromType() const { return QualType::getFromOpaquePtr(FromTy); } QualType getToType() const { return QualType::getFromOpaquePtr(ToTy); } void setFromExpr(Expr *E) { FromExpr = E; setFromType(E->getType()); } void setFromType(QualType T) { FromTy = T.getAsOpaquePtr(); } void setToType(QualType T) { ToTy = T.getAsOpaquePtr(); } }; /// ImplicitConversionSequence - Represents an implicit conversion /// sequence, which may be a standard conversion sequence /// (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2), /// or an ellipsis conversion sequence (C++ 13.3.3.1.3). class ImplicitConversionSequence { public: /// Kind - The kind of implicit conversion sequence. BadConversion /// specifies that there is no conversion from the source type to /// the target type. AmbiguousConversion represents the unique /// ambiguous conversion (C++0x [over.best.ics]p10). enum Kind { StandardConversion = 0, UserDefinedConversion, AmbiguousConversion, EllipsisConversion, BadConversion }; private: enum { Uninitialized = BadConversion + 1 }; /// ConversionKind - The kind of implicit conversion sequence. unsigned ConversionKind : 31; /// \brief Whether the argument is an initializer list. bool ListInitializationSequence : 1; void setKind(Kind K) { destruct(); ConversionKind = K; } void destruct() { if (ConversionKind == AmbiguousConversion) Ambiguous.destruct(); } public: union { /// When ConversionKind == StandardConversion, provides the /// details of the standard conversion sequence. StandardConversionSequence Standard; /// When ConversionKind == UserDefinedConversion, provides the /// details of the user-defined conversion sequence. UserDefinedConversionSequence UserDefined; /// When ConversionKind == AmbiguousConversion, provides the /// details of the ambiguous conversion. AmbiguousConversionSequence Ambiguous; /// When ConversionKind == BadConversion, provides the details /// of the bad conversion. BadConversionSequence Bad; }; ImplicitConversionSequence() : ConversionKind(Uninitialized), ListInitializationSequence(false) {} ~ImplicitConversionSequence() { destruct(); } ImplicitConversionSequence(const ImplicitConversionSequence &Other) : ConversionKind(Other.ConversionKind), ListInitializationSequence(Other.ListInitializationSequence) { switch (ConversionKind) { case Uninitialized: break; case StandardConversion: Standard = Other.Standard; break; case UserDefinedConversion: UserDefined = Other.UserDefined; break; case AmbiguousConversion: Ambiguous.copyFrom(Other.Ambiguous); break; case EllipsisConversion: break; case BadConversion: Bad = Other.Bad; break; } } ImplicitConversionSequence & operator=(const ImplicitConversionSequence &Other) { destruct(); new (this) ImplicitConversionSequence(Other); return *this; } Kind getKind() const { assert(isInitialized() && "querying uninitialized conversion"); return Kind(ConversionKind); } /// \brief Return a ranking of the implicit conversion sequence /// kind, where smaller ranks represent better conversion /// sequences. /// /// In particular, this routine gives user-defined conversion /// sequences and ambiguous conversion sequences the same rank, /// per C++ [over.best.ics]p10. unsigned getKindRank() const { switch (getKind()) { case StandardConversion: return 0; case UserDefinedConversion: case AmbiguousConversion: return 1; case EllipsisConversion: return 2; case BadConversion: return 3; } return 3; } bool isBad() const { return getKind() == BadConversion; } bool isStandard() const { return getKind() == StandardConversion; } bool isEllipsis() const { return getKind() == EllipsisConversion; } bool isAmbiguous() const { return getKind() == AmbiguousConversion; } bool isUserDefined() const { return getKind() == UserDefinedConversion; } bool isFailure() const { return isBad() || isAmbiguous(); } /// Determines whether this conversion sequence has been /// initialized. Most operations should never need to query /// uninitialized conversions and should assert as above. bool isInitialized() const { return ConversionKind != Uninitialized; } /// Sets this sequence as a bad conversion for an explicit argument. void setBad(BadConversionSequence::FailureKind Failure, Expr *FromExpr, QualType ToType) { setKind(BadConversion); Bad.init(Failure, FromExpr, ToType); } /// Sets this sequence as a bad conversion for an implicit argument. void setBad(BadConversionSequence::FailureKind Failure, QualType FromType, QualType