//===--- PCHReader.cpp - Precompiled Headers Reader -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PCHReader class, which reads a precompiled header. // //===----------------------------------------------------------------------===// #include "clang/Frontend/PCHReader.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclGroup.h" #include "clang/AST/Expr.h" #include "clang/AST/StmtVisitor.h" #include "clang/AST/Type.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManagerInternals.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/TargetInfo.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/MemoryBuffer.h" #include #include using namespace clang; //===----------------------------------------------------------------------===// // Declaration deserialization //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN PCHDeclReader { PCHReader &Reader; const PCHReader::RecordData &Record; unsigned &Idx; public: PCHDeclReader(PCHReader &Reader, const PCHReader::RecordData &Record, unsigned &Idx) : Reader(Reader), Record(Record), Idx(Idx) { } void VisitDecl(Decl *D); void VisitTranslationUnitDecl(TranslationUnitDecl *TU); void VisitNamedDecl(NamedDecl *ND); void VisitTypeDecl(TypeDecl *TD); void VisitTypedefDecl(TypedefDecl *TD); void VisitTagDecl(TagDecl *TD); void VisitEnumDecl(EnumDecl *ED); void VisitRecordDecl(RecordDecl *RD); void VisitValueDecl(ValueDecl *VD); void VisitEnumConstantDecl(EnumConstantDecl *ECD); void VisitFunctionDecl(FunctionDecl *FD); void VisitFieldDecl(FieldDecl *FD); void VisitVarDecl(VarDecl *VD); void VisitParmVarDecl(ParmVarDecl *PD); void VisitOriginalParmVarDecl(OriginalParmVarDecl *PD); void VisitFileScopeAsmDecl(FileScopeAsmDecl *AD); void VisitBlockDecl(BlockDecl *BD); std::pair VisitDeclContext(DeclContext *DC); }; } void PCHDeclReader::VisitDecl(Decl *D) { D->setDeclContext(cast_or_null(Reader.GetDecl(Record[Idx++]))); D->setLexicalDeclContext( cast_or_null(Reader.GetDecl(Record[Idx++]))); D->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); D->setInvalidDecl(Record[Idx++]); if (Record[Idx++]) D->addAttr(Reader.ReadAttributes()); D->setImplicit(Record[Idx++]); D->setAccess((AccessSpecifier)Record[Idx++]); } void PCHDeclReader::VisitTranslationUnitDecl(TranslationUnitDecl *TU) { VisitDecl(TU); } void PCHDeclReader::VisitNamedDecl(NamedDecl *ND) { VisitDecl(ND); ND->setDeclName(Reader.ReadDeclarationName(Record, Idx)); } void PCHDeclReader::VisitTypeDecl(TypeDecl *TD) { VisitNamedDecl(TD); TD->setTypeForDecl(Reader.GetType(Record[Idx++]).getTypePtr()); } void PCHDeclReader::VisitTypedefDecl(TypedefDecl *TD) { // Note that we cannot use VisitTypeDecl here, because we need to // set the underlying type of the typedef *before* we try to read // the type associated with the TypedefDecl. VisitNamedDecl(TD); TD->setUnderlyingType(Reader.GetType(Record[Idx + 1])); TD->setTypeForDecl(Reader.GetType(Record[Idx]).getTypePtr()); Idx += 2; } void PCHDeclReader::VisitTagDecl(TagDecl *TD) { VisitTypeDecl(TD); TD->setTagKind((TagDecl::TagKind)Record[Idx++]); TD->setDefinition(Record[Idx++]); TD->setTypedefForAnonDecl( cast_or_null(Reader.GetDecl(Record[Idx++]))); } void PCHDeclReader::VisitEnumDecl(EnumDecl *ED) { VisitTagDecl(ED); ED->setIntegerType(Reader.GetType(Record[Idx++])); } void PCHDeclReader::VisitRecordDecl(RecordDecl *RD) { VisitTagDecl(RD); RD->setHasFlexibleArrayMember(Record[Idx++]); RD->setAnonymousStructOrUnion(Record[Idx++]); } void PCHDeclReader::VisitValueDecl(ValueDecl *VD) { VisitNamedDecl(VD); VD->setType(Reader.GetType(Record[Idx++])); } void PCHDeclReader::VisitEnumConstantDecl(EnumConstantDecl *ECD) { VisitValueDecl(ECD); if (Record[Idx++]) ECD->setInitExpr(Reader.ReadExpr()); ECD->setInitVal(Reader.ReadAPSInt(Record, Idx)); } void PCHDeclReader::VisitFunctionDecl(FunctionDecl *FD) { VisitValueDecl(FD); // FIXME: function body FD->setPreviousDeclaration( cast_or_null(Reader.GetDecl(Record[Idx++]))); FD->setStorageClass((FunctionDecl::StorageClass)Record[Idx++]); FD->setInline(Record[Idx++]); FD->setVirtual(Record[Idx++]); FD->setPure(Record[Idx++]); FD->setInheritedPrototype(Record[Idx++]); FD->setHasPrototype(Record[Idx++]); FD->setDeleted(Record[Idx++]); FD->setTypeSpecStartLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); unsigned