//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. //===----------------------------------------------------------------------===/ // // This file implements semantic analysis for C++ templates. //===----------------------------------------------------------------------===/ #include "Sema.h" #include "TreeTransform.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/DeclTemplate.h" #include "clang/Parse/DeclSpec.h" #include "clang/Parse/Template.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/PartialDiagnostic.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/StringExtras.h" using namespace clang; /// \brief Determine whether the declaration found is acceptable as the name /// of a template and, if so, return that template declaration. Otherwise, /// returns NULL. static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { if (!D) return 0; if (isa(D)) return D; if (CXXRecordDecl *Record = dyn_cast(D)) { // C++ [temp.local]p1: // Like normal (non-template) classes, class templates have an // injected-class-name (Clause 9). The injected-class-name // can be used with or without a template-argument-list. When // it is used without a template-argument-list, it is // equivalent to the injected-class-name followed by the // template-parameters of the class template enclosed in // <>. When it is used with a template-argument-list, it // refers to the specified class template specialization, // which could be the current specialization or another // specialization. if (Record->isInjectedClassName()) { Record = cast(Record->getDeclContext()); if (Record->getDescribedClassTemplate()) return Record->getDescribedClassTemplate(); if (ClassTemplateSpecializationDecl *Spec = dyn_cast(Record)) return Spec->getSpecializedTemplate(); } return 0; } OverloadedFunctionDecl *Ovl = dyn_cast(D); if (!Ovl) return 0; for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(), FEnd = Ovl->function_end(); F != FEnd; ++F) { if (FunctionTemplateDecl *FuncTmpl = dyn_cast(*F)) { // We've found a function template. Determine whether there are // any other function templates we need to bundle together in an // OverloadedFunctionDecl for (++F; F != FEnd; ++F) { if (isa(*F)) break; } if (F != FEnd) { // Build an overloaded function decl containing only the // function templates in Ovl. OverloadedFunctionDecl *OvlTemplate = OverloadedFunctionDecl::Create(Context, Ovl->getDeclContext(), Ovl->getDeclName()); OvlTemplate->addOverload(FuncTmpl); OvlTemplate->addOverload(*F); for (++F; F != FEnd; ++F) { if (isa(*F)) OvlTemplate->addOverload(*F); } return OvlTemplate; } return FuncTmpl; } } return 0; } TemplateNameKind Sema::isTemplateName(Scope *S, const CXXScopeSpec &SS, UnqualifiedId &Name, TypeTy *ObjectTypePtr, bool EnteringContext, TemplateTy &TemplateResult) { DeclarationName TName; switch (Name.getKind()) { case UnqualifiedId::IK_Identifier: TName = DeclarationName(Name.Identifier); break; case UnqualifiedId::IK_OperatorFunctionId: TName = Context.DeclarationNames.getCXXOperatorName( Name.OperatorFunctionId.Operator); break; default: return TNK_Non_template; } // Determine where to perform name lookup DeclContext *LookupCtx = 0; bool isDependent = false; if (ObjectTypePtr) { // This nested-name-specifier occurs in a member access expression, e.g., // x->B::f, and we are looking into the type of the object. assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); LookupCtx = computeDeclContext(ObjectType); isDependent = ObjectType->isDependentType(); } else if (SS.isSet()) { // This nested-name-specifier occurs after another nested-name-specifier, // so long into the context associated with the prior nested-name-specifier. LookupCtx = computeDeclContext(SS, EnteringContext); isDependent = isDependentScopeSpecifier(SS); } LookupResult Found; bool ObjectTypeSearchedInScope = false; if (LookupCtx) { // Perform "qualified" name lookup into the declaration context we // computed, which is either the type of the base of a member access // expression or the declaration context associated with a prior // nested-name-specifier. // The declaration context must be complete. if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS)) return TNK_Non_template; LookupQualifiedName(Found, LookupCtx, TName, LookupOrdinaryName); if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) { // C++ [basic.lookup.classref]p1: // In a class member access expression (5.2.5), if the . or -> token is // immediately followed by an identifier followed by a <, the // identifier must be looked up to determine whether the < is the // beginning of a template argument list (14.2) or a less-than operator. // The identifier is first looked up in the class of the object // expression. If the identifier is not found, it is then looked up in // the context of the entire postfix-expression and shall name a class // or function template. // // FIXME: When we're instantiating a template, do we actually have to // look in the scope of the template? Seems fishy... LookupName(Found, S, TName, LookupOrdinaryName); ObjectTypeSearchedInScope = true; } } else if (isDependent) { // We cannot look into a dependent object type or return TNK_Non_template; } else { // Perform unqualified name lookup in the current scope. LookupName(Found, S, TName, LookupOrdinaryName); } // FIXME: