//===--- ASTReader.cpp - AST File Reader ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ASTReader class, which reads AST files. // //===----------------------------------------------------------------------===// #include "clang/Serialization/ASTReader.h" #include "clang/Serialization/ASTDeserializationListener.h" #include "ASTCommon.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/Utils.h" #include "clang/Sema/Sema.h" #include "clang/Sema/Scope.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Basic/OnDiskHashTable.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManagerInternals.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/FileSystemStatCache.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Version.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include "llvm/Support/system_error.h" #include #include #include #include using namespace clang; using namespace clang::serialization; //===----------------------------------------------------------------------===// // PCH validator implementation //===----------------------------------------------------------------------===// ASTReaderListener::~ASTReaderListener() {} bool PCHValidator::ReadLanguageOptions(const LangOptions &LangOpts) { const LangOptions &PPLangOpts = PP.getLangOptions(); #define PARSE_LANGOPT_BENIGN(Option) #define PARSE_LANGOPT_IMPORTANT(Option, DiagID) \ if (PPLangOpts.Option != LangOpts.Option) { \ Reader.Diag(DiagID) << LangOpts.Option << PPLangOpts.Option; \ return true; \ } PARSE_LANGOPT_BENIGN(Trigraphs); PARSE_LANGOPT_BENIGN(BCPLComment); PARSE_LANGOPT_BENIGN(DollarIdents); PARSE_LANGOPT_BENIGN(AsmPreprocessor); PARSE_LANGOPT_IMPORTANT(GNUMode, diag::warn_pch_gnu_extensions); PARSE_LANGOPT_IMPORTANT(GNUKeywords, diag::warn_pch_gnu_keywords); PARSE_LANGOPT_BENIGN(ImplicitInt); PARSE_LANGOPT_BENIGN(Digraphs); PARSE_LANGOPT_BENIGN(HexFloats); PARSE_LANGOPT_IMPORTANT(C99, diag::warn_pch_c99); PARSE_LANGOPT_IMPORTANT(Microsoft, diag::warn_pch_microsoft_extensions); PARSE_LANGOPT_BENIGN(MSCVersion); PARSE_LANGOPT_IMPORTANT(CPlusPlus, diag::warn_pch_cplusplus); PARSE_LANGOPT_IMPORTANT(CPlusPlus0x, diag::warn_pch_cplusplus0x); PARSE_LANGOPT_BENIGN(CXXOperatorName); PARSE_LANGOPT_IMPORTANT(ObjC1, diag::warn_pch_objective_c); PARSE_LANGOPT_IMPORTANT(ObjC2, diag::warn_pch_objective_c2); PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI, diag::warn_pch_nonfragile_abi); PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI2, diag::warn_pch_nonfragile_abi2); PARSE_LANGOPT_IMPORTANT(AppleKext, diag::warn_pch_apple_kext); PARSE_LANGOPT_IMPORTANT(ObjCDefaultSynthProperties, diag::warn_pch_objc_auto_properties); PARSE_LANGOPT_IMPORTANT(NoConstantCFStrings, diag::warn_pch_no_constant_cfstrings); PARSE_LANGOPT_BENIGN(PascalStrings); PARSE_LANGOPT_BENIGN(WritableStrings); PARSE_LANGOPT_IMPORTANT(LaxVectorConversions, diag::warn_pch_lax_vector_conversions); PARSE_LANGOPT_IMPORTANT(AltiVec, diag::warn_pch_altivec); PARSE_LANGOPT_IMPORTANT(Exceptions, diag::warn_pch_exceptions); PARSE_LANGOPT_IMPORTANT(ObjCExceptions, diag::warn_pch_objc_exceptions); PARSE_LANGOPT_IMPORTANT(CXXExceptions, diag::warn_pch_cxx_exceptions); PARSE_LANGOPT_IMPORTANT(SjLjExceptions, diag::warn_pch_sjlj_exceptions); PARSE_LANGOPT_IMPORTANT(MSBitfields, diag::warn_pch_ms_bitfields); PARSE_LANGOPT_IMPORTANT(NeXTRuntime, diag::warn_pch_objc_runtime); PARSE_LANGOPT_IMPORTANT(Freestanding, diag::warn_pch_freestanding); PARSE_LANGOPT_IMPORTANT(NoBuiltin, diag::warn_pch_builtins); PARSE_LANGOPT_IMPORTANT(ThreadsafeStatics, diag::warn_pch_thread_safe_statics); PARSE_LANGOPT_IMPORTANT(POSIXThreads, diag::warn_pch_posix_threads); PARSE_LANGOPT_IMPORTANT(Blocks, diag::warn_pch_blocks); PARSE_LANGOPT_BENIGN(EmitAllDecls); PARSE_LANGOPT_IMPORTANT(MathErrno, diag::warn_pch_math_errno); PARSE_LANGOPT_BENIGN(getSignedOverflowBehavior()); PARSE_LANGOPT_IMPORTANT(HeinousExtensions, diag::warn_pch_heinous_extensions); // FIXME: Most of the options below are benign if the macro wasn't // used. Unfortunately, this means that a PCH compiled without // optimization can't be used with optimization turned on, even // though the only thing that changes is whether __OPTIMIZE__ was // defined... but if __OPTIMIZE__ never showed up in the header, it // doesn't matter. We could consider making this some special kind // of check. PARSE_LANGOPT_IMPORTANT(Optimize, diag::warn_pch_optimize); PARSE_LANGOPT_IMPORTANT(OptimizeSize, diag::warn_pch_optimize_size); PARSE_LANGOPT_IMPORTANT(Static, diag::warn_pch_static); PARSE_LANGOPT_IMPORTANT(PICLevel, diag::warn_pch_pic_level); PARSE_LANGOPT_IMPORTANT(GNUInline, diag::warn_pch_gnu_inline); PARSE_LANGOPT_IMPORTANT(NoInline, diag::warn_pch_no_inline); PARSE_LANGOPT_IMPORTANT(AccessControl, diag::warn_pch_access_control); PARSE_LANGOPT_IMPORTANT(CharIsSigned, diag::warn_pch_char_signed); PARSE_LANGOPT_IMPORTANT(ShortWChar, diag::warn_pch_short_wchar); PARSE_LANGOPT_IMPORTANT(ShortEnums, diag::warn_pch_short_enums); if ((PPLangOpts.getGCMode() != 0) != (LangOpts.getGCMode() != 0)) { Reader.Diag(diag::warn_pch_gc_mode) << LangOpts.getGCMode() << PPLangOpts.getGCMode(); return true; } PARSE_LANGOPT_BENIGN(getVisibilityMode()); PARSE_LANGOPT_IMPORTANT(getStackProtectorMode(), diag::warn_pch_stack_protector); PARSE_LANGOPT_BENIGN(InstantiationDepth); PARSE_LANGOPT_IMPORTANT(OpenCL, diag::warn_pch_opencl); PARSE_LANGOPT_IMPORTANT(CUDA, diag::warn_pch_cuda); PARSE_LANGOPT_BENIGN(CatchUndefined); PARSE_LANGOPT_IMPORTANT(ElideConstructors, diag::warn_pch_elide_constructors); PARSE_LANGOPT_BENIGN(SpellChecking); PARSE_LANGOPT_BENIGN(DefaultFPContract); #undef PARSE_LANGOPT_IMPORTANT #undef PARSE_LANGOPT_BENIGN return false; } bool PCHValidator::ReadTargetTriple(llvm::StringRef Triple) { if (Triple == PP.getTargetInfo().getTriple().str()) return false; Reader.Diag(diag::warn_pch_target_triple) << Triple << PP.getTargetInfo().getTriple().str(); return true; } namespace { struct EmptyStringRef { bool operator ()(llvm::StringRef r) const { return r.empty(); } }; struct EmptyBlock { bool operator ()(const PCHPredefinesBlock &r) const {return r.Data.empty();} }; } static bool EqualConcatenations(llvm::SmallVector L, PCHPredefinesBlocks R) { // First, sum up the lengths. unsigned LL = 0, RL = 0; for (unsigned I = 0, N = L.size(); I != N; ++I) { LL += L[I].size(); } for (unsigned I = 0, N = R.size(); I != N; ++I) { RL += R[I].Data.size(); } if (LL != RL) return false; if (LL == 0 && RL == 0) return true; // Kick out empty parts, they confuse the algorithm below. L.erase(std::remove_if(L.begin(), L.end(), EmptyStringRef()), L.end()); R.erase(std::remove_if(R.begin(), R.end(), EmptyBlock()), R.end()); // Do it the hard way. At this point, both vectors must be non-empty. llvm::StringRef LR = L[0], RR = R[0].Data; unsigned LI = 0, RI = 0, LN = L.size(), RN = R.size(); (void) RN; for (;;) { // Compare the current pieces. if (LR.size() == RR.size()) { // If they're the same length, it's pretty easy. if (LR != RR) return false; // Both pieces are done, advance. ++LI; ++RI; // If either string is done, they're both done, since they're the same // length. if (LI == LN) { assert(RI == RN && "Strings not the same length after all?"); return true; } LR = L[LI]; RR = R[RI].Data; } else if (LR.size() < RR.size()) { // Right piece is longer. if (!RR.startswith(LR)) return false; ++LI; assert(LI != LN && "Strings not the same length after all?"); RR = RR.substr(LR.size()); LR = L[LI]; } else { // Left piece is longer. if (!LR.startswith(RR)) return false; ++RI; assert(RI != RN && "Strings not the same length after all?"); LR = LR.substr(RR.size()); RR = R[RI].Data; } } } static std::pair FindMacro(const PCHPredefinesBlocks &Buffers, llvm::StringRef MacroDef) { std::pair Res; for (unsigned I = 0, N = Buffers.size(); I != N; ++I) { Res.second = Buffers[I].Data.find(MacroDef); if (Res.second != llvm::StringRef::npos) { Res.first = Buffers[I].BufferID; break; } } return Res; } bool PCHValidator::ReadPredefinesBuffer(const PCHPredefinesBlocks &Buffers, llvm::StringRef OriginalFileName, std::string &SuggestedPredefines, FileManager &FileMgr) { // We are in the context of an implicit include, so the predefines buffer will // have a #include entry for the PCH file itself (as normalized by the // preprocessor initialization). Find it and skip over it in the checking // below. llvm::SmallString<256> PCHInclude; PCHInclude += "#include \""; PCHInclude += NormalizeDashIncludePath(OriginalFileName, FileMgr); PCHInclude += "\"\n"; std::pair Split = llvm::StringRef(PP.getPredefines()).split(PCHInclude.str()); llvm::StringRef Left = Split.first, Right = Split.second; if (Left == PP.getPredefines()) { Error("Missing PCH include entry!"); return true; } // If the concatenation of all the PCH buffers is equal to the adjusted // command line, we're done. llvm::SmallVector CommandLine; CommandLine.push_back(Left); CommandLine.push_back(Right); if (EqualConcatenations(CommandLine, Buffers)) return false; SourceManager &SourceMgr = PP.getSourceManager(); // The predefines buffers are different. Determine what the differences are, // and whether they require us to reject the PCH file. llvm::SmallVector PCHLines; for (unsigned I = 0, N = Buffers.size(); I != N; ++I) Buffers[I].Data.split(PCHLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false); llvm::SmallVector CmdLineLines; Left.split(CmdLineLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false); // Pick out implicit #includes after the PCH and don't consider them for // validation; we will insert them into SuggestedPredefines so that the // preprocessor includes them. std::string IncludesAfterPCH; llvm::SmallVector AfterPCHLines; Right.split(AfterPCHLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false); for (unsigned i = 0, e = AfterPCHLines.size(); i != e; ++i) { if (AfterPCHLines[i].startswith("#include ")) { IncludesAfterPCH += AfterPCHLines[i]; IncludesAfterPCH += '\n'; } else { CmdLineLines.push_back(AfterPCHLines[i]); } } // Make sure we add the includes last into SuggestedPredefines before we // exit this function. struct AddIncludesRAII { std::string &SuggestedPredefines; std::string &IncludesAfterPCH; AddIncludesRAII(std::string &SuggestedPredefines, std::string &IncludesAfterPCH) : SuggestedPredefines(SuggestedPredefines), IncludesAfterPCH(IncludesAfterPCH) { } ~AddIncludesRAII() { SuggestedPredefines += IncludesAfterPCH; } } AddIncludes(SuggestedPredefines, IncludesAfterPCH); // Sort both sets of predefined buffer lines, since we allow some extra // definitions and they may appear at any point in the output. std::sort(CmdLineLines.begin(), CmdLineLines.end()); std::sort(PCHLines.begin(), PCHLines.end()); // Determine which predefines that were used to build the PCH file are missing // from the command line. std::vector MissingPredefines; std::set_difference(PCHLines.begin(), PCHLines.end(), CmdLineLines.begin(), CmdLineLines.end(), std::back_inserter(MissingPredefines)); bool MissingDefines = false; bool ConflictingDefines = false; for (unsigned I = 0, N = MissingPredefines.size(); I != N; ++I) { llvm::StringRef Missing = MissingPredefines[I]; if (Missing.startswith("#include ")) { // An -include was specified when generating the PCH; it is included in // the PCH, just ignore it. continue; } if (!Missing.startswith("#define ")) { Reader.Diag(diag::warn_pch_compiler_options_mismatch); return true; } // This is a macro definition. Determine the name of the macro we're // defining. std::string::size_type StartOfMacroName = strlen("#define "); std::string::size_type EndOfMacroName = Missing.find_first_of("( \n\r", StartOfMacroName); assert(EndOfMacroName != std::string::npos && "Couldn't find the end of the macro name"); llvm::StringRef MacroName = Missing.slice(StartOfMacroName, EndOfMacroName); // Determine whether this macro was given a different definition on the // command line. std::string MacroDefStart = "#define " + MacroName.str(); std::string::size_type MacroDefLen = MacroDefStart.size(); llvm::SmallVector::iterator ConflictPos = std::lower_bound(CmdLineLines.begin(), CmdLineLines.end(), MacroDefStart); for (; ConflictPos != CmdLineLines.end(); ++ConflictPos) { if (!ConflictPos->startswith(MacroDefStart)) { // Different macro; we're done. ConflictPos = CmdLineLines.end(); break; } assert(ConflictPos->size() > MacroDefLen && "Invalid #define in predefines buffer?"); if ((*ConflictPos)[MacroDefLen] != ' ' && (*ConflictPos)[MacroDefLen] != '(') continue; // Longer macro name; keep trying. // We found a conflicting macro definition. break; } if (ConflictPos != CmdLineLines.end()) { Reader.Diag(diag::warn_cmdline_conflicting_macro_def) << MacroName; // Show the definition of this macro within the PCH file. std::pair MacroLoc = FindMacro(Buffers, Missing); assert(MacroLoc.second!=llvm::StringRef::npos && "Unable to find macro!"); SourceLocation PCHMissingLoc = SourceMgr.getLocForStartOfFile(MacroLoc.first) .getFileLocWithOffset(MacroLoc.second); Reader.Diag(PCHMissingLoc, diag::note_pch_macro_defined_as) << MacroName; ConflictingDefines = true; continue; } // If the macro doesn't conflict, then we'll just pick up the macro // definition from the PCH file. Warn the user that they made a mistake. if (ConflictingDefines) continue; // Don't complain if there are already conflicting defs if (!MissingDefines) { Reader.Diag(diag::warn_cmdline_missing_macro_defs); MissingDefines = true; } // Show the definition of this macro within the PCH file. std::pair MacroLoc = FindMacro(Buffers, Missing); assert(MacroLoc.second!=llvm::StringRef::npos && "Unable to find macro!"); SourceLocation PCHMissingLoc = SourceMgr.getLocForStartOfFile(MacroLoc.first) .getFileLocWithOffset(MacroLoc.second); Reader.Diag(PCHMissingLoc, diag::note_using_macro_def_from_pch); } if (ConflictingDefines) return true; // Determine what predefines were introduced based on command-line // parameters that were not present when building the PCH // file. Extra #defines are okay, so long as the identifiers being // defined were not used within the precompiled header. std::vector ExtraPredefines; std::set_difference(CmdLineLines.begin(), CmdLineLines.end(), PCHLines.begin(), PCHLines.end(), std::back_inserter(ExtraPredefines)); for (unsigned I = 0, N = ExtraPredefines.size(); I != N; ++I) { llvm::StringRef &Extra = ExtraPredefines[I]; if (!Extra.startswith("#define ")) { Reader.Diag(diag::warn_pch_compiler_options_mismatch); return true; } // This is an extra macro definition. Determine the name of the // macro we're defining. std::string::size_type StartOfMacroName = strlen("#define "); std::string::size_type EndOfMacroName = Extra.find_first_of("( \n\r", StartOfMacroName); assert(EndOfMacroName != std::string::npos && "Couldn't find the end of the macro name"); llvm::StringRef MacroName = Extra.slice(StartOfMacroName, EndOfMacroName); // Check whether this name was used somewhere in the PCH file. If // so, defining it as a macro could change behavior, so we reject // the PCH file. if (IdentifierInfo *II = Reader.get(MacroName)) { Reader.Diag(diag::warn_macro_name_used_in_pch) << II; return true; } // Add this definition to the suggested predefines buffer. SuggestedPredefines += Extra; SuggestedPredefines += '\n'; } // If we get here, it's because the predefines buffer had compatible // contents. Accept the PCH file. return false; } void PCHValidator::ReadHeaderFileInfo(const HeaderFileInfo &HFI, unsigned ID) { PP.getHeaderSearchInfo().setHeaderFileInfoForUID(HFI, ID); ++NumHeaderInfos; } void PCHValidator::ReadCounter(unsigned Value) { PP.setCounterValue(Value); } //===----------------------------------------------------------------------===// // AST reader implementation //===----------------------------------------------------------------------===// void ASTReader::setDeserializationListener(ASTDeserializationListener *Listener) { DeserializationListener = Listener; } namespace { class ASTSelectorLookupTrait { ASTReader &Reader; public: struct data_type { SelectorID ID; ObjCMethodList Instance, Factory; }; typedef Selector external_key_type; typedef external_key_type internal_key_type; explicit ASTSelectorLookupTrait(ASTReader &Reader) : Reader(Reader) { } static bool EqualKey(const internal_key_type& a, const internal_key_type& b) { return a == b; } static unsigned ComputeHash(Selector Sel) { return serialization::ComputeHash(Sel); } // This hopefully will just get inlined and removed by the optimizer. static const internal_key_type& GetInternalKey(const external_key_type& x) { return x; } static std::pair ReadKeyDataLength(const unsigned char*& d) { using namespace clang::io; unsigned KeyLen = ReadUnalignedLE16(d); unsigned DataLen = ReadUnalignedLE16(d); return std::make_pair(KeyLen, DataLen); } internal_key_type ReadKey(const unsigned char* d, unsigned) { using namespace clang::io; SelectorTable &SelTable = Reader.getContext()->Selectors; unsigned N = ReadUnalignedLE16(d); IdentifierInfo *FirstII = Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d)); if (N == 0) return SelTable.getNullarySelector(FirstII); else if (N == 1) return SelTable.getUnarySelector(FirstII); llvm::SmallVector Args; Args.push_back(FirstII); for (unsigned I = 1; I != N; ++I) Args.push_back(Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d))); return SelTable.getSelector(N, Args.data()); } data_type ReadData(Selector, const unsigned char* d, unsigned DataLen) { using namespace clang::io; data_type Result; Result.ID = ReadUnalignedLE32(d); unsigned NumInstanceMethods = ReadUnalignedLE16(d); unsigned NumFactoryMethods = ReadUnalignedLE16(d); // Load instance methods ObjCMethodList *Prev = 0; for (unsigned I = 0; I != NumInstanceMethods; ++I) { ObjCMethodDecl *Method = cast(Reader.GetDecl(ReadUnalignedLE32(d))); if (!Result.Instance.Method) { // This is the first method, which is the easy case. Result.Instance.Method = Method; Prev = &Result.Instance; continue; } ObjCMethodList *Mem = Reader.getSema()->BumpAlloc.Allocate(); Prev->Next = new (Mem) ObjCMethodList(Method, 