NumParams = Record[Idx++]; llvm::SmallVector Params; Params.reserve(NumParams); for (unsigned I = 0; I != NumParams; ++I) Params.push_back(cast(Reader.GetDecl(Record[Idx++]))); FD->setParams(Reader.getContext(), &Params[0], NumParams); } void PCHDeclReader::VisitFieldDecl(FieldDecl *FD) { VisitValueDecl(FD); FD->setMutable(Record[Idx++]); if (Record[Idx++]) FD->setBitWidth(Reader.ReadExpr()); } void PCHDeclReader::VisitVarDecl(VarDecl *VD) { VisitValueDecl(VD); VD->setStorageClass((VarDecl::StorageClass)Record[Idx++]); VD->setThreadSpecified(Record[Idx++]); VD->setCXXDirectInitializer(Record[Idx++]); VD->setDeclaredInCondition(Record[Idx++]); VD->setPreviousDeclaration( cast_or_null(Reader.GetDecl(Record[Idx++]))); VD->setTypeSpecStartLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); if (Record[Idx++]) VD->setInit(Reader.ReadExpr()); } void PCHDeclReader::VisitParmVarDecl(ParmVarDecl *PD) { VisitVarDecl(PD); PD->setObjCDeclQualifier((Decl::ObjCDeclQualifier)Record[Idx++]); // FIXME: default argument (C++ only) } void PCHDeclReader::VisitOriginalParmVarDecl(OriginalParmVarDecl *PD) { VisitParmVarDecl(PD); PD->setOriginalType(Reader.GetType(Record[Idx++])); } void PCHDeclReader::VisitFileScopeAsmDecl(FileScopeAsmDecl *AD) { VisitDecl(AD); AD->setAsmString(cast(Reader.ReadExpr())); } void PCHDeclReader::VisitBlockDecl(BlockDecl *BD) { VisitDecl(BD); unsigned NumParams = Record[Idx++]; llvm::SmallVector Params; Params.reserve(NumParams); for (unsigned I = 0; I != NumParams; ++I) Params.push_back(cast(Reader.GetDecl(Record[Idx++]))); BD->setParams(Reader.getContext(), &Params[0], NumParams); } std::pair PCHDeclReader::VisitDeclContext(DeclContext *DC) { uint64_t LexicalOffset = Record[Idx++]; uint64_t VisibleOffset = 0; if (DC->getPrimaryContext() == DC) VisibleOffset = Record[Idx++]; return std::make_pair(LexicalOffset, VisibleOffset); } //===----------------------------------------------------------------------===// // Statement/expression deserialization //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN PCHStmtReader : public StmtVisitor { PCHReader &Reader; const PCHReader::RecordData &Record; unsigned &Idx; llvm::SmallVectorImpl &ExprStack; public: PCHStmtReader(PCHReader &Reader, const PCHReader::RecordData &Record, unsigned &Idx, llvm::SmallVectorImpl &ExprStack) : Reader(Reader), Record(Record), Idx(Idx), ExprStack(ExprStack) { } /// \brief The number of record fields required for the Expr class /// itself. static const unsigned NumExprFields = 3; // Each of the Visit* functions reads in part of the expression // from the given record and the current expression stack, then // return the total number of operands that it read from the // expression stack. unsigned VisitExpr(Expr *E); unsigned VisitPredefinedExpr(PredefinedExpr *E); unsigned VisitDeclRefExpr(DeclRefExpr *E); unsigned VisitIntegerLiteral(IntegerLiteral *E); unsigned VisitFloatingLiteral(FloatingLiteral *E); unsigned VisitImaginaryLiteral(ImaginaryLiteral *E); unsigned VisitStringLiteral(StringLiteral *E); unsigned VisitCharacterLiteral(CharacterLiteral *E); unsigned VisitParenExpr(ParenExpr *E); unsigned VisitUnaryOperator(UnaryOperator *E); unsigned VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E); unsigned VisitArraySubscriptExpr(ArraySubscriptExpr *E); unsigned VisitCallExpr(CallExpr *E); unsigned VisitMemberExpr(MemberExpr *E); unsigned VisitCastExpr(CastExpr *E); unsigned VisitBinaryOperator(BinaryOperator *E); unsigned VisitCompoundAssignOperator(CompoundAssignOperator *E); unsigned VisitConditionalOperator(ConditionalOperator *E); unsigned VisitImplicitCastExpr(ImplicitCastExpr *E); unsigned VisitExplicitCastExpr(ExplicitCastExpr *E); unsigned VisitCStyleCastExpr(CStyleCastExpr *E); }; } unsigned PCHStmtReader::VisitExpr(Expr *E) { E->setType(Reader.GetType(Record[Idx++])); E->setTypeDependent(Record[Idx++]); E->setValueDependent(Record[Idx++]); assert(Idx == NumExprFields && "Incorrect expression field count"); return 