//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ expressions. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ASTContext.h" #include "clang/Parse/DeclSpec.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/Diagnostic.h" using namespace clang; /// ActOnCXXConversionFunctionExpr - Parse a C++ conversion function /// name (e.g., operator void const *) as an expression. This is /// very similar to ActOnIdentifierExpr, except that instead of /// providing an identifier the parser provides the type of the /// conversion function. Sema::ExprResult Sema::ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc, TypeTy *Ty, bool HasTrailingLParen, const CXXScopeSpec &SS) { QualType ConvType = QualType::getFromOpaquePtr(Ty); QualType ConvTypeCanon = Context.getCanonicalType(ConvType); DeclarationName ConvName = Context.DeclarationNames.getCXXConversionFunctionName(ConvTypeCanon); return ActOnDeclarationNameExpr(S, OperatorLoc, ConvName, HasTrailingLParen, &SS); } /// ActOnCXXOperatorFunctionIdExpr - Parse a C++ overloaded operator /// name (e.g., @c operator+ ) as an expression. This is very /// similar to ActOnIdentifierExpr, except that instead of providing /// an identifier the parser provides the kind of overloaded /// operator that was parsed. Sema::ExprResult Sema::ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc, OverloadedOperatorKind Op, bool HasTrailingLParen, const CXXScopeSpec &SS) { DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op); return ActOnDeclarationNameExpr(S, OperatorLoc, Name, HasTrailingLParen, &SS); } /// ActOnCXXTypeidOfType - Parse typeid( type-id ). Action::ExprResult Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc) { const NamespaceDecl *StdNs = GetStdNamespace(); if (!StdNs) { Diag(OpLoc, diag::err_need_header_before_typeid); return ExprResult(true); } if (!Ident_TypeInfo) { Ident_TypeInfo = &PP.getIdentifierTable().get("type_info"); } Decl *TypeInfoDecl = LookupDecl(Ident_TypeInfo, Decl::IDNS_Tag | Decl::IDNS_Ordinary, 0, StdNs, /*createBuiltins=*/false); RecordDecl *TypeInfoRecordDecl = dyn_cast_or_null(TypeInfoDecl); if (!TypeInfoRecordDecl) { Diag(OpLoc, diag::err_need_header_before_typeid); return ExprResult(true); } QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl); return new CXXTypeidExpr(isType, TyOrExpr, TypeInfoType.withConst(), SourceRange(OpLoc, RParenLoc)); } /// ActOnCXXBoolLiteral - Parse {true,false} literals. Action::ExprResult Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { assert((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"); return new CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); } /// ActOnCXXThrow - Parse throw expressions. Action::ExprResult Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprTy *E) { return new CXXThrowExpr((Expr*)E, Context.VoidTy, OpLoc); } Action::ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) { /// C++ 9.3.2: In the body of a non-static member function, the keyword this /// is a non-lvalue expression whose value is the address of the object for /// which the function is called. if (!isa(CurContext)) { Diag(ThisLoc, diag::err_invalid_this_use); return ExprResult(true); } if (CXXMethodDecl *MD = dyn_cast(CurContext)) if (MD->isInstance()) return new CXXThisExpr(ThisLoc, MD->getThisType(Context)); return Diag(ThisLoc, diag::err_invalid_this_use); } /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). Action::ExprResult Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, SourceLocation LParenLoc, ExprTy **ExprTys, unsigned NumExprs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { assert(TypeRep && "Missing type!"); QualType Ty = QualType::getFromOpaquePtr(TypeRep); Expr **Exprs = (Expr**)ExprTys; SourceLocation TyBeginLoc = TypeRange.getBegin(); SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc); if (const RecordType *RT = Ty->getAsRecordType()) { // C++ 5.2.3p1: // If the simple-type-specifier specifies a class type, the class type shall // be complete. // if (!RT->getDecl()->isDefinition()) return Diag(TyBeginLoc, diag::err_invalid_incomplete_type_use, Ty.getAsString(), FullRange); unsigned DiagID = PP.getDiagnostics().getCustomDiagID(Diagnostic::Error, "class constructors