0); Prev = Prev->Next; } // Load factory methods Prev = 0; for (unsigned I = 0; I != NumFactoryMethods; ++I) { ObjCMethodDecl *Method = cast(Reader.GetDecl(ReadUnalignedLE32(d))); if (!Result.Factory.Method) { // This is the first method, which is the easy case. Result.Factory.Method = Method; Prev = &Result.Factory; continue; } ObjCMethodList *Mem = Reader.getSema()->BumpAlloc.Allocate(); Prev->Next = new (Mem) ObjCMethodList(Method, 0); Prev = Prev->Next; } return Result; } }; } // end anonymous namespace /// \brief The on-disk hash table used for the global method pool. typedef OnDiskChainedHashTable ASTSelectorLookupTable; namespace clang { class ASTIdentifierLookupTrait { ASTReader &Reader; ASTReader::PerFileData &F; // If we know the IdentifierInfo in advance, it is here and we will // not build a new one. Used when deserializing information about an // identifier that was constructed before the AST file was read. IdentifierInfo *KnownII; public: typedef IdentifierInfo * data_type; typedef const std::pair external_key_type; typedef external_key_type internal_key_type; ASTIdentifierLookupTrait(ASTReader &Reader, ASTReader::PerFileData &F, IdentifierInfo *II = 0) : Reader(Reader), F(F), KnownII(II) { } static bool EqualKey(const internal_key_type& a, const internal_key_type& b) { return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0 : false; } static unsigned ComputeHash(const internal_key_type& a) { return llvm::HashString(llvm::StringRef(a.first, a.second)); } // This hopefully will just get inlined and removed by the optimizer. static const internal_key_type& GetInternalKey(const external_key_type& x) { return x; } // This hopefully will just get inlined and removed by the optimizer. static const external_key_type& GetExternalKey(const internal_key_type& x) { return x; } static std::pair ReadKeyDataLength(const unsigned char*& d) { using namespace clang::io; unsigned DataLen = ReadUnalignedLE16(d); unsigned KeyLen = ReadUnalignedLE16(d); return std::make_pair(KeyLen, DataLen); } static std::pair ReadKey(const unsigned char* d, unsigned n) { assert(n >= 2 && d[n-1] == '\0'); return std::make_pair((const char*) d, n-1); } IdentifierInfo *ReadData(const internal_key_type& k, const unsigned char* d, unsigned DataLen) { using namespace clang::io; IdentID ID = ReadUnalignedLE32(d); bool IsInteresting = ID & 0x01; // Wipe out the "is interesting" bit. ID = ID >> 1; if (!IsInteresting) { // For uninteresting identifiers, just build the IdentifierInfo // and associate it with the persistent ID. IdentifierInfo *II = KnownII; if (!II) II = &Reader.getIdentifierTable().getOwn(k.first, k.first + k.second); Reader.SetIdentifierInfo(ID, II); II->setIsFromAST(); return II; } unsigned Bits = ReadUnalignedLE16(d); bool CPlusPlusOperatorKeyword = Bits & 0x01; Bits >>= 1; bool HasRevertedTokenIDToIdentifier = Bits & 0x01; Bits >>= 1; bool Poisoned = Bits & 0x01; Bits >>= 1; bool ExtensionToken = Bits & 0x01; Bits >>= 1; bool hasMacroDefinition = Bits & 0x01; Bits >>= 1; unsigned ObjCOrBuiltinID = Bits & 0x3FF; Bits >>= 10; assert(Bits == 0 && "Extra bits in the identifier?"); DataLen -= 6; // Build the IdentifierInfo itself and link the identifier ID with // the new IdentifierInfo. IdentifierInfo *II = KnownII; if (!II) II = &Reader.getIdentifierTable().getOwn(k.first, k.first + k.second); Reader.SetIdentifierInfo(ID, II); // Set or check the various bits in the IdentifierInfo structure. // Token IDs are read-only. if (HasRevertedTokenIDToIdentifier) II->RevertTokenIDToIdentifier(); II->setObjCOrBuiltinID(ObjCOrBuiltinID); assert(II->isExtensionToken() == ExtensionToken && "Incorrect extension token flag"); (void)ExtensionToken; II->setIsPoisoned(Poisoned); assert(II->isCPlusPlusOperatorKeyword() == CPlusPlusOperatorKeyword && "Incorrect C++ operator keyword flag"); (void)CPlusPlusOperatorKeyword; // If this identifier is a macro, deserialize the macro // definition. if (hasMacroDefinition) { uint32_t Offset = ReadUnalignedLE32(d); Reader.SetIdentifierIsMacro(II, F, Offset); DataLen -= 4; } // Read all of the declarations visible at global scope with this // name. if (Reader.getContext() == 0) return II; if (DataLen > 0) { llvm::SmallVector DeclIDs; for (; DataLen > 0; DataLen -= 4) DeclIDs.push_back(ReadUnalignedLE32(d)); Reader.SetGloballyVisibleDecls(II, DeclIDs); } II->setIsFromAST(); return II; } }; } // end anonymous namespace /// \brief The on-disk hash table used to contain information about /// all of the identifiers in the program. typedef OnDiskChainedHashTable ASTIdentifierLookupTable; namespace { class ASTDeclContextNameLookupTrait { ASTReader &Reader; public: /// \brief Pair of begin/end iterators for DeclIDs. typedef std::pair data_type; /// \brief Special internal key for declaration names. /// The hash table creates keys for comparison; we do not create /// a DeclarationName for the internal key to avoid deserializing types. struct DeclNameKey { DeclarationName::NameKind Kind; uint64_t Data; DeclNameKey() : Kind((DeclarationName::NameKind)0), Data(0) { } }; typedef DeclarationName external_key_type; typedef DeclNameKey internal_key_type; explicit ASTDeclContextNameLookupTrait(ASTReader &Reader) : Reader(Reader) { } static bool EqualKey(const internal_key_type& a, const internal_key_type& b) { return a.Kind == b.Kind && a.Data == b.Data; } unsigned ComputeHash(const DeclNameKey &Key) const { llvm::FoldingSetNodeID ID; ID.AddInteger(Key.Kind); switch (Key.Kind) { case DeclarationName::Identifier: case DeclarationName::CXXLiteralOperatorName: ID.AddString(((IdentifierInfo*)Key.Data)->getName()); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: ID.AddInteger(serialization::ComputeHash(Selector(Key.Data))); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: ID.AddInteger((TypeID)Key.Data); break; case DeclarationName::CXXOperatorName: ID.AddInteger((OverloadedOperatorKind)Key.Data); break; case DeclarationName::CXXUsingDirective: break; } return ID.ComputeHash(); } internal_key_type GetInternalKey(const external_key_type& Name) const { DeclNameKey Key; Key.Kind = Name.getNameKind(); switch (Name.getNameKind()) { case DeclarationName::Identifier: Key.Data = (uint64_t)Name.getAsIdentifierInfo(); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: Key.Data = (uint64_t)Name.getObjCSelector().getAsOpaquePtr(); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: Key.Data = Reader.GetTypeID(Name.getCXXNameType()); break; case DeclarationName::CXXOperatorName: Key.Data = Name.getCXXOverloadedOperator(); break; case DeclarationName::CXXLiteralOperatorName: Key.Data = (uint64_t)Name.getCXXLiteralIdentifier(); break; case DeclarationName::CXXUsingDirective: break; } return Key; } external_key_type GetExternalKey(const internal_key_type& Key) const { ASTContext *Context = Reader.getContext(); switch (Key.Kind) { case DeclarationName::Identifier: return DeclarationName((IdentifierInfo*)Key.Data); case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: return DeclarationName(Selector(Key.Data)); case DeclarationName::CXXConstructorName: return Context->DeclarationNames.getCXXConstructorName( Context->getCanonicalType(Reader.GetType(Key.Data))); case DeclarationName::CXXDestructorName: return Context->DeclarationNames.getCXXDestructorName( Context->getCanonicalType(Reader.GetType(Key.Data))); case DeclarationName::CXXConversionFunctionName: return Context->DeclarationNames.getCXXConversionFunctionName( Context->getCanonicalType(Reader.GetType(Key.Data))); case DeclarationName::CXXOperatorName: return Context->DeclarationNames.getCXXOperatorName( (OverloadedOperatorKind)Key.Data); case DeclarationName::CXXLiteralOperatorName: return Context->DeclarationNames.getCXXLiteralOperatorName( (IdentifierInfo*)Key.Data); case DeclarationName::CXXUsingDirective: return DeclarationName::getUsingDirectiveName(); } llvm_unreachable("Invalid Name Kind ?"); } static std::pair ReadKeyDataLength(const unsigned char*& d) { using namespace clang::io; unsigned KeyLen = ReadUnalignedLE16(d); unsigned DataLen = ReadUnalignedLE16(d); return std::make_pair(KeyLen, DataLen); } internal_key_type ReadKey(const unsigned char* d, unsigned) { using namespace clang::io; DeclNameKey Key; Key.Kind = (DeclarationName::NameKind)*d++; switch (Key.Kind) { case DeclarationName::Identifier: Key.Data = (uint64_t)Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d)); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: Key.Data = (uint64_t)Reader.DecodeSelector(ReadUnalignedLE32(d)).getAsOpaquePtr(); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: Key.Data = ReadUnalignedLE32(d); // TypeID break; case DeclarationName::CXXOperatorName: Key.Data = *d++; // OverloadedOperatorKind break; case DeclarationName::CXXLiteralOperatorName: Key.Data = (uint64_t)Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d)); break; case DeclarationName::CXXUsingDirective: break; } return Key; } data_type ReadData(internal_key_type, const unsigned char* d, unsigned DataLen) { using namespace clang::io; unsigned NumDecls = ReadUnalignedLE16(d); DeclID *Start = (DeclID *)d; return std::make_pair(Start, Start + NumDecls); } }; } // end anonymous namespace /// \brief The on-disk hash table used for the DeclContext's Name lookup table. typedef OnDiskChainedHashTable ASTDeclContextNameLookupTable; bool ASTReader::ReadDeclContextStorage(llvm::BitstreamCursor &Cursor, const std::pair &Offsets, DeclContextInfo &Info) { SavedStreamPosition SavedPosition(Cursor); // First the lexical decls. if (Offsets.first != 0) { Cursor.JumpToBit(Offsets.first); RecordData Record; const char *Blob; unsigned BlobLen; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.ReadRecord(Code, Record, &Blob, &BlobLen); if (RecCode != DECL_CONTEXT_LEXICAL) { Error("Expected lexical block"); return true; } Info.LexicalDecls = reinterpret_cast(Blob); Info.NumLexicalDecls = BlobLen / sizeof(KindDeclIDPair); } else { Info.LexicalDecls = 0; Info.NumLexicalDecls = 0; } // Now the lookup table. if (Offsets.second != 0) { Cursor.JumpToBit(Offsets.second); RecordData Record; const char *Blob; unsigned BlobLen; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.ReadRecord(Code, Record, &Blob, &BlobLen); if (RecCode != DECL_CONTEXT_VISIBLE) { Error("Expected visible lookup table block"); return true; } Info.NameLookupTableData = ASTDeclContextNameLookupTable::Create( (const unsigned char *)Blob + Record[0], (const unsigned char *)Blob, ASTDeclContextNameLookupTrait(*this)); } else { Info.NameLookupTableData = 0; } return false; } void ASTReader::Error(const char *Msg) { Diag(diag::err_fe_pch_malformed) << Msg; } /// \brief Tell the AST listener about the predefines buffers in the chain. bool ASTReader::CheckPredefinesBuffers() { if (Listener) return Listener->ReadPredefinesBuffer(PCHPredefinesBuffers, ActualOriginalFileName, SuggestedPredefines, FileMgr); return false; } //===----------------------------------------------------------------------===// // Source Manager Deserialization //===----------------------------------------------------------------------===// /// \brief Read the line table in the source manager block. /// \returns true if there was an error. bool ASTReader::ParseLineTable(PerFileData &F, llvm::SmallVectorImpl &Record) { unsigned Idx = 0; LineTableInfo &LineTable = SourceMgr.getLineTable(); // Parse the file names std::map FileIDs; for (int I = 0, N = Record[Idx++]; I != N; ++I) { // Extract the file name unsigned FilenameLen = Record[Idx++]; std::string Filename(&Record[Idx], &Record[Idx] + FilenameLen); Idx += FilenameLen; MaybeAddSystemRootToFilename(Filename); FileIDs[I] = LineTable.getLineTableFilenameID(Filename.c_str(), Filename.size()); } // Parse the line entries std::vector Entries; while (Idx < Record.size()) { int FID = Record[Idx++]; // Extract the line entries unsigned NumEntries = Record[Idx++]; assert(NumEntries && "Numentries is 00000"); Entries.clear(); Entries.reserve(NumEntries); for (unsigned I = 0; I != NumEntries; ++I) { unsigned FileOffset = Record[Idx++]; unsigned LineNo = Record[Idx++]; int FilenameID = FileIDs[Record[Idx++]]; SrcMgr::CharacteristicKind FileKind = (SrcMgr::CharacteristicKind)Record[Idx++]; unsigned IncludeOffset = Record[Idx++]; Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID, FileKind, IncludeOffset)); } LineTable.AddEntry(FID, Entries); } return false; } namespace { class ASTStatData { public: const ino_t ino; const dev_t dev; const mode_t mode; const time_t mtime; const off_t size; ASTStatData(ino_t i, dev_t d, mode_t mo, time_t m, off_t s) : ino(i), dev(d), mode(mo), mtime(m), size(s) {} }; class ASTStatLookupTrait { public: typedef const char *external_key_type; typedef const char *internal_key_type; typedef ASTStatData data_type; static unsigned ComputeHash(const char *path) { return llvm::HashString(path); } static internal_key_type GetInternalKey(const char *path) { return path; } static bool EqualKey(internal_key_type a, internal_key_type b) { return strcmp(a, b) == 0; } static std::pair ReadKeyDataLength(const unsigned char*& d) { unsigned KeyLen = (unsigned) clang::io::ReadUnalignedLE16(d); unsigned DataLen = (unsigned) *d++; return std::make_pair(KeyLen + 1, DataLen); } static internal_key_type ReadKey(const unsigned char *d, unsigned) { return (const char *)d; } static data_type ReadData(const internal_key_type, const unsigned char *d, unsigned /*DataLen*/) { using namespace clang::io; ino_t ino = (ino_t) ReadUnalignedLE32(d); dev_t dev = (dev_t) ReadUnalignedLE32(d); mode_t mode = (mode_t) ReadUnalignedLE16(d); time_t mtime = (time_t) ReadUnalignedLE64(d); off_t size = (off_t) ReadUnalignedLE64(d); return data_type(ino, dev, mode, mtime, size); } }; /// \brief stat() cache for precompiled headers. /// /// This cache is very similar to the stat cache used by pretokenized /// headers. class ASTStatCache : public FileSystemStatCache { typedef OnDiskChainedHashTable CacheTy; CacheTy *Cache; unsigned &NumStatHits, &NumStatMisses; public: ASTStatCache(const unsigned char *Buckets, const unsigned char *Base, unsigned &NumStatHits, unsigned &NumStatMisses) : Cache(0), NumStatHits(NumStatHits), NumStatMisses(NumStatMisses) { Cache = CacheTy::Create(Buckets, Base); } ~ASTStatCache() { delete Cache; } LookupResult getStat(const char *Path, struct stat &StatBuf, int *FileDescriptor) { // Do the lookup for the file's data in the AST file. CacheTy::iterator I = Cache->find(Path); // If we don't get a hit in the AST file just forward to 'stat'. if (I == Cache->end()) { ++NumStatMisses; return statChained(Path, StatBuf, FileDescriptor); } ++NumStatHits; ASTStatData Data = *I; StatBuf.st_ino = Data.ino; StatBuf.st_dev = Data.dev; StatBuf.st_mtime = Data.mtime; StatBuf.st_mode = Data.mode; StatBuf.st_size = Data.size; return CacheExists; } }; } // end anonymous namespace /// \brief Read a source manager block ASTReader::ASTReadResult ASTReader::ReadSourceManagerBlock(PerFileData &F) { using namespace SrcMgr; llvm::BitstreamCursor &SLocEntryCursor = F.SLocEntryCursor; // Set the source-location entry cursor to the current position in // the stream. This cursor will be used to read the contents of the // source manager block initially, and then lazily read // source-location entries as needed. SLocEntryCursor = F.Stream; // The stream itself is going to skip over the source manager block. if (F.Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } // Enter the source manager block. if (SLocEntryCursor.EnterSubBlock(SOURCE_MANAGER_BLOCK_ID)) { Error("malformed source manager block record in AST file"); return Failure; } RecordData Record; while (true) { unsigned Code = SLocEntryCursor.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (SLocEntryCursor.ReadBlockEnd()) { Error("error at end of Source Manager block in AST file"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. SLocEntryCursor.ReadSubBlockID(); if (SLocEntryCursor.