ToType) { setKind(BadConversion); Bad.init(Failure, FromType, ToType); } void setStandard() { setKind(StandardConversion); } void setEllipsis() { setKind(EllipsisConversion); } void setUserDefined() { setKind(UserDefinedConversion); } void setAmbiguous() { if (ConversionKind == AmbiguousConversion) return; ConversionKind = AmbiguousConversion; Ambiguous.construct(); } /// \brief Whether this sequence was created by the rules of /// list-initialization sequences. bool isListInitializationSequence() const { return ListInitializationSequence; } void setListInitializationSequence() { ListInitializationSequence = true; } // The result of a comparison between implicit conversion // sequences. Use Sema::CompareImplicitConversionSequences to // actually perform the comparison. enum CompareKind { Better = -1, Indistinguishable = 0, Worse = 1 }; void DiagnoseAmbiguousConversion(Sema &S, SourceLocation CaretLoc, const PartialDiagnostic &PDiag) const; void DebugPrint() const; }; enum OverloadFailureKind { ovl_fail_too_many_arguments, ovl_fail_too_few_arguments, ovl_fail_bad_conversion, ovl_fail_bad_deduction, /// This conversion candidate was not considered because it /// duplicates the work of a trivial or derived-to-base /// conversion. ovl_fail_trivial_conversion, /// This conversion candidate is not viable because its result /// type is not implicitly convertible to the desired type. ovl_fail_bad_final_conversion, /// This conversion function template specialization candidate is not /// viable because the final conversion was not an exact match. ovl_fail_final_conversion_not_exact, /// (CUDA) This candidate was not viable because the callee /// was not accessible from the caller's target (i.e. host->device, /// global->host, device->host). ovl_fail_bad_target }; /// OverloadCandidate - A single candidate in an overload set (C++ 13.3). struct OverloadCandidate { /// Function - The actual function that this candidate /// represents. When NULL, this is a built-in candidate /// (C++ [over.oper]) or a surrogate for a conversion to a /// function pointer or reference (C++ [over.call.object]). FunctionDecl *Function; /// FoundDecl - The original declaration that was looked up / /// invented / otherwise found, together with its access. /// Might be a UsingShadowDecl or a FunctionTemplateDecl. DeclAccessPair FoundDecl; // BuiltinTypes - Provides the return and parameter types of a // built-in overload candidate. Only valid when Function is NULL. struct { QualType ResultTy; QualType ParamTypes[3]; } BuiltinTypes; /// Surrogate - The conversion function for which this candidate /// is a surrogate, but only if IsSurrogate is true. CXXConversionDecl *Surrogate; /// Conversions - The conversion sequences used to convert the /// function arguments to the function parameters, the pointer points to a /// fixed size array with NumConversions elements. The memory is owned by /// the OverloadCandidateSet. ImplicitConversionSequence *Conversions; /// The FixIt hints which can be used to fix the Bad candidate. ConversionFixItGenerator Fix; /// NumConversions - The number of elements in the Conversions array. unsigned NumConversions; /// Viable - True to indicate that this overload candidate is viable. bool Viable; /// IsSurrogate - True to indicate that this candidate is a /// surrogate for a conversion to a function pointer or reference /// (C++ [over.call.object]). bool IsSurrogate; /// IgnoreObjectArgument - True to indicate that the first /// argument's conversion, which for this function represents the /// implicit object argument, should be ignored. This will be true /// when the candidate is a static member function (where the /// implicit object argument is just a placeholder) or a /// non-static member function when the call doesn't have an /// object argument. bool IgnoreObjectArgument; /// FailureKind - The reason why this candidate is not viable. /// Actually an OverloadFailureKind. unsigned char FailureKind; /// \brief The number of call arguments that were explicitly provided, /// to be used while performing partial ordering of function templates. unsigned ExplicitCallArguments; /// A structure used to record information about a failed /// template argument deduction. struct DeductionFailureInfo { // A Sema::TemplateDeductionResult. unsigned Result; /// \brief Opaque pointer containing additional data about /// this deduction failure. void *Data; /// \brief Retrieve the