//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Constant Expr nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "CGCXXABI.h" #include "CGObjCRuntime.h" #include "CGRecordLayout.h" #include "clang/AST/APValue.h" #include "clang/AST/ASTContext.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/Builtins.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Target/TargetData.h" using namespace clang; using namespace CodeGen; //===----------------------------------------------------------------------===// // ConstStructBuilder //===----------------------------------------------------------------------===// namespace { class ConstStructBuilder { CodeGenModule &CGM; CodeGenFunction *CGF; bool Packed; CharUnits NextFieldOffsetInChars; CharUnits LLVMStructAlignment; std::vector Elements; public: static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, InitListExpr *ILE); private: ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF) : CGM(CGM), CGF(CGF), Packed(false), NextFieldOffsetInChars(CharUnits::Zero()), LLVMStructAlignment(CharUnits::One()) { } bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitExpr); void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *InitExpr); void AppendPadding(CharUnits PadSize); void AppendTailPadding(CharUnits RecordSize); void ConvertStructToPacked(); bool Build(InitListExpr *ILE); CharUnits getAlignment(const llvm::Constant *C) const { if (Packed) return CharUnits::One(); return CharUnits::fromQuantity( CGM.getTargetData().getABITypeAlignment(C->getType())); } CharUnits getSizeInChars(const llvm::Constant *C) const { return CharUnits::fromQuantity( CGM.getTargetData().getTypeAllocSize(C->getType())); } }; bool ConstStructBuilder:: AppendField(const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst) { const ASTContext &Context = CGM.getContext(); CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); assert(NextFieldOffsetInChars <= FieldOffsetInChars && "Field offset mismatch!"); CharUnits FieldAlignment = getAlignment(InitCst); // Round up the field offset to the alignment of the field type. CharUnits AlignedNextFieldOffsetInChars = NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment); if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) { assert(!Packed && "Alignment is wrong even with a packed struct!"); // Convert the struct to a packed struct. ConvertStructToPacked(); AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; } if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) { // We need to append padding. AppendPadding( FieldOffsetInChars - NextFieldOffsetInChars); assert(NextFieldOffsetInChars == FieldOffsetInChars && "Did not add enough padding!"); AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; } // Add the field. Elements.push_back(InitCst); NextFieldOffsetInChars = AlignedNextFieldOffsetInChars + getSizeInChars(InitCst); if (Packed) assert(LLVMStructAlignment == CharUnits::One() && "Packed struct not byte-aligned!"); else LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); return true; } void ConstStructBuilder::AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI) { const ASTContext &Context = CGM.getContext(); const uint64_t CharWidth = Context.getCharWidth(); uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); if (FieldOffset > NextFieldOffsetInBits) { // We need to add padding. CharUnits PadSize = Context.toCharUnitsFromBits( llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits, Context.getTargetInfo().getCharAlign())); AppendPadding(PadSize); } uint64_t FieldSize = Field->getBitWidthValue(Context); llvm::APInt FieldValue = CI->getValue(); // Promote the size of FieldValue if necessary // FIXME: This should never occur, but currently it can because initializer // constants are cast to bool, and because clang is not enforcing bitfield // width limits. if (FieldSize > FieldValue.getBitWidth()) FieldValue = FieldValue.zext(FieldSize); // Truncate the size of FieldValue to the bit field size. if (FieldSize < FieldValue.getBitWidth()) FieldValue = FieldValue.trunc(FieldSize); NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); if (FieldOffset < NextFieldOffsetInBits) { // Either part of the field or the entire field can go into the previous // byte. assert(!Elements.empty() && "Elements can't be empty!"); unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset; bool FitsCompletelyInPreviousByte = BitsInPreviousByte >= FieldValue.getBitWidth(); llvm::APInt Tmp = FieldValue; if (!FitsCompletelyInPreviousByte) { unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; if (CGM.getTargetData().isBigEndian()) { Tmp = Tmp.lshr(NewFieldWidth); Tmp = Tmp.trunc(BitsInPreviousByte); // We want the remaining high bits. FieldValue = FieldValue.trunc(NewFieldWidth); } else { Tmp = Tmp.trunc(BitsInPreviousByte); // We want the remaining