are not supported yet"); return Diag(TyBeginLoc, DiagID); } // C++ 5.2.3p1: // If the expression list is a single expression, the type conversion // expression is equivalent (in definedness, and if defined in meaning) to the // corresponding cast expression. // if (NumExprs == 1) { if (CheckCastTypes(TypeRange, Ty, Exprs[0])) return true; return new CXXFunctionalCastExpr(Ty.getNonReferenceType(), Ty, TyBeginLoc, Exprs[0], RParenLoc); } // C++ 5.2.3p1: // If the expression list specifies more than a single value, the type shall // be a class with a suitably declared constructor. // if (NumExprs > 1) return Diag(CommaLocs[0], diag::err_builtin_func_cast_more_than_one_arg) << FullRange; assert(NumExprs == 0 && "Expected 0 expressions"); // C++ 5.2.3p2: // The expression T(), where T is a simple-type-specifier for a non-array // complete object type or the (possibly cv-qualified) void type, creates an // rvalue of the specified type, which is value-initialized. // if (Ty->isArrayType()) return Diag(TyBeginLoc, diag::err_value_init_for_array_type) << FullRange; if (Ty->isIncompleteType() && !Ty->isVoidType()) return Diag(TyBeginLoc, diag::err_invalid_incomplete_type_use) << Ty.getAsString() << FullRange; return new CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc); } /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a /// C++ if/switch/while/for statement. /// e.g: "if (int x = f()) {...}" Action::ExprResult Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc, Declarator &D, SourceLocation EqualLoc, ExprTy *AssignExprVal) { assert(AssignExprVal && "Null assignment expression"); // C++ 6.4p2: // The declarator shall not specify a function or an array. // The type-specifier-seq shall not contain typedef and shall not declare a // new class or enumeration. assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."); QualType Ty = GetTypeForDeclarator(D, S); if (Ty->isFunctionType()) { // The declarator shall not specify a function... // We exit without creating a CXXConditionDeclExpr because a FunctionDecl // would be created and CXXConditionDeclExpr wants a VarDecl. return Diag(StartLoc, diag::err_invalid_use_of_function_type) << SourceRange(StartLoc, EqualLoc); } else if (Ty->isArrayType()) { // ...or an array. Diag(StartLoc, diag::err_invalid_use_of_array_type) << SourceRange(StartLoc, EqualLoc); } else if (const RecordType *RT = Ty->getAsRecordType()) { RecordDecl *RD = RT->getDecl(); // The type-specifier-seq shall not declare a new class... if (RD->isDefinition() && (RD->getIdentifier() == 0 || S->isDeclScope(RD))) Diag(RD->getLocation(), diag::err_type_defined_in_condition); } else if (const EnumType *ET = Ty->getAsEnumType()) { EnumDecl *ED = ET->getDecl(); // ...or enumeration. if (ED->isDefinition() && (ED->getIdentifier() == 0 || S->isDeclScope(ED))) Diag(ED->getLocation(), diag::err_type_defined_in_condition); } DeclTy *Dcl = ActOnDeclarator(S, D, 0); if (!Dcl) return true; AddInitializerToDecl(Dcl, AssignExprVal); return new CXXConditionDeclExpr(StartLoc, EqualLoc, cast(static_cast(Dcl))); } /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) { // C++ 6.4p4: // The value of a condition that is an initialized declaration in a statement // other than a switch statement is the value of the declared variable // implicitly converted to type bool. If that conversion is ill-formed, the // program is ill-formed. // The value of a condition that is an expression is the value of the // expression, implicitly converted to bool. // QualType Ty = CondExpr->getType(); // Save the type. AssignConvertType ConvTy = CheckSingleAssignmentConstraints(Context.BoolTy, CondExpr); if (ConvTy == Incompatible) return Diag(CondExpr->getLocStart(), diag::err_typecheck_bool_condition, Ty.getAsString(), CondExpr->getSourceRange()); return false; } /// Helper function to determine whether this is the (deprecated) C++ /// conversion from a string literal to a pointer to non-const char or /// non-const wchar_t (for narrow and wide string literals, /// respectively). bool Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { // Look inside the implicit cast, if it exists. if (ImplicitCastExpr *Cast = dyn_cast(From)) From = Cast->getSubExpr(); // A string literal (2.13.4) that is not a wide string literal can // be converted to an rvalue of type "pointer to char"; a wide // string literal can be converted to an rvalue of type "pointer // to wchar_t" (C++ 4.2p2). if (StringLiteral *StrLit = dyn_cast(From)) if (const PointerType *ToPtrType = ToType->getAsPointerType()) if (const BuiltinType *ToPointeeType = ToPtrType->getPointeeType()->getAsBuiltinType()) { // This conversion is considered only when there is an // explicit appropriate pointer target type (C++ 4.2p2). if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 && ((StrLit->isWide() && ToPointeeType->isWideCharType()) || (!StrLit->isWide() && (ToPointeeType->getKind() == BuiltinType::Char_U || ToPointeeType->getKind() == BuiltinType::Char_S)))) return true; } return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType. Returns true if there was an /// error, false otherwise. The expression From is replaced with the /// converted expression. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType) { ImplicitConversionSequence ICS = TryImplicitConversion(From, ToType); switch (ICS.ConversionKind) { case ImplicitConversionSequence::StandardConversion: if (PerformImplicitConversion(From, ToType, ICS.Standard)) return true; break; case ImplicitConversionSequence::UserDefinedConversion: // FIXME: This is, of course, wrong. We'll need to actually call // the constructor or conversion operator, and then cope with the // standard conversions. ImpCastExprToType(From, ToType); return false; case ImplicitConversionSequence::EllipsisConversion: assert(false && "Cannot perform an ellipsis conversion"); return false; case ImplicitConversionSequence::BadConversion: return true; } // Everything went well. return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType by following the standard /// conversion sequence SCS. Returns true if there was an error, false /// otherwise. The expression From is replaced with the converted /// expression. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, const StandardConversionSequence& SCS) { // Overall FIXME: we are recomputing too many types here and doing // far too much extra work. What this means is that we need to keep // track of more information that is computed when we try the // implicit conversion initially, so that we don't need to recompute // anything here. QualType FromType = From->getType(); if (SCS.CopyConstructor) { // FIXME: Create a temporary object by calling the copy // constructor. ImpCastExprToType(From, ToType); return false; } // Perform the first implicit conversion. switch (SCS.First) { case ICK_Identity: case ICK_Lvalue_To_Rvalue: // Nothing to do. break; case ICK_Array_To_Pointer: if (FromType->isOverloadType()) { FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true); if (!Fn) return true; FixOverloadedFunctionReference(From, Fn); FromType = From->getType(); } else { FromType = Context.getArrayDecayedType(FromType); } ImpCastExprToType(From, FromType); break; case ICK_Function_To_Pointer: FromType = Context.getPointerType(FromType); ImpCastExprToType(From, FromType); break; default: assert(false && "Improper first standard conversion"); break; } // Perform the second implicit conversion switch (SCS.Second) { case ICK_Identity: // Nothing to do. break; case ICK_Integral_Promotion: case ICK_Floating_Promotion: case ICK_Integral_Conversion: case ICK_Floating_Conversion: case ICK_Floating_Integral: FromType = ToType.getUnqualifiedType(); ImpCastExprToType(From, FromType); break; case ICK_Pointer_Conversion: if (CheckPointerConversion(From, ToType)) return true; ImpCastExprToType(From, ToType); break; case ICK_Pointer_Member: // FIXME: Implement pointer-to-member conversions. assert(false && "Pointer-to-member conversions are unsupported"); break; case ICK_Boolean_Conversion: FromType = Context.BoolTy; ImpCastExprToType(From, FromType); break; default: assert(false && "Improper second standard conversion"); break; } switch (SCS.Third) { case ICK_Identity: // Nothing to do. break; case ICK_Qualification: ImpCastExprToType(From, ToType); break; default: assert(false && "Improper second standard conversion"); break; } return false; }