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { SLocEntryCursor.ReadAbbrevRecord(); continue; } // Read a record. const char *BlobStart; unsigned BlobLen; Record.clear(); switch (SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case SM_LINE_TABLE: if (ParseLineTable(F, Record)) return Failure; break; case SM_SLOC_FILE_ENTRY: case SM_SLOC_BUFFER_ENTRY: case SM_SLOC_INSTANTIATION_ENTRY: // Once we hit one of the source location entries, we're done. return Success; } } } /// \brief If a header file is not found at the path that we expect it to be /// and the PCH file was moved from its original location, try to resolve the /// file by assuming that header+PCH were moved together and the header is in /// the same place relative to the PCH. static std::string resolveFileRelativeToOriginalDir(const std::string &Filename, const std::string &OriginalDir, const std::string &CurrDir) { assert(OriginalDir != CurrDir && "No point trying to resolve the file if the PCH dir didn't change"); using namespace llvm::sys; llvm::SmallString<128> filePath(Filename); fs::make_absolute(filePath); assert(path::is_absolute(OriginalDir)); llvm::SmallString<128> currPCHPath(CurrDir); path::const_iterator fileDirI = path::begin(path::parent_path(filePath)), fileDirE = path::end(path::parent_path(filePath)); path::const_iterator origDirI = path::begin(OriginalDir), origDirE = path::end(OriginalDir); // Skip the common path components from filePath and OriginalDir. while (fileDirI != fileDirE && origDirI != origDirE && *fileDirI == *origDirI) { ++fileDirI; ++origDirI; } for (; origDirI != origDirE; ++origDirI) path::append(currPCHPath, ".."); path::append(currPCHPath, fileDirI, fileDirE); path::append(currPCHPath, path::filename(Filename)); return currPCHPath.str(); } /// \brief Get a cursor that's correctly positioned for reading the source /// location entry with the given ID. ASTReader::PerFileData *ASTReader::SLocCursorForID(unsigned ID) { assert(ID != 0 && ID <= TotalNumSLocEntries && "SLocCursorForID should only be called for real IDs."); ID -= 1; PerFileData *F = 0; for (unsigned I = 0, N = Chain.size(); I != N; ++I) { F = Chain[N - I - 1]; if (ID < F->LocalNumSLocEntries) break; ID -= F->LocalNumSLocEntries; } assert(F && F->LocalNumSLocEntries > ID && "Chain corrupted"); F->SLocEntryCursor.JumpToBit(F->SLocOffsets[ID]); return F; } /// \brief Read in the source location entry with the given ID. ASTReader::ASTReadResult ASTReader::ReadSLocEntryRecord(unsigned ID) { if (ID == 0) return Success; if (ID > TotalNumSLocEntries) { Error("source location entry ID out-of-range for AST file"); return Failure; } PerFileData *F = SLocCursorForID(ID); llvm::BitstreamCursor &SLocEntryCursor = F->SLocEntryCursor; ++NumSLocEntriesRead; unsigned Code = SLocEntryCursor.ReadCode(); if (Code == llvm::bitc::END_BLOCK || Code == llvm::bitc::ENTER_SUBBLOCK || Code == llvm::bitc::DEFINE_ABBREV) { Error("incorrectly-formatted source location entry in AST file"); return Failure; } RecordData Record; const char *BlobStart; unsigned BlobLen; switch (SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: Error("incorrectly-formatted source location entry in AST file"); return Failure; case SM_SLOC_FILE_ENTRY: { std::string Filename(BlobStart, BlobStart + BlobLen); MaybeAddSystemRootToFilename(Filename); const FileEntry *File = FileMgr.getFile(Filename); if (File == 0 && !OriginalDir.empty() && !CurrentDir.empty() && OriginalDir != CurrentDir) { std::string resolved = resolveFileRelativeToOriginalDir(Filename, OriginalDir, CurrentDir); if (!resolved.empty()) File = FileMgr.getFile(resolved); } if (File == 0) File = FileMgr.getVirtualFile(Filename, (off_t)Record[4], (time_t)Record[5]); if (File == 0) { std::string ErrorStr = "could not find file '"; ErrorStr += Filename; ErrorStr += "' referenced by AST file"; Error(ErrorStr.c_str()); return Failure; } if (Record.size() < 6) { Error("source location entry is incorrect"); return Failure; } if (!DisableValidation && ((off_t)Record[4] != File->getSize() #if !defined(LLVM_ON_WIN32) // In our regression testing, the Windows file system seems to // have inconsistent modification times that sometimes // erroneously trigger this error-handling path. || (time_t)Record[5] != File->getModificationTime() #endif )) { Diag(diag::err_fe_pch_file_modified) << Filename; return Failure; } FileID FID = SourceMgr.createFileID(File, ReadSourceLocation(*F, Record[1]), (SrcMgr::CharacteristicKind)Record[2], ID, Record[0]); if (Record[3]) const_cast(SourceMgr.getSLocEntry(FID).getFile()) .setHasLineDirectives(); break; } case SM_SLOC_BUFFER_ENTRY: { const char *Name = BlobStart; unsigned Offset = Record[0]; unsigned Code = SLocEntryCursor.ReadCode(); Record.clear(); unsigned RecCode = SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen); if (RecCode != SM_SLOC_BUFFER_BLOB) { Error("AST record has invalid code"); return Failure; } llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(llvm::StringRef(BlobStart, BlobLen - 1), Name); FileID BufferID = SourceMgr.createFileIDForMemBuffer(Buffer, ID, Offset); if (strcmp(Name, "") == 0) { PCHPredefinesBlock Block = { BufferID, llvm::StringRef(BlobStart, BlobLen - 1) }; PCHPredefinesBuffers.push_back(Block); } break; } case SM_SLOC_INSTANTIATION_ENTRY: { SourceLocation SpellingLoc = ReadSourceLocation(*F, Record[1]); SourceMgr.createInstantiationLoc(SpellingLoc, ReadSourceLocation(*F, Record[2]), ReadSourceLocation(*F, Record[3]), Record[4], ID, Record[0]); break; } } return Success; } /// ReadBlockAbbrevs - Enter a subblock of the specified BlockID with the /// specified cursor. Read the abbreviations that are at the top of the block /// and then leave the cursor pointing into the block. bool ASTReader::ReadBlockAbbrevs(llvm::BitstreamCursor &Cursor, unsigned BlockID) { if (Cursor.EnterSubBlock(BlockID)) { Error("malformed block record in AST file"); return Failure; } while (true) { uint64_t Offset = Cursor.GetCurrentBitNo(); unsigned Code = Cursor.ReadCode(); // We expect all abbrevs to be at the start of the block. if (Code != llvm::bitc::DEFINE_ABBREV) { Cursor.JumpToBit(Offset); return false; } Cursor.ReadAbbrevRecord(); } } PreprocessedEntity *ASTReader::ReadMacroRecord(PerFileData &F, uint64_t Offset) { assert(PP && "Forgot to set Preprocessor ?"); llvm::BitstreamCursor &Stream = F.MacroCursor; // Keep track of where we are in the stream, then jump back there // after reading this macro. SavedStreamPosition SavedPosition(Stream); Stream.JumpToBit(Offset); RecordData Record; llvm::SmallVector MacroArgs; MacroInfo *Macro = 0; while (true) { unsigned Code = Stream.ReadCode(); switch (Code) { case llvm::bitc::END_BLOCK: return 0; case llvm::bitc::ENTER_SUBBLOCK: // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return 0; } continue; case llvm::bitc::DEFINE_ABBREV: Stream.ReadAbbrevRecord(); continue; default: break; } // Read a record. const char *BlobStart = 0; unsigned BlobLen = 0; Record.clear(); PreprocessorRecordTypes RecType = (PreprocessorRecordTypes)Stream.ReadRecord(Code, Record, BlobStart, BlobLen); switch (RecType) { case PP_MACRO_OBJECT_LIKE: case PP_MACRO_FUNCTION_LIKE: { // If we already have a macro, that means that we've hit the end // of the definition of the macro we were looking for. We're // done. if (Macro) return 0; IdentifierInfo *II = DecodeIdentifierInfo(Record[0]); if (II == 0) { Error("macro must have a name in AST file"); return 0; } SourceLocation Loc = ReadSourceLocation(F, Record[1]); bool isUsed = Record[2]; MacroInfo *MI = PP->AllocateMacroInfo(Loc); MI->setIsUsed(isUsed); MI->setIsFromAST(); unsigned NextIndex = 3; if (RecType == PP_MACRO_FUNCTION_LIKE) { // Decode function-like macro info. bool isC99VarArgs = Record[3]; bool isGNUVarArgs = Record[4]; MacroArgs.clear(); unsigned NumArgs = Record[5]; NextIndex = 6 + NumArgs; for (unsigned i = 0; i != NumArgs; ++i) MacroArgs.push_back(DecodeIdentifierInfo(Record[6+i])); // Install function-like macro info. MI->setIsFunctionLike(); if (isC99VarArgs) MI->setIsC99Varargs(); if (isGNUVarArgs) MI->setIsGNUVarargs(); MI->setArgumentList(MacroArgs.data(), MacroArgs.size(), PP->getPreprocessorAllocator()); } // Finally, install the macro. PP->setMacroInfo(II, MI); // Remember that we saw this macro last so that we add the tokens that // form its body to it. Macro = MI; if (NextIndex + 1 == Record.size() && PP->getPreprocessingRecord()) { // We have a macro definition. Load it now. PP->getPreprocessingRecord()->RegisterMacroDefinition(Macro, getMacroDefinition(Record[NextIndex])); } ++NumMacrosRead; break; } case PP_TOKEN: { // If we see a TOKEN before a PP_MACRO_*, then the file is // erroneous, just pretend we didn't see this. if (Macro == 0) break; Token Tok; Tok.startToken(); Tok.setLocation(ReadSourceLocation(F, Record[0])); Tok.setLength(Record[1]); if (IdentifierInfo *II = DecodeIdentifierInfo(Record[2])) Tok.setIdentifierInfo(II); Tok.setKind((tok::TokenKind)Record[3]); Tok.setFlag((Token::TokenFlags)Record[4]); Macro->AddTokenToBody(Tok); break; } } } return 0; } PreprocessedEntity *ASTReader::LoadPreprocessedEntity(PerFileData &F) { assert(PP && "Forgot to set Preprocessor ?"); unsigned Code = F.PreprocessorDetailCursor.ReadCode(); switch (Code) { case llvm::bitc::END_BLOCK: return 0; case llvm::bitc::ENTER_SUBBLOCK: Error("unexpected subblock record in preprocessor detail block"); return 0; case llvm::bitc::DEFINE_ABBREV: Error("unexpected abbrevation record in preprocessor detail block"); return 0; default: break; } if (!PP->getPreprocessingRecord()) { Error("no preprocessing record"); return 0; } // Read the record. PreprocessingRecord &PPRec = *PP->getPreprocessingRecord(); const char *BlobStart = 0; unsigned BlobLen = 0; RecordData Record; PreprocessorDetailRecordTypes RecType = (PreprocessorDetailRecordTypes)F.PreprocessorDetailCursor.ReadRecord( Code, Record, BlobStart, BlobLen); switch (RecType) { case PPD_MACRO_INSTANTIATION: { if (PreprocessedEntity *PE = PPRec.getPreprocessedEntity(Record[0])) return PE; MacroInstantiation *MI = new (PPRec) MacroInstantiation(DecodeIdentifierInfo(Record[3]), SourceRange(ReadSourceLocation(F, Record[1]), ReadSourceLocation(F, Record[2])), getMacroDefinition(Record[4])); PPRec.SetPreallocatedEntity(Record[0], MI); return MI; } case PPD_MACRO_DEFINITION: { if (PreprocessedEntity *PE = PPRec.getPreprocessedEntity(Record[0])) return PE; if (Record[1] > MacroDefinitionsLoaded.size()) { Error("out-of-bounds macro definition record"); return 0; } // Decode the identifier info and then check again; if the macro is // still defined and associated with the identifier, IdentifierInfo *II = DecodeIdentifierInfo(Record[4]); if (!MacroDefinitionsLoaded[Record[1] - 1]) { MacroDefinition *MD = new (PPRec) MacroDefinition(II, ReadSourceLocation(F, Record[5]), SourceRange( ReadSourceLocation(F, Record[2]), ReadSourceLocation(F, Record[3]))); PPRec.SetPreallocatedEntity(Record[0], MD); MacroDefinitionsLoaded[Record[1] - 1] = MD; if (DeserializationListener) DeserializationListener->MacroDefinitionRead(Record[1], MD); } return MacroDefinitionsLoaded[Record[1] - 1]; } case PPD_INCLUSION_DIRECTIVE: { if (PreprocessedEntity *PE = PPRec.getPreprocessedEntity(Record[0])) return PE; const char *FullFileNameStart = BlobStart + Record[3]; const FileEntry *File = PP->getFileManager().getFile(llvm::StringRef(FullFileNameStart, BlobLen - Record[3])); // FIXME: Stable encoding InclusionDirective::InclusionKind Kind = static_cast(Record[5]); InclusionDirective *ID = new (PPRec) InclusionDirective(PPRec, Kind, llvm::StringRef(BlobStart, Record[3]), Record[4], File, SourceRange(ReadSourceLocation(F, Record[1]), ReadSourceLocation(F, Record[2]))); PPRec.SetPreallocatedEntity(Record[0], ID); return ID; } } Error("invalid offset in preprocessor detail block"); return 0; } namespace { /// \brief Trait class used to search the on-disk hash table containing all of /// the header search information. /// /// The on-disk hash table contains a mapping from each header path to /// information about that header (how many times it has been included, its /// controlling macro, etc.). Note that we actually hash based on the /// filename, and support "deep" comparisons of file names based on current /// inode numbers, so that the search can cope with non-normalized path names /// and symlinks. class HeaderFileInfoTrait { const char *SearchPath; struct stat SearchPathStatBuf; llvm::Optional SearchPathStatResult; int StatSimpleCache(const char *Path, struct stat *StatBuf) { if (Path == SearchPath) { if (!SearchPathStatResult) SearchPathStatResult = stat(Path, &SearchPathStatBuf); *StatBuf = SearchPathStatBuf; return *SearchPathStatResult; } return stat(Path, StatBuf); } public: typedef const char *external_key_type; typedef const char *internal_key_type; typedef HeaderFileInfo data_type; HeaderFileInfoTrait(const char *SearchPath = 0) : SearchPath(SearchPath) { } static unsigned ComputeHash(const char *path) { return llvm::HashString(llvm::sys::path::filename(path)); } static internal_key_type GetInternalKey(const char *path) { return path; } bool EqualKey(internal_key_type a, internal_key_type b) { if (strcmp(a, b) == 0) return true; if (llvm::sys::path::filename(a) != llvm::sys::path::filename(b)) return false; // The file names match, but the path names don't. stat() the files to // see if they are the same. struct stat StatBufA, StatBufB; if (StatSimpleCache(a, &StatBufA) || StatSimpleCache(b, &StatBufB)) return false; return StatBufA.st_ino == StatBufB.st_ino; } static std::pair ReadKeyDataLength(const unsigned char*& d) { unsigned KeyLen = (unsigned) clang::io::ReadUnalignedLE16(d); unsigned DataLen = (unsigned) *d++; return std::make_pair(KeyLen + 1, DataLen); } static internal_key_type ReadKey(const unsigned char *d, unsigned) { return (const char *)d; } static data_type ReadData(const internal_key_type, const unsigned char *d, unsigned DataLen) { const unsigned char *End = d + DataLen; using namespace clang::io; HeaderFileInfo HFI; unsigned Flags = *d++; HFI.isImport = (Flags >> 3) & 0x01; HFI.DirInfo = (Flags >> 1) & 0x03; HFI.Resolved = Flags & 0x01; HFI.NumIncludes = ReadUnalignedLE16(d); HFI.ControllingMacroID = ReadUnalignedLE32(d); assert(End == d && "Wrong data length in HeaderFileInfo deserialization"); (void)End; // This HeaderFileInfo was externally loaded. HFI.External = true; return HFI; } }; } /// \brief The on-disk hash table used for the global method pool. typedef OnDiskChainedHashTable HeaderFileInfoLookupTable; void ASTReader::SetIdentifierIsMacro(IdentifierInfo *II, PerFileData &F, uint64_t Offset) { // Note that this identifier has a macro definition. II->setHasMacroDefinition(true); // Adjust the offset based on our position in the chain. for (unsigned I = 0, N = Chain.size(); I != N; ++I) { if (Chain[I] == &F) break; Offset += Chain[I]->SizeInBits; } UnreadMacroRecordOffsets[II] = Offset; } void ASTReader::ReadDefinedMacros() { for (unsigned I = 0, N = Chain.size(); I != N; ++I) { PerFileData &F = *Chain[N - I - 1]; llvm::BitstreamCursor &MacroCursor = F.MacroCursor; // If there was no preprocessor block, skip this file. if (!MacroCursor.getBitStreamReader()) continue; llvm::BitstreamCursor Cursor = MacroCursor; Cursor.JumpToBit(F.MacroStartOffset); RecordData Record; while (true) { unsigned Code = Cursor.ReadCode(); if (Code == llvm::bitc::END_BLOCK) break; if (Code == llvm::bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Cursor.ReadSubBlockID(); if (Cursor.SkipBlock()) { Error("malformed block record in AST file"); return; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Cursor.ReadAbbrevRecord(); continue; } // Read a record. const char *BlobStart; unsigned BlobLen; Record.clear(); switch (Cursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case PP_MACRO_OBJECT_LIKE: case PP_MACRO_FUNCTION_LIKE: DecodeIdentifierInfo(Record[0]); break; case PP_TOKEN: // Ignore tokens. break; } } } // Drain the unread macro-record offsets map. while (!UnreadMacroRecordOffsets.empty()) LoadMacroDefinition(UnreadMacroRecordOffsets.begin()); } void ASTReader::LoadMacroDefinition( llvm::DenseMap::iterator Pos) { assert(Pos != UnreadMacroRecordOffsets.end() && "Unknown macro definition"); PerFileData *F = 0; uint64_t Offset = Pos->second; UnreadMacroRecordOffsets.erase(Pos); for (unsigned I = 0, N = Chain.size(); I != N; ++I) { if (Offset < Chain[I]->SizeInBits) { F = Chain[I]; break; } Offset -= Chain[I]->SizeInBits; } if (!F) { Error("Malformed macro record offset"); return; } ReadMacroRecord(*F, Offset); } void ASTReader::LoadMacroDefinition(IdentifierInfo *II) { llvm::DenseMap::iterator Pos = UnreadMacroRecordOffsets.find(II); LoadMacroDefinition(Pos); } MacroDefinition *ASTReader::getMacroDefinition(MacroID ID) { if (ID == 0 || ID > MacroDefinitionsLoaded.size()) return 0; if (!MacroDefinitionsLoaded[ID - 1]) { unsigned Index = ID - 1; for (unsigned I = 0, N = Chain.size(); I != N; ++I) { PerFileData &F = *Chain[N - I - 1]; if (Index < F.LocalNumMacroDefinitions) { SavedStreamPosition SavedPosition(F.PreprocessorDetailCursor); F.PreprocessorDetailCursor.JumpToBit(F.MacroDefinitionOffsets[Index]); LoadPreprocessedEntity(F); break; } Index -= F.LocalNumMacroDefinitions; } assert(MacroDefinitionsLoaded[ID - 1] && "Broken chain"); } return MacroDefinitionsLoaded[ID - 1]; } /// \brief If we are loading a relocatable PCH file, and the filename is /// not an absolute path, add the system root to the beginning of the file /// name. void ASTReader::MaybeAddSystemRootToFilename(std::string &Filename) { // If this is not a relocatable PCH file, there's nothing to do. if (!RelocatablePCH) return; if (Filename.empty() || llvm::sys::path::is_absolute(Filename)) return; if (isysroot == 0) { // If no system root was given, default to '/' Filename.insert(Filename.begin(), '/'); return; } unsigned Length = strlen(isysroot); if (isysroot[Length - 1] != '/') Filename.insert(Filename.begin(), '/'); Filename.insert(Filename.begin(), isysroot, isysroot + Length); } ASTReader::ASTReadResult ASTReader::ReadASTBlock(PerFileData &F) { llvm::BitstreamCursor &Stream = F.Stream; if (Stream.EnterSubBlock(AST_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } // Read all of the records and blocks for the ASt file. RecordData Record; bool First = true; while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) { Error("error at end of module block in AST file"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { switch (Stream.ReadSubBlockID()) { case DECLTYPES_BLOCK_ID: // We lazily load the decls block, but we want to set up the // DeclsCursor cursor to point into it. Clone our current bitcode // cursor to it, enter the block and read the abbrevs in that block. // With the main cursor, we just skip over it. F.DeclsCursor = Stream; if (Stream.SkipBlock() || // Skip with the main cursor. // Read the abbrevs. ReadBlockAbbrevs(F.DeclsCursor, DECLTYPES_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } break; case DECL_UPDATES_BLOCK_ID: if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } break; case PREPROCESSOR_BLOCK_ID: F.MacroCursor = Stream; if (PP) PP->setExternalSource(this); if (Stream.SkipBlock() || ReadBlockAbbrevs(F.MacroCursor, PREPROCESSOR_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } F.MacroStartOffset = F.MacroCursor.GetCurrentBitNo(); break; case PREPROCESSOR_DETAIL_BLOCK_ID: F.PreprocessorDetailCursor = Stream; if (Stream.SkipBlock() || ReadBlockAbbrevs(F.PreprocessorDetailCursor, PREPROCESSOR_DETAIL_BLOCK_ID)) { Error("malformed preprocessor detail record in AST file"); return Failure; } F.PreprocessorDetailStartOffset = F.PreprocessorDetailCursor.GetCurrentBitNo(); break; case SOURCE_MANAGER_BLOCK_ID: switch (ReadSourceManagerBlock(F)) { case Success: break; case Failure: Error("malformed source manager block in AST file"); return Failure; case IgnorePCH: return IgnorePCH; } break; } First = false; continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read and process a record. Record.clear(); const char *BlobStart = 0; unsigned BlobLen = 0; switch ((ASTRecordTypes)Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case METADATA: { if (Record[0] != VERSION_MAJOR && !DisableValidation) { Diag(Record[0] < VERSION_MAJOR? diag::warn_pch_version_too_old : diag::warn_pch_version_too_new); return IgnorePCH; } RelocatablePCH = Record[4]; if (Listener) { std::string TargetTriple(BlobStart, BlobLen); if (Listener->ReadTargetTriple(TargetTriple)) return IgnorePCH; } break; } case CHAINED_METADATA: { if (!First) { Error("CHAINED_METADATA is not first record in block"); return Failure; } if (Record[0] != VERSION_MAJOR && !DisableValidation) { Diag(Record[0] < VERSION_MAJOR? diag::warn_pch_version_too_old : diag::warn_pch_version_too_new); return IgnorePCH; } // Load the chained file, which is always a PCH file. switch(ReadASTCore(llvm::StringRef(BlobStart, BlobLen), PCH)) { case Failure: return Failure; // If we have to ignore the dependency, we'll have to ignore this too. case IgnorePCH: return IgnorePCH; case Success: break; } break; } case TYPE_OFFSET: if (F.LocalNumTypes != 0) { Error("duplicate TYPE_OFFSET record in AST file"); return Failure; } F.TypeOffsets = (const uint32_t *)BlobStart; F.LocalNumTypes = Record[0]; break; case DECL_OFFSET: if (F.LocalNumDecls != 0) { Error("duplicate DECL_OFFSET record in AST file"); return Failure; } F.DeclOffsets = (const uint32_t *)BlobStart; F.LocalNumDecls = Record[0]; break; case TU_UPDATE_LEXICAL: { DeclContextInfo Info = { /* No visible information */ 0, reinterpret_cast(BlobStart), BlobLen / sizeof(KindDeclIDPair) }; DeclContextOffsets[Context ? Context->getTranslationUnitDecl() : 0] .push_back(Info); break; } case UPDATE_VISIBLE: { serialization::DeclID ID = Record[0]; void *Table = ASTDeclContextNameLookupTable::Create( (const unsigned char *)BlobStart + Record[1], (const unsigned char *)BlobStart, ASTDeclContextNameLookupTrait(*this)); if (ID == 1 && Context) { // Is it the TU? DeclContextInfo Info = { Table, /* No lexical inforamtion */ 0, 0 }; DeclContextOffsets[Context->getTranslationUnitDecl()].push_back(Info); } else PendingVisibleUpdates[ID].push_back(Table); break; } case REDECLS_UPDATE_LATEST: { assert(Record.size() % 2 == 0 && "Expected pairs of DeclIDs"); for (unsigned i = 0, e = Record.size(); i < e; i += 2) { DeclID First = Record[i], Latest = Record[i+1]; assert((FirstLatestDeclIDs.find(First) == FirstLatestDeclIDs.end() || Latest > FirstLatestDeclIDs[First]) && "The new latest is supposed to come after the previous latest"); FirstLatestDeclIDs[First] = Latest; } break; } case LANGUAGE_OPTIONS: if (ParseLanguageOptions(Record) && !DisableValidation) return IgnorePCH; break; case IDENTIFIER_TABLE: F.IdentifierTableData = BlobStart; if (Record[0]) { F.IdentifierLookupTable = ASTIdentifierLookupTable::Create( (const unsigned char *)F.IdentifierTableData + Record[0], (const unsigned char *)F.IdentifierTableData, ASTIdentifierLookupTrait(*this, F)); if (PP) PP->getIdentifierTable().setExternalIdentifierLookup(this); } break; case IDENTIFIER_OFFSET: if (F.LocalNumIdentifiers != 0) { Error("duplicate IDENTIFIER_OFFSET record in AST file"); return Failure; } F.IdentifierOffsets = (const uint32_t *)BlobStart; F.LocalNumIdentifiers = Record[0]; break; case EXTERNAL_DEFINITIONS: // Optimization for the first block. if (ExternalDefinitions.empty()) ExternalDefinitions.swap(Record); else ExternalDefinitions.insert(ExternalDefinitions.end(), Record.begin(), Record.end()); break; case SPECIAL_TYPES: // Optimization for the first block if (SpecialTypes.empty()) SpecialTypes.swap(Record); else SpecialTypes.insert(SpecialTypes.end(), Record.begin(), Record.end()); break; case STATISTICS: TotalNumStatements += Record[0]; TotalNumMacros += Record[1]; TotalLexicalDeclContexts += Record[2]; TotalVisibleDeclContexts += Record[3]; break; case TENTATIVE_DEFINITIONS: // Optimization for the first block. if (TentativeDefinitions.empty()) TentativeDefinitions.swap(Record); else TentativeDefinitions.insert(TentativeDefinitions.end(), Record.begin(), Record.end()); break; case UNUSED_FILESCOPED_DECLS: // Optimization for the first block. if (UnusedFileScopedDecls.empty()) UnusedFileScopedDecls.swap(Record); else UnusedFileScopedDecls.insert(UnusedFileScopedDecls.end(), Record.begin(), Record.end()); break; case WEAK_UNDECLARED_IDENTIFIERS: // Later blocks overwrite earlier ones. WeakUndeclaredIdentifiers.swap(Record); break; case LOCALLY_SCOPED_EXTERNAL_DECLS: // Optimization for the first block. if (LocallyScopedExternalDecls.empty()) LocallyScopedExternalDecls.swap(Record); else LocallyScopedExternalDecls.insert(LocallyScopedExternalDecls.end(), Record.begin(), Record.end()); break; case SELECTOR_OFFSETS: F.SelectorOffsets = (const uint32_t *)BlobStart; F.LocalNumSelectors = Record[0]; break; case METHOD_POOL: F.SelectorLookupTableData = (const unsigned char *)BlobStart; if (Record[0]) F.SelectorLookupTable = ASTSelectorLookupTable::Create( F.SelectorLookupTableData + Record[0], F.SelectorLookupTableData, ASTSelectorLookupTrait(*this)); TotalNumMethodPoolEntries += Record[1]; break; case REFERENCED_SELECTOR_POOL: F.ReferencedSelectorsData.swap(Record); break; case PP_COUNTER_VALUE: if (!Record.empty() && Listener) Listener->ReadCounter(Record[0]); break; case SOURCE_LOCATION_OFFSETS: F.SLocOffsets = (const uint32_t *)BlobStart; F.LocalNumSLocEntries = Record[0]; F.LocalSLocSize = Record[1]; break; case SOURCE_LOCATION_PRELOADS: if (PreloadSLocEntries.empty()) PreloadSLocEntries.swap(Record); else PreloadSLocEntries.insert(PreloadSLocEntries.end(), Record.begin(), Record.end()); break; case STAT_CACHE: { if (!DisableStatCache) { ASTStatCache *MyStatCache = new ASTStatCache((const unsigned char *)BlobStart + Record[0], (const unsigned char *)BlobStart, NumStatHits, NumStatMisses); FileMgr.addStatCache(MyStatCache); F.StatCache = MyStatCache; } break; } case EXT_VECTOR_DECLS: // Optimization for the first block. if (ExtVectorDecls.empty()) ExtVectorDecls.swap(Record); else ExtVectorDecls.insert(ExtVectorDecls.end(), Record.begin(), Record.end()); break; case VTABLE_USES: // Later tables overwrite earlier ones. VTableUses.swap(Record); break; case DYNAMIC_CLASSES: // Optimization for the first block. if (DynamicClasses.empty()) DynamicClasses.swap(Record); else DynamicClasses.insert(DynamicClasses.end(), Record.begin(), Record.end()); break; case PENDING_IMPLICIT_INSTANTIATIONS: F.PendingInstantiations.swap(Record); break; case SEMA_DECL_REFS: // Later tables overwrite earlier ones. SemaDeclRefs.swap(Record); break; case ORIGINAL_FILE_NAME: // The primary AST will be the last to get here, so it will be the one // that's used. ActualOriginalFileName.assign(BlobStart, BlobLen); OriginalFileName = ActualOriginalFileName; MaybeAddSystemRootToFilename(OriginalFileName); break; case ORIGINAL_PCH_DIR: // The primary AST will be the last to get here, so it will be the one // that's used. OriginalDir.assign(BlobStart, BlobLen); break; case VERSION_CONTROL_BRANCH_REVISION: { const std::string &CurBranch = getClangFullRepositoryVersion(); llvm::StringRef ASTBranch(BlobStart, BlobLen); if (llvm::StringRef(CurBranch) != ASTBranch && !DisableValidation) { Diag(diag::warn_pch_different_branch) << ASTBranch << CurBranch; return IgnorePCH; } break; } case MACRO_DEFINITION_OFFSETS: F.MacroDefinitionOffsets = (const uint32_t *)BlobStart; F.NumPreallocatedPreprocessingEntities = Record[0]; F.LocalNumMacroDefinitions = Record[1]; break; case DECL_UPDATE_OFFSETS: { if (Record.size() % 2 != 0) { Error("invalid DECL_UPDATE_OFFSETS block in AST file"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; I += 2) DeclUpdateOffsets[static_cast(Record[I])] .push_back(std::make_pair(&F, Record[I+1])); break; } case DECL_REPLACEMENTS: { if (Record.size() % 2 != 0) { Error("invalid DECL_REPLACEMENTS block in AST file"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; I += 2) ReplacedDecls[static_cast(Record[I])] = std::make_pair(&F, Record[I+1]); break; } case CXX_BASE_SPECIFIER_OFFSETS: { if (F.LocalNumCXXBaseSpecifiers != 0) { Error("duplicate CXX_BASE_SPECIFIER_OFFSETS record in AST file"); return Failure; } F.LocalNumCXXBaseSpecifiers = Record[0]; F.CXXBaseSpecifiersOffsets = (const uint32_t *)BlobStart; break; } case DIAG_PRAGMA_MAPPINGS: if (Record.size() % 2 != 0) { Error("invalid DIAG_USER_MAPPINGS block in AST file"); return Failure; } if (PragmaDiagMappings.empty()) PragmaDiagMappings.swap(Record); else PragmaDiagMappings.insert(PragmaDiagMappings.end(), Record.begin(), Record.end()); break; case CUDA_SPECIAL_DECL_REFS: // Later tables overwrite earlier ones. CUDASpecialDeclRefs.swap(Record); break; case HEADER_SEARCH_TABLE: F.HeaderFileInfoTableData = BlobStart; F.LocalNumHeaderFileInfos = Record[1]; if (Record[0]) { F.HeaderFileInfoTable = HeaderFileInfoLookupTable::Create( (const unsigned char *)F.HeaderFileInfoTableData + Record[0], (const unsigned char *)F.HeaderFileInfoTableData); if (PP) PP->getHeaderSearchInfo().SetExternalSource(this); } break; case FP_PRAGMA_OPTIONS: // Later tables overwrite earlier ones. FPPragmaOptions.swap(Record); break; case OPENCL_EXTENSIONS: // Later tables overwrite earlier ones. OpenCLExtensions.swap(Record); break; } First = false; } Error("premature end of bitstream in AST file"); return Failure; } ASTReader::ASTReadResult ASTReader::ReadAST(const std::string &FileName, ASTFileType Type) { switch(ReadASTCore(FileName, Type)) { case Failure: return Failure; case IgnorePCH: return IgnorePCH; case Success: break; } // Here comes stuff that we only do once the entire chain is loaded. // Allocate space for loaded slocentries, identifiers, decls and types. unsigned TotalNumIdentifiers = 0, TotalNumTypes = 0, TotalNumDecls = 0, TotalNumPreallocatedPreprocessingEntities = 0, TotalNumMacroDefs = 0, TotalNumSelectors = 0; for (unsigned I = 0, N = Chain.size(); I != N; ++I) { TotalNumSLocEntries += Chain[I]->LocalNumSLocEntries; NextSLocOffset += Chain[I]->LocalSLocSize; TotalNumIdentifiers += Chain[I]->LocalNumIdentifiers; TotalNumTypes += Chain[I]->LocalNumTypes; TotalNumDecls += Chain[I]->LocalNumDecls; TotalNumPreallocatedPreprocessingEntities += Chain[I]->NumPreallocatedPreprocessingEntities; TotalNumMacroDefs += Chain[I]->LocalNumMacroDefinitions; TotalNumSelectors += Chain[I]->LocalNumSelectors; } SourceMgr.PreallocateSLocEntries(this, TotalNumSLocEntries, NextSLocOffset); IdentifiersLoaded.resize(TotalNumIdentifiers); TypesLoaded.resize(TotalNumTypes); DeclsLoaded.resize(TotalNumDecls); MacroDefinitionsLoaded.resize(TotalNumMacroDefs); if (PP) { if (TotalNumIdentifiers > 0) PP->getHeaderSearchInfo().SetExternalLookup(this); if (TotalNumPreallocatedPreprocessingEntities > 0) { if (!PP->getPreprocessingRecord()) PP->createPreprocessingRecord(); PP->getPreprocessingRecord()->SetExternalSource(*this, TotalNumPreallocatedPreprocessingEntities); } } SelectorsLoaded.resize(TotalNumSelectors); // Preload SLocEntries. for (unsigned I = 0, N = PreloadSLocEntries.size(); I != N; ++I) { ASTReadResult Result = ReadSLocEntryRecord(PreloadSLocEntries[I]); if (Result != Success) return Result; } // Check the predefines buffers. if (!DisableValidation && CheckPredefinesBuffers()) return IgnorePCH; if (PP) { // Initialization of keywords and pragmas occurs before the // AST file is read, so there may be some identifiers that were // loaded into the IdentifierTable before we intercepted the // creation of identifiers. Iterate through the list of known // identifiers and determine whether we have to establish // preprocessor definitions or top-level identifier declaration // chains for those identifiers. // // We copy the IdentifierInfo pointers to a small vector first, // since de-serializing declarations or macro definitions can add // new entries into the identifier table, invalidating the // iterators. llvm::SmallVector Identifiers; for (IdentifierTable::iterator Id = PP->getIdentifierTable().begin(), IdEnd = PP->getIdentifierTable().end(); Id != IdEnd; ++Id) Identifiers.push_back(Id->second); // We need to search the tables in all files. for (unsigned J = 0, M = Chain.size(); J != M; ++J) { ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)Chain[J]->IdentifierLookupTable; // Not all AST files necessarily have identifier tables, only the useful // ones. if (!IdTable) continue; for (unsigned I = 0, N = Identifiers.size(); I != N; ++I) { IdentifierInfo *II = Identifiers[I]; // Look in the on-disk hash tables for an entry for this identifier ASTIdentifierLookupTrait Info(*this, *Chain[J], II); std::pair Key(II->getNameStart(),II->getLength()); ASTIdentifierLookupTable::iterator Pos = IdTable->find(Key, &Info); if (Pos == IdTable->end()) continue; // Dereferencing the iterator has the effect of populating the // IdentifierInfo node with the various declarations it needs. (void)*Pos; } } } if (Context) InitializeContext(*Context); if (DeserializationListener) DeserializationListener->ReaderInitialized(this); // If this AST file is a precompiled preamble, then set the main file ID of // the source manager to the file source file from which the preamble was // built. This is the only valid way to use a precompiled preamble. if (Type == Preamble) { SourceLocation Loc = SourceMgr.getLocation(FileMgr.getFile(getOriginalSourceFile()), 1, 1); if (Loc.isValid()) { std::pair Decomposed = SourceMgr.getDecomposedLoc(Loc); SourceMgr.SetPreambleFileID(Decomposed.first); } } return Success; } ASTReader::ASTReadResult ASTReader::ReadASTCore(llvm::StringRef FileName, ASTFileType Type) { PerFileData *Prev = Chain.empty() ? 0 : Chain.back(); Chain.push_back(new PerFileData(Type)); PerFileData &F = *Chain.back(); if (Prev) Prev->NextInSource = &F; else FirstInSource = &F; F.Loaders.push_back(Prev); // Set the AST file name. F.FileName = FileName; if (FileName != "-") { CurrentDir = llvm::sys::path::parent_path(FileName); if (CurrentDir.empty()) CurrentDir = "."; } if (!ASTBuffers.empty()) { F.Buffer.reset(ASTBuffers.front()); ASTBuffers.pop_front(); assert(F.Buffer && "Passed null buffer"); } else { // Open the AST file. // // FIXME: This shouldn't be here, we should just take a raw_ostream. std::string ErrStr; llvm::error_code ec; if (FileName == "-") { ec = llvm::MemoryBuffer::getSTDIN(F.Buffer); if (ec) ErrStr = ec.message(); } else F.Buffer.reset(FileMgr.getBufferForFile(FileName, &ErrStr)); if (!F.Buffer) { Error(ErrStr.c_str()); return IgnorePCH; } } // Initialize the stream F.StreamFile.init((const unsigned char *)F.Buffer->getBufferStart(), (const unsigned char *)F.Buffer->getBufferEnd()); llvm::BitstreamCursor &Stream = F.Stream; Stream.init(F.StreamFile); F.SizeInBits = F.Buffer->getBufferSize() * 8; // Sniff for the signature. if (Stream.Read(8) != 'C' || Stream.Read(8) != 'P' || Stream.Read(8) != 'C' || Stream.Read(8) != 'H') { Diag(diag::err_not_a_pch_file) << FileName; return Failure; } while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code != llvm::bitc::ENTER_SUBBLOCK) { Error("invalid record at top-level of AST file"); return Failure; } unsigned BlockID = Stream.ReadSubBlockID(); // We only know the AST subblock ID. switch (BlockID) { case llvm::bitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) { Error("malformed BlockInfoBlock in AST file"); return Failure; } break; case AST_BLOCK_ID: switch (ReadASTBlock(F)) { case Success: break; case Failure: return Failure; case IgnorePCH: // FIXME: We could consider reading through to the end of this // AST block, skipping subblocks, to see if there are other // AST blocks elsewhere. // Clear out any preallocated source location entries, so that // the source manager does not try to resolve them later. SourceMgr.ClearPreallocatedSLocEntries(); // Remove the stat cache. if (F.StatCache) FileMgr.removeStatCache((ASTStatCache*)F.StatCache); return IgnorePCH; } break; default: if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } break; } } return Success; } void ASTReader::setPreprocessor(Preprocessor &pp) { PP = &pp; unsigned TotalNum = 0; for (unsigned I = 0, N = Chain.size(); I != N; ++I) TotalNum += Chain[I]->NumPreallocatedPreprocessingEntities; if (TotalNum) { if (!PP->getPreprocessingRecord()) PP->createPreprocessingRecord(); PP->getPreprocessingRecord()->SetExternalSource(*this, TotalNum); } } void ASTReader::InitializeContext(ASTContext &Ctx) { Context = &Ctx; assert(Context && "Passed null context!"); assert(PP && "Forgot to set Preprocessor ?"); PP->getIdentifierTable().setExternalIdentifierLookup(this); PP->getHeaderSearchInfo().SetExternalLookup(this); PP->setExternalSource(this); PP->getHeaderSearchInfo().SetExternalSource(this); // If we have an update block for the TU waiting, we have to add it before // deserializing the decl. DeclContextOffsetsMap::iterator DCU = DeclContextOffsets.find(0); if (DCU != DeclContextOffsets.end()) { // Insertion could invalidate map, so grab vector. DeclContextInfos T; T.swap(DCU->second); DeclContextOffsets.erase(DCU); DeclContextOffsets[Ctx.getTranslationUnitDecl()].swap(T); } // Load the translation unit declaration GetTranslationUnitDecl(); // Load the special types. Context->setBuiltinVaListType( GetType(SpecialTypes[SPECIAL_TYPE_BUILTIN_VA_LIST])); if (unsigned Id = SpecialTypes[SPECIAL_TYPE_OBJC_ID]) Context->setObjCIdType(GetType(Id)); if (unsigned Sel = SpecialTypes[SPECIAL_TYPE_OBJC_SELECTOR]) Context->setObjCSelType(GetType(Sel)); if (unsigned Proto = SpecialTypes[SPECIAL_TYPE_OBJC_PROTOCOL]) Context->setObjCProtoType(GetType(Proto)); if (unsigned Class = SpecialTypes[SPECIAL_TYPE_OBJC_CLASS]) Context->setObjCClassType(GetType(Class)); if (unsigned String = SpecialTypes[SPECIAL_TYPE_CF_CONSTANT_STRING]) Context->setCFConstantStringType(GetType(String)); if (unsigned FastEnum = SpecialTypes[SPECIAL_TYPE_OBJC_FAST_ENUMERATION_STATE]) Context->setObjCFastEnumerationStateType(GetType(FastEnum)); if (unsigned File = SpecialTypes[SPECIAL_TYPE_FILE]) { QualType FileType = GetType(File); if (FileType.isNull()) { Error("FILE type is NULL"); return; } if (const TypedefType *Typedef = FileType->getAs()) Context->setFILEDecl(Typedef->getDecl()); else { const TagType *Tag = FileType->getAs(); if (!Tag) { Error("Invalid FILE type in AST file"); return; } Context->setFILEDecl(Tag->getDecl()); } } if (unsigned Jmp_buf = SpecialTypes[SPECIAL_TYPE_jmp_buf]) { QualType Jmp_bufType = GetType(Jmp_buf); if (Jmp_bufType.isNull()) { Error("jmp_bug type is NULL"); return; } if (const TypedefType *Typedef = Jmp_bufType->getAs()) Context->setjmp_bufDecl(Typedef->getDecl()); else { const TagType *Tag = Jmp_bufType->getAs(); if (!Tag) { Error("Invalid jmp_buf type in AST file"); return; } Context->setjmp_bufDecl(Tag->getDecl()); } } if (unsigned Sigjmp_buf = SpecialTypes[SPECIAL_TYPE_sigjmp_buf]) { QualType Sigjmp_bufType = GetType(Sigjmp_buf); if (Sigjmp_bufType.isNull()) { Error("sigjmp_buf type is NULL"); return; } if (const TypedefType *Typedef = Sigjmp_bufType->getAs()) Context->setsigjmp_bufDecl(Typedef->getDecl()); else { const TagType *Tag = Sigjmp_bufType->getAs(); assert(Tag && "Invalid sigjmp_buf type in AST file"); Context->setsigjmp_bufDecl(Tag->getDecl()); } } if (unsigned ObjCIdRedef = SpecialTypes[SPECIAL_TYPE_OBJC_ID_REDEFINITION]) Context->ObjCIdRedefinitionType = GetType(ObjCIdRedef); if (unsigned ObjCClassRedef = SpecialTypes[SPECIAL_TYPE_OBJC_CLASS_REDEFINITION]) Context->ObjCClassRedefinitionType = GetType(ObjCClassRedef); if (unsigned String = SpecialTypes[SPECIAL_TYPE_BLOCK_DESCRIPTOR]) Context->setBlockDescriptorType(GetType(String)); if (unsigned String = SpecialTypes[SPECIAL_TYPE_BLOCK_EXTENDED_DESCRIPTOR]) Context->setBlockDescriptorExtendedType(GetType(String)); if (unsigned ObjCSelRedef = SpecialTypes[SPECIAL_TYPE_OBJC_SEL_REDEFINITION]) Context->ObjCSelRedefinitionType = GetType(ObjCSelRedef); if (unsigned String = SpecialTypes[SPECIAL_TYPE_NS_CONSTANT_STRING]) Context->setNSConstantStringType(GetType(String)); if (SpecialTypes[SPECIAL_TYPE_INT128_INSTALLED]) Context->setInt128Installed(); ReadPragmaDiagnosticMappings(Context->getDiagnostics()); // If there were any CUDA special declarations, deserialize them. if (!CUDASpecialDeclRefs.empty()) { assert(CUDASpecialDeclRefs.size() == 1 && "More decl refs than expected!"); Context->setcudaConfigureCallDecl( cast(GetDecl(CUDASpecialDeclRefs[0]))); } } /// \brief Retrieve the name of the original source file name /// directly from the AST file, without actually loading the AST /// file. std::string ASTReader::getOriginalSourceFile(const std::string &ASTFileName, FileManager &FileMgr, Diagnostic &Diags) { // Open the AST file. std::string ErrStr; llvm::OwningPtr Buffer; Buffer.reset(FileMgr.getBufferForFile(ASTFileName, &ErrStr)); if (!Buffer) { Diags.Report(diag::err_fe_unable_to_read_pch_file) << ErrStr; return std::string(); } // Initialize the stream llvm::BitstreamReader StreamFile; llvm::BitstreamCursor Stream; StreamFile.init((const unsigned char *)Buffer->getBufferStart(), (const unsigned char *)Buffer->getBufferEnd()); Stream.init(StreamFile); // Sniff for the signature. if (Stream.Read(8) != 'C' || Stream.Read(8) != 'P' || Stream.Read(8) != 'C' || Stream.Read(8) != 'H') { Diags.Report(diag::err_fe_not_a_pch_file) << ASTFileName; return std::string(); } RecordData Record; while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::ENTER_SUBBLOCK) { unsigned BlockID = Stream.ReadSubBlockID(); // We only know the AST subblock ID. switch (BlockID) { case AST_BLOCK_ID: if (Stream.EnterSubBlock(AST_BLOCK_ID)) { Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName; return std::string(); } break; default: if (Stream.SkipBlock()) { Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName; return std::string(); } break; } continue; } if (Code == llvm::bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) { Diags.Report(diag::err_fe_pch_error_at_end_block) << ASTFileName; return std::string(); } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } Record.clear(); const char *BlobStart = 0; unsigned BlobLen = 0; if (Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen) == ORIGINAL_FILE_NAME) return std::string(BlobStart, BlobLen); } return std::string(); } /// \brief Parse the record that corresponds to a LangOptions data /// structure. /// /// This routine parses the language options from the AST file and then gives /// them to the AST listener if one is set. /// /// \returns true if the listener deems the file unacceptable, false otherwise. bool ASTReader::ParseLanguageOptions( const llvm::SmallVectorImpl &Record) { if (Listener) { LangOptions LangOpts; #define PARSE_LANGOPT(Option) \ LangOpts.Option = Record[Idx]; \ ++Idx unsigned Idx = 0; PARSE_LANGOPT(Trigraphs); PARSE_LANGOPT(BCPLComment); PARSE_LANGOPT(DollarIdents); PARSE_LANGOPT(AsmPreprocessor); PARSE_LANGOPT(GNUMode); PARSE_LANGOPT(GNUKeywords); PARSE_LANGOPT(ImplicitInt); PARSE_LANGOPT(Digraphs); PARSE_LANGOPT(HexFloats); PARSE_LANGOPT(C99); PARSE_LANGOPT(Microsoft); PARSE_LANGOPT(CPlusPlus); PARSE_LANGOPT(CPlusPlus0x); PARSE_LANGOPT(CXXOperatorNames); PARSE_LANGOPT(ObjC1); PARSE_LANGOPT(ObjC2); PARSE_LANGOPT(ObjCNonFragileABI); PARSE_LANGOPT(ObjCNonFragileABI2); PARSE_LANGOPT(AppleKext); PARSE_LANGOPT(ObjCDefaultSynthProperties); PARSE_LANGOPT(NoConstantCFStrings); PARSE_LANGOPT(PascalStrings); PARSE_LANGOPT(WritableStrings); PARSE_LANGOPT(LaxVectorConversions); PARSE_LANGOPT(AltiVec); PARSE_LANGOPT(Exceptions); PARSE_LANGOPT(ObjCExceptions); PARSE_LANGOPT(CXXExceptions); PARSE_LANGOPT(SjLjExceptions); PARSE_LANGOPT(MSBitfields); PARSE_LANGOPT(NeXTRuntime); PARSE_LANGOPT(Freestanding); PARSE_LANGOPT(NoBuiltin); PARSE_LANGOPT(ThreadsafeStatics); PARSE_LANGOPT(POSIXThreads); PARSE_LANGOPT(Blocks); PARSE_LANGOPT(EmitAllDecls); PARSE_LANGOPT(MathErrno); LangOpts.setSignedOverflowBehavior((LangOptions::SignedOverflowBehaviorTy) Record[Idx++]); PARSE_LANGOPT(HeinousExtensions); PARSE_LANGOPT(Optimize); PARSE_LANGOPT(OptimizeSize); PARSE_LANGOPT(Static); PARSE_LANGOPT(PICLevel); PARSE_LANGOPT(GNUInline); PARSE_LANGOPT(NoInline); PARSE_LANGOPT(AccessControl); PARSE_LANGOPT(CharIsSigned); PARSE_LANGOPT(ShortWChar); PARSE_LANGOPT(ShortEnums); LangOpts.setGCMode((LangOptions::GCMode)Record[Idx++]); LangOpts.setVisibilityMode((Visibility)Record[Idx++]); LangOpts.setStackProtectorMode((LangOptions::StackProtectorMode) Record[Idx++]); PARSE_LANGOPT(InstantiationDepth); PARSE_LANGOPT(OpenCL); PARSE_LANGOPT(CUDA); PARSE_LANGOPT(CatchUndefined); PARSE_LANGOPT(DefaultFPContract); PARSE_LANGOPT(ElideConstructors); PARSE_LANGOPT(SpellChecking); PARSE_LANGOPT(MRTD); #undef PARSE_LANGOPT return Listener->ReadLanguageOptions(LangOpts); } return false; } void ASTReader::ReadPreprocessedEntities() { for (unsigned I = 0, N = Chain.size(); I != N; ++I) { PerFileData &F = *Chain[I]; if (!F.PreprocessorDetailCursor.getBitStreamReader()) continue; SavedStreamPosition SavedPosition(F.PreprocessorDetailCursor); F.PreprocessorDetailCursor.JumpToBit(F.PreprocessorDetailStartOffset); while (LoadPreprocessedEntity(F)) { } } } PreprocessedEntity *ASTReader::ReadPreprocessedEntityAtOffset(uint64_t Offset) { PerFileData *F = 0; for (unsigned I = 0, N = Chain.size(); I != N; ++I) { if (Offset < Chain[I]->SizeInBits) { F = Chain[I]; break; } Offset -= Chain[I]->SizeInBits; } if (!F) { Error("Malformed preprocessed entity offset"); return 0; } // Keep track of where we are in the stream, then jump back there // after reading this entity. SavedStreamPosition SavedPosition(F->PreprocessorDetailCursor); F->PreprocessorDetailCursor.JumpToBit(Offset); return LoadPreprocessedEntity(*F); } HeaderFileInfo ASTReader::GetHeaderFileInfo(const FileEntry *FE) { HeaderFileInfoTrait Trait(FE->getName()); for (unsigned I = 0, N = Chain.size(); I != N; ++I) { PerFileData &F = *Chain[I]; HeaderFileInfoLookupTable *Table = static_cast(F.HeaderFileInfoTable); if (!Table) continue; // Look in the on-disk hash table for an entry for this file name. HeaderFileInfoLookupTable::iterator Pos = Table->find(FE->getName(), &Trait); if (Pos == Table->end()) continue; HeaderFileInfo HFI = *Pos; if (Listener) Listener->ReadHeaderFileInfo(HFI, FE->getUID()); return HFI; } return HeaderFileInfo(); } void ASTReader::ReadPragmaDiagnosticMappings(Diagnostic &Diag) { unsigned Idx = 0; while (Idx < PragmaDiagMappings.size()) { SourceLocation Loc = SourceLocation::getFromRawEncoding(PragmaDiagMappings[Idx++]); while (1) { assert(Idx < PragmaDiagMappings.size() && "Invalid data, didn't find '-1' marking end of diag/map pairs"); if (Idx >= PragmaDiagMappings.size()) break; // Something is messed up but at least avoid infinite loop in // release build. unsigned DiagID = PragmaDiagMappings[Idx++]; if (DiagID == (unsigned)-1) break; // no more diag/map pairs for this location. diag::Mapping Map = (diag::Mapping)PragmaDiagMappings[Idx++]; Diag.setDiagnosticMapping(DiagID, Map, Loc); } } } /// \brief Get the correct cursor and offset for loading a type. ASTReader::RecordLocation ASTReader::TypeCursorForIndex(unsigned Index) { PerFileData *F = 0; for (unsigned I = 0, N = Chain.size(); I != N; ++I) { F = Chain[N - I - 1]; if (Index < F->LocalNumTypes) break; Index -= F->LocalNumTypes; } assert(F && F->LocalNumTypes > Index && "Broken chain"); return RecordLocation(F, F->TypeOffsets[Index]); } /// \brief Read and return the type with the given index.. /// /// The index is the type ID, shifted and minus the number of predefs. This /// routine actually reads the record corresponding to the type at the given /// location. It is a helper routine for GetType, which deals with reading type /// IDs. QualType ASTReader::ReadTypeRecord(unsigned Index) { RecordLocation Loc = TypeCursorForIndex(Index); llvm::BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor; // Keep track of where we are in the stream, then jump back there // after reading this type. SavedStreamPosition SavedPosition(DeclsCursor); ReadingKindTracker ReadingKind(Read_Type, *this); // Note that we are loading a type record. Deserializing AType(this); DeclsCursor.JumpToBit(Loc.Offset); RecordData Record; unsigned Code = DeclsCursor.ReadCode(); switch ((TypeCode)DeclsCursor.ReadRecord(Code, Record)) { case TYPE_EXT_QUAL: { if (Record.size() != 2) { Error("Incorrect encoding of extended qualifier type"); return QualType(); } QualType Base = GetType(Record[0]); Qualifiers Quals = Qualifiers::fromOpaqueValue(Record[1]); return Context->getQualifiedType(Base, Quals); } case TYPE_COMPLEX: { if (Record.size() != 1) { Error("Incorrect encoding of complex type"); return QualType(); } QualType ElemType = GetType(Record[0]); return Context->getComplexType(ElemType); } case TYPE_POINTER: { if (Record.size() != 1) { Error("Incorrect encoding of pointer type"); return QualType(); } QualType PointeeType = GetType(Record[0]); return Context->getPointerType(PointeeType); } case TYPE_BLOCK_POINTER: { if (Record.size() != 1) { Error("Incorrect encoding of block pointer type"); return QualType(); } QualType PointeeType = GetType(Record[0]); return Context->getBlockPointerType(PointeeType); } case TYPE_LVALUE_REFERENCE: { if (Record.size() != 1) { Error("Incorrect encoding of lvalue reference type"); return QualType(); } QualType PointeeType = GetType(Record[0]); return Context->getLValueReferenceType(PointeeType); } case TYPE_RVALUE_REFERENCE: { if (Record.size() != 1) { Error("Incorrect encoding of rvalue reference type"); return QualType(); } QualType PointeeType = GetType(Record[0]); return Context->getRValueReferenceType(PointeeType); } case TYPE_MEMBER_POINTER: { if (Record.size() != 2) { Error("Incorrect encoding of member pointer type"); return QualType(); } QualType PointeeType = GetType(Record[0]); QualType ClassType = GetType(Record[1]); if (PointeeType.isNull() || ClassType.isNull()) return QualType(); return Context->getMemberPointerType(PointeeType, ClassType.getTypePtr()); } case TYPE_CONSTANT_ARRAY: { QualType ElementType = GetType(Record[0]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; unsigned Idx = 3; llvm::APInt Size = ReadAPInt(Record, Idx); return Context->getConstantArrayType(ElementType, Size, ASM, IndexTypeQuals); } case TYPE_INCOMPLETE_ARRAY: { QualType ElementType = GetType(Record[0]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; return Context->getIncompleteArrayType(ElementType, ASM, IndexTypeQuals); } case TYPE_VARIABLE_ARRAY: { QualType ElementType = GetType(Record[0]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; SourceLocation LBLoc = ReadSourceLocation(*Loc.F, Record[3]); SourceLocation RBLoc = ReadSourceLocation(*Loc.F, Record[4]); return Context->getVariableArrayType(ElementType, ReadExpr(*Loc.F), ASM, IndexTypeQuals, SourceRange(LBLoc, RBLoc)); } case TYPE_VECTOR: { if (Record.size() != 3) { Error("incorrect encoding of vector type in AST file"); return QualType(); } QualType ElementType = GetType(Record[0]); unsigned NumElements = Record[1]; unsigned VecKind = Record[2]; return Context->getVectorType(ElementType, NumElements, (VectorType::VectorKind)VecKind); } case TYPE_EXT_VECTOR: { if (Record.size() != 3) { Error("incorrect encoding of extended vector type in AST file"); return QualType(); } QualType ElementType = GetType(Record[0]); unsigned NumElements = Record[1]; return Context->getExtVectorType(ElementType, NumElements); } case TYPE_FUNCTION_NO_PROTO: { if (Record.size() != 4) { Error("incorrect encoding of no-proto function type"); return QualType(); } QualType ResultType = GetType(Record[0]); FunctionType::ExtInfo Info(Record[1], Record[2], (CallingConv)Record[3]); return Context->getFunctionNoProtoType(ResultType, Info); } case TYPE_FUNCTION_PROTO: { QualType ResultType = GetType(Record[0]); FunctionProtoType::ExtProtoInfo EPI; EPI.ExtInfo = FunctionType::ExtInfo(/*noreturn*/ Record[1], /*regparm*/ Record[2], static_cast(Record[3])); unsigned Idx = 4; unsigned NumParams = Record[Idx++]; llvm::SmallVector ParamTypes; for (unsigned I = 0; I != NumParams; ++I) ParamTypes.push_back(GetType(Record[Idx++])); EPI.Variadic = Record[Idx++]; EPI.TypeQuals = Record[Idx++]; EPI.RefQualifier = static_cast(Record[Idx++]); bool HasExceptionSpec = Record[Idx++]; bool HasAnyExceptionSpec = Record[Idx++]; EPI.ExceptionSpecType = HasExceptionSpec ? (HasAnyExceptionSpec ? EST_DynamicAny : EST_Dynamic) : EST_None; EPI.NumExceptions = Record[Idx++]; llvm::SmallVector Exceptions; for (unsigned I = 0; I != EPI.NumExceptions; ++I) Exceptions.push_back(GetType(Record[Idx++])); EPI.Exceptions = Exceptions.data(); return Context->getFunctionType(ResultType, ParamTypes.data(), NumParams, EPI); } case TYPE_UNRESOLVED_USING: return Context->getTypeDeclType( cast(GetDecl(Record[0]))); case TYPE_TYPEDEF: { if (Record.size() != 2) { Error("incorrect encoding of typedef type"); return QualType(); } TypedefDecl *Decl = cast(GetDecl(Record[0])); QualType Canonical = GetType(Record[1]); if (!Canonical.isNull()) Canonical = Context->getCanonicalType(Canonical); return Context->getTypedefType(Decl, Canonical); } case TYPE_TYPEOF_EXPR: return Context->getTypeOfExprType(ReadExpr(*Loc.F)); case TYPE_TYPEOF: { if (Record.size() != 1) { Error("incorrect encoding of typeof(type) in AST file"); return QualType(); } QualType UnderlyingType = GetType(Record[0]); return Context->getTypeOfType(UnderlyingType); } case TYPE_DECLTYPE: return Context->getDecltypeType(ReadExpr(*Loc.F)); case TYPE_AUTO: return Context->getAutoType(GetType(Record[0])); case TYPE_RECORD: { if (Record.size() != 2) { Error("incorrect encoding of record type"); return QualType(); } bool IsDependent = Record[0]; QualType T = Context->getRecordType(cast(GetDecl(Record[1]))); const_cast(T.getTypePtr())->setDependent(IsDependent); return T; } case TYPE_ENUM: { if (Record.size() != 2) { Error("incorrect encoding of enum type"); return QualType(); } bool IsDependent = Record[0]; QualType T = Context->getEnumType(cast(GetDecl(Record[1]))); const_cast(T.getTypePtr())->setDependent(IsDependent); return T; } case TYPE_ATTRIBUTED: { if (Record.size() != 3) { Error("incorrect encoding of attributed type"); return QualType(); } QualType modifiedType = GetType(Record[0]); QualType equivalentType = GetType(Record[1]); AttributedType::Kind kind = static_cast(Record[2]); return Context->getAttributedType(kind, modifiedType, equivalentType); } case TYPE_PAREN: { if (Record.size() != 1) { Error("incorrect encoding of paren type"); return QualType(); } QualType InnerType = GetType(Record[0]); return Context->getParenType(InnerType); } case TYPE_PACK_EXPANSION: { if (Record.size() != 2) { Error("incorrect encoding of pack expansion type"); return QualType(); } QualType Pattern = GetType(Record[0]); if (Pattern.isNull()) return QualType(); llvm::Optional NumExpansions; if (Record[1]) NumExpansions = Record[1] - 1; return Context->getPackExpansionType(Pattern, NumExpansions); } case TYPE_ELABORATED: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx); QualType NamedType = GetType(Record[Idx++]); return Context->getElaboratedType(Keyword, NNS, NamedType); } case TYPE_OBJC_INTERFACE: { unsigned Idx = 0; ObjCInterfaceDecl *ItfD = cast(GetDecl(Record[Idx++])); return Context->getObjCInterfaceType(ItfD); } case TYPE_OBJC_OBJECT: { unsigned Idx = 0; QualType Base = GetType(Record[Idx++]); unsigned NumProtos = Record[Idx++]; llvm::SmallVector Protos; for (unsigned I = 0; I != NumProtos; ++I) Protos.push_back(cast(GetDecl(Record[Idx++]))); return Context->getObjCObjectType(Base, Protos.data(), NumProtos); } case TYPE_OBJC_OBJECT_POINTER: { unsigned Idx = 0; QualType Pointee = GetType(Record[Idx++]); return Context->getObjCObjectPointerType(Pointee); } case TYPE_SUBST_TEMPLATE_TYPE_PARM: { unsigned Idx = 0; QualType Parm = GetType(Record[Idx++]); QualType Replacement = GetType(Record[Idx++]); return Context->getSubstTemplateTypeParmType(cast(Parm), Replacement); } case TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK: { unsigned Idx = 0; QualType Parm = GetType(Record[Idx++]); TemplateArgument ArgPack = ReadTemplateArgument(*Loc.F, Record, Idx); return Context->getSubstTemplateTypeParmPackType( cast(Parm), ArgPack); } case TYPE_INJECTED_CLASS_NAME: { CXXRecordDecl *D = cast(GetDecl(Record[0])); QualType TST = GetType(Record[1]); // probably derivable // FIXME: ASTContext::getInjectedClassNameType is not currently suitable // for AST reading, too much interdependencies. return QualType(new (*Context, TypeAlignment) InjectedClassNameType(D, TST), 0); } case TYPE_TEMPLATE_TYPE_PARM: { unsigned Idx = 0; unsigned Depth = Record[Idx++]; unsigned Index = Record[Idx++]; bool Pack = Record[Idx++]; IdentifierInfo *Name = GetIdentifierInfo(Record, Idx); return Context->getTemplateTypeParmType(Depth, Index, Pack, Name); } case TYPE_DEPENDENT_NAME: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx); const IdentifierInfo *Name = this->GetIdentifierInfo(Record, Idx); QualType Canon = GetType(Record[Idx++]); if (!Canon.isNull()) Canon = Context->getCanonicalType(Canon); return Context->getDependentNameType(Keyword, NNS, Name, Canon); } case TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx); const IdentifierInfo *Name = this->GetIdentifierInfo(Record, Idx); unsigned NumArgs = Record[Idx++]; llvm::SmallVector Args; Args.reserve(NumArgs); while (NumArgs--) Args.push_back(ReadTemplateArgument(*Loc.F, Record, Idx)); return Context->getDependentTemplateSpecializationType(Keyword, NNS, Name, Args.size(), Args.data()); } case TYPE_DEPENDENT_SIZED_ARRAY: { unsigned Idx = 0; // ArrayType QualType ElementType = GetType(Record[Idx++]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[Idx++]; unsigned IndexTypeQuals = Record[Idx++]; // DependentSizedArrayType Expr *NumElts = ReadExpr(*Loc.F); SourceRange Brackets = ReadSourceRange(*Loc.F, Record, Idx); return Context->getDependentSizedArrayType(ElementType, NumElts, ASM, IndexTypeQuals, Brackets); } case TYPE_TEMPLATE_SPECIALIZATION: { unsigned Idx = 0; bool IsDependent = Record[Idx++]; TemplateName Name = ReadTemplateName(*Loc.F, Record, Idx); llvm::SmallVector Args; ReadTemplateArgumentList(Args, *Loc.F, Record, Idx); QualType Canon = GetType(Record[Idx++]); QualType T; if (Canon.isNull()) T = Context->getCanonicalTemplateSpecializationType(Name, Args.data(), Args.size()); else T = Context->getTemplateSpecializationType(Name, Args.data(), Args.size(), Canon); const_cast(T.getTypePtr())->setDependent(IsDependent); return T; } } // Suppress a GCC warning return QualType(); } class clang::TypeLocReader : public TypeLocVisitor { ASTReader &Reader; ASTReader::PerFileData &F; llvm::BitstreamCursor &DeclsCursor; const ASTReader::RecordData &Record; unsigned &Idx; SourceLocation ReadSourceLocation(const ASTReader::RecordData &R, unsigned &I) { return Reader.ReadSourceLocation(F, R, I); } public: TypeLocReader(ASTReader &Reader, ASTReader::PerFileData &F, const ASTReader::RecordData &Record, unsigned &Idx) : Reader(Reader), F(F), DeclsCursor(F.DeclsCursor), Record(Record), Idx(Idx) { } // We want compile-time assurance that we've enumerated all of // these, so unfortunately we have to declare them first, then // define them out-of-line. #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc); #include "clang/AST/TypeLocNodes.def" void VisitFunctionTypeLoc(FunctionTypeLoc); void VisitArrayTypeLoc(ArrayTypeLoc); }; void TypeLocReader::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { // nothing to do } void TypeLocReader::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { TL.setBuiltinLoc(ReadSourceLocation(Record, Idx)); if (TL.needsExtraLocalData()) { TL.setWrittenTypeSpec(static_cast(Record[Idx++])); TL.setWrittenSignSpec(static_cast(Record[Idx++])); TL.setWrittenWidthSpec(static_cast(Record[Idx++])); TL.setModeAttr(Record[Idx++]); } } void TypeLocReader::VisitComplexTypeLoc(ComplexTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitPointerTypeLoc(PointerTypeLoc TL) { TL.setStarLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { TL.setCaretLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { TL.setAmpLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { TL.setAmpAmpLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { TL.setStarLoc(ReadSourceLocation(Record, Idx)); TL.setClassTInfo(Reader.GetTypeSourceInfo(F, Record, Idx)); } void TypeLocReader::VisitArrayTypeLoc(ArrayTypeLoc TL) { TL.setLBracketLoc(ReadSourceLocation(Record, Idx)); TL.setRBracketLoc(ReadSourceLocation(Record, Idx)); if (Record[Idx++]) TL.setSizeExpr(Reader.ReadExpr(F)); else TL.setSizeExpr(0); } void TypeLocReader::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitDependentSizedArrayTypeLoc( DependentSizedArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitDependentSizedExtVectorTypeLoc( DependentSizedExtVectorTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitFunctionTypeLoc(FunctionTypeLoc TL) { TL.setLocalRangeBegin(ReadSourceLocation(Record, Idx)); TL.setLocalRangeEnd(ReadSourceLocation(Record, Idx)); TL.setTrailingReturn(Record[Idx++]); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) { TL.setArg(i, cast_or_null(Reader.GetDecl(Record[Idx++]))); } } void TypeLocReader::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocReader::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocReader::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTypedefTypeLoc(TypedefTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { TL.setTypeofLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { TL.setTypeofLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx)); } void TypeLocReader::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitAutoTypeLoc(AutoTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitRecordTypeLoc(RecordTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitEnumTypeLoc(EnumTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitAttributedTypeLoc(AttributedTypeLoc TL) { TL.setAttrNameLoc(ReadSourceLocation(Record, Idx)); if (TL.hasAttrOperand()) { SourceRange range; range.setBegin(ReadSourceLocation(Record, Idx)); range.setEnd(ReadSourceLocation(Record, Idx)); TL.setAttrOperandParensRange(range); } if (TL.hasAttrExprOperand()) { if (Record[Idx++]) TL.setAttrExprOperand(Reader.ReadExpr(F)); else TL.setAttrExprOperand(0); } else if (TL.hasAttrEnumOperand()) TL.setAttrEnumOperandLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitSubstTemplateTypeParmTypeLoc( SubstTemplateTypeParmTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitSubstTemplateTypeParmPackTypeLoc( SubstTemplateTypeParmPackTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTemplateSpecializationTypeLoc( TemplateSpecializationTypeLoc TL) { TL.setTemplateNameLoc(ReadSourceLocation(Record, Idx)); TL.setLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) TL.setArgLocInfo(i, Reader.GetTemplateArgumentLocInfo(F, TL.getTypePtr()->getArg(i).getKind(), Record, Idx)); } void TypeLocReader::VisitParenTypeLoc(ParenTypeLoc TL) { TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { TL.setKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx)); } void TypeLocReader::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { TL.setKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx)); TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc TL) { TL.setKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx)); TL.setNameLoc(ReadSourceLocation(Record, Idx)); TL.setLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) TL.setArgLocInfo(I, Reader.GetTemplateArgumentLocInfo(F, TL.getTypePtr()->getArg(I).getKind(), Record, Idx)); } void TypeLocReader::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) { TL.setEllipsisLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { TL.setHasBaseTypeAsWritten(Record[Idx++]); TL.setLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i) TL.setProtocolLoc(i, ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { TL.setStarLoc(ReadSourceLocation(Record, Idx)); } TypeSourceInfo *ASTReader::GetTypeSourceInfo(PerFileData &F, const RecordData &Record, unsigned &Idx) { QualType InfoTy = GetType(Record[Idx++]); if (InfoTy.isNull()) return 0; TypeSourceInfo *TInfo = getContext()->CreateTypeSourceInfo(InfoTy); TypeLocReader TLR(*this, F, Record, Idx); for (TypeLoc TL = TInfo->getTypeLoc(); !TL.isNull(); TL = TL.getNextTypeLoc()) TLR.Visit(TL); return TInfo; } QualType ASTReader::GetType(TypeID ID) { unsigned FastQuals = ID & Qualifiers::FastMask; unsigned Index = ID >> Qualifiers::FastWidth; if (Index < NUM_PREDEF_TYPE_IDS) { QualType T; switch ((PredefinedTypeIDs)Index) { case PREDEF_TYPE_NULL_ID: return QualType(); case PREDEF_TYPE_VOID_ID: T = Context->VoidTy; break; case PREDEF_TYPE_BOOL_ID: T = Context->BoolTy; break; case PREDEF_TYPE_CHAR_U_ID: case PREDEF_TYPE_CHAR_S_ID: // FIXME: Check that the signedness of CharTy is correct! T = Context->CharTy; break; case PREDEF_TYPE_UCHAR_ID: T = Context->UnsignedCharTy; break; case PREDEF_TYPE_USHORT_ID: T = Context->UnsignedShortTy; break; case PREDEF_TYPE_UINT_ID: T = Context->UnsignedIntTy; break; case PREDEF_TYPE_ULONG_ID: T = Context->UnsignedLongTy; break; case PREDEF_TYPE_ULONGLONG_ID: T = Context->UnsignedLongLongTy; break; case PREDEF_TYPE_UINT128_ID: T = Context->UnsignedInt128Ty; break; case PREDEF_TYPE_SCHAR_ID: T = Context->SignedCharTy; break; case PREDEF_TYPE_WCHAR_ID: T = Context->WCharTy; break; case PREDEF_TYPE_SHORT_ID: T = Context->ShortTy; break; case PREDEF_TYPE_INT_ID: T = Context->IntTy; break; case PREDEF_TYPE_LONG_ID: T = Context->LongTy; break; case PREDEF_TYPE_LONGLONG_ID: T = Context->LongLongTy; break; case PREDEF_TYPE_INT128_ID: T = Context->Int128Ty; break; case PREDEF_TYPE_FLOAT_ID: T = Context->FloatTy; break; case PREDEF_TYPE_DOUBLE_ID: T = Context->DoubleTy; break; case PREDEF_TYPE_LONGDOUBLE_ID: T = Context->LongDoubleTy; break; case PREDEF_TYPE_OVERLOAD_ID: T = Context->OverloadTy; break; case PREDEF_TYPE_DEPENDENT_ID: T = Context->DependentTy; break; case PREDEF_TYPE_NULLPTR_ID: T = Context->NullPtrTy; break; case PREDEF_TYPE_CHAR16_ID: T = Context->Char16Ty; break; case PREDEF_TYPE_CHAR32_ID: T = Context->Char32Ty; break; case PREDEF_TYPE_OBJC_ID: T = Context->ObjCBuiltinIdTy; break; case PREDEF_TYPE_OBJC_CLASS: T = Context->ObjCBuiltinClassTy; break; case PREDEF_TYPE_OBJC_SEL: T = Context->ObjCBuiltinSelTy; break; } assert(!T.isNull() && "Unknown predefined type"); return T.withFastQualifiers(FastQuals); } Index -= NUM_PREDEF_TYPE_IDS; assert(Index < TypesLoaded.size() && "Type index out-of-range"); if (TypesLoaded[Index].isNull()) { TypesLoaded[Index] = ReadTypeRecord(Index); if (TypesLoaded[Index].isNull()) return QualType(); TypesLoaded[Index]->setFromAST(); TypeIdxs[TypesLoaded[Index]] = TypeIdx::fromTypeID(ID); if (DeserializationListener) DeserializationListener->TypeRead(TypeIdx::fromTypeID(ID), TypesLoaded[Index]); } return TypesLoaded[Index].withFastQualifiers(FastQuals); } TypeID ASTReader::GetTypeID(QualType T) const { return MakeTypeID(T, std::bind1st(std::mem_fun(&ASTReader::GetTypeIdx), this)); } TypeIdx ASTReader::GetTypeIdx(QualType T) const { if (T.isNull()) return TypeIdx(); assert(!T.getLocalFastQualifiers()); TypeIdxMap::const_iterator I = TypeIdxs.find(T); // GetTypeIdx is mostly used for computing the hash of DeclarationNames and // comparing keys of ASTDeclContextNameLookupTable. // If the type didn't come from the AST file use a specially marked index // so that any hash/key comparison fail since no such index is stored // in a AST file. if (I == TypeIdxs.end()) return TypeIdx(-1); return I->second; } unsigned ASTReader::getTotalNumCXXBaseSpecifiers() const { unsigned Result = 0; for (unsigned I = 0, N = Chain.size(); I != N; ++I) Result += Chain[I]->LocalNumCXXBaseSpecifiers; return Result; } TemplateArgumentLocInfo ASTReader::GetTemplateArgumentLocInfo(PerFileData &F, TemplateArgument::ArgKind Kind, const RecordData &Record, unsigned &Index) { switch (Kind) { case TemplateArgument::Expression: return ReadExpr(F); case TemplateArgument::Type: return GetTypeSourceInfo(F, Record, Index); case TemplateArgument::Template: { NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Index); SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index); return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc, SourceLocation()); } case TemplateArgument::TemplateExpansion: { NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Index); SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index); SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Index); return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc, EllipsisLoc); } case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: case TemplateArgument::Pack: return TemplateArgumentLocInfo(); } llvm_unreachable("unexpected template argument loc"); return TemplateArgumentLocInfo(); } TemplateArgumentLoc ASTReader::ReadTemplateArgumentLoc(PerFileData &F, const RecordData &Record, unsigned &Index) { TemplateArgument Arg = ReadTemplateArgument(F, Record, Index); if (Arg.getKind() == TemplateArgument::Expression) { if (Record[Index++]) // bool InfoHasSameExpr. return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo(Arg.getAsExpr())); } return TemplateArgumentLoc(Arg, GetTemplateArgumentLocInfo(F, Arg.getKind(), Record, Index)); } Decl *ASTReader::GetExternalDecl(uint32_t ID) { return GetDecl(ID); } uint64_t ASTReader::GetCXXBaseSpecifiersOffset(serialization::CXXBaseSpecifiersID ID) { if (ID == 0) return 0; --ID; uint64_t Offset = 0; for (unsigned I = 0, N = Chain.size(); I != N; ++I) { PerFileData &F = *Chain[N - I - 1]; if (ID < F.LocalNumCXXBaseSpecifiers) return Offset + F.CXXBaseSpecifiersOffsets[ID]; ID -= F.LocalNumCXXBaseSpecifiers; Offset += F.SizeInBits; } assert(false && "CXXBaseSpecifiers not found"); return 0; } CXXBaseSpecifier *ASTReader::GetExternalCXXBaseSpecifiers(uint64_t Offset) { // Figure out which AST file contains this offset. PerFileData *F = 0; for (unsigned I = 0, N = Chain.size(); I != N; ++I) { if (Offset < Chain[N - I - 1]->SizeInBits) { F = Chain[N - I - 1]; break; } Offset -= Chain[N - I - 1]->SizeInBits; } if (!F) { Error("Malformed AST file: C++ base specifiers at impossible offset"); return 0; } llvm::BitstreamCursor &Cursor = F->DeclsCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(Offset); ReadingKindTracker ReadingKind(Read_Decl, *this); RecordData Record; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.ReadRecord(Code, Record); if (RecCode != DECL_CXX_BASE_SPECIFIERS) { Error("Malformed AST file: missing C++ base specifiers"); return 0; } unsigned Idx = 0; unsigned NumBases = Record[Idx++]; void *Mem = Context->Allocate(sizeof(CXXBaseSpecifier) * NumBases); CXXBaseSpecifier *Bases = new (Mem) CXXBaseSpecifier [NumBases]; for (unsigned I = 0; I != NumBases; ++I) Bases[I] = ReadCXXBaseSpecifier(*F, Record, Idx); return Bases; } TranslationUnitDecl *ASTReader::GetTranslationUnitDecl() { if (!DeclsLoaded[0]) { ReadDeclRecord(0, 1); if (DeserializationListener) DeserializationListener->DeclRead(1, DeclsLoaded[0]); } return cast(DeclsLoaded[0]); } Decl *ASTReader::GetDecl(DeclID ID) { if (ID == 0) return 0; if (ID > DeclsLoaded.size()) { Error("declaration ID out-of-range for AST file"); return 0; } unsigned Index = ID - 1; if (!DeclsLoaded[Index]) { ReadDeclRecord(Index, ID); if (DeserializationListener) DeserializationListener->DeclRead(ID, DeclsLoaded[Index]); } return DeclsLoaded[Index]; } /// \brief Resolve the offset of a statement into a statement. /// /// This operation will read a new statement from the external /// source each time it is called, and is meant to be used via a /// LazyOffsetPtr (which is used by Decls for the body of functions, etc). Stmt *ASTReader::GetExternalDeclStmt(uint64_t Offset) { // Switch case IDs are per Decl. ClearSwitchCaseIDs(); // Offset here is a global offset across the entire chain. for (unsigned I = 0, N = Chain.size(); I != N; ++I) { PerFileData &F = *Chain[N - I - 1]; if (Offset < F.SizeInBits) { // Since we know that this statement is part of a decl, make sure to use // the decl cursor to read it. F.DeclsCursor.JumpToBit(Offset); return ReadStmtFromStream(F); } Offset -= F.SizeInBits; } llvm_unreachable("Broken chain"); } bool ASTReader::FindExternalLexicalDecls(const DeclContext *DC, bool (*isKindWeWant)(Decl::Kind), llvm::SmallVectorImpl &Decls) { assert(DC->hasExternalLexicalStorage() && "DeclContext has no lexical decls in storage"); // There might be lexical decls in multiple parts of the chain, for the TU // at least. // DeclContextOffsets might reallocate as we load additional decls below, // so make a copy of the vector. DeclContextInfos Infos = DeclContextOffsets[DC]; for (DeclContextInfos::iterator I = Infos.begin(), E = Infos.end(); I != E; ++I) { // IDs can be 0 if this context doesn't contain declarations. if (!I->LexicalDecls) continue; // Load all of the declaration IDs for (const KindDeclIDPair *ID = I->LexicalDecls, *IDE = ID + I->NumLexicalDecls; ID != IDE; ++ID) { if (isKindWeWant && !isKindWeWant((Decl::Kind)ID->first)) continue; Decl *D = GetDecl(ID->second); assert(D && "Null decl in lexical decls"); Decls.push_back(D); } } ++NumLexicalDeclContextsRead; return false; } DeclContext::lookup_result ASTReader::FindExternalVisibleDeclsByName(const DeclContext *DC, DeclarationName Name) { assert(DC->hasExternalVisibleStorage() && "DeclContext has no visible decls in storage"); if (!Name) return DeclContext::lookup_result(DeclContext::lookup_iterator(0), DeclContext::lookup_iterator(0)); llvm::SmallVector Decls; // There might be visible decls in multiple parts of the chain, for the TU // and namespaces. For any given name, the last available results replace // all earlier ones. For this reason, we walk in reverse. DeclContextInfos &Infos = DeclContextOffsets[DC]; for (DeclContextInfos::reverse_iterator I = Infos.rbegin(), E = Infos.rend(); I != E; ++I) { if (!I->NameLookupTableData) continue; ASTDeclContextNameLookupTable *LookupTable = (ASTDeclContextNameLookupTable*)I->NameLookupTableData; ASTDeclContextNameLookupTable::iterator Pos = LookupTable->find(Name); if (Pos == LookupTable->end()) continue; ASTDeclContextNameLookupTrait::data_type Data = *Pos; for (; Data.first != Data.second; ++Data.first) Decls.push_back(cast(GetDecl(*Data.first))); break; } ++NumVisibleDeclContextsRead; SetExternalVisibleDeclsForName(DC, Name, Decls); return