//===--- Driver.cpp - Clang GCC Compatible Driver -----------------------*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "clang/Driver/Driver.h" #include "clang/Driver/Action.h" #include "clang/Driver/Arg.h" #include "clang/Driver/ArgList.h" #include "clang/Driver/Compilation.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/HostInfo.h" #include "clang/Driver/Job.h" #include "clang/Driver/Option.h" #include "clang/Driver/Options.h" #include "clang/Driver/Tool.h" #include "clang/Driver/ToolChain.h" #include "clang/Driver/Types.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/raw_ostream.h" #include "llvm/System/Path.h" #include "llvm/System/Program.h" #include "InputInfo.h" #include using namespace clang::driver; Driver::Driver(const char *_Name, const char *_Dir, const char *_DefaultHostTriple, const char *_DefaultImageName, Diagnostic &_Diags) : Opts(new OptTable()), Diags(_Diags), Name(_Name), Dir(_Dir), DefaultHostTriple(_DefaultHostTriple), DefaultImageName(_DefaultImageName), Host(0), CCCIsCXX(false), CCCEcho(false), CCCPrintBindings(false), CCCNoClang(false), CCCNoClangCXX(false), CCCNoClangCPP(false), SuppressMissingInputWarning(false) { } Driver::~Driver() { delete Opts; delete Host; } ArgList *Driver::ParseArgStrings(const char **ArgBegin, const char **ArgEnd) { llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); ArgList *Args = new ArgList(ArgBegin, ArgEnd); // FIXME: Handle '@' args (or at least error on them). unsigned Index = 0, End = ArgEnd - ArgBegin; while (Index < End) { // gcc's handling of empty arguments doesn't make // sense, but this is not a common use case. :) // // We just ignore them here (note that other things may // still take them as arguments). if (Args->getArgString(Index)[0] == '\0') { ++Index; continue; } unsigned Prev = Index; Arg *A = getOpts().ParseOneArg(*Args, Index, End); if (A) { if (A->getOption().isUnsupported()) { Diag(clang::diag::err_drv_unsupported_opt) << A->getOption().getName(); continue; } Args->append(A); } assert(Index > Prev && "Parser failed to consume argument."); (void) Prev; } return Args; } Compilation *Driver::BuildCompilation(int argc, const char **argv) { llvm::PrettyStackTraceString CrashInfo("Compilation construction"); // FIXME: Handle environment options which effect driver behavior, // somewhere (client?). GCC_EXEC_PREFIX, COMPILER_PATH, // LIBRARY_PATH, LPATH, CC_PRINT_OPTIONS, QA_OVERRIDE_GCC3_OPTIONS. // FIXME: What are we going to do with -V and -b? // FIXME: Handle CCC_ADD_ARGS. // FIXME: This stuff needs to go into the Compilation, not the // driver. bool CCCPrintOptions = false, CCCPrintActions = false; const char **Start = argv + 1, **End = argv + argc; const char *HostTriple = DefaultHostTriple.c_str(); // Read -ccc args. // // FIXME: We need to figure out where this behavior should // live. Most of it should be outside in the client; the parts that // aren't should have proper options, either by introducing new ones // or by overloading gcc ones like -V or -b. for (; Start != End && memcmp(*Start, "-ccc-", 5) == 0; ++Start) { const char *Opt = *Start + 5; if (!strcmp(Opt, "print-options")) { CCCPrintOptions = true; } else if (!strcmp(Opt, "print-phases")) { CCCPrintActions = true; } else if (!strcmp(Opt, "print-bindings")) { CCCPrintBindings = true; } else if (!strcmp(Opt, "cxx")) { CCCIsCXX = true; } else if (!strcmp(Opt, "echo")) { CCCEcho = true; } else if (!strcmp(Opt, "no-clang")) { CCCNoClang = true; } else if (!strcmp(Opt, "no-clang-cxx")) { CCCNoClangCXX = true; } else if (!strcmp(Opt, "no-clang-cpp")) { CCCNoClangCPP = true; } else if (!strcmp(Opt, "clang-archs")) { assert(Start+1 < End && "FIXME: -ccc- argument handling."); const char *Cur = *++Start; for (;;) { const char *Next = strchr(Cur, ','); if (Next) { CCCClangArchs.insert(std::string(Cur, Next)); Cur = Next + 1; } else { CCCClangArchs.insert(std::string(Cur)); break; } } } else if (!strcmp(Opt, "host-triple")) { assert(Start+1 < End && "FIXME: -ccc- argument handling."); HostTriple = *++Start; } else { // FIXME: Error handling. llvm::errs() << "invalid option: " << *Start << "\n"; exit(1); } } ArgList *Args = ParseArgStrings(Start, End); Host = GetHostInfo(HostTriple); // The compilation takes ownership of Args. Compilation *C = new Compilation(*this, *Host->getToolChain(*Args), Args); // FIXME: This behavior shouldn't be here. if (CCCPrintOptions) { PrintOptions(C->getArgs()); return C; } if (!HandleImmediateArgs(*C)) return C; // Construct the list of abstract actions to perform for this // compilation. We avoid passing a Compilation here simply to // enforce the abstraction that pipelining is not host or toolchain // dependent (other than the driver driver test). if (Host->useDriverDriver()) BuildUniversalActions(C->getArgs(), C->getActions()); else BuildActions(C->getArgs(), C->getActions()); if (CCCPrintActions) { PrintActions(*C); return C; } BuildJobs(*C); return C; } void Driver::PrintOptions(const ArgList &Args) const { unsigned i = 0; for (ArgList::const_iterator it = Args.begin(), ie = Args.end(); it != ie; ++it, ++i) { Arg *A = *it; llvm::errs() << "Option " << i << " - " << "Name: \"" << A->getOption().getName() << "\", " << "Values: {"; for (unsigned j = 0; j < A->getNumValues(); ++j) { if (j) llvm::errs() << ", "; llvm::errs() << '"' << A->getValue(Args, j) << '"'; } llvm::errs() << "}\n"; } } void Driver::PrintVersion() const { static char buf[] = "$URL$"; char *zap = strstr(buf, "/lib/Driver"); if (zap) *zap = 0; zap = strstr(buf, "/clang/tools/clang"); if (zap) *zap = 0; const char *vers = buf+6; // FIXME: Add cmake support and remove #ifdef #ifdef SVN_REVISION const char *revision = SVN_REVISION; #else const char *revision = ""; #endif // FIXME: The following handlers should use a callback mechanism, we // don't know what the client would like to do. llvm::errs() << "clang version 1.0 (" << vers << " " << revision << ")" << "\n"; // FIXME: Add cmake support and remove #ifdef #ifdef TARGET_TRIPLE llvm::errs() << "Target: " << TARGET_TRIPLE << "\n"; #endif } bool Driver::HandleImmediateArgs(const Compilation &C) { // The order these options are handled in in gcc is all over the // place, but we don't expect inconsistencies w.r.t. that to matter // in practice. if (C.getArgs().hasArg(options::OPT_v) || C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { PrintVersion(); SuppressMissingInputWarning = true; } const ToolChain &TC = C.getDefaultToolChain(); // FIXME: The following handlers should use a callback mechanism, we // don't know what the client would like to do. if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { llvm::outs() << GetFilePath(A->getValue(C.getArgs()), TC).toString() << "\n"; return false; } if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { llvm::outs() << GetProgramPath(A->getValue(C.getArgs()), TC).toString() << "\n"; return false; } if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { llvm::outs() << GetProgramPath("libgcc.a", TC).toString() << "\n"; return false; } return true; } static unsigned PrintActions1(const Compilation &C, Action *A, std::map &Ids) { if (Ids.count(A)) return Ids[A]; std::string str; llvm::raw_string_ostream os(str); os << Action::getClassName(A->getKind()) << ", "; if (InputAction *IA = dyn_cast(A)) { os << "\"" << IA->getInputArg().getValue(C.getArgs()) << "\""; } else if (BindArchAction *BIA = dyn_cast(A)) { os << '"' << (BIA->getArchName() ? BIA->getArchName() : C.getDefaultToolChain().getArchName()) << '"' << ", {" << PrintActions1(C, *BIA->begin(), Ids) << "}"; } else { os << "{"; for (Action::iterator it = A->begin(), ie = A->end(); it != ie;) { os << PrintActions1(C, *it, Ids); ++it; if (it != ie) os << ", "; } os << "}"; } unsigned Id = Ids.size(); Ids[A] = Id; llvm::errs() << Id << ": " << os.str() << ", " << types::getTypeName(A->getType()) << "\n"; return Id; } void Driver::PrintActions(const Compilation &C) const { std::map