//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Sema class, which performs semantic analysis and // builds ASTs. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_SEMA_H #define LLVM_CLANG_AST_SEMA_H #include "IdentifierResolver.h" #include "CXXFieldCollector.h" #include "SemaOverload.h" #include "clang/AST/DeclBase.h" #include "clang/Parse/Action.h" #include "clang/Sema/SemaDiagnostic.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/OwningPtr.h" #include "clang/AST/DeclObjC.h" #include #include namespace llvm { class APSInt; } namespace clang { class ASTContext; class ASTConsumer; class Preprocessor; class Decl; class DeclContext; class DeclSpec; class NamedDecl; class Stmt; class Expr; class InitListExpr; class DesignatedInitExpr; class CallExpr; class DeclRefExpr; class VarDecl; class ParmVarDecl; class TypedefDecl; class FunctionDecl; class QualType; class LangOptions; class Token; class IntegerLiteral; class StringLiteral; class ArrayType; class LabelStmt; class SwitchStmt; class ExtVectorType; class TypedefDecl; class TemplateDecl; class TemplateArgument; class TemplateParameterList; class TemplateTemplateParmDecl; class ClassTemplateDecl; class ObjCInterfaceDecl; class ObjCCompatibleAliasDecl; class ObjCProtocolDecl; class ObjCImplDecl; class ObjCImplementationDecl; class ObjCCategoryImplDecl; class ObjCCategoryDecl; class ObjCIvarDecl; class ObjCMethodDecl; class ObjCPropertyDecl; class ObjCContainerDecl; struct BlockSemaInfo; class BasePaths; struct MemberLookupCriteria; /// Sema - This implements semantic analysis and AST building for C. class Sema : public Action { Sema(const Sema&); // DO NOT IMPLEMENT void operator=(const Sema&); // DO NOT IMPLEMENT public: const LangOptions &LangOpts; Preprocessor &PP; ASTContext &Context; ASTConsumer &Consumer; Diagnostic &Diags; SourceManager &SourceMgr; /// CurContext - This is the current declaration context of parsing. DeclContext *CurContext; /// PreDeclaratorDC - Keeps the declaration context before switching to the /// context of a declarator's nested-name-specifier. DeclContext *PreDeclaratorDC; /// CurBlock - If inside of a block definition, this contains a pointer to /// the active block object that represents it. BlockSemaInfo *CurBlock; /// PackContext - Manages the stack for #pragma pack. An alignment /// of 0 indicates default alignment. void *PackContext; // Really a "PragmaPackStack*" /// LabelMap - This is a mapping from label identifiers to the LabelStmt for /// it (which acts like the label decl in some ways). Forward referenced /// labels have a LabelStmt created for them with a null location & SubStmt. llvm::DenseMap LabelMap; llvm::SmallVector SwitchStack; /// ExtVectorDecls - This is a list all the extended vector types. This allows /// us to associate a raw vector type with one of the ext_vector type names. /// This is only necessary for issuing pretty diagnostics. llvm::SmallVector ExtVectorDecls; /// ObjCImplementations - Keep track of all class @implementations /// so we can emit errors on duplicates. llvm::DenseMap ObjCImplementations; /// ObjCCategoryImpls - Maintain a list of category implementations so /// we can check for duplicates and find local method declarations. llvm::SmallVector ObjCCategoryImpls; /// ObjCProtocols - Keep track of all protocol declarations declared /// with @protocol keyword, so that we can emit errors on duplicates and /// find the declarations when needed. llvm::DenseMap ObjCProtocols; /// ObjCInterfaceDecls - Keep track of all class declarations declared /// with @interface, so that we can emit errors on duplicates and /// find the declarations when needed. typedef llvm::DenseMap ObjCInterfaceDeclsTy; ObjCInterfaceDeclsTy ObjCInterfaceDecls; /// ObjCAliasDecls - Keep track of all class declarations declared /// with @compatibility_alias, so that we can emit errors on duplicates and /// find the declarations when needed. This construct is ancient and will /// likely never be seen. Nevertheless, it is here for compatibility. typedef llvm::DenseMap ObjCAliasTy; ObjCAliasTy ObjCAliasDecls; /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes. llvm::OwningPtr FieldCollector; typedef llvm::SmallPtrSet RecordDeclSetTy; /// PureVirtualClassDiagSet - a set of class declarations which we have /// emitted a list of pure virtual functions. Used to prevent emitting the /// same list more than once. llvm::OwningPtr PureVirtualClassDiagSet; /// \brief A mapping from external names to the most recent /// locally-scoped external declaration with that name. /// /// This map contains external declarations introduced in local /// scoped, e.g., /// /// \code /// void f() { /// void foo(int, int); /// } /// \endcode /// /// Here, the name "foo" will be associated with the declaration on /// "foo" within f. This name is not visible outside of /// "f". However, we still find it in two cases: /// /// - If we are declaring another external with the name "foo", we /// can find "foo" as a previous declaration, so that the types /// of this external declaration can be checked for /// compatibility. /// /// - If we would implicitly declare "foo" (e.g., due to a call to /// "foo" in C when no prototype or definition is visible), then /// we find this declaration of "foo" and complain that it is /// not visible. llvm::DenseMap LocallyScopedExternalDecls; IdentifierResolver IdResolver; // Enum values used by KnownFunctionIDs (see below). enum { id_NSLog, id_NSLogv, id_asprintf, id_vasprintf, id_num_known_functions }; /// KnownFunctionIDs - This is a list of IdentifierInfo objects to a set /// of known functions used by the semantic analysis to do various /// kinds of checking (e.g. checking format string errors in printf calls). /// This list is populated upon the creation of a Sema object. IdentifierInfo* KnownFunctionIDs[id_num_known_functions]; /// Translation Unit Scope - useful to Objective-C actions that need /// to lookup file scope declarations in the "ordinary" C decl namespace. /// For example, user-defined classes, built-in "id" type, etc. Scope *TUScope; /// The C++ "std" namespace, where the standard library resides. Cached here /// by GetStdNamespace NamespaceDecl *StdNamespace; /// A flag to remember whether the implicit forms of operator new and delete /// have been declared. bool GlobalNewDeleteDeclared; /// ObjCMethodList - a linked list of methods with different signatures. struct ObjCMethodList { ObjCMethodDecl *Method; ObjCMethodList *Next; ObjCMethodList() { Method = 0; Next = 0; } ObjCMethodList(ObjCMethodDecl *M, ObjCMethodList *C) { Method = M; Next = C; } }; /// Instance/Factory Method Pools - allows efficient lookup when typechecking /// messages to "id". We need to maintain a list, since selectors can have /// differing signatures across classes. In Cocoa, this happens to be /// extremely uncommon (only 1% of selectors are "overloaded"). llvm::DenseMap InstanceMethodPool; llvm::DenseMap FactoryMethodPool; /// Private Helper predicate to check for 'self'. bool isSelfExpr(Expr *RExpr); public: Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer); ~Sema() { if (PackContext) FreePackedContext(); } const LangOptions &getLangOptions() const { return LangOpts; } Diagnostic &getDiagnostics() const { return Diags; } SourceManager &getSourceManager() const { return SourceMgr; } /// \brief Helper class that creates diagnostics with optional /// template instantiation stacks. /// /// This class provides a wrapper around the basic DiagnosticBuilder /// class that emits diagnostics. SemaDiagnosticBuilder is /// responsible for emitting the diagnostic (as DiagnosticBuilder /// does) and, if the diagnostic comes from inside a template /// instantiation, printing the template instantiation stack as /// well. class SemaDiagnosticBuilder : public DiagnosticBuilder { Sema &SemaRef; unsigned DiagID; public: SemaDiagnosticBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID) : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) { } ~SemaDiagnosticBuilder(); }; /// \brief Emit a diagnostic. SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) { DiagnosticBuilder DB = Diags.Report(FullSourceLoc(Loc, SourceMgr), DiagID); return SemaDiagnosticBuilder(DB, *this, DiagID); } virtual void DeleteExpr(ExprTy *E); virtual void DeleteStmt(StmtTy *S); OwningExprResult Owned(Expr* E) { return OwningExprResult(*this, E); } OwningExprResult Owned(ExprResult R) { if (R.isInvalid()) return ExprError(); return OwningExprResult(*this, R.get()); } OwningStmtResult Owned(Stmt* S) { return OwningStmtResult(*this, S); } virtual void ActOnEndOfTranslationUnit(); //===--------------------------------------------------------------------===// // Type Analysis / Processing: SemaType.cpp. // QualType adjustParameterType(QualType T); QualType ConvertDeclSpecToType(const DeclSpec &DS); void ProcessTypeAttributeList(QualType &Result, const AttributeList *AL); QualType BuildPointerType(QualType T, unsigned Quals, SourceLocation Loc, DeclarationName Entity); QualType BuildReferenceType(QualType T, bool LValueRef, unsigned Quals, SourceLocation Loc, DeclarationName Entity); QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, Expr *ArraySize, unsigned Quals, SourceLocation Loc, DeclarationName Entity); QualType BuildFunctionType(QualType T, QualType *ParamTypes, unsigned NumParamTypes, bool Variadic, unsigned Quals, SourceLocation Loc, DeclarationName Entity); QualType GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip = 0); DeclarationName GetNameForDeclarator(Declarator &D); QualType ObjCGetTypeForMethodDefinition(DeclPtrTy D); bool UnwrapSimilarPointerTypes(QualType& T1, QualType& T2); virtual TypeResult ActOnTypeName(Scope *S, Declarator &D); bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned diag, SourceRange Range1 = SourceRange(), SourceRange Range2 = SourceRange(), QualType PrintType = QualType()); QualType getQualifiedNameType(const CXXScopeSpec &SS, QualType T); //===--------------------------------------------------------------------===// // Symbol table / Decl tracking callbacks: SemaDecl.cpp. // /// getDeclName - Return a pretty name for the specified decl if possible, or /// an empty string if not. This is used for pretty crash reporting. virtual std::string getDeclName(DeclPtrTy D); DeclGroupPtrTy ConvertDeclToDeclGroup(DeclPtrTy Ptr); virtual TypeTy *getTypeName(IdentifierInfo &II, SourceLocation NameLoc, Scope *S, const CXXScopeSpec *SS); virtual DeclPtrTy ActOnDeclarator(Scope *S, Declarator &D) { return ActOnDeclarator(S, D, false); } DeclPtrTy ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition); void RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl, Scope *S); NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, QualType R, Decl* PrevDecl, bool& InvalidDecl, bool &Redeclaration); NamedDecl* ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC, QualType