const_cast(DC)->lookup(Name); } void ASTReader::MaterializeVisibleDecls(const DeclContext *DC) { assert(DC->hasExternalVisibleStorage() && "DeclContext has no visible decls in storage"); llvm::SmallVector Decls; // There might be visible decls in multiple parts of the chain, for the TU // and namespaces. DeclContextInfos &Infos = DeclContextOffsets[DC]; for (DeclContextInfos::iterator I = Infos.begin(), E = Infos.end(); I != E; ++I) { if (!I->NameLookupTableData) continue; ASTDeclContextNameLookupTable *LookupTable = (ASTDeclContextNameLookupTable*)I->NameLookupTableData; for (ASTDeclContextNameLookupTable::item_iterator ItemI = LookupTable->item_begin(), ItemEnd = LookupTable->item_end() ; ItemI != ItemEnd; ++ItemI) { ASTDeclContextNameLookupTable::item_iterator::value_type Val = *ItemI; ASTDeclContextNameLookupTrait::data_type Data = Val.second; Decls.clear(); for (; Data.first != Data.second; ++Data.first) Decls.push_back(cast(GetDecl(*Data.first))); MaterializeVisibleDeclsForName(DC, Val.first, Decls); } } } void ASTReader::PassInterestingDeclsToConsumer() { assert(Consumer); while (!InterestingDecls.empty()) { DeclGroupRef DG(InterestingDecls.front()); InterestingDecls.pop_front(); Consumer->HandleInterestingDecl(DG); } } void ASTReader::StartTranslationUnit(ASTConsumer *Consumer) { this->Consumer = Consumer; if (!Consumer) return; for (unsigned I = 0, N = ExternalDefinitions.size(); I != N; ++I) { // Force deserialization of this decl, which will cause it to be queued for // passing to the consumer. GetDecl(ExternalDefinitions[I]); } PassInterestingDeclsToConsumer(); } void ASTReader::PrintStats() { std::fprintf(stderr, "*** AST File Statistics:\n"); unsigned NumTypesLoaded = TypesLoaded.size() - std::count(TypesLoaded.begin(), TypesLoaded.end(), QualType()); unsigned NumDeclsLoaded = DeclsLoaded.size() - std::count(DeclsLoaded.begin(), DeclsLoaded.end(), (Decl *)0); unsigned NumIdentifiersLoaded = IdentifiersLoaded.size() - std::count(IdentifiersLoaded.begin(), IdentifiersLoaded.end(), (IdentifierInfo *)0); unsigned NumSelectorsLoaded = SelectorsLoaded.size() - std::count(SelectorsLoaded.begin(), SelectorsLoaded.end(), Selector()); std::fprintf(stderr, " %u stat cache hits\n", NumStatHits); std::fprintf(stderr, " %u stat cache misses\n", NumStatMisses); if (TotalNumSLocEntries) std::fprintf(stderr, " %u/%u source location entries read (%f%%)\n", NumSLocEntriesRead, TotalNumSLocEntries, ((float)NumSLocEntriesRead/TotalNumSLocEntries * 100)); if (!TypesLoaded.empty()) std::fprintf(stderr, " %u/%u types read (%f%%)\n", NumTypesLoaded, (unsigned)TypesLoaded.size(), ((float)NumTypesLoaded/TypesLoaded.size() * 100)); if (!DeclsLoaded.empty()) std::fprintf(stderr, " %u/%u declarations read (%f%%)\n", NumDeclsLoaded, (unsigned)DeclsLoaded.size(), ((float)NumDeclsLoaded/DeclsLoaded.size() * 100)); if (!IdentifiersLoaded.empty()) std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n", NumIdentifiersLoaded, (unsigned)IdentifiersLoaded.size(), ((float)NumIdentifiersLoaded/IdentifiersLoaded.size() * 100)); if (!SelectorsLoaded.empty()) std::fprintf(stderr, " %u/%u selectors read (%f%%)\n", NumSelectorsLoaded, (unsigned)SelectorsLoaded.size(), ((float)NumSelectorsLoaded/SelectorsLoaded.size() * 100)); if (TotalNumStatements) std::fprintf(stderr, " %u/%u statements read (%f%%)\n", NumStatementsRead, TotalNumStatements, ((float)NumStatementsRead/TotalNumStatements * 100)); if (TotalNumMacros) std::fprintf(stderr, " %u/%u macros read (%f%%)\n", NumMacrosRead, TotalNumMacros, ((float)NumMacrosRead/TotalNumMacros * 100)); if (TotalLexicalDeclContexts) std::fprintf(stderr, " %u/%u lexical declcontexts read (%f%%)\n", NumLexicalDeclContextsRead, TotalLexicalDeclContexts, ((float)NumLexicalDeclContextsRead/TotalLexicalDeclContexts * 100)); if (TotalVisibleDeclContexts) std::fprintf(stderr, " %u/%u visible declcontexts read (%f%%)\n", NumVisibleDeclContextsRead, TotalVisibleDeclContexts, ((float)NumVisibleDeclContextsRead/TotalVisibleDeclContexts * 100)); if (TotalNumMethodPoolEntries) { std::fprintf(stderr, " %u/%u method pool entries read (%f%%)\n", NumMethodPoolEntriesRead, TotalNumMethodPoolEntries, ((float)NumMethodPoolEntriesRead/TotalNumMethodPoolEntries * 100)); std::fprintf(stderr, " %u method pool misses\n", NumMethodPoolMisses); } std::fprintf(stderr, "\n"); } void ASTReader::InitializeSema(Sema &S) { SemaObj = &S; S.ExternalSource = this; // Makes sure any declarations that were deserialized "too early" // still get added to the identifier's declaration chains. for (unsigned I = 0, N = PreloadedDecls.size(); I != N; ++I) { if (SemaObj->TUScope) SemaObj->TUScope->AddDecl(PreloadedDecls[I]); SemaObj->IdResolver.AddDecl(PreloadedDecls[I]); } PreloadedDecls.clear(); // If there were any tentative definitions, deserialize them and add // them to Sema's list of tentative definitions. for (unsigned I = 0, N = TentativeDefinitions.size(); I != N; ++I) { VarDecl *Var = cast(GetDecl(TentativeDefinitions[I])); SemaObj->TentativeDefinitions.push_back(Var); } // If there were any unused file scoped decls, deserialize them and add to // Sema's list of unused file scoped decls. for (unsigned I = 0, N = UnusedFileScopedDecls.size(); I != N; ++I) { DeclaratorDecl *D = cast(GetDecl(UnusedFileScopedDecls[I])); SemaObj->UnusedFileScopedDecls.push_back(D); } // If there were any locally-scoped external declarations, // deserialize them and add them to Sema's table of locally-scoped // external declarations. for (unsigned I = 0, N = LocallyScopedExternalDecls.size(); I != N; ++I) { NamedDecl *D = cast(GetDecl(LocallyScopedExternalDecls[I])); SemaObj->LocallyScopedExternalDecls[D->getDeclName()] = D; } // If there were any ext_vector type declarations, deserialize them // and add them to Sema's vector of such declarations. for (unsigned I = 0, N = ExtVectorDecls.size(); I != N; ++I) SemaObj->ExtVectorDecls.push_back( cast(GetDecl(ExtVectorDecls[I]))); // FIXME: Do VTable uses and dynamic classes deserialize too much ? // Can we cut them down before writing them ? // If there were any dynamic classes declarations, deserialize them // and add them to Sema's vector of such declarations. for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) SemaObj->DynamicClasses.push_back( cast(GetDecl(DynamicClasses[I]))); // Load the offsets of the declarations that Sema references. // They will be lazily deserialized when needed. if (!SemaDeclRefs.empty()) { assert(SemaDeclRefs.size() == 2 && "More decl refs than expected!"); SemaObj->StdNamespace = SemaDeclRefs[0]; SemaObj->StdBadAlloc = SemaDeclRefs[1]; } for (PerFileData *F = FirstInSource; F; F = F->NextInSource) { // If there are @selector references added them to its pool. This is for // implementation of -Wselector. if (!F->ReferencedSelectorsData.empty()) { unsigned int DataSize = F->ReferencedSelectorsData.size()-1; unsigned I = 0; while (I < DataSize) { Selector Sel = DecodeSelector(F->ReferencedSelectorsData[I++]); SourceLocation SelLoc = ReadSourceLocation( *F, F->ReferencedSelectorsData, I); SemaObj->ReferencedSelectors.insert(std::make_pair(Sel, SelLoc)); } } // If there were any pending implicit instantiations, deserialize them // and add them to Sema's queue of such instantiations. assert(F->PendingInstantiations.size() % 2 == 0 && "Expected pairs of entries"); for (unsigned Idx = 0, N = F->PendingInstantiations.size(); Idx < N;) { ValueDecl *D=cast(GetDecl(F->PendingInstantiations[Idx++])); SourceLocation Loc = ReadSourceLocation(*F, F->PendingInstantiations,Idx); SemaObj->PendingInstantiations.push_back(std::make_pair(D, Loc)); } } // The two special data sets below always come from the most recent PCH, // which is at the front of the chain. PerFileData &F = *Chain.front(); // If there were any weak undeclared identifiers, deserialize them and add to // Sema's list of weak undeclared identifiers. if (!WeakUndeclaredIdentifiers.empty()) { unsigned Idx = 0; for (unsigned I = 0, N = WeakUndeclaredIdentifiers[Idx++]; I != N; ++I) { IdentifierInfo *WeakId = GetIdentifierInfo(WeakUndeclaredIdentifiers,Idx); IdentifierInfo *AliasId= GetIdentifierInfo(WeakUndeclaredIdentifiers,Idx); SourceLocation Loc = ReadSourceLocation(F, WeakUndeclaredIdentifiers,Idx); bool Used = WeakUndeclaredIdentifiers[Idx++]; Sema::WeakInfo WI(AliasId, Loc); WI.setUsed(Used); SemaObj->WeakUndeclaredIdentifiers.insert(std::make_pair(WeakId, WI)); } } // If there were any VTable uses, deserialize the information and add it // to Sema's vector and map of VTable uses. if (!VTableUses.empty()) { unsigned Idx = 0; for (unsigned I = 0, N = VTableUses[Idx++]; I != N; ++I) { CXXRecordDecl *Class = cast(GetDecl(VTableUses[Idx++])); SourceLocation Loc = ReadSourceLocation(F, VTableUses, Idx); bool DefinitionRequired = VTableUses[Idx++]; SemaObj->VTableUses.push_back(std::make_pair(Class, Loc)); SemaObj->VTablesUsed[Class] = DefinitionRequired; } } if (!FPPragmaOptions.empty()) { assert(FPPragmaOptions.size() == 1 && "Wrong number of FP_PRAGMA_OPTIONS"); SemaObj->FPFeatures.fp_contract = FPPragmaOptions[0]; } if (!OpenCLExtensions.empty()) { unsigned I = 0; #define OPENCLEXT(nm) SemaObj->OpenCLFeatures.nm = OpenCLExtensions[I++]; #include "clang/Basic/OpenCLExtensions.def" assert(OpenCLExtensions.size() == I && "Wrong number of OPENCL_EXTENSIONS"); } } IdentifierInfo* ASTReader::get(const char *NameStart, const char *NameEnd) { // Try to find this name within our on-disk hash tables. We start with the // most recent one, since that one contains the most up-to-date info. for (unsigned I = 0, N = Chain.size(); I != N; ++I) { ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)Chain[I]->IdentifierLookupTable; if (!IdTable) continue; std::pair Key(NameStart, NameEnd - NameStart); ASTIdentifierLookupTable::iterator Pos = IdTable->find(Key); if (Pos == IdTable->end()) continue; // Dereferencing the iterator has the effect of building the // IdentifierInfo node and populating it with the various // declarations it needs. return *Pos; } return 0; } namespace clang { /// \brief An identifier-lookup iterator that enumerates all of the /// identifiers stored within a set of AST files. class ASTIdentifierIterator : public IdentifierIterator { /// \brief The AST reader whose identifiers are being enumerated. const ASTReader &Reader; /// \brief The current index into the chain of AST files stored in /// the AST reader. unsigned Index; /// \brief The current position within the identifier lookup table /// of the current AST file. ASTIdentifierLookupTable::key_iterator Current; /// \brief The end position within the identifier lookup table of /// the current AST file. ASTIdentifierLookupTable::key_iterator End; public: explicit ASTIdentifierIterator(const ASTReader &Reader); virtual llvm::StringRef Next(); }; } ASTIdentifierIterator::ASTIdentifierIterator(const ASTReader &Reader) : Reader(Reader), Index(Reader.Chain.size() - 1) { ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)Reader.Chain[Index]->IdentifierLookupTable; Current = IdTable->key_begin(); End = IdTable->key_end(); } llvm::StringRef ASTIdentifierIterator::Next() { while (Current == End) { // If we have exhausted all of our AST files, we're done. if (Index == 0) return llvm::StringRef(); --Index; ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)Reader.Chain[Index]->IdentifierLookupTable; Current = IdTable->key_begin(); End = IdTable->key_end(); } // We have any identifiers remaining in the current AST file; return // the next one. std::pair Key = *Current; ++Current; return llvm::StringRef(Key.first, Key.second); } IdentifierIterator *ASTReader::getIdentifiers() const { return new ASTIdentifierIterator(*this); } std::pair ASTReader::ReadMethodPool(Selector Sel) { // Find this selector in a hash table. We want to find the most recent entry. for (unsigned I = 0, N = Chain.size(); I != N; ++I) { PerFileData &F = *Chain[I]; if (!F.SelectorLookupTable) continue; ASTSelectorLookupTable *PoolTable = (ASTSelectorLookupTable*)F.SelectorLookupTable; ASTSelectorLookupTable::iterator Pos = PoolTable->find(Sel); if (Pos != PoolTable->end()) { ++NumSelectorsRead; // FIXME: Not quite happy with the statistics here. We probably should // disable this tracking when called via LoadSelector. // Also, should entries without methods count as misses? ++NumMethodPoolEntriesRead; ASTSelectorLookupTrait::data_type Data = *Pos; if (DeserializationListener) DeserializationListener->SelectorRead(Data.ID, Sel); return std::make_pair(Data.Instance, Data.Factory); } } ++NumMethodPoolMisses; return std::pair(); } void ASTReader::LoadSelector(Selector Sel) { // It would be complicated to avoid reading the methods anyway. So don't. ReadMethodPool(Sel); } void ASTReader::SetIdentifierInfo(unsigned ID, IdentifierInfo *II) { assert(ID && "Non-zero identifier ID required"); assert(ID <= IdentifiersLoaded.size() && "identifier ID out of range"); IdentifiersLoaded[ID - 1] = II; if (DeserializationListener) DeserializationListener->IdentifierRead(ID, II); } /// \brief Set the globally-visible declarations associated with the given /// identifier. /// /// If the AST reader is currently in a state where the given declaration IDs /// cannot safely be resolved, they are queued until it is safe to resolve /// them. /// /// \param II an IdentifierInfo that refers to one or more globally-visible /// declarations. /// /// \param DeclIDs the set of declaration IDs with the name @p II that are /// visible at global scope. /// /// \param Nonrecursive should be true to indicate that the caller knows that /// this call is non-recursive, and therefore the globally-visible declarations /// will not be placed onto the pending queue. void ASTReader::SetGloballyVisibleDecls(IdentifierInfo *II, const llvm::SmallVectorImpl &DeclIDs, bool Nonrecursive) { if (NumCurrentElementsDeserializing && !Nonrecursive) { PendingIdentifierInfos.push_back(PendingIdentifierInfo()); PendingIdentifierInfo &PII = PendingIdentifierInfos.back(); PII.II = II; PII.DeclIDs.append(DeclIDs.begin(), DeclIDs.end()); return; } for (unsigned I = 0, N = DeclIDs.size(); I != N; ++I) { NamedDecl *D = cast(GetDecl(DeclIDs[I])); if (SemaObj) { if (SemaObj->TUScope) { // Introduce this declaration into the translation-unit scope // and add it to the declaration chain for this identifier, so // that (unqualified) name lookup will find it. SemaObj->TUScope->AddDecl(D); } SemaObj->IdResolver.AddDeclToIdentifierChain(II, D); } else { // Queue this declaration so that it will be added to the // translation unit scope and identifier's declaration chain // once a Sema object is known. PreloadedDecls.push_back(D); } } } IdentifierInfo *ASTReader::DecodeIdentifierInfo(unsigned ID) { if (ID == 0) return 0; if (IdentifiersLoaded.empty()) { Error("no identifier table in AST file"); return 0; } assert(PP && "Forgot to set Preprocessor ?"); ID -= 1; if (!IdentifiersLoaded[ID]) { unsigned Index = ID; const char *Str = 0; for (unsigned I = 0, N = Chain.size(); I != N; ++I) { PerFileData *F = Chain[N - I - 1]; if (Index < F->LocalNumIdentifiers) { uint32_t Offset = F->IdentifierOffsets[Index]; Str = F->IdentifierTableData + Offset; break; } Index -= F->LocalNumIdentifiers; } assert(Str && "Broken Chain"); // All of the strings in the AST file are preceded by a 16-bit length. // Extract that 16-bit length to avoid having to execute strlen(). // NOTE: 'StrLenPtr' is an 'unsigned char*' so that we load bytes as // unsigned integers. This is important to avoid integer overflow when // we cast them to 'unsigned'. const unsigned char *StrLenPtr = (const unsigned char*) Str - 2; unsigned StrLen = (((unsigned) StrLenPtr[0]) | (((unsigned) StrLenPtr[1]) << 8)) - 1; IdentifiersLoaded[ID] = &PP->getIdentifierTable().get(Str, StrLen); if (DeserializationListener) DeserializationListener->IdentifierRead(ID + 1, IdentifiersLoaded[ID]); } return IdentifiersLoaded[ID]; } void ASTReader::ReadSLocEntry(unsigned ID) { ReadSLocEntryRecord(ID); } Selector ASTReader::DecodeSelector(unsigned ID) { if (ID == 0) return Selector(); if (ID > SelectorsLoaded.size()) { Error("selector ID out of range in AST file"); return Selector(); } if (SelectorsLoaded[ID - 1].getAsOpaquePtr() == 0) { // Load this selector from the selector table. unsigned Idx = ID - 1; for (unsigned I = 0, N = Chain.size(); I != N; ++I) { PerFileData &F = *Chain[N - I - 1]; if (Idx < F.LocalNumSelectors) { ASTSelectorLookupTrait Trait(*this); SelectorsLoaded[ID - 1] = Trait.ReadKey(F.SelectorLookupTableData + F.SelectorOffsets[Idx], 0); if (DeserializationListener) DeserializationListener->SelectorRead(ID, SelectorsLoaded[ID - 1]); break; } Idx -= F.LocalNumSelectors; } } return SelectorsLoaded[ID - 1]; } Selector ASTReader::GetExternalSelector(uint32_t ID) { return DecodeSelector(ID); } uint32_t ASTReader::GetNumExternalSelectors() { // ID 0 (the null selector) is considered an external selector. return getTotalNumSelectors() + 1; } DeclarationName ASTReader::ReadDeclarationName(const RecordData &Record, unsigned &Idx) { DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++]; switch (Kind) { case DeclarationName::Identifier: return DeclarationName(GetIdentifierInfo(Record, Idx)); case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: return DeclarationName(GetSelector(Record, Idx)); case DeclarationName::CXXConstructorName: return Context->DeclarationNames.getCXXConstructorName( Context->getCanonicalType(GetType(Record[Idx++]))); case DeclarationName::CXXDestructorName: return Context->DeclarationNames.getCXXDestructorName( Context->getCanonicalType(GetType(Record[Idx++]))); case DeclarationName::CXXConversionFunctionName: return Context->DeclarationNames.getCXXConversionFunctionName( Context->getCanonicalType(GetType(Record[Idx++]))); case DeclarationName::CXXOperatorName: return Context->DeclarationNames.getCXXOperatorName( (OverloadedOperatorKind)Record[Idx++]); case DeclarationName::CXXLiteralOperatorName: return Context->DeclarationNames.getCXXLiteralOperatorName( GetIdentifierInfo(Record, Idx)); case