low bits. FieldValue = FieldValue.lshr(BitsInPreviousByte); FieldValue = FieldValue.trunc(NewFieldWidth); } } Tmp = Tmp.zext(CharWidth); if (CGM.getTargetData().isBigEndian()) { if (FitsCompletelyInPreviousByte) Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); } else { Tmp = Tmp.shl(CharWidth - BitsInPreviousByte); } // 'or' in the bits that go into the previous byte. llvm::Value *LastElt = Elements.back(); if (llvm::ConstantInt *Val = dyn_cast(LastElt)) Tmp |= Val->getValue(); else { assert(isa(LastElt)); // If there is an undef field that we're adding to, it can either be a // scalar undef (in which case, we just replace it with our field) or it // is an array. If it is an array, we have to pull one byte off the // array so that the other undef bytes stay around. if (!isa(LastElt->getType())) { // The undef padding will be a multibyte array, create a new smaller // padding and then an hole for our i8 to get plopped into. assert(isa(LastElt->getType()) && "Expected array padding of undefs"); llvm::ArrayType *AT = cast(LastElt->getType()); assert(AT->getElementType()->isIntegerTy(CharWidth) && AT->getNumElements() != 0 && "Expected non-empty array padding of undefs"); // Remove the padding array. NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements()); Elements.pop_back(); // Add the padding back in two chunks. AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1)); AppendPadding(CharUnits::One()); assert(isa(Elements.back()) && Elements.back()->getType()->isIntegerTy(CharWidth) && "Padding addition didn't work right"); } } Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); if (FitsCompletelyInPreviousByte) return; } while (FieldValue.getBitWidth() > CharWidth) { llvm::APInt Tmp; if (CGM.getTargetData().isBigEndian()) { // We want the high bits. Tmp = FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth); } else { // We want the low bits. Tmp = FieldValue.trunc(CharWidth); FieldValue = FieldValue.lshr(CharWidth); } Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); ++NextFieldOffsetInChars; FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth); } assert(FieldValue.getBitWidth() > 0 && "Should have at least one bit left!"); assert(FieldValue.getBitWidth() <= CharWidth && "Should not have more than a byte left!"); if (FieldValue.getBitWidth() < CharWidth) { if (CGM.getTargetData().isBigEndian()) { unsigned BitWidth = FieldValue.getBitWidth(); FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth); } else FieldValue = FieldValue.zext(CharWidth); } // Append the last element. Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), FieldValue)); ++NextFieldOffsetInChars; } void ConstStructBuilder::AppendPadding(CharUnits PadSize) { if (PadSize.isZero()) return; llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext()); if (PadSize > CharUnits::One()) Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); llvm::Constant *C = llvm::UndefValue::get(Ty); Elements.push_back(C); assert(getAlignment(C) == CharUnits::One() && "Padding must have 1 byte alignment!"); NextFieldOffsetInChars += getSizeInChars(C); } void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) { assert(NextFieldOffsetInChars <= RecordSize && "Size mismatch!"); AppendPadding(RecordSize - NextFieldOffsetInChars); } void ConstStructBuilder::ConvertStructToPacked() { std::vector PackedElements; CharUnits ElementOffsetInChars = CharUnits::Zero(); for (unsigned i = 0, e = Elements.size(); i != e; ++i) { llvm::Constant *C = Elements[i]; CharUnits ElementAlign = CharUnits::fromQuantity( CGM.getTargetData().getABITypeAlignment(C->getType())); CharUnits AlignedElementOffsetInChars = ElementOffsetInChars.RoundUpToAlignment(ElementAlign); if (AlignedElementOffsetInChars > ElementOffsetInChars) { // We need some padding. CharUnits NumChars = AlignedElementOffsetInChars - ElementOffsetInChars; llvm::Type *Ty = llvm::Type::getInt8Ty(CGM.getLLVMContext()); if (NumChars > CharUnits::One()) Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity()); llvm::Constant *Padding = llvm::UndefValue::get(Ty); PackedElements.push_back(Padding); ElementOffsetInChars += getSizeInChars(Padding); } PackedElements.push_back(C); ElementOffsetInChars += getSizeInChars(C); } assert(ElementOffsetInChars == NextFieldOffsetInChars && "Packing the struct changed its size!"); Elements = PackedElements; LLVMStructAlignment = CharUnits::One(); Packed = true; } bool ConstStructBuilder::Build(InitListExpr *ILE) { RecordDecl *RD = ILE->getType()->getAs()->getDecl(); const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); unsigned FieldNo = 0; unsigned ElementNo = 0; const FieldDecl *LastFD = 0; bool IsMsStruct = RD->hasAttr(); for (RecordDecl::field_iterator Field = RD->field_begin(), FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { if (IsMsStruct) { // Zero-length bitfields