R, NamedDecl* PrevDecl, bool& InvalidDecl, bool &Redeclaration); bool CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl, bool &Redeclaration); NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC, QualType R, NamedDecl* PrevDecl, bool IsFunctionDefinition, bool& InvalidDecl, bool &Redeclaration); bool CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl, bool &Redeclaration, bool &OverloadableAttrRequired); virtual DeclPtrTy ActOnParamDeclarator(Scope *S, Declarator &D); virtual void ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc, ExprArg defarg); virtual void ActOnParamUnparsedDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc); virtual void ActOnParamDefaultArgumentError(DeclPtrTy param); virtual void AddInitializerToDecl(DeclPtrTy dcl, ExprArg init); void AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit); void ActOnUninitializedDecl(DeclPtrTy dcl); virtual void SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc); virtual DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group, unsigned NumDecls); virtual void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, SourceLocation LocAfterDecls); virtual DeclPtrTy ActOnStartOfFunctionDef(Scope *S, Declarator &D); virtual DeclPtrTy ActOnStartOfFunctionDef(Scope *S, DeclPtrTy D); virtual void ActOnStartOfObjCMethodDef(Scope *S, DeclPtrTy D); virtual DeclPtrTy ActOnFinishFunctionBody(DeclPtrTy Decl, StmtArg Body); virtual DeclPtrTy ActOnFileScopeAsmDecl(SourceLocation Loc, ExprArg expr); /// Scope actions. virtual void ActOnPopScope(SourceLocation Loc, Scope *S); virtual void ActOnTranslationUnitScope(SourceLocation Loc, Scope *S); /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with /// no declarator (e.g. "struct foo;") is parsed. virtual DeclPtrTy ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS); bool InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner, RecordDecl *AnonRecord); virtual DeclPtrTy BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, RecordDecl *Record); virtual DeclPtrTy ActOnTag(Scope *S, unsigned TagSpec, TagKind TK, SourceLocation KWLoc, const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, AttributeList *Attr, AccessSpecifier AS); virtual void ActOnDefs(Scope *S, DeclPtrTy TagD, SourceLocation DeclStart, IdentifierInfo *ClassName, llvm::SmallVectorImpl &Decls); virtual DeclPtrTy ActOnField(Scope *S, DeclPtrTy TagD, SourceLocation DeclStart, Declarator &D, ExprTy *BitfieldWidth); FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, AccessSpecifier AS); FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T, RecordDecl *Record, SourceLocation Loc, bool Mutable, Expr *BitfieldWidth, AccessSpecifier AS, NamedDecl *PrevDecl, Declarator *D = 0); virtual DeclPtrTy ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, ExprTy *BitfieldWidth, tok::ObjCKeywordKind visibility); // This is used for both record definitions and ObjC interface declarations. virtual void ActOnFields(Scope* S, SourceLocation RecLoc, DeclPtrTy TagDecl, DeclPtrTy *Fields, unsigned NumFields, SourceLocation LBrac, SourceLocation RBrac, AttributeList *AttrList); /// ActOnTagStartDefinition - Invoked when we have entered the /// scope of a tag's definition (e.g., for an enumeration, class, /// struct, or union). virtual void ActOnTagStartDefinition(Scope *S, DeclPtrTy TagDecl); /// ActOnTagFinishDefinition - Invoked once we have finished parsing /// the definition of a tag (enumeration, class, struct, or union). virtual void ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagDecl); EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum, EnumConstantDecl *LastEnumConst, SourceLocation IdLoc, IdentifierInfo *Id, ExprArg val); virtual DeclPtrTy ActOnEnumConstant(Scope *S, DeclPtrTy EnumDecl, DeclPtrTy LastEnumConstant, SourceLocation IdLoc, IdentifierInfo *Id, SourceLocation EqualLoc, ExprTy *Val); virtual void ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDecl, DeclPtrTy *Elements, unsigned NumElements); DeclContext *getContainingDC(DeclContext *DC); /// Set the current declaration context until it gets popped. void PushDeclContext(Scope *S, DeclContext *DC); void PopDeclContext(); /// getCurFunctionDecl - If inside of a function body, this returns a pointer /// to the function decl for the function being parsed. If we're currently /// in a 'block', this returns the containing context. FunctionDecl *getCurFunctionDecl(); /// getCurMethodDecl - If inside of a method body, this returns a pointer to /// the method decl for the method being parsed. If we're currently /// in a 'block', this returns the containing context. ObjCMethodDecl *getCurMethodDecl(); /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method /// or C function we're in, otherwise return null. If we're currently /// in a 'block', this returns the containing context. NamedDecl *getCurFunctionOrMethodDecl(); /// Add this decl to the scope shadowed decl chains. void PushOnScopeChains(NamedDecl *D, Scope *S); /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns /// true if 'D' belongs to the given declaration context. bool isDeclInScope(Decl *D, DeclContext *Ctx, Scope *S = 0) { return IdResolver.isDeclInScope(D, Ctx, Context, S); } void RecursiveCalcJumpScopes(llvm::DenseMap& LabelScopeMap, llvm::DenseMap& PopScopeMap, llvm::DenseMap& GotoScopeMap, std::vector& ScopeStack, Stmt* CurStmt); void RecursiveCalcLabelScopes(llvm::DenseMap& LabelScopeMap, llvm::DenseMap& PopScopeMap, std::vector& ScopeStack, Stmt* CurStmt, Stmt* ParentCompoundStmt); /// Subroutines of ActOnDeclarator(). TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T); bool MergeTypeDefDecl(TypedefDecl *New, Decl *Old); bool MergeFunctionDecl(FunctionDecl *New, Decl *Old); bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old); bool MergeVarDecl(VarDecl *New, Decl *Old); bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old); /// C++ Overloading. bool IsOverload(FunctionDecl *New, Decl* OldD, OverloadedFunctionDecl::function_iterator &MatchedDecl); ImplicitConversionSequence TryImplicitConversion(Expr* From, QualType ToType, bool SuppressUserConversions = false, bool AllowExplicit = false); bool IsStandardConversion(Expr *From, QualType ToType, StandardConversionSequence& SCS); bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType); bool IsFloatingPointPromotion(QualType FromType, QualType ToType); bool IsComplexPromotion(QualType FromType, QualType ToType); bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC); bool isObjCPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC); bool CheckPointerConversion(Expr *From, QualType ToType); bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType, QualType &ConvertedType); bool CheckMemberPointerConversion(Expr *From, QualType ToType); bool IsQualificationConversion(QualType FromType, QualType ToType); bool IsUserDefinedConversion(Expr *From, QualType ToType, UserDefinedConversionSequence& User, bool AllowConversionFunctions, bool AllowExplicit); ImplicitConversionSequence::CompareKind CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, const ImplicitConversionSequence& ICS2); ImplicitConversionSequence::CompareKind CompareStandardConversionSequences(const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); ImplicitConversionSequence::CompareKind CompareQualificationConversions(const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); ImplicitConversionSequence::CompareKind CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); ImplicitConversionSequence TryCopyInitialization(Expr* From, QualType ToType, bool SuppressUserConversions = false); bool PerformCopyInitialization(Expr *&From, QualType ToType, const char *Flavor); ImplicitConversionSequence TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method); bool PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method); ImplicitConversionSequence TryContextuallyConvertToBool(Expr *From); bool PerformContextuallyConvertToBool(Expr *&From); /// OverloadingResult - Capture the result of performing overload /// resolution. enum OverloadingResult { OR_Success, ///< Overload resolution succeeded. OR_No_Viable_Function, ///< No viable function found. OR_Ambiguous, ///< Ambiguous candidates found. OR_Deleted ///< Overload resoltuion refers to a deleted function. }; typedef llvm::SmallPtrSet FunctionSet; typedef llvm::SmallPtrSet AssociatedNamespaceSet; typedef llvm::SmallPtrSet AssociatedClassSet; void AddOverloadCandidate(FunctionDecl *Function, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false); void AddFunctionCandidates(const FunctionSet &Functions, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false); void AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false); void AddConversionCandidate(CXXConversionDecl *Conversion, Expr *From, QualType ToType, OverloadCandidateSet& CandidateSet); void AddSurrogateCandidate(CXXConversionDecl *Conversion, const FunctionProtoType *Proto, Expr *Object, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet); void AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, SourceLocation OpLoc, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, SourceRange OpRange = SourceRange()); void AddMemberOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, SourceRange OpRange = SourceRange()); void AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool IsAssignmentOperator = false, unsigned NumContextualBoolArguments = 0); void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet); void AddArgumentDependentLookupCandidates(DeclarationName Name, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet); bool isBetterOverloadCandidate(const OverloadCandidate& Cand1, const OverloadCandidate& Cand2); OverloadingResult BestViableFunction(OverloadCandidateSet& CandidateSet, OverloadCandidateSet::iterator& Best); void PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, bool OnlyViable); FunctionDecl *ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, bool Complain); void FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn); FunctionDecl *ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee, DeclarationName UnqualifiedName, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc, bool &ArgumentDependentLookup); OwningExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned Opc, FunctionSet &Functions, ExprArg input); OwningExprResult CreateOverloadedBinOp(SourceLocation OpLoc, unsigned Opc, FunctionSet &Functions, Expr *LHS, Expr *RHS); ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc); ExprResult BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc); ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, SourceLocation MemberLoc, IdentifierInfo &Member); /// Helpers for dealing with function parameters. bool CheckParmsForFunctionDef(FunctionDecl *FD); void CheckCXXDefaultArguments(FunctionDecl *FD); void CheckExtraCXXDefaultArguments(Declarator &D); Scope *getNonFieldDeclScope(Scope *S); /// \name Name lookup /// /// These routines provide name lookup that is used during semantic /// analysis to resolve the various kinds of names (identifiers, /// overloaded operator names, constructor names, etc.) into zero or /// more declarations within a particular scope. The major entry /// points are LookupName, which performs unqualified name lookup, /// and LookupQualifiedName, which performs qualified name lookup. /// /// All name lookup is performed based on some specific criteria, /// which specify what names will be visible to name lookup and how /// far name lookup should work. These criteria are important both /// for capturing language semantics (certain lookups will ignore /// certain names, for example) and for performance, since name /// lookup is often a bottleneck in the compilation of C++. Name /// lookup criteria is specified via the LookupCriteria enumeration. /// /// The results of name lookup can vary based on the kind of name /// lookup performed, the current language, and the translation /// unit. In C, for example, name lookup will either return nothing /// (no entity found) or a single declaration. In C++, name lookup /// can additionally refer to a set of overloaded functions or /// result in an ambiguity. All of the possible results of name /// lookup are captured by the LookupResult class, which provides /// the ability to distinguish among them. //@{ /// @brief Describes the kind of name lookup to perform. enum LookupNameKind { /// Ordinary name lookup, which finds ordinary names (functions, /// variables, typedefs, etc.) in C and most kinds of names /// (functions, variables, members, types, etc.) in C++. LookupOrdinaryName = 0, /// Tag name lookup, which finds the names of enums, classes, /// structs, and unions. LookupTagName, /// Member name lookup, which finds the names of /// class/struct/union members. LookupMemberName, // Look up of an operator name (e.g., operator+) for use with // operator overloading. This lookup is similar to ordinary name // lookup, but will ignore any declarations that are class // members. LookupOperatorName, /// Look up of a name that precedes the '::' scope resolution /// operator in C++. This lookup completely ignores operator, /// function, and enumerator names (C++ [basic.lookup.qual]p1). LookupNestedNameSpecifierName, /// Look up a namespace name within a C++ using directive or /// namespace alias definition, ignoring non-namespace names (C++ /// [basic.lookup.udir]p1). LookupNamespaceName, // Look up an ordinary name that is going to be redeclared as a // name with linkage. This lookup ignores any declarations that // are outside of the current scope unless they have linkage. See // C99 6.2.2p4-5 and C++ [basic.link]p6. LookupRedeclarationWithLinkage }; /// @brief Represents the results of name lookup. /// /// An instance of the LookupResult class captures the results of a /// single name lookup, which can return no result (nothing found), /// a single declaration, a set of overloaded functions, or an /// ambiguity. Use the getKind() method to determine which of these /// results occurred for a given lookup. /// /// Any non-ambiguous lookup can be converted into a single /// (possibly NULL) @c NamedDecl* via a conversion function or the /// getAsDecl() method. This conversion permits the common-case /// usage in C and Objective-C where name lookup will always return /// a single declaration. struct LookupResult { /// The kind of entity that is actually stored within the /// LookupResult object. enum { /// First is a single declaration (a NamedDecl*), which may be NULL. SingleDecl, /// First is a single declaration (an OverloadedFunctionDecl*). OverloadedDeclSingleDecl, /// [First, Last) is an iterator range represented as opaque /// pointers used to reconstruct IdentifierResolver::iterators. OverloadedDeclFromIdResolver, /// [First, Last) is an iterator range represented as opaque /// pointers used to reconstruct DeclContext::lookup_iterators. OverloadedDeclFromDeclContext, /// First is a pointer to a BasePaths structure, which is owned /// by the LookupResult. Last is non-zero to indicate that the /// ambiguity is caused by two names found in base class /// subobjects of different types. AmbiguousLookupStoresBasePaths, /// [First, Last) is an iterator range represented as opaque /// pointers used to reconstruct new'ed Decl*[] array containing /// found ambiguous decls. LookupResult is owner of this array. AmbiguousLookupStoresDecls } StoredKind; /// The first lookup result, whose contents depend on the kind of /// lookup result. This may be a NamedDecl* (if StoredKind == /// SingleDecl), OverloadedFunctionDecl* (if StoredKind == /// OverloadedDeclSingleDecl), the opaque pointer from an /// IdentifierResolver::iterator (if StoredKind == /// OverloadedDeclFromIdResolver), a DeclContext::lookup_iterator /// (if StoredKind == OverloadedDeclFromDeclContext), or a /// BasePaths pointer (if StoredKind == AmbiguousLookupStoresBasePaths). mutable uintptr_t First; /// The last lookup result, whose contents depend on the kind of /// lookup result. This may be unused (if StoredKind == /// SingleDecl), it may have the same type as First (for /// overloaded function declarations), or is may be used as a /// Boolean value (if StoredKind == AmbiguousLookupStoresBasePaths). mutable uintptr_t Last; /// Context - The context in which we will build any /// OverloadedFunctionDecl nodes needed by the conversion to /// Decl*. ASTContext *Context; /// @brief The kind of entity found by name lookup. enum LookupKind { /// @brief No entity found met the criteria. NotFound = 0, /// @brief Name lookup found a single declaration that met the /// criteria. getAsDecl will return this declaration. Found, /// @brief Name lookup found a set of overloaded functions that /// met the criteria. getAsDecl will turn this set of overloaded /// functions into an OverloadedFunctionDecl. FoundOverloaded, /// Name lookup results in an ambiguity because multiple /// entities that meet the lookup criteria were found in /// subobjects of different types. For example: /// @code /// struct A { void f(int); } /// struct B { void f(double); } /// struct C : A, B { }; /// void test(C c) { /// c.f(0); // error: A::f and B::f come from subobjects of different /// // types. overload resolution is not performed. /// } /// @endcode AmbiguousBaseSubobjectTypes, /// Name lookup results in an ambiguity because multiple /// nonstatic entities that meet the lookup criteria were found /// in different subobjects of the same type. For example: /// @code /// struct A { int x; }; /// struct B : A { }; /// struct C : A { }; /// struct D : B, C { }; /// int test(D d) { /// return d.x; // error: 'x' is found in two A subobjects (of B and C) /// } /// @endcode AmbiguousBaseSubobjects, /// Name lookup results in an ambiguity because multiple definitions /// of entity that meet the lookup criteria were found in different /// declaration contexts. /// @code /// namespace A { /// int i; /// namespace B { int i; } /// int test() { /// using namespace B; /// return i; // error 'i' is found in namespace A and A::B /// } /// } /// @endcode AmbiguousReference }; static LookupResult CreateLookupResult(ASTContext &Context, NamedDecl *D); static LookupResult CreateLookupResult(ASTContext &Context, IdentifierResolver::iterator F, IdentifierResolver::iterator L); static LookupResult CreateLookupResult(ASTContext &Context, DeclContext::lookup_iterator F, DeclContext::lookup_iterator L); static LookupResult CreateLookupResult(ASTContext &Context, BasePaths *Paths, bool DifferentSubobjectTypes) { LookupResult Result; Result.StoredKind = AmbiguousLookupStoresBasePaths; Result.First = reinterpret_cast(Paths); Result.Last = DifferentSubobjectTypes? 1 : 0; Result.Context = &Context; return Result; } template static LookupResult CreateLookupResult(ASTContext &Context, Iterator B, std::size_t Len) { NamedDecl ** Array = new NamedDecl*[Len]; for (std::size_t Idx = 0; Idx < Len; ++Idx, ++B) Array[Idx] = *B; LookupResult Result; Result.StoredKind = AmbiguousLookupStoresDecls; Result.First = reinterpret_cast(Array); Result.Last = reinterpret_cast(Array + Len); Result.Context = &Context; return Result; } LookupKind getKind() const; /// @brief Determine whether name look found something. operator bool() const { return getKind() != NotFound; } /// @brief Determines whether the lookup resulted in an ambiguity. bool isAmbiguous() const { return StoredKind == AmbiguousLookupStoresBasePaths || StoredKind == AmbiguousLookupStoresDecls; } /// @brief Allows conversion of a lookup result into a /// declaration, with the same behavior as getAsDecl. operator NamedDecl*() const { return getAsDecl(); } NamedDecl* getAsDecl() const; BasePaths *getBasePaths() const; /// \brief Iterate over the results of name lookup. /// /// The @c iterator class provides iteration over the results of a /// non-ambiguous name lookup. class iterator { /// The LookupResult structure we're iterating through. LookupResult *Result; /// The current position of this iterator within the sequence of /// results. This value will have the same representation as the /// @c First field in the LookupResult structure. mutable uintptr_t Current; public: typedef NamedDecl * value_type; typedef NamedDecl * reference; typedef NamedDecl * pointer; typedef std::ptrdiff_t difference_type; typedef std::forward_iterator_tag iterator_category; iterator() : Result(0), Current(0) { } iterator(LookupResult *Res, uintptr_t Cur) : Result(Res), Current(Cur) { } reference operator*() const; pointer operator->() const { return **this; } iterator &operator++(); iterator operator++(int) { iterator tmp(*this); ++(*this); return tmp; } friend inline bool operator==(iterator const& x, iterator const& y) { return x.Current == y.Current; } friend inline bool operator!