DeclarationName::CXXUsingDirective: return DeclarationName::getUsingDirectiveName(); } // Required to silence GCC warning return DeclarationName(); } void ASTReader::ReadDeclarationNameLoc(PerFileData &F, DeclarationNameLoc &DNLoc, DeclarationName Name, const RecordData &Record, unsigned &Idx) { switch (Name.getNameKind()) { case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: DNLoc.NamedType.TInfo = GetTypeSourceInfo(F, Record, Idx); break; case DeclarationName::CXXOperatorName: DNLoc.CXXOperatorName.BeginOpNameLoc = ReadSourceLocation(F, Record, Idx).getRawEncoding(); DNLoc.CXXOperatorName.EndOpNameLoc = ReadSourceLocation(F, Record, Idx).getRawEncoding(); break; case DeclarationName::CXXLiteralOperatorName: DNLoc.CXXLiteralOperatorName.OpNameLoc = ReadSourceLocation(F, Record, Idx).getRawEncoding(); break; case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXUsingDirective: break; } } void ASTReader::ReadDeclarationNameInfo(PerFileData &F, DeclarationNameInfo &NameInfo, const RecordData &Record, unsigned &Idx) { NameInfo.setName(ReadDeclarationName(Record, Idx)); NameInfo.setLoc(ReadSourceLocation(F, Record, Idx)); DeclarationNameLoc DNLoc; ReadDeclarationNameLoc(F, DNLoc, NameInfo.getName(), Record, Idx); NameInfo.setInfo(DNLoc); } void ASTReader::ReadQualifierInfo(PerFileData &F, QualifierInfo &Info, const RecordData &Record, unsigned &Idx) { Info.QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Idx); unsigned NumTPLists = Record[Idx++]; Info.NumTemplParamLists = NumTPLists; if (NumTPLists) { Info.TemplParamLists = new (*Context) TemplateParameterList*[NumTPLists]; for (unsigned i=0; i != NumTPLists; ++i) Info.TemplParamLists[i] = ReadTemplateParameterList(F, Record, Idx); } } TemplateName ASTReader::ReadTemplateName(PerFileData &F, const RecordData &Record, unsigned &Idx) { TemplateName::NameKind Kind = (TemplateName::NameKind)Record[Idx++]; switch (Kind) { case TemplateName::Template: return TemplateName(cast_or_null(GetDecl(Record[Idx++]))); case TemplateName::OverloadedTemplate: { unsigned size = Record[Idx++]; UnresolvedSet<8> Decls; while (size--) Decls.addDecl(cast(GetDecl(Record[Idx++]))); return Context->getOverloadedTemplateName(Decls.begin(), Decls.end()); } case TemplateName::QualifiedTemplate: { NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx); bool hasTemplKeyword = Record[Idx++]; TemplateDecl *Template = cast(GetDecl(Record[Idx++])); return Context->getQualifiedTemplateName(NNS, hasTemplKeyword, Template); } case TemplateName::DependentTemplate: { NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx); if (Record[Idx++]) // isIdentifier return Context->getDependentTemplateName(NNS, GetIdentifierInfo(Record, Idx)); return Context->getDependentTemplateName(NNS, (OverloadedOperatorKind)Record[Idx++]); } case TemplateName::SubstTemplateTemplateParmPack: { TemplateTemplateParmDecl *Param = cast_or_null(GetDecl(Record[Idx++])); if (!Param) return TemplateName(); TemplateArgument ArgPack = ReadTemplateArgument(F, Record, Idx); if (ArgPack.getKind() != TemplateArgument::Pack) return TemplateName(); return Context->getSubstTemplateTemplateParmPack(Param, ArgPack); } } assert(0 && "Unhandled template name kind!"); return TemplateName(); } TemplateArgument ASTReader::ReadTemplateArgument(PerFileData &F, const RecordData &Record, unsigned &Idx) { TemplateArgument::ArgKind Kind = (TemplateArgument::ArgKind)Record[Idx++]; switch (Kind) { case TemplateArgument::Null: return TemplateArgument(); case TemplateArgument::Type: return TemplateArgument(GetType(Record[Idx++])); case TemplateArgument::Declaration: return TemplateArgument(GetDecl(Record[Idx++])); case TemplateArgument::Integral: { llvm::APSInt Value = ReadAPSInt(Record, Idx); QualType T = GetType(Record[Idx++]); return TemplateArgument(Value, T); } case TemplateArgument::Template: return TemplateArgument(ReadTemplateName(F, Record, Idx)); case TemplateArgument::TemplateExpansion: { TemplateName Name = ReadTemplateName(F, Record, Idx); llvm::Optional NumTemplateExpansions; if (unsigned NumExpansions = Record[Idx++]) NumTemplateExpansions = NumExpansions - 1; return TemplateArgument(Name, NumTemplateExpansions); } case TemplateArgument::Expression: return TemplateArgument(ReadExpr(F)); case TemplateArgument::Pack: { unsigned NumArgs = Record[Idx++]; TemplateArgument *Args = new (*Context) TemplateArgument[NumArgs]; for (unsigned I = 0; I != NumArgs; ++I) Args[I] = ReadTemplateArgument(F, Record, Idx); return TemplateArgument(Args, NumArgs); } } assert(0 && "Unhandled template argument kind!"); return TemplateArgument(); } TemplateParameterList * ASTReader::ReadTemplateParameterList(PerFileData &F, const RecordData &Record, unsigned &Idx) { SourceLocation TemplateLoc = ReadSourceLocation(F, Record, Idx); SourceLocation LAngleLoc = ReadSourceLocation(F, Record, Idx); SourceLocation RAngleLoc = ReadSourceLocation(F, Record, Idx); unsigned NumParams = Record[Idx++]; llvm::SmallVector Params; Params.reserve(NumParams); while (NumParams--) Params.push_back(cast(GetDecl(Record[Idx++]))); TemplateParameterList* TemplateParams = TemplateParameterList::Create(*Context, TemplateLoc, LAngleLoc, Params.data(), Params.size(), RAngleLoc); return TemplateParams; } void ASTReader:: ReadTemplateArgumentList(llvm::SmallVector &TemplArgs, PerFileData &F, const RecordData &Record, unsigned &Idx) { unsigned NumTemplateArgs = Record[Idx++]; TemplArgs.reserve(NumTemplateArgs); while (NumTemplateArgs--) TemplArgs.push_back(ReadTemplateArgument(F, Record, Idx)); } /// \brief Read a UnresolvedSet structure. void ASTReader::ReadUnresolvedSet(UnresolvedSetImpl &Set, const RecordData &Record, unsigned &Idx) { unsigned NumDecls = Record[Idx++]; while (NumDecls--) { NamedDecl *D = cast(GetDecl(Record[Idx++])); AccessSpecifier AS = (AccessSpecifier)Record[Idx++]; Set.addDecl(D, AS); } } CXXBaseSpecifier ASTReader::ReadCXXBaseSpecifier(PerFileData &F, const RecordData &Record, unsigned &Idx) { bool isVirtual = static_cast(Record[Idx++]); bool isBaseOfClass = static_cast(Record[Idx++]); AccessSpecifier AS = static_cast(Record[Idx++]); bool inheritConstructors = static_cast(Record[Idx++]); TypeSourceInfo *TInfo = GetTypeSourceInfo(F, Record, Idx); SourceRange Range = ReadSourceRange(F, Record, Idx); SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Idx); CXXBaseSpecifier Result(Range, isVirtual, isBaseOfClass, AS, TInfo, EllipsisLoc); Result.setInheritConstructors(inheritConstructors); return Result; } std::pair ASTReader::ReadCXXCtorInitializers(PerFileData &F, const RecordData &Record, unsigned &Idx) { CXXCtorInitializer **CtorInitializers = 0; unsigned NumInitializers = Record[Idx++]; if (NumInitializers) { ASTContext &C = *getContext(); CtorInitializers = new (C) CXXCtorInitializer*[NumInitializers]; for (unsigned i=0; i != NumInitializers; ++i) { TypeSourceInfo *BaseClassInfo = 0; bool IsBaseVirtual = false; FieldDecl *Member = 0; IndirectFieldDecl *IndirectMember = 0; bool IsBaseInitializer = Record[Idx++]; if (IsBaseInitializer) { BaseClassInfo = GetTypeSourceInfo(F, Record, Idx); IsBaseVirtual = Record[Idx++]; } else { bool IsIndirectMemberInitializer = Record[Idx++]; if (IsIndirectMemberInitializer) IndirectMember = cast(GetDecl(Record[Idx++])); else Member = cast(GetDecl(Record[Idx++])); } SourceLocation MemberOrEllipsisLoc = ReadSourceLocation(F, Record, Idx); Expr *Init = ReadExpr(F); SourceLocation LParenLoc = ReadSourceLocation(F, Record, Idx); SourceLocation RParenLoc = ReadSourceLocation(F, Record, Idx); bool IsWritten = Record[Idx++]; unsigned SourceOrderOrNumArrayIndices; llvm::SmallVector Indices; if (IsWritten) { SourceOrderOrNumArrayIndices = Record[Idx++]; } else { SourceOrderOrNumArrayIndices = Record[Idx++]; Indices.reserve(SourceOrderOrNumArrayIndices); for (unsigned i=0; i != SourceOrderOrNumArrayIndices; ++i) Indices.push_back(cast(GetDecl(Record[Idx++]))); } CXXCtorInitializer *BOMInit; if (IsBaseInitializer) { BOMInit = new (C) CXXCtorInitializer(C, BaseClassInfo, IsBaseVirtual, LParenLoc, Init, RParenLoc, MemberOrEllipsisLoc); } else if (IsWritten) { if (Member) BOMInit = new (C) CXXCtorInitializer(C, Member, MemberOrEllipsisLoc, LParenLoc, Init, RParenLoc); else BOMInit = new (C) CXXCtorInitializer(C, IndirectMember, MemberOrEllipsisLoc, LParenLoc, Init, RParenLoc); } else { BOMInit = CXXCtorInitializer::Create(C, Member, MemberOrEllipsisLoc, LParenLoc, Init, RParenLoc, Indices.data(), Indices.size()); } if (IsWritten) BOMInit->setSourceOrder(SourceOrderOrNumArrayIndices); CtorInitializers[i] = BOMInit; } } return std::make_pair(CtorInitializers, NumInitializers); } NestedNameSpecifier * ASTReader::ReadNestedNameSpecifier(const RecordData &Record, unsigned &Idx) { unsigned N = Record[Idx++]; NestedNameSpecifier *NNS = 0, *Prev = 0; for (unsigned I = 0; I != N; ++I) { NestedNameSpecifier::SpecifierKind Kind = (NestedNameSpecifier::SpecifierKind)Record[Idx++]; switch (Kind) { case NestedNameSpecifier::Identifier: { IdentifierInfo *II = GetIdentifierInfo(Record, Idx); NNS = NestedNameSpecifier::Create(*Context, Prev, II); break; } case NestedNameSpecifier::Namespace: { NamespaceDecl *NS = cast(GetDecl(Record[Idx++])); NNS = NestedNameSpecifier::Create(*Context, Prev, NS); break; } case NestedNameSpecifier::NamespaceAlias: { NamespaceAliasDecl *Alias = cast(GetDecl(Record[Idx++])); NNS = NestedNameSpecifier::Create(*Context, Prev, Alias); break; } case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { const Type *T = GetType(Record[Idx++]).getTypePtrOrNull(); if (!T) return 0; bool Template = Record[Idx++]; NNS = NestedNameSpecifier::Create(*Context, Prev, Template, T); break; } case NestedNameSpecifier::Global: { NNS = NestedNameSpecifier::GlobalSpecifier(*Context); // No associated value, and there can't be a prefix. break; } } Prev = NNS; } return NNS; } NestedNameSpecifierLoc ASTReader::ReadNestedNameSpecifierLoc(PerFileData &F, const RecordData &Record, unsigned &Idx) { unsigned N = Record[Idx++]; NestedNameSpecifierLocBuilder Builder; for (unsigned I = 0; I != N; ++I) { NestedNameSpecifier::SpecifierKind Kind = (NestedNameSpecifier::SpecifierKind)Record[Idx++]; switch (Kind) { case NestedNameSpecifier::Identifier: { IdentifierInfo *II = GetIdentifierInfo(Record, Idx); SourceRange Range = ReadSourceRange(F, Record, Idx); Builder.Extend(*Context, II, Range.getBegin(), Range.getEnd()); break; } case NestedNameSpecifier::Namespace: { NamespaceDecl *NS = cast(GetDecl(Record[Idx++])); SourceRange Range = ReadSourceRange(F, Record, Idx); Builder.Extend(*Context, NS, Range.getBegin(), Range.getEnd()); break; } case NestedNameSpecifier::NamespaceAlias: { NamespaceAliasDecl *Alias = cast(GetDecl(Record[Idx++])); SourceRange Range = ReadSourceRange(F, Record, Idx); Builder.Extend(*Context, Alias, Range.getBegin(), Range.getEnd()); break; } case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { bool Template = Record[Idx++]; TypeSourceInfo *T = GetTypeSourceInfo(F, Record, Idx); if (!T) return NestedNameSpecifierLoc(); SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx); // FIXME: 'template' keyword location not saved anywhere, so we fake it. Builder.Extend(*Context, Template? T->getTypeLoc().getBeginLoc() : SourceLocation(), T->getTypeLoc(), ColonColonLoc); break; } case NestedNameSpecifier::Global: { SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx); Builder.MakeGlobal(*Context, ColonColonLoc); break; } } } return Builder.getWithLocInContext(*Context); } SourceRange ASTReader::ReadSourceRange(PerFileData &F, const RecordData &Record, unsigned &Idx) { SourceLocation beg = ReadSourceLocation(F, Record, Idx); SourceLocation end = ReadSourceLocation(F, Record, Idx); return SourceRange(beg, end); } /// \brief Read an integral value llvm::APInt ASTReader::ReadAPInt(const RecordData &Record, unsigned &Idx) { unsigned BitWidth = Record[Idx++]; unsigned NumWords = llvm::APInt::getNumWords(BitWidth); llvm::APInt Result(BitWidth, NumWords, &Record[Idx]); Idx += NumWords; return Result; } /// \brief Read a signed integral value llvm::APSInt ASTReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) { bool isUnsigned = Record[Idx++]; return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned); } /// \brief Read a floating-point value llvm::APFloat ASTReader::ReadAPFloat(const RecordData &Record, unsigned &Idx) { return llvm::APFloat(ReadAPInt(Record, Idx)); } // \brief Read a string std::string ASTReader::ReadString(const RecordData &Record, unsigned &Idx) { unsigned Len = Record[Idx++]; std::string Result(Record.data() + Idx, Record.data() + Idx + Len); Idx += Len; return Result; } CXXTemporary *ASTReader::ReadCXXTemporary(const RecordData &Record, unsigned &Idx) { CXXDestructorDecl *Decl = cast(GetDecl(Record[Idx++])); return CXXTemporary::Create(*Context, Decl); } DiagnosticBuilder ASTReader::Diag(unsigned DiagID) { return Diag(SourceLocation(), DiagID); } DiagnosticBuilder ASTReader::Diag(SourceLocation Loc, unsigned DiagID) { return Diags.Report(Loc, DiagID); } /// \brief Retrieve the identifier table associated with the /// preprocessor. IdentifierTable &ASTReader::getIdentifierTable() { assert(PP && "Forgot to set Preprocessor ?"); return PP->getIdentifierTable(); } /// \brief Record that the given ID maps to the given switch-case /// statement. void ASTReader::RecordSwitchCaseID(SwitchCase *SC, unsigned ID) { assert(SwitchCaseStmts[ID] == 0 && "Already have a SwitchCase with this ID"); SwitchCaseStmts[ID] = SC; } /// \brief Retrieve the switch-case statement with the given ID. SwitchCase *ASTReader::getSwitchCaseWithID(unsigned ID) { assert(SwitchCaseStmts[ID] != 0 && "No SwitchCase with this ID"); return SwitchCaseStmts[ID]; } void ASTReader::ClearSwitchCaseIDs() { SwitchCaseStmts.clear(); } void ASTReader::FinishedDeserializing() { assert(NumCurrentElementsDeserializing && "FinishedDeserializing not paired with StartedDeserializing"); if (NumCurrentElementsDeserializing == 1) { // If any identifiers with corresponding top-level declarations have // been loaded, load those declarations now. while (!PendingIdentifierInfos.empty()) { SetGloballyVisibleDecls(PendingIdentifierInfos.front().II, PendingIdentifierInfos.front().DeclIDs, true); PendingIdentifierInfos.pop_front(); } // Ready to load previous declarations of Decls that were delayed. while (!PendingPreviousDecls.empty()) { loadAndAttachPreviousDecl(PendingPreviousDecls.front().first, PendingPreviousDecls.front().second); PendingPreviousDecls.pop_front(); } // We are not in recursive loading, so it's safe to pass the "interesting" // decls to the consumer. if (Consumer) PassInterestingDeclsToConsumer(); assert(PendingForwardRefs.size() == 0 && "Some forward refs did not get linked to the definition!"); } --NumCurrentElementsDeserializing; } ASTReader::ASTReader(Preprocessor &PP, ASTContext *Context, const char *isysroot, bool DisableValidation, bool DisableStatCache) : Listener(new PCHValidator(PP, *this)), DeserializationListener(0), SourceMgr(PP.getSourceManager()), FileMgr(PP.getFileManager()), Diags(PP.getDiagnostics()), SemaObj(0), PP(&PP), Context(Context), Consumer(0), isysroot(isysroot), DisableValidation(DisableValidation), DisableStatCache(DisableStatCache), NumStatHits(0), NumStatMisses(0), NumSLocEntriesRead(0), TotalNumSLocEntries(0), NextSLocOffset(0), NumStatementsRead(0), TotalNumStatements(0), NumMacrosRead(0), TotalNumMacros(0), NumSelectorsRead(0), NumMethodPoolEntriesRead(0), NumMethodPoolMisses(0), TotalNumMethodPoolEntries(0), NumLexicalDeclContextsRead(0), TotalLexicalDeclContexts(0), NumVisibleDeclContextsRead(0), TotalVisibleDeclContexts(0), NumCurrentElementsDeserializing(0) { RelocatablePCH = false; } ASTReader::ASTReader(SourceManager &SourceMgr, FileManager &FileMgr, Diagnostic &Diags, const char *isysroot, bool DisableValidation, bool DisableStatCache) : DeserializationListener(0), SourceMgr(SourceMgr), FileMgr(FileMgr), Diags(Diags), SemaObj(0), PP(0), Context(0), Consumer(0), isysroot(isysroot), DisableValidation(DisableValidation), DisableStatCache(DisableStatCache), NumStatHits(0), NumStatMisses(0), NumSLocEntriesRead(0), TotalNumSLocEntries(0), NextSLocOffset(0), NumStatementsRead(0), TotalNumStatements(0), NumMacrosRead(0), TotalNumMacros(0), NumSelectorsRead(0), NumMethodPoolEntriesRead(0), NumMethodPoolMisses(0), TotalNumMethodPoolEntries(0), NumLexicalDeclContextsRead(0), TotalLexicalDeclContexts(0), NumVisibleDeclContextsRead(0), TotalVisibleDeclContexts(0), NumCurrentElementsDeserializing(0) { RelocatablePCH = false; } ASTReader::~ASTReader() { for (unsigned i = 0, e = Chain.size(); i != e; ++i) delete Chain[e - i - 1]; // Delete all visible decl lookup tables for (DeclContextOffsetsMap::iterator I = DeclContextOffsets.begin(), E = DeclContextOffsets.end(); I != E; ++I) { for (DeclContextInfos::iterator J = I->second.begin(), F = I->second.end(); J != F; ++J) { if (J->NameLookupTableData) delete static_cast( J->NameLookupTableData); } } for (DeclContextVisibleUpdatesPending::iterator I = PendingVisibleUpdates.begin(), E = PendingVisibleUpdates.end(); I != E; ++I) { for (DeclContextVisibleUpdates::iterator J = I->second.begin(), F = I->second.end(); J != F; ++J) delete static_cast(*J); } } ASTReader::PerFileData::PerFileData(ASTFileType Ty) : Type(Ty), SizeInBits(0), LocalNumSLocEntries(0), SLocOffsets(0), LocalSLocSize(0), LocalNumIdentifiers(0), IdentifierOffsets(0), IdentifierTableData(0), IdentifierLookupTable(0), LocalNumMacroDefinitions(0), MacroDefinitionOffsets(0), LocalNumHeaderFileInfos(0), HeaderFileInfoTableData(0), HeaderFileInfoTable(0), LocalNumSelectors(0), SelectorOffsets(0), SelectorLookupTableData(0), SelectorLookupTable(0), LocalNumDecls(0), DeclOffsets(0), LocalNumCXXBaseSpecifiers(0), CXXBaseSpecifiersOffsets(0), LocalNumTypes(0), TypeOffsets(0), StatCache(0), NumPreallocatedPreprocessingEntities(0), NextInSource(0) {} ASTReader::PerFileData::~PerFileData() { delete static_cast(IdentifierLookupTable); delete static_cast(HeaderFileInfoTable); delete static_cast(SelectorLookupTable); }