template parameter this deduction failure /// refers to, if any. TemplateParameter getTemplateParameter(); /// \brief Retrieve the template argument list associated with this /// deduction failure, if any. TemplateArgumentList *getTemplateArgumentList(); /// \brief Return the first template argument this deduction failure /// refers to, if any. const TemplateArgument *getFirstArg(); /// \brief Return the second template argument this deduction failure /// refers to, if any. const TemplateArgument *getSecondArg(); /// \brief Free any memory associated with this deduction failure. void Destroy(); }; union { DeductionFailureInfo DeductionFailure; /// FinalConversion - For a conversion function (where Function is /// a CXXConversionDecl), the standard conversion that occurs /// after the call to the overload candidate to convert the result /// of calling the conversion function to the required type. StandardConversionSequence FinalConversion; }; ~OverloadCandidate() { for (unsigned i = 0, e = NumConversions; i != e; ++i) Conversions[i].~ImplicitConversionSequence(); } /// hasAmbiguousConversion - Returns whether this overload /// candidate requires an ambiguous conversion or not. bool hasAmbiguousConversion() const { for (unsigned i = 0, e = NumConversions; i != e; ++i) { if (!Conversions[i].isInitialized()) return false; if (Conversions[i].isAmbiguous()) return true; } return false; } bool TryToFixBadConversion(unsigned Idx, Sema &S) { bool CanFix = Fix.tryToFixConversion( Conversions[Idx].Bad.FromExpr, Conversions[Idx].Bad.getFromType(), Conversions[Idx].Bad.getToType(), S); // If at least one conversion fails, the candidate cannot be fixed. if (!CanFix) Fix.clear(); return CanFix; } }; /// OverloadCandidateSet - A set of overload candidates, used in C++ /// overload resolution (C++ 13.3). class OverloadCandidateSet { SmallVector Candidates; llvm::SmallPtrSet Functions; // Allocator for OverloadCandidate::Conversions. We store the first few // elements inline to avoid allocation for small sets. llvm::BumpPtrAllocator ConversionSequenceAllocator; SourceLocation Loc; unsigned NumInlineSequences; char InlineSpace[16 * sizeof(ImplicitConversionSequence)]; OverloadCandidateSet(const OverloadCandidateSet &); OverloadCandidateSet &operator=(const OverloadCandidateSet &); public: OverloadCandidateSet(SourceLocation Loc) : NumInlineSequences(0), Loc(Loc){} ~OverloadCandidateSet() { // Destroy OverloadCandidates before the allocator is destroyed. Candidates.clear(); } SourceLocation getLocation() const { return Loc; } /// \brief Determine when this overload candidate will be new to the /// overload set. bool isNewCandidate(Decl *F) { return Functions.insert(F->getCanonicalDecl()); } /// \brief Clear out all of the candidates. void clear(); typedef SmallVector::iterator iterator; iterator begin() { return Candidates.begin(); } iterator end() { return Candidates.end(); } size_t size() const { return Candidates.size(); } bool empty() const { return Candidates.empty(); } /// \brief Add a new candidate with NumConversions conversion sequence slots /// to the overload set. OverloadCandidate &addCandidate(unsigned NumConversions = 0) { Candidates.push_back(OverloadCandidate()); OverloadCandidate &C = Candidates.back(); // Assign space from the inline array if there are enough free slots // available. if (NumConversions + NumInlineSequences < 16) { ImplicitConversionSequence *I = (ImplicitConversionSequence*)InlineSpace; C.Conversions = &I[NumInlineSequences]; NumInlineSequences += NumConversions; } else { // Otherwise get memory from the allocator. C.Conversions = ConversionSequenceAllocator .Allocate(NumConversions); } // Construct the new objects. for (unsigned i = 0; i != NumConversions; ++i) new (&C.Conversions[i]) ImplicitConversionSequence(); C.NumConversions = NumConversions; return C; } /// Find the best viable function on this overload set, if it exists. OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc, OverloadCandidateSet::iterator& Best, bool UserDefinedConversion = false); void NoteCandidates(Sema &S, OverloadCandidateDisplayKind OCD, Expr **Args, unsigned NumArgs, const char *Opc = 0, SourceLocation Loc = SourceLocation()); }; bool isBetterOverloadCandidate(Sema &S, const OverloadCandidate& Cand1, const OverloadCandidate& Cand2, SourceLocation Loc, bool UserDefinedConversion = false); } // end namespace clang #endif // LLVM_CLANG_SEMA_OVERLOAD_H