=(iterator const& x, iterator const& y) { return x.Current != y.Current; } }; friend class iterator; iterator begin(); iterator end(); /// \brief Free the memory associated with this lookup. void Destroy(); }; private: typedef llvm::SmallVector LookupResultsVecTy; std::pair CppLookupName(Scope *S, DeclarationName Name, LookupNameKind NameKind, bool RedeclarationOnly); public: /// Determines whether D is a suitable lookup result according to the /// lookup criteria. static bool isAcceptableLookupResult(NamedDecl *D, LookupNameKind NameKind, unsigned IDNS) { switch (NameKind) { case Sema::LookupOrdinaryName: case Sema::LookupTagName: case Sema::LookupMemberName: case Sema::LookupRedeclarationWithLinkage: // FIXME: check linkage, scoping return D->isInIdentifierNamespace(IDNS); case Sema::LookupOperatorName: return D->isInIdentifierNamespace(IDNS) && !D->getDeclContext()->isRecord(); case Sema::LookupNestedNameSpecifierName: return isa(D) || D->isInIdentifierNamespace(Decl::IDNS_Tag); case Sema::LookupNamespaceName: return isa(D) || isa(D); } assert(false && "isAcceptableLookupResult always returns before this point"); return false; } LookupResult LookupName(Scope *S, DeclarationName Name, LookupNameKind NameKind, bool RedeclarationOnly = false, bool AllowBuiltinCreation = true, SourceLocation Loc = SourceLocation()); LookupResult LookupQualifiedName(DeclContext *LookupCtx, DeclarationName Name, LookupNameKind NameKind, bool RedeclarationOnly = false); LookupResult LookupParsedName(Scope *S, const CXXScopeSpec *SS, DeclarationName Name, LookupNameKind NameKind, bool RedeclarationOnly = false, bool AllowBuiltinCreation = true, SourceLocation Loc = SourceLocation()); void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, QualType T1, QualType T2, FunctionSet &Functions); void ArgumentDependentLookup(DeclarationName Name, Expr **Args, unsigned NumArgs, FunctionSet &Functions); void FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs, AssociatedNamespaceSet &AssociatedNamespaces, AssociatedClassSet &AssociatedClasses); bool DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name, SourceLocation NameLoc, SourceRange LookupRange = SourceRange()); //@} ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *Id); NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S, bool ForRedeclaration, SourceLocation Loc); NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, Scope *S); void AddKnownFunctionAttributes(FunctionDecl *FD); // More parsing and symbol table subroutines. // Decl attributes - this routine is the top level dispatcher. void ProcessDeclAttributes(Decl *D, const Declarator &PD); void ProcessDeclAttributeList(Decl *D, const AttributeList *AttrList); void WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, bool &IncompleteImpl); void WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethod, ObjCMethodDecl *IntfMethod); NamespaceDecl *GetStdNamespace(); bool isPropertyReadonly(ObjCPropertyDecl *PropertyDecl, ObjCInterfaceDecl *IDecl); /// CheckProtocolMethodDefs - This routine checks unimplemented /// methods declared in protocol, and those referenced by it. /// \param IDecl - Used for checking for methods which may have been /// inherited. void CheckProtocolMethodDefs(SourceLocation ImpLoc, ObjCProtocolDecl *PDecl, bool& IncompleteImpl, const llvm::DenseSet &InsMap, const llvm::DenseSet &ClsMap, ObjCInterfaceDecl *IDecl); /// CheckImplementationIvars - This routine checks if the instance variables /// listed in the implelementation match those listed in the interface. void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, ObjCIvarDecl **Fields, unsigned nIvars, SourceLocation Loc); /// ImplMethodsVsClassMethods - This is main routine to warn if any method /// remains unimplemented in the class or category @implementation. void ImplMethodsVsClassMethods(ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl, bool IncompleteImpl = false); /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns /// true, or false, accordingly. bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method, const ObjCMethodDecl *PrevMethod, bool matchBasedOnSizeAndAlignment = false); /// AddInstanceMethodToGlobalPool - All instance methods in a translation /// unit are added to a global pool. This allows us to efficiently associate /// a selector with a method declaraation for purposes of typechecking /// messages sent to "id" (where the class of the object is unknown). void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method); /// LookupInstanceMethodInGlobalPool - Returns the method and warns if /// there are multiple signatures. ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R); /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods. void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method); //===--------------------------------------------------------------------===// // Statement Parsing Callbacks: SemaStmt.cpp. public: virtual OwningStmtResult ActOnExprStmt(ExprArg Expr); virtual OwningStmtResult ActOnNullStmt(SourceLocation SemiLoc); virtual OwningStmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, MultiStmtArg Elts, bool isStmtExpr); virtual OwningStmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc, SourceLocation EndLoc); virtual OwningStmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprArg LHSVal, SourceLocation DotDotDotLoc, ExprArg RHSVal, SourceLocation ColonLoc); virtual void ActOnCaseStmtBody(StmtTy *CaseStmt, StmtArg SubStmt); virtual OwningStmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, StmtArg SubStmt, Scope *CurScope); virtual OwningStmtResult ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation ColonLoc, StmtArg SubStmt); virtual OwningStmtResult ActOnIfStmt(SourceLocation IfLoc, ExprArg CondVal, StmtArg ThenVal, SourceLocation ElseLoc, StmtArg ElseVal); virtual OwningStmtResult ActOnStartOfSwitchStmt(ExprArg Cond); virtual OwningStmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch, StmtArg Body); virtual OwningStmtResult ActOnWhileStmt(SourceLocation WhileLoc, ExprArg Cond, StmtArg Body); virtual OwningStmtResult ActOnDoStmt(SourceLocation DoLoc, StmtArg Body, SourceLocation WhileLoc, ExprArg Cond); virtual OwningStmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, StmtArg First, ExprArg Second, ExprArg Third, SourceLocation RParenLoc, StmtArg Body); virtual OwningStmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, SourceLocation LParenLoc, StmtArg First, ExprArg Second, SourceLocation RParenLoc, StmtArg Body); virtual OwningStmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, IdentifierInfo *LabelII); virtual OwningStmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, ExprArg DestExp); virtual OwningStmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope); virtual OwningStmtResult ActOnBreakStmt(SourceLocation GotoLoc, Scope *CurScope); virtual OwningStmtResult ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg RetValExp); OwningStmtResult ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp); virtual OwningStmtResult ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, std::string *Names, MultiExprArg Constraints, MultiExprArg Exprs, ExprArg AsmString, MultiExprArg Clobbers, SourceLocation RParenLoc); virtual OwningStmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, DeclPtrTy Parm, StmtArg Body, StmtArg CatchList); virtual OwningStmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body); virtual OwningStmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, StmtArg Try, StmtArg Catch, StmtArg Finally); virtual OwningStmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg Throw, Scope *CurScope); virtual OwningStmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr, StmtArg SynchBody); virtual DeclPtrTy ActOnExceptionDeclarator(Scope *S, Declarator &D); virtual OwningStmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl, StmtArg HandlerBlock); virtual OwningStmtResult ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock, MultiStmtArg Handlers); //===--------------------------------------------------------------------===// // Expression Parsing Callbacks: SemaExpr.cpp. bool DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc); // Primary Expressions. virtual SourceRange getExprRange(ExprTy *E) const; virtual OwningExprResult ActOnIdentifierExpr(Scope *S, SourceLocation Loc, IdentifierInfo &II, bool HasTrailingLParen, const CXXScopeSpec *SS = 0, bool isAddressOfOperand = false); virtual OwningExprResult ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc, OverloadedOperatorKind Op, bool HasTrailingLParen, const CXXScopeSpec &SS, bool isAddressOfOperand); virtual OwningExprResult ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc, TypeTy *Ty, bool HasTrailingLParen, const CXXScopeSpec &SS, bool isAddressOfOperand); DeclRefExpr *BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc, bool TypeDependent, bool ValueDependent, const CXXScopeSpec *SS = 0); OwningExprResult BuildAnonymousStructUnionMemberReference(SourceLocation Loc, FieldDecl *Field, Expr *BaseObjectExpr = 0, SourceLocation OpLoc = SourceLocation()); OwningExprResult ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc, DeclarationName Name, bool HasTrailingLParen, const CXXScopeSpec *SS, bool isAddressOfOperand = false); virtual OwningExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind); virtual OwningExprResult ActOnNumericConstant(const Token &); virtual OwningExprResult ActOnCharacterConstant(const Token &); virtual OwningExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, ExprArg Val); /// ActOnStringLiteral - The specified tokens were lexed as pasted string /// fragments (e.g. "foo" "bar" L"baz"). virtual OwningExprResult ActOnStringLiteral(const Token *Toks, unsigned NumToks); // Binary/Unary Operators. 'Tok' is the token for the operator. OwningExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, unsigned OpcIn, ExprArg InputArg); virtual OwningExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, ExprArg Input); OwningExprResult CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc, bool isSizeOf, SourceRange R); OwningExprResult CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc, bool isSizeOf, SourceRange R); virtual OwningExprResult ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType, void *TyOrEx, const SourceRange &ArgRange); bool CheckAlignOfExpr(Expr *E, SourceLocation OpLoc, const SourceRange &R); bool CheckSizeOfAlignOfOperand(QualType type, SourceLocation OpLoc, const SourceRange &R, bool isSizeof); virtual OwningExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Kind, ExprArg Input); virtual OwningExprResult ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc, ExprArg Idx, SourceLocation RLoc); virtual OwningExprResult ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc, tok::TokenKind OpKind, SourceLocation MemberLoc, IdentifierInfo &Member, DeclPtrTy ImplDecl); bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, FunctionDecl *FDecl, const FunctionProtoType *Proto, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc); /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. /// This provides the location of the left/right parens and a list of comma /// locations. virtual OwningExprResult ActOnCallExpr(Scope *S, ExprArg Fn, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation *CommaLocs, SourceLocation RParenLoc); virtual OwningExprResult ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc, ExprArg Op); virtual OwningExprResult ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc, ExprArg Op); virtual OwningExprResult ActOnInitList(SourceLocation LParenLoc, MultiExprArg InitList, SourceLocation RParenLoc); virtual OwningExprResult ActOnDesignatedInitializer(Designation &Desig, SourceLocation Loc, bool GNUSyntax, OwningExprResult Init); virtual OwningExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, ExprArg LHS, ExprArg RHS); OwningExprResult CreateBuiltinBinOp(SourceLocation TokLoc, unsigned Opc, Expr *lhs, Expr *rhs); /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null /// in the case of a the GNU conditional expr extension. virtual OwningExprResult ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, ExprArg Cond, ExprArg LHS, ExprArg RHS); /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". virtual OwningExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, IdentifierInfo *LabelII); virtual OwningExprResult ActOnStmtExpr(SourceLocation LPLoc, StmtArg SubStmt, SourceLocation RPLoc); // "({..