following non-bitfield members are // ignored: if (CGM.getContext().ZeroBitfieldFollowsNonBitfield((*Field), LastFD)) { --FieldNo; continue; } LastFD = (*Field); } // If this is a union, skip all the fields that aren't being initialized. if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) continue; // Don't emit anonymous bitfields, they just affect layout. if (Field->isUnnamedBitfield()) { LastFD = (*Field); continue; } // Get the initializer. A struct can include fields without initializers, // we just use explicit null values for them. llvm::Constant *EltInit; if (ElementNo < ILE->getNumInits()) EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++), Field->getType(), CGF); else EltInit = CGM.EmitNullConstant(Field->getType()); if (!EltInit) return false; if (!Field->isBitField()) { // Handle non-bitfield members. if (!AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit)) return false; } else { // Otherwise we have a bitfield. AppendBitField(*Field, Layout.getFieldOffset(FieldNo), cast(EltInit)); } } CharUnits LayoutSizeInChars = Layout.getSize(); if (NextFieldOffsetInChars > LayoutSizeInChars) { // If the struct is bigger than the size of the record type, // we must have a flexible array member at the end. assert(RD->hasFlexibleArrayMember() && "Must have flexible array member if struct is bigger than type!"); // No tail padding is necessary. return true; } CharUnits LLVMSizeInChars = NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment); // Check if we need to convert the struct to a packed struct. if (NextFieldOffsetInChars <= LayoutSizeInChars && LLVMSizeInChars > LayoutSizeInChars) { assert(!Packed && "Size mismatch!"); ConvertStructToPacked(); assert(NextFieldOffsetInChars <= LayoutSizeInChars && "Converting to packed did not help!"); } // Append tail padding if necessary. AppendTailPadding(LayoutSizeInChars); assert(LayoutSizeInChars == NextFieldOffsetInChars && "Tail padding mismatch!"); return true; } llvm::Constant *ConstStructBuilder:: BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, InitListExpr *ILE) { ConstStructBuilder Builder(CGM, CGF); if (!Builder.Build(ILE)) return 0; // Pick the type to use. If the type is layout identical to the ConvertType // type then use it, otherwise use whatever the builder produced for us. llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(), Builder.Elements,Builder.Packed); llvm::Type *ILETy = CGM.getTypes().ConvertType(ILE->getType()); if (llvm::StructType *ILESTy = dyn_cast(ILETy)) { if (ILESTy->isLayoutIdentical(STy)) STy = ILESTy; } llvm::Constant *Result = llvm::ConstantStruct::get(STy, Builder.Elements); assert(Builder.NextFieldOffsetInChars.RoundUpToAlignment( Builder.getAlignment(Result)) == Builder.getSizeInChars(Result) && "Size mismatch!"); return Result; } //===----------------------------------------------------------------------===// // ConstExprEmitter //===----------------------------------------------------------------------===// class ConstExprEmitter : public StmtVisitor { CodeGenModule &CGM; CodeGenFunction *CGF; llvm::LLVMContext &VMContext; public: ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf) : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) { } //===--------------------------------------------------------------------===// // Visitor Methods //===--------------------------------------------------------------------===// llvm::Constant *VisitStmt(Stmt *S) { return 0; } llvm::Constant *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); } llvm::Constant * VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { return Visit(PE->getReplacement()); } llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { return Visit(GE->getResultExpr()); } llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { return Visit(E->getInitializer()); } llvm::Constant *VisitUnaryAddrOf(UnaryOperator *E) { if (E->getType()->isMemberPointerType()) return CGM.getMemberPointerConstant(E); return 0; } llvm::Constant *VisitBinSub(BinaryOperator *E) { // This must be a pointer/pointer subtraction. This only happens for // address of label. if (!isa(E->getLHS()->IgnoreParenNoopCasts(CGM.getContext())) || !isa(E->getRHS()->IgnoreParenNoopCasts(CGM.getContext()))) return 0; llvm::Constant *LHS = CGM.EmitConstantExpr(E->getLHS(), E->getLHS()->getType(), CGF); llvm::Constant *RHS = CGM.EmitConstantExpr(E->getRHS(), E->getRHS()->getType(), CGF); llvm::Type *ResultType = ConvertType(E->getType()); LHS = llvm::ConstantExpr::getPtrToInt(LHS, ResultType); RHS = llvm::ConstantExpr::getPtrToInt(RHS, ResultType); // No need to divide by element size, since addr of label is always void*, // which has size 1 in GNUish. return llvm::ConstantExpr::getSub(LHS, RHS); } llvm::Constant *VisitCastExpr(CastExpr* E) { Expr *subExpr = E->getSubExpr(); llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF); if (!C) return 0; llvm::Type *destType = ConvertType(E->getType()); switch (E->getCastKind()) { case CK_ToUnion: { // GCC cast to union extension assert(E->getType()->isUnionType() && "Destination type is not union type!"); // Build a struct with the union sub-element as the first member, // and padded to the appropriate size std::vector Elts; std::vector Types; Elts.push_back(C); Types.push_back(C->getType()); unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType()); unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(destType); assert(CurSize <= TotalSize && "Union size mismatch!"); if (unsigned NumPadBytes = TotalSize - CurSize) { llvm::Type *Ty = llvm::Type::getInt8Ty(VMContext); if (NumPadBytes > 1) Ty = llvm::ArrayType::get(Ty, NumPadBytes); Elts.push_back(llvm::UndefValue::get(Ty)); Types.push_back(Ty); } llvm::StructType* STy = llvm::StructType::get(C->getType()->getContext(), Types, false); return llvm::ConstantStruct::get(STy, Elts); } case CK_NullToMemberPointer: { const MemberPointerType *MPT = E->getType()->getAs(); return CGM.getCXXABI().EmitNullMemberPointer(MPT); } case CK_DerivedToBaseMemberPointer: case CK_BaseToDerivedMemberPointer: return CGM.getCXXABI().EmitMemberPointerConversion(C, E); case CK_LValueToRValue: case CK_NoOp: return C; case CK_CPointerToObjCPointerCast: case CK_BlockPointerToObjCPointerCast: case CK_AnyPointerToBlockPointerCast: case CK_BitCast: if (C->getType() == destType) return C; return llvm::ConstantExpr::getBitCast(C, destType); case CK_Dependent: llvm_unreachable("saw dependent cast!"); // These will never be supported. case CK_ObjCObjectLValueCast: case CK_GetObjCProperty: case CK_ToVoid: case CK_Dynamic: case CK_ARCProduceObject: case CK_ARCConsumeObject: case CK_ARCReclaimReturnedObject: case CK_ARCExtendBlockObject: case CK_LValueBitCast: return 0; // These might need to be supported for constexpr. case CK_UserDefinedConversion: case CK_ConstructorConversion: return 0; // These should eventually be supported. case CK_ArrayToPointerDecay: case CK_FunctionToPointerDecay: case CK_BaseToDerived: case CK_DerivedToBase: case CK_UncheckedDerivedToBase: case CK_MemberPointerToBoolean: case CK_VectorSplat: case CK_FloatingRealToComplex: case CK_FloatingComplexToReal: case CK_FloatingComplexToBoolean: case CK_FloatingComplexCast: case CK_FloatingComplexToIntegralComplex: case CK_IntegralRealToComplex: case CK_IntegralComplexToReal: case CK_IntegralComplexToBoolean: case CK_IntegralComplexCast: case CK_IntegralComplexToFloatingComplex: return 0; case CK_PointerToIntegral: if (!E->getType()->isBooleanType()) return llvm::ConstantExpr::getPtrToInt(C, destType); // fallthrough case CK_PointerToBoolean: return llvm::ConstantExpr::getICmp(llvm::CmpInst::ICMP_EQ, C, llvm::ConstantPointerNull::get(cast(C->getType()))); case CK_NullToPointer: return llvm::ConstantPointerNull::get(cast(destType)); case CK_IntegralCast: { bool isSigned = subExpr->getType()->isSignedIntegerOrEnumerationType(); return llvm::ConstantExpr::getIntegerCast(C, destType, isSigned); } case CK_IntegralToPointer: { bool isSigned = subExpr->getType()->isSignedIntegerOrEnumerationType(); C = llvm::ConstantExpr::getIntegerCast(C, CGM.IntPtrTy, isSigned); return llvm::ConstantExpr::getIntToPtr(C, destType); } case CK_IntegralToBoolean: return llvm::ConstantExpr::getICmp(llvm::CmpInst::ICMP_EQ, C, llvm::Constant::getNullValue(C->getType())); case CK_IntegralToFloating: if (subExpr->getType()->isSignedIntegerOrEnumerationType()) return llvm::ConstantExpr::getSIToFP(C, destType); else return llvm::ConstantExpr::getUIToFP(C, destType); case CK_FloatingToIntegral: if (E->getType()->isSignedIntegerOrEnumerationType()) return llvm::ConstantExpr::getFPToSI(C, destType); else return llvm::ConstantExpr::getFPToUI(C, destType); case CK_FloatingToBoolean: return llvm::ConstantExpr::getFCmp(llvm::CmpInst::FCMP_UNE, C, llvm::Constant::getNullValue(C->getType())); case CK_FloatingCast: return llvm::ConstantExpr::getFPCast(C, destType); } llvm_unreachable("Invalid CastKind"); } llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { return Visit(DAE->getExpr()); } llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) { return Visit(E->GetTemporaryExpr()); } llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) { unsigned NumInitElements = ILE->getNumInits(); if (NumInitElements == 1 && ILE->getType() == ILE->getInit(0)->getType() && (isa(ILE->getInit(0)) || isa(ILE->getInit(0)))) return Visit(ILE->getInit(0)); std::vector Elts; llvm::ArrayType *AType = cast(ConvertType(ILE->getType())); llvm::Type *ElemTy = AType->getElementType(); unsigned NumElements = AType->getNumElements(); // Initialising an array requires us to automatically // initialise any elements that have not been initialised explicitly unsigned NumInitableElts = std::min(NumInitElements, NumElements); // Copy initializer elements. unsigned i = 0; bool RewriteType = false; for (; i < NumInitableElts; ++i) { Expr *Init = ILE->getInit(i); llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); if (!C) return 0; RewriteType |= (C->getType() != ElemTy); Elts.push_back(C); } // Initialize remaining array elements. // FIXME: This doesn't handle member pointers correctly! llvm::Constant *fillC; if (Expr *filler = ILE->getArrayFiller()) fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF); else fillC = llvm::Constant::getNullValue(ElemTy); if (!fillC) return 0; RewriteType |= (fillC->getType() != ElemTy); for (; i < NumElements; ++i) Elts.push_back(fillC); if (RewriteType) { // FIXME: Try to avoid packing the array std::vector Types; for (unsigned i = 0; i < Elts.size(); ++i) Types.push_back(Elts[i]->getType()); llvm::StructType *SType = llvm::StructType::get(AType->getContext(), Types, true); return llvm::ConstantStruct::get(SType, Elts); } return llvm::ConstantArray::get(AType, Elts); } llvm::Constant *EmitStructInitialization(InitListExpr *ILE) { return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); } llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) { return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); } llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) { return CGM.EmitNullConstant(E->getType()); } llvm::Constant *VisitInitListExpr(InitListExpr *ILE) { if (ILE->getType()->isAnyComplexType() && ILE->getNumInits() == 2) { // Complex type with element initializers Expr *Real = ILE->getInit(0); Expr *Imag = ILE->getInit(1); llvm::Constant *Complex[2]; Complex[0] = CGM.EmitConstantExpr(Real, Real->getType(), CGF); if (!Complex[0]) return 0; Complex[1] = CGM.EmitConstantExpr(Imag, Imag->getType(), CGF); if (!Complex[1]) return 0; llvm::StructType *STy = cast(ConvertType(ILE->getType())); return llvm::ConstantStruct::get(STy, Complex); } if (ILE->getType()->isScalarType()) { // We have a scalar in braces. Just use the first element. if (ILE->getNumInits() > 0) { Expr *Init = ILE->getInit(0); return CGM.EmitConstantExpr(Init, Init->getType(), CGF); } return CGM.EmitNullConstant(ILE->getType()); } if (ILE->getType()->isArrayType()) return EmitArrayInitialization(ILE); if (ILE->getType()->isRecordType()) return EmitStructInitialization(ILE); if (ILE->getType()->isUnionType()) return EmitUnionInitialization(ILE); // If ILE was a constant vector, we would have handled it already. if (ILE->getType()->isVectorType()) return 0; llvm_unreachable("Unable to handle InitListExpr"); } llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) { if (!E->getConstructor()->isTrivial()) return 0; QualType Ty = E->getType(); // FIXME: We should not have to call getBaseElementType here. const RecordType *RT = CGM.getContext().getBaseElementType(Ty)->getAs(); const CXXRecordDecl *RD = cast(RT->getDecl()); // If the class doesn't have a trivial destructor, we can't emit it as a // constant expr. if (!RD->hasTrivialDestructor()) return 0; // Only copy and default constructors can be trivial. if (E->getNumArgs()) { assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); assert(E->getConstructor()->isCopyOrMoveConstructor() && "trivial ctor has argument but isn't a copy/move ctor"); Expr *Arg = E->getArg(0); assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && "argument to copy ctor is of wrong type"); return Visit(Arg); } return CGM.EmitNullConstant(Ty); } llvm::Constant *VisitStringLiteral(StringLiteral *E) { return CGM.GetConstantArrayFromStringLiteral(E); } llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) { // This must be an @encode initializing an array in a static initializer. // Don't emit it as the address of the string, emit the string data itself // as an inline array. std::string Str; CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); const ConstantArrayType *CAT = cast(E->getType()); // Resize the string to the right size, adding zeros at the end, or // truncating as needed. Str.resize(CAT->getSize().getZExtValue(), '\0'); return llvm::ConstantArray::get(VMContext, Str, false); } llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) { return Visit(E->getSubExpr()); } // Utility methods llvm::Type *ConvertType(QualType T) { return CGM.getTypes().ConvertType(T); } public: llvm::Constant *EmitLValue(Expr *E) { switch (E->getStmtClass()) { default: break; case Expr::CompoundLiteralExprClass: { // Note that due to the nature of compound literals, this is guaranteed // to be the only use of the variable, so we just generate it here. CompoundLiteralExpr *CLE = cast(E); llvm::Constant* C = Visit(CLE->getInitializer()); // FIXME: "Leaked" on failure. if (C) C = new llvm::GlobalVariable(CGM.getModule(), C->getType(), E->getType().isConstant(CGM.getContext()), llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", 