Ids; for (ActionList::const_iterator it = C.getActions().begin(), ie = C.getActions().end(); it != ie; ++it) PrintActions1(C, *it, Ids); } void Driver::BuildUniversalActions(const ArgList &Args, ActionList &Actions) const { llvm::PrettyStackTraceString CrashInfo("Building actions for universal build"); // Collect the list of architectures. Duplicates are allowed, but // should only be handled once (in the order seen). llvm::StringSet<> ArchNames; llvm::SmallVector Archs; for (ArgList::const_iterator it = Args.begin(), ie = Args.end(); it != ie; ++it) { Arg *A = *it; if (A->getOption().getId() == options::OPT_arch) { const char *Name = A->getValue(Args); // FIXME: We need to handle canonicalization of the specified // arch? A->claim(); if (ArchNames.insert(Name)) Archs.push_back(Name); } } // When there is no explicit arch for this platform, make sure we // still bind the architecture (to the default) so that -Xarch_ is // handled correctly. if (!Archs.size()) Archs.push_back(0); // FIXME: We killed off some others but these aren't yet detected in // a functional manner. If we added information to jobs about which // "auxiliary" files they wrote then we could detect the conflict // these cause downstream. if (Archs.size() > 1) { // No recovery needed, the point of this is just to prevent // overwriting the same files. if (const Arg *A = Args.getLastArg(options::OPT_M_Group)) Diag(clang::diag::err_drv_invalid_opt_with_multiple_archs) << A->getOption().getName(); if (const Arg *A = Args.getLastArg(options::OPT_save_temps)) Diag(clang::diag::err_drv_invalid_opt_with_multiple_archs) << A->getOption().getName(); } ActionList SingleActions; BuildActions(Args, SingleActions); // Add in arch binding and lipo (if necessary) for every top level // action. for (unsigned i = 0, e = SingleActions.size(); i != e; ++i) { Action *Act = SingleActions[i]; // Make sure we can lipo this kind of output. If not (and it is an // actual output) then we disallow, since we can't create an // output file with the right name without overwriting it. We // could remove this oddity by just changing the output names to // include the arch, which would also fix // -save-temps. Compatibility wins for now. if (Archs.size() > 1 && !types::canLipoType(Act->getType())) Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) << types::getTypeName(Act->getType()); ActionList Inputs; for (unsigned i = 0, e = Archs.size(); i != e; ++i) Inputs.push_back(new BindArchAction(Act, Archs[i])); // Lipo if necessary, We do it this way because we need to set the // arch flag so that -Xarch_ gets overwritten. if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) Actions.append(Inputs.begin(), Inputs.end()); else Actions.push_back(new LipoJobAction(Inputs, Act->getType())); } } void Driver::BuildActions(const ArgList &Args, ActionList &Actions) const { llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); // Start by constructing the list of inputs and their types. // Track the current user specified (-x) input. We also explicitly // track the argument used to set the type; we only want to claim // the type when we actually use it, so we warn about unused -x // arguments. types::ID InputType = types::TY_Nothing; Arg *InputTypeArg = 0; llvm::SmallVector, 16> Inputs; for (ArgList::const_iterator it = Args.begin(), ie = Args.end(); it != ie; ++it) { Arg *A = *it; if (isa(A->getOption())) { const char *Value = A->getValue(Args); types::ID Ty = types::TY_INVALID; // Infer the input type if necessary. if (InputType == types::TY_Nothing) { // If there was an explicit arg for this, claim it. if (InputTypeArg) InputTypeArg->claim(); // stdin must be handled specially. if (memcmp(Value, "-", 2) == 0) { // If running with -E, treat as a C input (this changes the // builtin macros, for example). This may be overridden by // -ObjC below. // // Otherwise emit an error but still use a valid type to // avoid spurious errors (e.g., no inputs). if (!Args.hasArg(options::OPT_E, false)) Diag(clang::diag::err_drv_unknown_stdin_type); Ty = types::TY_C; } else { // Otherwise lookup by extension, and fallback to ObjectType // if not found. if (const char *Ext = strrchr(Value, '.')) Ty = types::lookupTypeForExtension(Ext + 1); if (Ty == types::TY_INVALID) Ty = types::TY_Object; } // -ObjC and -ObjC++ override the default language, but only // -for "source files". We just treat everything that isn't a // -linker input as a source file. // // FIXME: Clean this up if we move the phase sequence into the // type. if (Ty != types::TY_Object) { if (Args.hasArg(options::OPT_ObjC)) Ty = types::TY_ObjC; else if (Args.hasArg(options::OPT_ObjCXX)) Ty = types::TY_ObjCXX; } } else { assert(InputTypeArg && "InputType set w/o InputTypeArg"); InputTypeArg->claim(); Ty = InputType; } // Check that the file exists. It isn't clear this is worth // doing, since the tool presumably does this anyway, and this // just adds an extra stat to the equation, but this is gcc // compatible. if (memcmp(Value, "-", 2) != 0 && !llvm::sys::Path(Value).exists()) Diag(clang::diag::err_drv_no_such_file) << A->getValue(Args); else Inputs.push_back(std::make_pair(Ty, A)); } else if (A->getOption().isLinkerInput()) { // Just treat as object type, we could make a special type for // this if necessary. Inputs.push_back(std::make_pair(types::TY_Object, A)); } else if (A->getOption().getId() == options::OPT_x) { InputTypeArg = A; InputType = types::lookupTypeForTypeSpecifier(A->getValue(Args)); // Follow gcc behavior and treat as linker input for invalid -x // options. Its not clear why we shouldn't just revert to // unknown; but this isn't very important, we might as well be // bug comatible. if (!InputType) { Diag(clang::diag::err_drv_unknown_language) << A->getValue(Args); InputType = types::TY_Object; } } } if (!SuppressMissingInputWarning && Inputs.empty()) { Diag(clang::diag::err_drv_no_input_files); return; } // Determine which compilation mode we are in. We look for options // which affect the phase, starting with the earliest phases, and // record which option we used to determine the final phase. Arg *FinalPhaseArg = 0; phases::ID FinalPhase; // -{E,M,MM} only run the preprocessor. if ((FinalPhaseArg = Args.getLastArg(options::OPT_E)) || (FinalPhaseArg = Args.getLastArg(options::OPT_M)) || (FinalPhaseArg = Args.getLastArg(options::OPT_MM))) { FinalPhase = phases::Preprocess; // -{fsyntax-only,-analyze,emit-llvm,S} only run up to the compiler. } else if ((FinalPhaseArg = Args.getLastArg(options::OPT_fsyntax_only)) || (FinalPhaseArg = Args.getLastArg(options::OPT__analyze)) || (FinalPhaseArg = Args.getLastArg(options::OPT_emit_llvm)) || (FinalPhaseArg = Args.getLastArg(options::OPT_S))) { FinalPhase = phases::Compile; // -c only runs up to the assembler. } else if ((FinalPhaseArg = Args.getLastArg(options::OPT_c))) { FinalPhase = phases::Assemble; // Otherwise do everything. } else FinalPhase = phases::Link; // Reject -Z* at the top level, these options should never have been // exposed by gcc. if (Arg *A = Args.getLastArg(options::OPT_Z)) Diag(clang::diag::err_drv_use_of_Z_option) << A->getValue(Args); // Construct the actions to perform. ActionList LinkerInputs; for (unsigned i = 0, e = Inputs.size(); i != e; ++i) { types::ID InputType = Inputs[i].first; const Arg *InputArg = Inputs[i].second; unsigned NumSteps = types::getNumCompilationPhases(InputType); assert(NumSteps && "Invalid number of steps!"); // If the first step comes after the final phase we are doing as // part of this compilation, warn the user about it. phases::ID InitialPhase = types::getCompilationPhase(InputType, 0); if (InitialPhase > FinalPhase) { Diag(clang::diag::warn_drv_input_file_unused) << InputArg->getValue(Args) << getPhaseName(InitialPhase) << FinalPhaseArg->getOption().getName(); continue; } // Build the pipeline for this file. Action *Current = new InputAction(*InputArg, InputType); for (unsigned i = 0; i != NumSteps; ++i) { phases::ID Phase = types::getCompilationPhase(InputType, i); // We are done if this step is past what the user requested. if (Phase > FinalPhase) break; // Queue linker inputs. if (Phase == phases::Link) { assert(i + 1 == NumSteps && "linking must be final compilation step."); LinkerInputs.push_back(Current); Current = 0; break; } // Otherwise construct the appropriate action. Current = ConstructPhaseAction(Args, Phase, Current); if (Current->getType() == types::TY_Nothing) break; } // If we ended with something, add to the output list. if (Current) Actions.push_back(Current); } // Add a link action if necessary. if (!LinkerInputs.empty()) Actions.push_back(new LinkJobAction(LinkerInputs, types::TY_Image)); } Action *Driver::ConstructPhaseAction(const ArgList &Args, phases::ID Phase, Action *Input) const { llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); // Build the appropriate action. switch (Phase) { case phases::Link: assert(0 && "link action invalid here."); case phases::Preprocess: { types::ID OutputTy = types::getPreprocessedType(Input->getType()); assert(OutputTy != types::TY_INVALID && "Cannot preprocess this input type!"); return new PreprocessJobAction(Input, OutputTy); } case phases::Precompile: return new PrecompileJobAction(Input, types::TY_PCH); case phases::Compile: { if (Args.hasArg(options::OPT_fsyntax_only)) { return new CompileJobAction(Input, types::TY_Nothing); } else if (Args.hasArg(options::OPT__analyze)) { return new AnalyzeJobAction(Input, types::TY_Plist); } else if (Args.hasArg(options::OPT_emit_llvm)) { types::ID Output = Args.hasArg(options::OPT_S) ? types::TY_LLVMAsm : types::TY_LLVMBC; return new CompileJobAction(Input, Output); } else { return new CompileJobAction(Input, types::TY_PP_Asm); } } case phases::Assemble: return new AssembleJobAction(Input, types::TY_Object); } assert(0 && "invalid phase in ConstructPhaseAction"); return 0; } void Driver::BuildJobs(Compilation &C) const { llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); bool SaveTemps = C.getArgs().hasArg(options::OPT_save_temps); bool UsePipes = C.getArgs().hasArg(options::OPT_pipe); // FIXME: Pipes are forcibly disabled until we support executing // them. if (!CCCPrintBindings) UsePipes = false; // -save-temps inhibits pipes. if (SaveTemps && UsePipes) { Diag(clang::diag::warn_drv_pipe_ignored_with_save_temps); UsePipes = true; } Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); // It is an error to provide a -o option if we are making multiple // output files. if (FinalOutput) { unsigned NumOutputs = 0; for (ActionList::const_iterator it = C.getActions().begin(), ie = C.getActions().end(); it != ie; ++it) if ((*it)->getType() != types::TY_Nothing) ++NumOutputs; if (NumOutputs > 1) { Diag(clang::diag::err_drv_output_argument_with_multiple_files); FinalOutput = 0; } } for (ActionList::const_iterator it = C.getActions().begin(), ie = C.getActions().end(); it != ie; ++it) { Action *A = *it; // If we are linking an image for multiple archs then the linker // wants -arch_multiple and -final_output . Unfortunately, this doesn't fit in cleanly because we // have to pass this information down. // // FIXME: This is a hack; find a cleaner way to integrate this // into the process. const char *LinkingOutput = 0; if (isa(A)) { if (FinalOutput) LinkingOutput = FinalOutput->getValue(C.getArgs()); else LinkingOutput = DefaultImageName.c_str(); } InputInfo II; BuildJobsForAction(C, A, &C.getDefaultToolChain(), /*CanAcceptPipe*/ true, /*AtTopLevel*/ true, /*LinkingOutput*/ LinkingOutput, II); } // If there were errors, don't warn about any unused arguments. if (Diags.getNumErrors()) return; for (ArgList::const_iterator it = C.getArgs().begin(), ie = C.getArgs().end(); it != ie; ++it) { Arg *A = *it; // FIXME: It would be nice to be able to send the argument to the // Diagnostic, so that extra values, position, and so on could be // printed. if (!A->isClaimed()) Diag(clang::diag::warn_drv_unused_argument) << A->getOption().getName(); } } void Driver::BuildJobsForAction(Compilation &C, const Action *A, const ToolChain *TC, bool CanAcceptPipe, bool AtTopLevel, const char *LinkingOutput, InputInfo &Result) const { llvm::PrettyStackTraceString CrashInfo("Building compilation jobs for action"); bool UsePipes = C.getArgs().hasArg(options::OPT_pipe); // FIXME: Pipes are forcibly disabled until we support executing // them. if (!CCCPrintBindings) UsePipes = false; if (const InputAction *IA = dyn_cast(A)) { // FIXME: It would be nice to not claim this here; maybe the old // scheme of just using Args was better? const Arg &Input = IA->getInputArg(); Input.claim(); if (isa(Input)) { const char *Name = Input.getValue(C.getArgs()); Result = InputInfo(Name, A->getType(), Name); } else Result = InputInfo(&Input, A->getType(), ""); return; } if (const BindArchAction *BAA = dyn_cast(A)) { const char *ArchName = BAA->getArchName(); if (!ArchName) ArchName = C.getDefaultToolChain().getArchName().c_str(); BuildJobsForAction(C, *BAA->begin(), Host->getToolChain(C.getArgs(), ArchName), CanAcceptPipe, AtTopLevel, LinkingOutput, Result); return; } const JobAction *JA = cast(A); const Tool &T = TC->SelectTool(C, *JA); // See if we should use an integrated preprocessor. We do so when we // have exactly one input, since this is the only use case we care // about (irrelevant since we don't support combine yet). bool UseIntegratedCPP = false; const ActionList *Inputs = &A->getInputs(); if (Inputs->size() == 1 && isa(*Inputs->begin())) { if (!C.getArgs().hasArg(options::OPT_no_integrated_cpp) && !C.getArgs().hasArg(options::OPT_traditional_cpp) && !C.getArgs().hasArg(options::OPT_save_temps) && T.hasIntegratedCPP()) { UseIntegratedCPP = true; Inputs = &(*Inputs)[0]->getInputs(); } } // Only use pipes when there is exactly one input. bool TryToUsePipeInput = Inputs->size() == 1 && T.acceptsPipedInput(); InputInfoList InputInfos; for (ActionList::const_iterator it = Inputs->begin(), ie = Inputs->end(); it != ie; ++it) { InputInfo II; BuildJobsForAction(C, *it, TC, TryToUsePipeInput, /*AtTopLevel*/false, LinkingOutput, II); InputInfos.push_back(II); } // Determine if we should output to a pipe. bool OutputToPipe = false; if (CanAcceptPipe && T.canPipeOutput()) { // Some actions default to writing to a pipe if they are the top // level phase and there was no user override. // // FIXME: Is there a better way to handle this? if (AtTopLevel) { if (isa(A) && !C.getArgs().hasArg(options::OPT_o)) OutputToPipe = true; } else if (UsePipes) OutputToPipe = true; } // Figure out where to put the job (pipes). Job *Dest = &C.getJobs(); if (InputInfos[0].isPipe()) { assert(TryToUsePipeInput && "Unrequested pipe!"); assert(InputInfos.size() == 1 && "Unexpected pipe with multiple inputs."); Dest = &InputInfos[0].getPipe(); } // Always use the first input as the base input. const char *BaseInput = InputInfos[0].getBaseInput(); // Determine the place to write output to (nothing, pipe, or // filename) and where to put the new job. if (JA->getType() == types::TY_Nothing) { Result = InputInfo(A->getType(), BaseInput); } else if (OutputToPipe) { // Append to current piped job or create a new one as appropriate. PipedJob *PJ = dyn_cast(Dest); if (!PJ) { PJ = new PipedJob(); cast(Dest)->addJob(PJ); Dest = PJ; } Result = InputInfo(PJ, A->getType(), BaseInput); } else { Result = InputInfo(GetNamedOutputPath(C, *JA, BaseInput, AtTopLevel), A->getType(), BaseInput); } if (CCCPrintBindings) { llvm::errs() << "bind - \"" << T.getName() << "\", inputs: ["; for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { llvm::errs() << InputInfos[i].getAsString(); if (i + 1 != e) llvm::errs() << ", "; } llvm::errs() << "], output: " << Result.getAsString() << "\n"; } else { const ArgList &TCArgs = C.getArgsForToolChain(TC); T.ConstructJob(C, *JA, *Dest, Result, InputInfos, TCArgs, LinkingOutput); } } const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput, bool