})" /// __builtin_offsetof(type, a.b[123][456].c) virtual OwningExprResult ActOnBuiltinOffsetOf(Scope *S, SourceLocation BuiltinLoc, SourceLocation TypeLoc, TypeTy *Arg1, OffsetOfComponent *CompPtr, unsigned NumComponents, SourceLocation RParenLoc); // __builtin_types_compatible_p(type1, type2) virtual OwningExprResult ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc, TypeTy *arg1, TypeTy *arg2, SourceLocation RPLoc); // __builtin_choose_expr(constExpr, expr1, expr2) virtual OwningExprResult ActOnChooseExpr(SourceLocation BuiltinLoc, ExprArg cond, ExprArg expr1, ExprArg expr2, SourceLocation RPLoc); // __builtin_va_arg(expr, type) virtual OwningExprResult ActOnVAArg(SourceLocation BuiltinLoc, ExprArg expr, TypeTy *type, SourceLocation RPLoc); // __null virtual OwningExprResult ActOnGNUNullExpr(SourceLocation TokenLoc); //===------------------------- "Block" Extension ------------------------===// /// ActOnBlockStart - This callback is invoked when a block literal is /// started. virtual void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockArguments - This callback allows processing of block arguments. /// If there are no arguments, this is still invoked. virtual void ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope); /// ActOnBlockError - If there is an error parsing a block, this callback /// is invoked to pop the information about the block from the action impl. virtual void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockStmtExpr - This is called when the body of a block statement /// literal was successfully completed. ^(int x){...} virtual OwningExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtArg Body, Scope *CurScope); //===---------------------------- C++ Features --------------------------===// // Act on C++ namespaces virtual DeclPtrTy ActOnStartNamespaceDef(Scope *S, SourceLocation IdentLoc, IdentifierInfo *Ident, SourceLocation LBrace); virtual void ActOnFinishNamespaceDef(DeclPtrTy Dcl, SourceLocation RBrace); virtual DeclPtrTy ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc, SourceLocation NamespcLoc, const CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *NamespcName, AttributeList *AttrList); void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir); virtual DeclPtrTy ActOnNamespaceAliasDef(Scope *CurScope, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, const CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *Ident); /// AddCXXDirectInitializerToDecl - This action is called immediately after /// ActOnDeclarator, when a C++ direct initializer is present. /// e.g: "int x(1);" virtual void AddCXXDirectInitializerToDecl(DeclPtrTy Dcl, SourceLocation LParenLoc, MultiExprArg Exprs, SourceLocation *CommaLocs, SourceLocation RParenLoc); /// InitializationKind - Represents which kind of C++ initialization /// [dcl.init] a routine is to perform. enum InitializationKind { IK_Direct, ///< Direct initialization IK_Copy, ///< Copy initialization IK_Default ///< Default initialization }; CXXConstructorDecl * PerformInitializationByConstructor(QualType ClassType, Expr **Args, unsigned NumArgs, SourceLocation Loc, SourceRange Range, DeclarationName InitEntity, InitializationKind Kind); /// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's. virtual OwningExprResult ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, SourceLocation LAngleBracketLoc, TypeTy *Ty, SourceLocation RAngleBracketLoc, SourceLocation LParenLoc, ExprArg E, SourceLocation RParenLoc); /// ActOnCXXTypeid - Parse typeid( something ). virtual OwningExprResult ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc); //// ActOnCXXThis - Parse 'this' pointer. virtual OwningExprResult ActOnCXXThis(SourceLocation ThisLoc); /// ActOnCXXBoolLiteral - Parse {true,false} literals. virtual OwningExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); //// ActOnCXXThrow - Parse throw expressions. virtual OwningExprResult ActOnCXXThrow(SourceLocation OpLoc, ExprArg expr); /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). virtual OwningExprResult ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, SourceLocation LParenLoc, MultiExprArg Exprs, SourceLocation *CommaLocs, SourceLocation RParenLoc); /// ActOnCXXNew - Parsed a C++ 'new' expression. virtual OwningExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, bool ParenTypeId, Declarator &D, SourceLocation ConstructorLParen, MultiExprArg ConstructorArgs, SourceLocation ConstructorRParen); bool CheckAllocatedType(QualType AllocType, const Declarator &D); bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, bool UseGlobal, QualType AllocType, bool IsArray, Expr **PlaceArgs, unsigned NumPlaceArgs, FunctionDecl *&OperatorNew, FunctionDecl *&OperatorDelete); bool FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, DeclarationName Name, Expr** Args, unsigned NumArgs, DeclContext *Ctx, bool AllowMissing, FunctionDecl *&Operator); void DeclareGlobalNewDelete(); void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return, QualType Argument); /// ActOnCXXDelete - Parsed a C++ 'delete' expression virtual OwningExprResult ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, bool ArrayForm, ExprArg Operand); /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a /// C++ if/switch/while/for statement. /// e.g: "if (int x = f()) {...}" virtual OwningExprResult ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc, Declarator &D, SourceLocation EqualLoc, ExprArg AssignExprVal); /// ActOnUnaryTypeTrait - Parsed one of the unary type trait support /// pseudo-functions. virtual OwningExprResult ActOnUnaryTypeTrait(UnaryTypeTrait OTT, SourceLocation KWLoc, SourceLocation LParen, TypeTy *Ty, SourceLocation RParen); bool RequireCompleteDeclContext(const CXXScopeSpec &SS); DeclContext *computeDeclContext(const CXXScopeSpec &SS); bool isDependentScopeSpecifier(const CXXScopeSpec &SS); /// ActOnCXXGlobalScopeSpecifier - Return the object that represents the /// global scope ('::'). virtual CXXScopeTy *ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc); /// ActOnCXXNestedNameSpecifier - Called during parsing of a /// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now /// we want to resolve "bar::". 'SS' is empty or the previously parsed /// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar', /// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'. /// Returns a CXXScopeTy* object representing the C++ scope. virtual CXXScopeTy *ActOnCXXNestedNameSpecifier(Scope *S, const CXXScopeSpec &SS, SourceLocation IdLoc, SourceLocation CCLoc, IdentifierInfo &II); /// ActOnCXXNestedNameSpecifier - Called during parsing of a /// nested-name-specifier that involves a template-id, e.g., /// "foo::bar::", and now we need to build a scope /// specifier. \p SS is empty or the previously parsed nested-name /// part ("foo::"), \p Type is the already-parsed class template /// specialization (or other template-id that names a type), \p /// TypeRange is the source range where the type is located, and \p /// CCLoc is the location of the trailing '::'. virtual CXXScopeTy *ActOnCXXNestedNameSpecifier(Scope *S, const CXXScopeSpec &SS, TypeTy *Type, SourceRange TypeRange, SourceLocation CCLoc); /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global /// scope or nested-name-specifier) is parsed, part of a declarator-id. /// After this method is called, according to [C++ 3.4.3p3], names should be /// looked up in the declarator-id's scope, until the declarator is parsed and /// ActOnCXXExitDeclaratorScope is called. /// The 'SS' should be a non-empty valid CXXScopeSpec. virtual void ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS); /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. /// Used to indicate that names should revert to being looked up in the /// defining scope. virtual void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS); // ParseObjCStringLiteral - Parse Objective-C string literals. virtual ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs, ExprTy **Strings, unsigned NumStrings); virtual ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc, SourceLocation EncodeLoc, SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc); // ParseObjCSelectorExpression - Build selector expression for @selector virtual ExprResult ParseObjCSelectorExpression(Selector Sel, SourceLocation AtLoc, SourceLocation SelLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); // ParseObjCProtocolExpression - Build protocol expression for @protocol virtual ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName, SourceLocation AtLoc, SourceLocation ProtoLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); //===--------------------------------------------------------------------===// // C++ Declarations // virtual DeclPtrTy ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, SourceLocation LangLoc, const char *Lang, unsigned StrSize, SourceLocation LBraceLoc); virtual DeclPtrTy ActOnFinishLinkageSpecification(Scope *S, DeclPtrTy LinkageSpec, SourceLocation RBraceLoc); //===--------------------------------------------------------------------===// // C++ Classes // virtual bool isCurrentClassName(const IdentifierInfo &II, Scope *S, const CXXScopeSpec *SS); virtual DeclPtrTy ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, ExprTy *BitfieldWidth, ExprTy *Init); virtual MemInitResult ActOnMemInitializer(DeclPtrTy ConstructorD, Scope *S, IdentifierInfo *MemberOrBase, SourceLocation IdLoc, SourceLocation LParenLoc, ExprTy **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc); void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl); virtual void ActOnMemInitializers(DeclPtrTy ConstructorDecl, SourceLocation ColonLoc, MemInitTy **MemInits, unsigned NumMemInits); virtual void ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, DeclPtrTy TagDecl, SourceLocation LBrac, SourceLocation RBrac); virtual void ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy Method); virtual void ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy Param); virtual void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy Method); virtual DeclPtrTy ActOnStaticAssertDeclaration(SourceLocation AssertLoc, ExprArg AssertExpr, ExprArg AssertMessageExpr); bool CheckConstructorDeclarator(Declarator &D, QualType &R, FunctionDecl::StorageClass& SC); bool CheckConstructor(CXXConstructorDecl *Constructor); bool CheckDestructorDeclarator(Declarator &D, QualType &R, FunctionDecl::StorageClass& SC); bool CheckConversionDeclarator(Declarator &D, QualType &R, FunctionDecl::StorageClass& SC); DeclPtrTy ActOnConversionDeclarator(CXXConversionDecl *Conversion); //===--------------------------------------------------------------------===// // C++ Derived Classes // /// ActOnBaseSpecifier - Parsed a base specifier CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, QualType BaseType, SourceLocation BaseLoc); virtual BaseResult ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, TypeTy *basetype, SourceLocation BaseLoc); bool AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, unsigned NumBases); virtual void ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases, unsigned NumBases); bool IsDerivedFrom(QualType Derived, QualType Base); bool IsDerivedFrom(QualType Derived, QualType Base, BasePaths &Paths); bool LookupInBases(CXXRecordDecl *Class, const MemberLookupCriteria& Criteria, BasePaths &Paths); bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, SourceLocation Loc, SourceRange Range); std::string getAmbiguousPathsDisplayString(BasePaths &Paths); //===--------------------------------------------------------------------===// // C++ Access Control // bool SetMemberAccessSpecifier(NamedDecl *MemberDecl, NamedDecl *PrevMemberDecl, AccessSpecifier LexicalAS); bool CheckBaseClassAccess(QualType Derived, QualType Base, BasePaths& Paths, SourceLocation AccessLoc); enum AbstractDiagSelID { AbstractNone = -1, AbstractReturnType, AbstractParamType, AbstractVariableType, AbstractFieldType }; bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID, AbstractDiagSelID SelID = AbstractNone, const CXXRecordDecl *CurrentRD = 0); //===--------------------------------------------------------------------===// // C++ Overloaded Operators [C++ 13.5] // bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl); //===--------------------------------------------------------------------===// // C++ Templates [C++ 14] // virtual TemplateNameKind isTemplateName(const IdentifierInfo &II, Scope *S, TemplateTy &Template, const CXXScopeSpec *SS = 0); bool DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl); TemplateDecl *AdjustDeclIfTemplate(DeclPtrTy &Decl); virtual DeclPtrTy ActOnTypeParameter(Scope *S, bool Typename, SourceLocation KeyLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position); virtual void ActOnTypeParameterDefault(DeclPtrTy TypeParam, SourceLocation EqualLoc, SourceLocation DefaultLoc, TypeTy *Default); QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc); virtual DeclPtrTy ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, unsigned Depth, unsigned Position); virtual void ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParam, SourceLocation EqualLoc, ExprArg Default); virtual DeclPtrTy ActOnTemplateTemplateParameter(Scope *S, SourceLocation TmpLoc, TemplateParamsTy *Params, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position); virtual void ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParam, SourceLocation EqualLoc, ExprArg Default); virtual TemplateParamsTy * ActOnTemplateParameterList(unsigned Depth, SourceLocation ExportLoc, SourceLocation TemplateLoc, SourceLocation LAngleLoc, DeclPtrTy *Params, unsigned NumParams, SourceLocation RAngleLoc); bool CheckTemplateParameterList(TemplateParameterList *NewParams, TemplateParameterList *OldParams); virtual DeclResult ActOnClassTemplate(Scope *S, unsigned TagSpec, TagKind TK, SourceLocation KWLoc, const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, AttributeList *Attr, MultiTemplateParamsArg TemplateParameterLists, AccessSpecifier AS); QualType CheckTemplateIdType(TemplateName Template, SourceLocation TemplateLoc, SourceLocation LAngleLoc, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceLocation RAngleLoc); virtual TypeResult ActOnTemplateIdType(TemplateTy Template, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation *TemplateArgLocs, SourceLocation RAngleLoc); virtual TemplateTy ActOnDependentTemplateName(SourceLocation TemplateKWLoc, const IdentifierInfo &Name, SourceLocation NameLoc, const CXXScopeSpec &SS); bool CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate, ClassTemplateSpecializationDecl *PrevDecl, SourceLocation TemplateNameLoc, SourceRange ScopeSpecifierRange); virtual DeclResult ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagKind TK, SourceLocation KWLoc, const CXXScopeSpec &SS, TemplateTy Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation *TemplateArgLocs, SourceLocation RAngleLoc, AttributeList *Attr, MultiTemplateParamsArg TemplateParameterLists); bool CheckTemplateArgumentList(TemplateDecl *Template, SourceLocation TemplateLoc, SourceLocation LAngleLoc, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceLocation RAngleLoc, llvm::SmallVectorImpl &Converted); bool CheckTemplateArgument(TemplateTypeParmDecl *Param, QualType Arg, SourceLocation ArgLoc); bool CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, NamedDecl *&Entity); bool CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member); bool CheckTemplateArgument(NonTypeTemplateParmDecl *Param, QualType InstantiatedParamType, Expr *&Arg, llvm::SmallVectorImpl *Converted = 0); bool CheckTemplateArgument(TemplateTemplateParmDecl *Param, DeclRefExpr *Arg); bool TemplateParameterListsAreEqual(TemplateParameterList *New, TemplateParameterList *Old, bool Complain, bool IsTemplateTemplateParm = false, SourceLocation TemplateArgLoc = SourceLocation()); bool CheckTemplateDeclScope(Scope *S, MultiTemplateParamsArg &TemplateParameterLists); /// \brief Called when the parser has parsed a C++ typename /// specifier, e.g., "typename T::type". /// /// \param TypenameLoc the location of the 'typename' keyword /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). /// \param II the identifier we're retrieving (e.g., 'type' in the example). /// \param IdLoc the location of the identifier. virtual TypeResult ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, const IdentifierInfo &II, SourceLocation IdLoc); /// \brief Called when the parser has parsed a C++ typename /// specifier that ends in a template-id, e.g., /// "typename MetaFun::template apply". /// /// \param TypenameLoc the location of the 'typename' keyword /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). /// \param TemplateLoc the location of the 'template' keyword, if any. /// \param Ty the type that the typename specifier refers to. virtual TypeResult ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, SourceLocation TemplateLoc, TypeTy *Ty); QualType CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, SourceRange Range); //===--------------------------------------------------------------------===// // C++ Template Instantiation // /// \brief A template instantiation that is currently in progress. struct ActiveTemplateInstantiation { /// \brief The kind of template instantiation we are performing enum { /// We are instantiating a template declaration. The entity is /// the declaration we're instantiation (e.g., a CXXRecordDecl). TemplateInstantiation, /// We are instantiating a default argument for a template /// parameter. The Entity is the template, and /// TemplateArgs/NumTemplateArguments provides the template /// arguments as specified. DefaultTemplateArgumentInstantiation } Kind; /// \brief The point of instantiation within the source code. SourceLocation PointOfInstantiation; /// \brief The entity that is being instantiated. uintptr_t Entity; // \brief If this the instantiation of a default template // argument, the list of tempalte arguments. const TemplateArgument *TemplateArgs; /// \brief The number of template arguments in TemplateArgs. unsigned NumTemplateArgs; /// \brief The source range that covers the construct that cause /// the instantiation, e.g., the template-id that causes a class /// template instantiation. SourceRange InstantiationRange; friend bool operator==(const ActiveTemplateInstantiation &X, const ActiveTemplateInstantiation &Y) { if (X.Kind != Y.Kind) return false; if (X.Entity != Y.Entity) return false; switch (X.Kind) { case TemplateInstantiation: return true; case DefaultTemplateArgumentInstantiation: return X.TemplateArgs == Y.TemplateArgs; } return true; } friend bool operator!=(const ActiveTemplateInstantiation &X, const ActiveTemplateInstantiation &Y) { return !(X == Y); } }; /// \brief List of active template instantiations. /// /// This vector is treated as a stack. As one template instantiation /// requires another template instantiation, additional /// instantiations are pushed onto the stack up to a /// user-configurable limit LangOptions::InstantiationDepth. llvm::SmallVector ActiveTemplateInstantiations; /// \brief The last template from which a template instantiation /// error or warning was produced. /// /// This value is used to suppress printing of redundant template /// instantiation backtraces when there are multiple errors in the /// same instantiation. FIXME: Does this belong in Sema? It's tough /// to implement it anywhere else. ActiveTemplateInstantiation LastTemplateInstantiationErrorContext; /// \brief A stack object to be created when performing template /// instantiation. /// /// Construction of an object of type \c InstantiatingTemplate /// pushes the current instantiation onto the stack of active /// instantiations. If the size of this stack exceeds the maximum /// number of recursive template instantiations, construction /// produces an error and evaluates true. /// /// Destruction of this object will pop the named instantiation off /// the stack. struct InstantiatingTemplate { /// \brief Note that we are instantiating a class template. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, CXXRecordDecl *Entity, SourceRange InstantiationRange = SourceRange()); /// \brief Note that we are instantiating a default argument in a /// template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange = SourceRange()); ~InstantiatingTemplate(); /// \brief Determines whether we have exceeded the maximum /// recursive template instantiations. operator bool() const { return Invalid; } private: Sema &SemaRef; bool Invalid; bool CheckInstantiationDepth(SourceLocation PointOfInstantiation, SourceRange InstantiationRange); InstantiatingTemplate(const InstantiatingTemplate&); // not implemented InstantiatingTemplate& operator=(const InstantiatingTemplate&); // not implemented }; void PrintInstantiationStack(); QualType InstantiateType(QualType T, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceLocation Loc, DeclarationName Entity); OwningExprResult InstantiateExpr(Expr *E, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); Decl *InstantiateDecl(Decl *D, DeclContext *Owner, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); bool InstantiateBaseSpecifiers(CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); bool InstantiateClass(SourceLocation PointOfInstantiation, CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); bool InstantiateClassTemplateSpecialization( ClassTemplateSpecializationDecl *ClassTemplateSpec, bool ExplicitInstantiation); NestedNameSpecifier * InstantiateNestedNameSpecifier(NestedNameSpecifier *NNS, SourceRange Range, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); TemplateName InstantiateTemplateName(TemplateName Name, SourceLocation Loc, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); // Simple function for cloning expressions. template OwningExprResult Clone(T *E) { assert(!E->isValueDependent() && !E->isTypeDependent() && "expression is value or type dependent!"); return Owned(E->Clone(Context)); } // Objective-C declarations. virtual DeclPtrTy ActOnStartClassInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperName, SourceLocation SuperLoc, const DeclPtrTy *ProtoRefs, unsigned NumProtoRefs, SourceLocation EndProtoLoc, AttributeList *AttrList); virtual DeclPtrTy ActOnCompatiblityAlias( SourceLocation AtCompatibilityAliasLoc, IdentifierInfo *AliasName, SourceLocation AliasLocation, IdentifierInfo *ClassName, SourceLocation ClassLocation); void CheckForwardProtocolDeclarationForCircularDependency( IdentifierInfo *PName, SourceLocation &PLoc, SourceLocation PrevLoc, const ObjCList &PList); virtual DeclPtrTy ActOnStartProtocolInterface( SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc, const DeclPtrTy *ProtoRefNames, unsigned NumProtoRefs, SourceLocation EndProtoLoc, AttributeList *AttrList); virtual DeclPtrTy ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CategoryName, SourceLocation CategoryLoc, const DeclPtrTy *ProtoRefs, unsigned NumProtoRefs, SourceLocation EndProtoLoc); virtual DeclPtrTy ActOnStartClassImplementation( SourceLocation AtClassImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperClassname, SourceLocation SuperClassLoc); virtual DeclPtrTy ActOnStartCategoryImplementation( SourceLocation AtCatImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc); virtual DeclPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, unsigned NumElts); virtual DeclPtrTy ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, const IdentifierLocPair *IdentList, unsigned NumElts, AttributeList *attrList); virtual void FindProtocolDeclaration(bool WarnOnDeclarations, const IdentifierLocPair *ProtocolId, unsigned NumProtocols, llvm::SmallVectorImpl &Protocols); /// Ensure attributes are consistent with type. /// \param [in, out] Attributes The attributes to check; they will /// be modified to be consistent with \arg PropertyTy. void CheckObjCPropertyAttributes(QualType PropertyTy, SourceLocation Loc, unsigned &Attributes); void ProcessPropertyDecl(ObjCPropertyDecl *property, ObjCContainerDecl *DC); void DiagnosePropertyMismatch(ObjCPropertyDecl *Property, ObjCPropertyDecl *SuperProperty, const IdentifierInfo *Name); void ComparePropertiesInBaseAndSuper(ObjCInterfaceDecl *IDecl); void MergeProtocolPropertiesIntoClass(Decl *CDecl, DeclPtrTy MergeProtocols); void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID); void MergeOneProtocolPropertiesIntoClass(Decl *CDecl, ObjCProtocolDecl *PDecl); virtual void ActOnAtEnd(SourceLocation AtEndLoc, DeclPtrTy classDecl, DeclPtrTy *allMethods = 0, unsigned allNum = 0, DeclPtrTy *allProperties = 0, unsigned pNum = 0, DeclGroupPtrTy *allTUVars = 0, unsigned tuvNum = 0); virtual DeclPtrTy ActOnProperty(Scope *S, SourceLocation AtLoc, FieldDeclarator &FD, ObjCDeclSpec &ODS, Selector GetterSel, Selector SetterSel, DeclPtrTy ClassCategory, bool *OverridingProperty, tok::ObjCKeywordKind MethodImplKind); virtual DeclPtrTy ActOnPropertyImplDecl(SourceLocation AtLoc, SourceLocation PropertyLoc, bool ImplKind,DeclPtrTy ClassImplDecl, IdentifierInfo *PropertyId, IdentifierInfo *PropertyIvar); virtual DeclPtrTy ActOnMethodDeclaration( SourceLocation BeginLoc, // location of the + or -. SourceLocation EndLoc, // location of the ; or {. tok::TokenKind MethodType, DeclPtrTy ClassDecl, ObjCDeclSpec &ReturnQT, TypeTy *ReturnType, Selector Sel, // optional arguments. The number of types/arguments is obtained // from the Sel.getNumArgs(). ObjCDeclSpec *ArgQT, TypeTy **ArgTypes, IdentifierInfo **ArgNames, llvm::SmallVectorImpl &Cdecls, AttributeList *AttrList, tok::ObjCKeywordKind MethodImplKind, bool isVariadic = false); // Helper method for ActOnClassMethod/ActOnInstanceMethod. // Will search "local" class/category implementations for a method decl. // Will also search in class's root looking for instance method. // Returns 0 if no method is found. ObjCMethodDecl *LookupPrivateClassMethod(Selector Sel, ObjCInterfaceDecl *CDecl); ObjCMethodDecl *LookupPrivateInstanceMethod(Selector Sel, ObjCInterfaceDecl *ClassDecl); virtual OwningExprResult ActOnClassPropertyRefExpr( IdentifierInfo &receiverName, IdentifierInfo &propertyName, SourceLocation &receiverNameLoc, SourceLocation &propertyNameLoc); // ActOnClassMessage - used for both unary and keyword messages. // ArgExprs is optional - if it is present, the number of expressions // is obtained from NumArgs. virtual ExprResult ActOnClassMessage( Scope *S, IdentifierInfo *receivingClassName, Selector Sel, SourceLocation lbrac, SourceLocation receiverLoc, SourceLocation selectorLoc,SourceLocation rbrac, ExprTy **ArgExprs, unsigned NumArgs); // ActOnInstanceMessage - used for both unary and keyword messages. // ArgExprs is optional - if it is present, the number of expressions // is obtained from NumArgs. virtual ExprResult ActOnInstanceMessage( ExprTy *receiver, Selector Sel, SourceLocation lbrac, SourceLocation receiverLoc, SourceLocation rbrac, ExprTy **ArgExprs, unsigned NumArgs); /// ActOnPragmaPack - Called on well formed #pragma pack(...). virtual void ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name, ExprTy *Alignment, SourceLocation PragmaLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); /// ActOnPragmaUnused - Called on well-formed '#pragma unused'. virtual void ActOnPragmaUnused(ExprTy **Exprs, unsigned NumExprs, SourceLocation PragmaLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); /// getPragmaPackAlignment() - Return the current alignment as specified by /// the current #pragma pack directive, or 0 if none is currently active. unsigned getPragmaPackAlignment() const; /// FreePackedContext - Deallocate and null out PackContext. void FreePackedContext(); /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit /// cast. If there is already an implicit cast, merge into the existing one. /// If isLvalue, the result of the cast is an lvalue. void ImpCastExprToType(Expr *&Expr, QualType Type, bool isLvalue = false); // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts // functions and arrays to their respective pointers (C99 6.3.2.1). Expr *UsualUnaryConversions(Expr *&expr); // DefaultFunctionArrayConversion - converts functions and arrays // to their respective pointers (C99 6.3.2.1). void DefaultFunctionArrayConversion(Expr *&expr); // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that // do not have a prototype. Integer promotions are performed on each // argument, and arguments that have type float are promoted to double. void DefaultArgumentPromotion(Expr *&Expr); // Used for emitting the right warning by DefaultVariadicArgumentPromotion enum VariadicCallType { VariadicFunction, VariadicBlock, VariadicMethod }; // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but // will warn if the resulting type is not a POD type. void DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT); // UsualArithmeticConversions - performs the UsualUnaryConversions on it's // operands and then handles various conversions that are common to binary // operators (C99 6.3.1.8). If both operands aren't arithmetic, this // routine returns the first non-arithmetic type found. The client is // responsible for emitting appropriate error diagnostics. QualType UsualArithmeticConversions(Expr *&lExpr, Expr *&rExpr, bool isCompAssign = false); /// UsualArithmeticConversionsType - handles the various conversions /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9) /// and returns the result type of that conversion. QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs); /// AssignConvertType - All of the 'assignment' semantic checks return this /// enum to indicate whether the assignment was allowed. These checks are /// done for simple assignments, as well as initialization, return from /// function, argument passing, etc. The query is phrased in terms of a /// source and destination type. enum AssignConvertType { /// Compatible - the types are compatible according to the standard. Compatible, /// PointerToInt - The assignment converts a pointer to an int, which we /// accept as an extension. PointerToInt, /// IntToPointer - The assignment converts an int to a pointer, which we /// accept as an extension. IntToPointer, /// FunctionVoidPointer - The assignment is between a function pointer and /// void*, which the standard doesn't allow, but we accept as an extension. FunctionVoidPointer, /// IncompatiblePointer - The assignment is between two pointers types that /// are not compatible, but we accept them as an extension. IncompatiblePointer, /// IncompatiblePointer - The assignment is between two pointers types which /// point to integers which have a different sign, but are otherwise identical. /// This is a subset of the above, but broken out because it's by far the most /// common case of incompatible pointers. IncompatiblePointerSign, /// CompatiblePointerDiscardsQualifiers - The assignment discards /// c/v/r qualifiers, which we accept as an extension. CompatiblePointerDiscardsQualifiers, /// IncompatibleVectors - The assignment is between two vector types that /// have the same size, which we accept as an extension. IncompatibleVectors, /// IntToBlockPointer - The assignment converts an int to a block /// pointer. We disallow this. IntToBlockPointer, /// IncompatibleBlockPointer - The assignment is between two block /// pointers types that are not compatible. IncompatibleBlockPointer, /// IncompatibleObjCQualifiedId - The assignment is between a qualified /// id type and something else (that is incompatible with it). For example, /// "id " = "Foo *", where "Foo *" doesn't implement the XXX protocol. IncompatibleObjCQualifiedId, /// Incompatible - We reject this conversion outright, it is invalid to /// represent it in the AST. Incompatible }; /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the /// assignment conversion type specified by ConvTy. This returns true if the /// conversion was invalid or false if the conversion was accepted. bool DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, const char *Flavor); /// CheckAssignmentConstraints - Perform type checking for assignment, /// argument passing, variable initialization, and function return values. /// This routine is only used by the following two methods. C99 6.5.16. AssignConvertType CheckAssignmentConstraints(QualType lhs, QualType rhs); // CheckSingleAssignmentConstraints - Currently used by ActOnCallExpr, // CheckAssignmentOperands, and ActOnReturnStmt. Prior to type checking, // this routine performs the default function/array converions. AssignConvertType CheckSingleAssignmentConstraints(QualType lhs, Expr *&rExpr); // CheckCompoundAssignmentConstraints - Type check without performing any // conversions. For compound assignments, the "Check...Operands" methods // perform the necessary conversions. AssignConvertType CheckCompoundAssignmentConstraints(QualType lhs, QualType rhs); // Helper function for CheckAssignmentConstraints (C99 6.5.16.1p1) AssignConvertType CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType); // Helper function for CheckAssignmentConstraints involving two // blcok pointer types. AssignConvertType CheckBlockPointerTypesForAssignment(QualType lhsType, QualType rhsType); bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType); bool PerformImplicitConversion(Expr *&From, QualType ToType, const char *Flavor, bool AllowExplicit = false); bool PerformImplicitConversion(Expr *&From, QualType ToType, const ImplicitConversionSequence& ICS, const char *Flavor); bool PerformImplicitConversion(Expr *&From, QualType ToType, const StandardConversionSequence& SCS, const char *Flavor); /// the following "Check" methods will return a valid/converted QualType /// or a null QualType (indicating an error diagnostic was issued). /// type checking binary operators (subroutines of CreateBuiltinBinOp). QualType InvalidOperands(SourceLocation l, Expr *&lex, Expr *&rex); QualType CheckPointerToMemberOperands( // C++ 5.5 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isIndirect); QualType CheckMultiplyDivideOperands( // C99 6.5.5 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); QualType CheckRemainderOperands( // C99 6.5.5 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); QualType CheckAdditionOperands( // C99 6.5.6 Expr *&lex, Expr *&rex, SourceLocation OpLoc, QualType* CompLHSTy = 0); QualType CheckSubtractionOperands( // C99 6.5.6 Expr *&lex, Expr *&rex, SourceLocation OpLoc, QualType* CompLHSTy = 0); QualType CheckShiftOperands( // C99 6.5.7 Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); QualType CheckCompareOperands( // C99 6.5.8/9 Expr *&lex, Expr *&rex, SourceLocation OpLoc, unsigned Opc, bool isRelational); QualType CheckBitwiseOperands( // C99 6.5.[10...12] Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false); QualType CheckLogicalOperands( // C99 6.5.[13,14] Expr *&lex, Expr *&rex, SourceLocation OpLoc); // CheckAssignmentOperands is used for both simple and compound assignment. // For simple assignment, pass both expressions and a null converted type. // For compound assignment, pass both expressions and the converted type. QualType CheckAssignmentOperands( // C99 6.5.16.[1,2] Expr *lex, Expr *&rex, SourceLocation OpLoc, QualType convertedType); QualType CheckCommaOperands( // C99 6.5.17 Expr *lex, Expr *&rex, SourceLocation OpLoc); QualType CheckConditionalOperands( // C99 6.5.15 Expr *&cond, Expr *&lhs, Expr *&rhs, SourceLocation questionLoc); /// type checking for vector binary operators. inline QualType CheckVectorOperands(SourceLocation l, Expr *&lex, Expr *&rex); inline QualType CheckVectorCompareOperands(Expr *&lex, Expr *&rx, SourceLocation l, bool isRel); /// type checking unary operators (subroutines of ActOnUnaryOp). /// C99 6.5.3.1, 6.5.3.2, 6.5.3.4 QualType CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc, bool isInc); QualType CheckAddressOfOperand(Expr *op, SourceLocation OpLoc); QualType CheckIndirectionOperand(Expr *op, SourceLocation OpLoc); QualType CheckRealImagOperand(Expr *&Op, SourceLocation OpLoc, bool isReal); /// type checking primary expressions. QualType CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc, IdentifierInfo &Comp, SourceLocation CmpLoc); /// type checking declaration initializers (C99 6.7.8) bool CheckInitializerTypes(Expr *&simpleInit_or_initList, QualType &declType, SourceLocation InitLoc,DeclarationName InitEntity, bool DirectInit); bool CheckInitList(InitListExpr *&InitList, QualType &DeclType); bool CheckForConstantInitializer(Expr *e, QualType t); bool CheckValueInitialization(QualType Type, SourceLocation Loc); // type checking C++ declaration initializers (C++ [dcl.init]). /// ReferenceCompareResult - Expresses the result of comparing two /// types (cv1 T1 and cv2 T2) to determine their compatibility for the /// purposes of initialization by reference (C++ [dcl.init.ref]p4). enum ReferenceCompareResult { /// Ref_Incompatible - The two types are incompatible, so direct /// reference binding is not possible. Ref_Incompatible = 0, /// Ref_Related - The two types are reference-related, which means /// that their unqualified forms (T1 and T2) are either the same /// or T1 is a base class of T2. Ref_Related, /// Ref_Compatible_With_Added_Qualification - The two types are /// reference-compatible with added qualification, meaning that /// they are reference-compatible and the qualifiers on T1 (cv1) /// are greater than the qualifiers on T2 (cv2). Ref_Compatible_With_Added_Qualification, /// Ref_Compatible - The two types are reference-compatible and /// have equivalent qualifiers (cv1 == cv2). Ref_Compatible }; ReferenceCompareResult CompareReferenceRelationship(QualType T1, QualType T2, bool& DerivedToBase); bool CheckReferenceInit(Expr *&simpleInit_or_initList, QualType &declType, ImplicitConversionSequence *ICS = 0, bool SuppressUserConversions = false, bool AllowExplicit = false); /// CheckCastTypes - Check type constraints for casting between types. bool CheckCastTypes(SourceRange TyRange, QualType CastTy, Expr *&CastExpr); // CheckVectorCast - check type constraints for vectors. // Since vectors are an extension, there are no C standard reference for this. // We allow casting between vectors and integer datatypes of the same size. // returns true if the cast is invalid bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty); /// CheckMessageArgumentTypes - Check types in an Obj-C message send. /// \param Method - May be null. /// \param [out] ReturnType - The return type of the send. /// \return true iff there were any incompatible types. bool CheckMessageArgumentTypes(Expr **Args, unsigned NumArgs, Selector Sel, ObjCMethodDecl *Method, bool isClassMessage, SourceLocation lbrac, SourceLocation rbrac, QualType &ReturnType); /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid. bool CheckCXXBooleanCondition(Expr *&CondExpr); /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have /// the specified width and sign. If an overflow occurs, detect it and emit /// the specified diagnostic. void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal, unsigned NewWidth, bool NewSign, SourceLocation Loc, unsigned DiagID); bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS, bool ForCompare); /// Checks that the Objective-C declaration is declared in the global scope. /// Emits an error and marks the declaration as invalid if it's not declared /// in the global scope. bool CheckObjCDeclScope(Decl *D); void InitBuiltinVaListType(); /// VerifyIntegerConstantExpression - verifies that an expression is an ICE, /// and reports the appropriate diagnostics. Returns false on success. /// Can optionally return the value of the expression. bool VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result = 0); /// VerifyBitField - verifies that a bit field expression is an ICE and has /// the correct width, and that the field type is valid. /// Returns false on success. bool VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, QualType FieldTy, const Expr *BitWidth); //===--------------------------------------------------------------------===// // Extra semantic analysis beyond the C type system private: Action::OwningExprResult CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall); SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL, unsigned ByteNo) const; bool CheckObjCString(Expr *Arg); bool SemaBuiltinVAStart(CallExpr *TheCall); bool SemaBuiltinUnorderedCompare(CallExpr *TheCall); bool SemaBuiltinStackAddress(CallExpr *TheCall); Action::OwningExprResult SemaBuiltinShuffleVector(CallExpr *TheCall); bool SemaBuiltinPrefetch(CallExpr *TheCall); bool SemaBuiltinObjectSize(CallExpr *TheCall); bool SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg); void CheckPrintfString(const StringLiteral *FExpr, const Expr *OrigFormatExpr, const CallExpr *TheCall, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg); void CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg); void CheckReturnStackAddr(Expr *RetValExp, QualType lhsType, SourceLocation ReturnLoc); void CheckFloatComparison(SourceLocation loc, Expr* lex, Expr* rex); }; /// BlockSemaInfo - When a block is being parsed, this contains information /// about the block. It is pointed to from Sema::CurBlock. struct BlockSemaInfo { llvm::SmallVector Params; bool hasPrototype; bool isVariadic; bool hasBlockDeclRefExprs; BlockDecl *TheDecl; /// TheScope - This is the scope for the block itself, which contains /// arguments etc. Scope *TheScope; /// ReturnType - This will get set to block result type, by looking at /// return types, if any, in the block body. Type *ReturnType; /// LabelMap - This is a mapping from label identifiers to the LabelStmt for /// it (which acts like the label decl in some ways). Forward referenced /// labels have a LabelStmt created for them with a null location & SubStmt. llvm::DenseMap LabelMap; /// PrevBlockInfo - If this is nested inside another block, this points /// to the outer block. BlockSemaInfo *PrevBlockInfo; }; //===--------------------------------------------------------------------===// // Typed version of Parser::ExprArg (smart pointer for wrapping Expr pointers). template class ExprOwningPtr : public Action::ExprArg { public: ExprOwningPtr(Sema *S, T *expr) : Action::ExprArg(*S, expr) {} void reset(T* p) { Action::ExprArg::operator=(p); } T* get() const { return static_cast(Action::ExprArg::get()); } T* take() { return static_cast(Action::ExprArg::take()); } T* release() { return take(); } T& operator*() const { return *get(); } T* operator->() const { return get(); } }; } // end namespace clang #endif