0, false, CGM.getContext().getTargetAddressSpace(E->getType())); return C; } case Expr::DeclRefExprClass: { ValueDecl *Decl = cast(E)->getDecl(); if (Decl->hasAttr()) return CGM.GetWeakRefReference(Decl); if (const FunctionDecl *FD = dyn_cast(Decl)) return CGM.GetAddrOfFunction(FD); if (const VarDecl* VD = dyn_cast(Decl)) { // We can never refer to a variable with local storage. if (!VD->hasLocalStorage()) { if (VD->isFileVarDecl() || VD->hasExternalStorage()) return CGM.GetAddrOfGlobalVar(VD); else if (VD->isLocalVarDecl()) { assert(CGF && "Can't access static local vars without CGF"); return CGF->GetAddrOfStaticLocalVar(VD); } } } break; } case Expr::StringLiteralClass: return CGM.GetAddrOfConstantStringFromLiteral(cast(E)); case Expr::ObjCEncodeExprClass: return CGM.GetAddrOfConstantStringFromObjCEncode(cast(E)); case Expr::ObjCStringLiteralClass: { ObjCStringLiteral* SL = cast(E); llvm::Constant *C = CGM.getObjCRuntime().GenerateConstantString(SL->getString()); return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); } case Expr::PredefinedExprClass: { unsigned Type = cast(E)->getIdentType(); if (CGF) { LValue Res = CGF->EmitPredefinedLValue(cast(E)); return cast(Res.getAddress()); } else if (Type == PredefinedExpr::PrettyFunction) { return CGM.GetAddrOfConstantCString("top level", ".tmp"); } return CGM.GetAddrOfConstantCString("", ".tmp"); } case Expr::AddrLabelExprClass: { assert(CGF && "Invalid address of label expression outside function."); llvm::Constant *Ptr = CGF->GetAddrOfLabel(cast(E)->getLabel()); return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType())); } case Expr::CallExprClass: { CallExpr* CE = cast(E); unsigned builtin = CE->isBuiltinCall(CGM.getContext()); if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && builtin != Builtin::BI__builtin___NSStringMakeConstantString) break; const Expr *Arg = CE->getArg(0)->IgnoreParenCasts(); const StringLiteral *Literal = cast(Arg); if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { return CGM.getObjCRuntime().GenerateConstantString(Literal); } // FIXME: need to deal with UCN conversion issues. return CGM.GetAddrOfConstantCFString(Literal); } case Expr::BlockExprClass: { std::string FunctionName; if (CGF) FunctionName = CGF->CurFn->getName(); else FunctionName = "global"; return CGM.GetAddrOfGlobalBlock(cast(E), FunctionName.c_str()); } } return 0; } }; } // end anonymous namespace. llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E, QualType DestType, CodeGenFunction *CGF) { Expr::EvalResult Result; bool Success = false; if (DestType->isReferenceType()) Success = E->EvaluateAsLValue(Result, Context); else Success = E->EvaluateAsRValue(Result, Context); if (Success && !Result.HasSideEffects) { switch (Result.Val.getKind()) { case APValue::Uninitialized: llvm_unreachable("Constant expressions should be initialized."); case APValue::LValue: { llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType); llvm::Constant *Offset = llvm::ConstantInt::get(llvm::Type::getInt64Ty(VMContext), Result.Val.getLValueOffset().getQuantity()); llvm::Constant *C; if (const Expr *LVBase = Result.Val.getLValueBase()) { C = ConstExprEmitter(*this, CGF).EmitLValue(const_cast(LVBase)); // Apply offset if necessary. if (!Offset->isNullValue()) { llvm::Type *Type = llvm::Type::getInt8PtrTy(VMContext); llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Type); Casted = llvm::ConstantExpr::getGetElementPtr(Casted, Offset); C = llvm::ConstantExpr::getBitCast(Casted, C->getType()); } // Convert to the appropriate type; this could be an lvalue for // an integer. if (isa(DestTy)) return llvm::ConstantExpr::getBitCast(C, DestTy); return llvm::ConstantExpr::getPtrToInt(C, DestTy); } else { C = Offset; // Convert to the appropriate type; this could be an lvalue for // an integer. if (isa(DestTy)) return llvm::ConstantExpr::getIntToPtr(C, DestTy); // If the types don't match this should only be a truncate. if (C->getType() != DestTy) return llvm::ConstantExpr::getTrunc(C, DestTy); return C; } } case APValue::Int: { llvm::Constant *C = llvm::ConstantInt::get(VMContext, Result.Val.getInt()); if (C->getType()->isIntegerTy(1)) { llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); C = llvm::ConstantExpr::getZExt(C, BoolTy); } return C; } case APValue::ComplexInt: { llvm::Constant *Complex[2]; Complex[0] = llvm::ConstantInt::get(VMContext, Result.Val.getComplexIntReal()); Complex[1] = llvm::ConstantInt::get(VMContext, Result.Val.getComplexIntImag()); // FIXME: the target may want to specify that this is packed. llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType(), NULL); return llvm::ConstantStruct::get(STy, Complex); } case APValue::Float: { const llvm::APFloat &Init = Result.Val.getFloat(); if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf) return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt()); else return llvm::ConstantFP::get(VMContext, Init); } case APValue::ComplexFloat: { llvm::Constant *Complex[2]; Complex[0] = llvm::ConstantFP::get(VMContext, Result.Val.getComplexFloatReal()); Complex[1] = llvm::ConstantFP::get(VMContext, Result.Val.getComplexFloatImag()); // FIXME: the target may want to specify that this is packed. llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType(), NULL); return llvm::ConstantStruct::get(STy, Complex); } case APValue::Vector: { SmallVector Inits; unsigned NumElts = Result.Val.getVectorLength(); if (Context.getLangOptions().AltiVec && isa(E) && cast(E)->getCastKind() == CK_VectorSplat) { // AltiVec vector initialization with a single literal APValue &Elt = Result.Val.getVectorElt(0); llvm::Constant* InitValue = Elt.isInt() ? cast (llvm::ConstantInt::get(VMContext, Elt.getInt())) : cast (llvm::ConstantFP::get(VMContext, Elt.getFloat())); for (unsigned i = 0; i != NumElts; ++i) Inits.push_back(InitValue); } else { for (unsigned i = 0; i != NumElts; ++i) { APValue &Elt = Result.Val.getVectorElt(i); if (Elt.isInt()) Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt())); else Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat())); } } return llvm::ConstantVector::get(Inits); } } } llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast(E)); if (C && C->getType()->isIntegerTy(1)) { llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); C = llvm::ConstantExpr::getZExt(C, BoolTy); } return C; } static uint64_t getFieldOffset(ASTContext &C, const FieldDecl *field) { const ASTRecordLayout &layout = C.getASTRecordLayout(field->getParent()); return layout.getFieldOffset(field->getFieldIndex()); } llvm::Constant * CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { // Member pointer constants always have a very particular form. const MemberPointerType *type = cast(uo->getType()); const ValueDecl *decl = cast(uo->getSubExpr())->getDecl(); // A member function pointer. if (const CXXMethodDecl *method = dyn_cast(decl)) return getCXXABI().EmitMemberPointer(method); // Otherwise, a member data pointer. uint64_t fieldOffset; if (const FieldDecl *field = dyn_cast(decl)) fieldOffset = getFieldOffset(getContext(), field); else { const IndirectFieldDecl *ifield = cast(decl); fieldOffset = 0; for (IndirectFieldDecl::chain_iterator ci = ifield->chain_begin(), ce = ifield->chain_end(); ci != ce; ++ci) fieldOffset += getFieldOffset(getContext(), cast(*ci)); } CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); return getCXXABI().EmitMemberDataPointer(type, chars); } static void FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T, std::vector &Elements, uint64_t StartOffset) { assert(StartOffset % CGM.getContext().getCharWidth() == 0 && "StartOffset not byte aligned!"); if (CGM.getTypes().isZeroInitializable(T)) return; if (const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T)) { QualType ElementTy = CAT->getElementType(); uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy); for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) { FillInNullDataMemberPointers(CGM, ElementTy, Elements, StartOffset + I * ElementSize); } } else if (const RecordType *RT = T->getAs()) { const CXXRecordDecl *RD = cast(RT->getDecl()); const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); // Go through all bases and fill in any null pointer to data members. for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), E = RD->bases_end(); I != E; ++I) { if (I->isVirtual()) { // Ignore virtual bases. continue; } const CXXRecordDecl *BaseDecl = cast(I->getType()->getAs()->getDecl()); // Ignore empty bases. if (BaseDecl->isEmpty()) continue; // Ignore bases that don't have any pointer to data members. if (CGM.getTypes().isZeroInitializable(BaseDecl)) continue; uint64_t BaseOffset = Layout.getBaseClassOffsetInBits(BaseDecl); FillInNullDataMemberPointers(CGM, I->getType(), Elements, StartOffset + BaseOffset); } // Visit all fields. unsigned FieldNo = 0; for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++FieldNo) { QualType FieldType = I->getType(); if (CGM.getTypes().isZeroInitializable(FieldType)) continue; uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo); FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset); } } else { assert(T->isMemberPointerType() && "Should only see member pointers here!"); assert(!T->getAs()->getPointeeType()->isFunctionType() && "Should only see pointers to data members here!"); CharUnits StartIndex = CGM.getContext().toCharUnitsFromBits(StartOffset); CharUnits EndIndex = StartIndex + CGM.getContext().getTypeSizeInChars(T); // FIXME: hardcodes Itanium member pointer representation! llvm::Constant *NegativeOne = llvm::ConstantInt::get(llvm::Type::getInt8Ty(CGM.getLLVMContext()), -1ULL, /*isSigned*/true); // Fill