AtTopLevel) const { llvm::PrettyStackTraceString CrashInfo("Computing output path"); // Output to a user requested destination? if (AtTopLevel) { if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) return C.addResultFile(FinalOutput->getValue(C.getArgs())); } // Output to a temporary file? if (!AtTopLevel && !C.getArgs().hasArg(options::OPT_save_temps)) { std::string TmpName = GetTemporaryPath(types::getTypeTempSuffix(JA.getType())); return C.addTempFile(C.getArgs().MakeArgString(TmpName.c_str())); } llvm::sys::Path BasePath(BaseInput); std::string BaseName(BasePath.getLast()); // Determine what the derived output name should be. const char *NamedOutput; if (JA.getType() == types::TY_Image) { NamedOutput = DefaultImageName.c_str(); } else { const char *Suffix = types::getTypeTempSuffix(JA.getType()); assert(Suffix && "All types used for output should have a suffix."); std::string::size_type End = std::string::npos; if (!types::appendSuffixForType(JA.getType())) End = BaseName.rfind('.'); std::string Suffixed(BaseName.substr(0, End)); Suffixed += '.'; Suffixed += Suffix; NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); } // As an annoying special case, PCH generation doesn't strip the // pathname. if (JA.getType() == types::TY_PCH) { BasePath.eraseComponent(); if (BasePath.isEmpty()) BasePath = NamedOutput; else BasePath.appendComponent(NamedOutput); return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str())); } else { return C.addResultFile(NamedOutput); } } llvm::sys::Path Driver::GetFilePath(const char *Name, const ToolChain &TC) const { const ToolChain::path_list &List = TC.getFilePaths(); for (ToolChain::path_list::const_iterator it = List.begin(), ie = List.end(); it != ie; ++it) { llvm::sys::Path P(*it); P.appendComponent(Name); if (P.exists()) return P; } return llvm::sys::Path(Name); } llvm::sys::Path Driver::GetProgramPath(const char *Name, const ToolChain &TC) const { const ToolChain::path_list &List = TC.getProgramPaths(); for (ToolChain::path_list::const_iterator it = List.begin(), ie = List.end(); it != ie; ++it) { llvm::sys::Path P(*it); P.appendComponent(Name); if (P.exists()) return P; } // As a last resort, always search in our directory before pulling // from the path. llvm::sys::Path P(Dir); P.appendComponent(Name); if (P.exists()) return P; // Search path to increase accuracy of logging output. P = llvm::sys::Program::FindProgramByName(Name); if (!P.empty()) return P; return llvm::sys::Path(Name); } std::string Driver::GetTemporaryPath(const char *Suffix) const { // FIXME: This is lame; sys::Path should provide this function (in // particular, it should know how to find the temporary files dir). std::string Error; llvm::sys::Path P("/tmp/cc"); if (P.makeUnique(false, &Error)) { Diag(clang::diag::err_drv_unable_to_make_temp) << Error; return ""; } // FIXME: Grumble, makeUnique sometimes leaves the file around!? // PR3837. P.eraseFromDisk(false, 0); P.appendSuffix(Suffix); return P.toString(); } const HostInfo *Driver::GetHostInfo(const char *Triple) const { llvm::PrettyStackTraceString CrashInfo("Constructing host"); // Dice into arch, platform, and OS. This matches // arch,platform,os = '(.*?)-(.*?)-(.*?)' // and missing fields are left empty. std::string Arch, Platform, OS; if (const char *ArchEnd = strchr(Triple, '-')) { Arch = std::string(Triple, ArchEnd); if (const char *PlatformEnd = strchr(ArchEnd+1, '-')) { Platform = std::string(ArchEnd+1, PlatformEnd); OS = PlatformEnd+1; } else Platform = ArchEnd+1; } else Arch = Triple; // Normalize Arch a bit. // // FIXME: This is very incomplete. if (Arch == "i686") Arch = "i386"; else if (Arch == "amd64") Arch = "x86_64"; else if (Arch == "powerpc" || Arch == "Power Macintosh") Arch = "ppc"; if (memcmp(&OS[0], "darwin", 6) == 0) return createDarwinHostInfo(*this, Arch.c_str(), Platform.c_str(), OS.c_str()); return createUnknownHostInfo(*this, Arch.c_str(), Platform.c_str(), OS.c_str()); }