Cope with ambiguous name-lookup results. assert(!Found.isAmbiguous() && "Cannot handle template name-lookup ambiguities"); NamedDecl *Template = isAcceptableTemplateName(Context, Found.getAsSingleDecl(Context)); if (!Template) return TNK_Non_template; if (ObjectTypePtr && !ObjectTypeSearchedInScope) { // C++ [basic.lookup.classref]p1: // [...] If the lookup in the class of the object expression finds a // template, the name is also looked up in the context of the entire // postfix-expression and [...] // LookupResult FoundOuter; LookupName(FoundOuter, S, TName, LookupOrdinaryName); // FIXME: Handle ambiguities in this lookup better NamedDecl *OuterTemplate = isAcceptableTemplateName(Context, FoundOuter.getAsSingleDecl(Context)); if (!OuterTemplate) { // - if the name is not found, the name found in the class of the // object expression is used, otherwise } else if (!isa(OuterTemplate)) { // - if the name is found in the context of the entire // postfix-expression and does not name a class template, the name // found in the class of the object expression is used, otherwise } else { // - if the name found is a class template, it must refer to the same // entity as the one found in the class of the object expression, // otherwise the program is ill-formed. if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) { Diag(Name.getSourceRange().getBegin(), diag::err_nested_name_member_ref_lookup_ambiguous) << TName << Name.getSourceRange(); Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type) << QualType::getFromOpaquePtr(ObjectTypePtr); Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope); // Recover by taking the template that we found in the object // expression's type. } } } if (SS.isSet() && !SS.isInvalid()) { NestedNameSpecifier *Qualifier = static_cast(SS.getScopeRep()); if (OverloadedFunctionDecl *Ovl = dyn_cast(Template)) TemplateResult = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, Ovl)); else TemplateResult = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, cast(Template))); } else if (OverloadedFunctionDecl *Ovl = dyn_cast(Template)) { TemplateResult = TemplateTy::make(TemplateName(Ovl)); } else { TemplateResult = TemplateTy::make( TemplateName(cast(Template))); } if (isa(Template) || isa(Template)) return TNK_Type_template; assert((isa(Template) || isa(Template)) && "Unhandled template kind in Sema::isTemplateName"); return TNK_Function_template; } /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining /// that the template parameter 'PrevDecl' is being shadowed by a new /// declaration at location Loc. Returns true to indicate that this is /// an error, and false otherwise. bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); // Microsoft Visual C++ permits template parameters to be shadowed. if (getLangOptions().Microsoft) return false; // C++ [temp.local]p4: // A template-parameter shall not be redeclared within its // scope (including nested scopes). Diag(Loc, diag::err_template_param_shadow) << cast(PrevDecl)->getDeclName(); Diag(PrevDecl->getLocation(), diag::note_template_param_here); return true; } /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset /// the parameter D to reference the templated declaration and return a pointer /// to the template declaration. Otherwise, do nothing to D and return null. TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { if (TemplateDecl *Temp = dyn_cast_or_null(D.getAs())) { D = DeclPtrTy::make(Temp->getTemplatedDecl()); return Temp; } return 0; } static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, const ParsedTemplateArgument &Arg) { switch (Arg.getKind()) { case ParsedTemplateArgument::Type: { DeclaratorInfo *DI; QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); if (!DI) DI = SemaRef.Context.getTrivialDeclaratorInfo(T, Arg.getLocation()); return TemplateArgumentLoc(TemplateArgument(T), DI); } case ParsedTemplateArgument::NonType: { Expr *E = static_cast(Arg.getAsExpr()); return TemplateArgumentLoc(TemplateArgument(E), E); } case ParsedTemplateArgument::Template: { TemplateName Template = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); return TemplateArgumentLoc(TemplateArgument(Template), Arg.getScopeSpec().getRange(), Arg.getLocation()); } } llvm::llvm_unreachable("Unhandled parsed template argument"); return TemplateArgumentLoc(); } /// \brief Translates template arguments as provided by the parser /// into template arguments used by semantic analysis. void Sema::translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn, llvm::SmallVectorImpl &TemplateArgs) { TemplateArgs.reserve(TemplateArgsIn.size()); for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) TemplateArgs.push_back(translateTemplateArgument(*this, TemplateArgsIn[I])); } /// ActOnTypeParameter - Called when a C++ template type parameter /// (e.g., "typename T") has been parsed. Typename specifies whether /// the keyword "typename" was used to declare the type parameter /// (otherwise, "class" was used), and KeyLoc is the location of the /// "class" or "typename" keyword. ParamName is the name of the /// parameter (NULL indicates an unnamed template parameter) and /// ParamName is the location of the parameter name (if any). /// If the type parameter has a default argument, it will be added /// later via ActOnTypeParameterDefault. Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, SourceLocation EllipsisLoc, SourceLocation KeyLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position) { assert(S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"); bool Invalid = false; if (ParamName) { NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); if (PrevDecl && PrevDecl->isTemplateParameter()) Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl); } SourceLocation Loc = ParamNameLoc; if (!ParamName) Loc = KeyLoc; TemplateTypeParmDecl *Param = TemplateTypeParmDecl::Create(Context, CurContext, Loc, Depth, Position, ParamName, Typename, Ellipsis); if (Invalid) Param->setInvalidDecl(); if (ParamName) { // Add the template parameter into the current scope. S->AddDecl(DeclPtrTy::make(Param)); IdResolver.AddDecl(Param); } return DeclPtrTy::make(Param); } /// ActOnTypeParameterDefault - Adds a default argument (the type /// Default) to the given template type parameter (TypeParam). void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, SourceLocation EqualLoc, SourceLocation DefaultLoc, TypeTy *DefaultT) { TemplateTypeParmDecl *Parm = cast(TypeParam.getAs()); DeclaratorInfo *DefaultDInfo; GetTypeFromParser(DefaultT, &DefaultDInfo); assert(DefaultDInfo && "expected source information for type"); // C++0x [temp.param]p9: // A default template-argument may be specified for any kind of // template-parameter that is not a template parameter pack. if (Parm->isParameterPack()) { Diag(DefaultLoc, diag::err_template_param_pack_default_arg); return; } // C++ [temp.param]p14: // A template-parameter shall not be used in its own default argument. // FIXME: Implement this check! Needs a recursive walk over the types. // Check the template argument itself. if (CheckTemplateArgument(Parm, DefaultDInfo)) { Parm->setInvalidDecl(); return; } Parm->setDefaultArgument(DefaultDInfo, false); } /// \brief Check that the type of a non-type template parameter is /// well-formed. /// /// \returns the (possibly-promoted) parameter type if valid; /// otherwise, produces a diagnostic and returns a NULL type. QualType Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { // C++ [temp.param]p4: // // A non-type template-parameter shall have one of the following // (optionally cv-qualified) types: // // -- integral or enumeration type, if (T->isIntegralType() || T->isEnumeralType() || // -- pointer to object or pointer to function, (T->isPointerType() && (T->getAs()->getPointeeType()->isObjectType() || T->getAs()->getPointeeType()->isFunctionType())) || // -- reference to object or reference to function, T->isReferenceType() || // -- pointer to member. T->isMemberPointerType() || // If T is a dependent type, we can't do the check now, so we // assume that it is well-formed. T->isDependentType()) return T; // C++ [temp.param]p8: // // A non-type template-parameter of type "array of T" or // "function returning T" is adjusted to be of type "pointer to // T" or "pointer to function returning T", respectively. else if (T->isArrayType()) // FIXME: Keep the type prior to promotion? return Context.getArrayDecayedType(T); else if (T->isFunctionType()) // FIXME: Keep the type prior to promotion? return Context.getPointerType(T); Diag(Loc, diag::err_template_nontype_parm_bad_type) << T; return QualType(); } /// ActOnNonTypeTemplateParameter - Called when a C++ non-type /// template parameter (e.g., "int Size" in "template /// class Array") has been parsed. S is the current scope and D is /// the parsed declarator. Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, unsigned Depth, unsigned Position) { DeclaratorInfo *DInfo = 0; QualType T = GetTypeForDeclarator(D, S, &DInfo); assert(S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"); bool Invalid = false; IdentifierInfo *ParamName = D.getIdentifier(); if (ParamName) { NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); if (PrevDecl && PrevDecl->isTemplateParameter()) Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); } T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); if (T.isNull()) { T = Context.IntTy; // Recover with an 'int' type. Invalid = true; } NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(), Depth, Position, ParamName, T, DInfo); if (Invalid) Param->setInvalidDecl(); if (D.getIdentifier()) { // Add the template parameter into the current scope. S->AddDecl(DeclPtrTy::make(Param)); IdResolver.AddDecl(Param); } return DeclPtrTy::make(Param); } /// \brief Adds a default argument to the given non-type template /// parameter. void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, SourceLocation EqualLoc, ExprArg DefaultE) { NonTypeTemplateParmDecl *TemplateParm = cast(TemplateParamD.getAs()); Expr *Default = static_cast(DefaultE.get()); // C++ [temp.param]p14: // A template-parameter shall not be used in its own default argument. // FIXME: Implement this check! Needs a recursive walk over the types. // Check the well-formedness of the default template argument. TemplateArgument Converted; if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, Converted)) { TemplateParm->setInvalidDecl(); return; } TemplateParm->setDefaultArgument(DefaultE.takeAs()); } /// ActOnTemplateTemplateParameter - Called when a C++ template template /// parameter (e.g. T in template