in the null data member pointer. for (CharUnits I = StartIndex; I != EndIndex; ++I) Elements[I.getQuantity()] = NegativeOne; } } static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, llvm::Type *baseType, const CXXRecordDecl *base); static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, const CXXRecordDecl *record, bool asCompleteObject) { const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); llvm::StructType *structure = (asCompleteObject ? layout.getLLVMType() : layout.getBaseSubobjectLLVMType()); unsigned numElements = structure->getNumElements(); std::vector elements(numElements); // Fill in all the bases. for (CXXRecordDecl::base_class_const_iterator I = record->bases_begin(), E = record->bases_end(); I != E; ++I) { if (I->isVirtual()) { // Ignore virtual bases; if we're laying out for a complete // object, we'll lay these out later. continue; } const CXXRecordDecl *base = cast(I->getType()->castAs()->getDecl()); // Ignore empty bases. if (base->isEmpty()) continue; unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); llvm::Type *baseType = structure->getElementType(fieldIndex); elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); } // Fill in all the fields. for (RecordDecl::field_iterator I = record->field_begin(), E = record->field_end(); I != E; ++I) { const FieldDecl *field = *I; // Ignore bit fields. if (field->isBitField()) continue; unsigned fieldIndex = layout.getLLVMFieldNo(field); elements[fieldIndex] = CGM.EmitNullConstant(field->getType()); } // Fill in the virtual bases, if we're working with the complete object. if (asCompleteObject) { for (CXXRecordDecl::base_class_const_iterator I = record->vbases_begin(), E = record->vbases_end(); I != E; ++I) { const CXXRecordDecl *base = cast(I->getType()->castAs()->getDecl()); // Ignore empty bases. if (base->isEmpty()) continue; unsigned fieldIndex = layout.getVirtualBaseIndex(base); // We might have already laid this field out. if (elements[fieldIndex]) continue; llvm::Type *baseType = structure->getElementType(fieldIndex); elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); } } // Now go through all other fields and zero them out. for (unsigned i = 0; i != numElements; ++i) { if (!elements[i]) elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); } return llvm::ConstantStruct::get(structure, elements); } /// Emit the null constant for a base subobject. static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, llvm::Type *baseType, const CXXRecordDecl *base) { const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); // Just zero out bases that don't have any pointer to data members. if (baseLayout.isZeroInitializableAsBase()) return llvm::Constant::getNullValue(baseType); // If the base type is a struct, we can just use its null constant. if (isa(baseType)) { return EmitNullConstant(CGM, base, /*complete*/ false); } // Otherwise, some bases are represented as arrays of i8 if the size // of the base is smaller than its corresponding LLVM type. Figure // out how many elements this base array has. llvm::ArrayType *baseArrayType = cast(baseType); unsigned numBaseElements = baseArrayType->getNumElements(); // Fill in null data member pointers. std::vector baseElements(numBaseElements); FillInNullDataMemberPointers(CGM, CGM.getContext().getTypeDeclType(base), baseElements, 0); // Now go through all other elements and zero them out. if (numBaseElements) { llvm::Type *i8 = llvm::Type::getInt8Ty(CGM.getLLVMContext()); llvm::Constant *i8_zero = llvm::Constant::getNullValue(i8); for (unsigned i = 0; i != numBaseElements; ++i) { if (!baseElements[i]) baseElements[i] = i8_zero; } } return llvm::ConstantArray::get(baseArrayType, baseElements); } llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { if (getTypes().isZeroInitializable(T)) return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { QualType ElementTy = CAT->getElementType(); llvm::Constant *Element = EmitNullConstant(ElementTy); unsigned NumElements = CAT->getSize().getZExtValue(); std::vector Array(NumElements); for (unsigned i = 0; i != NumElements; ++i) Array[i] = Element; llvm::ArrayType *ATy = cast(getTypes().ConvertTypeForMem(T)); return llvm::ConstantArray::get(ATy, Array); } if (const RecordType *RT = T->getAs()) { const CXXRecordDecl *RD = cast(RT->getDecl()); return ::EmitNullConstant(*this, RD, /*complete object*/ true); } assert(T->isMemberPointerType() && "Should only see member pointers here!"); assert(!T->getAs()->getPointeeType()->isFunctionType() && "Should only see pointers to data members here!"); // Itanium C++ ABI 2.3: // A NULL pointer is represented as -1. return getCXXABI().EmitNullMemberPointer(T->castAs()); } llvm::Constant * CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { return ::EmitNullConstant(*this, Record, false); }