0; } unsigned PCHStmtReader::VisitPredefinedExpr(PredefinedExpr *E) { VisitExpr(E); E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setIdentType((PredefinedExpr::IdentType)Record[Idx++]); return 0; } unsigned PCHStmtReader::VisitDeclRefExpr(DeclRefExpr *E) { VisitExpr(E); E->setDecl(cast(Reader.GetDecl(Record[Idx++]))); E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitIntegerLiteral(IntegerLiteral *E) { VisitExpr(E); E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setValue(Reader.ReadAPInt(Record, Idx)); return 0; } unsigned PCHStmtReader::VisitFloatingLiteral(FloatingLiteral *E) { VisitExpr(E); E->setValue(Reader.ReadAPFloat(Record, Idx)); E->setExact(Record[Idx++]); E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitImaginaryLiteral(ImaginaryLiteral *E) { VisitExpr(E); E->setSubExpr(ExprStack.back()); return 1; } unsigned PCHStmtReader::VisitStringLiteral(StringLiteral *E) { VisitExpr(E); unsigned Len = Record[Idx++]; assert(Record[Idx] == E->getNumConcatenated() && "Wrong number of concatenated tokens!"); ++Idx; E->setWide(Record[Idx++]); // Read string data llvm::SmallVector Str(&Record[Idx], &Record[Idx] + Len); E->setStrData(Reader.getContext(), &Str[0], Len); Idx += Len; // Read source locations for (unsigned I = 0, N = E->getNumConcatenated(); I != N; ++I) E->setStrTokenLoc(I, SourceLocation::getFromRawEncoding(Record[Idx++])); return 0; } unsigned PCHStmtReader::VisitCharacterLiteral(CharacterLiteral *E) { VisitExpr(E); E->setValue(Record[Idx++]); E->setLocation(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setWide(Record[Idx++]); return 0; } unsigned PCHStmtReader::VisitParenExpr(ParenExpr *E) { VisitExpr(E); E->setLParen(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParen(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setSubExpr(ExprStack.back()); return 1; } unsigned PCHStmtReader::VisitUnaryOperator(UnaryOperator *E) { VisitExpr(E); E->setSubExpr(ExprStack.back()); E->setOpcode((UnaryOperator::Opcode)Record[Idx++]); E->setOperatorLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 1; } unsigned PCHStmtReader::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) { VisitExpr(E); E->setSizeof(Record[Idx++]); if (Record[Idx] == 0) { E->setArgument(ExprStack.back()); ++Idx; } else { E->setArgument(Reader.GetType(Record[Idx++])); } E->setOperatorLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return E->isArgumentType()? 0 : 1; } unsigned PCHStmtReader::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { VisitExpr(E); E->setLHS(ExprStack[ExprStack.size() - 2]); E->setRHS(ExprStack[ExprStack.size() - 2]); E->setRBracketLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 2; } unsigned PCHStmtReader::VisitCallExpr(CallExpr *E) { VisitExpr(E); E->setNumArgs(Reader.getContext(), Record[Idx++]); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setCallee(ExprStack[ExprStack.size() - E->getNumArgs() - 1]); for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) E->setArg(I, ExprStack[ExprStack.size() - N + I]); return E->getNumArgs() + 1; } unsigned PCHStmtReader::VisitMemberExpr(MemberExpr *E) { VisitExpr(E); E->setBase(ExprStack.back()); E->setMemberDecl(cast(Reader.GetDecl(Record[Idx++]))); E->setMemberLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setArrow(Record[Idx++]); return 1; } unsigned PCHStmtReader::VisitCastExpr(CastExpr *E) { VisitExpr(E); E->setSubExpr(ExprStack.back()); return 1; } unsigned PCHStmtReader::VisitBinaryOperator(BinaryOperator *E) { VisitExpr(E); E->setLHS(ExprStack.end()[-2]); E->setRHS(ExprStack.end()[-1]); E->setOpcode((BinaryOperator::Opcode)Record[Idx++]); E->setOperatorLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 2; } unsigned PCHStmtReader::VisitCompoundAssignOperator(CompoundAssignOperator *E) { VisitBinaryOperator(E); E->setComputationLHSType(Reader.GetType(Record[Idx++])); E->setComputationResultType(Reader.GetType(Record[Idx++])); return 2; } unsigned PCHStmtReader::VisitConditionalOperator(ConditionalOperator *E) { VisitExpr(E); E->setCond(ExprStack[ExprStack.size() - 3]); E->setLHS(ExprStack[ExprStack.size() - 2]); E->setRHS(ExprStack[ExprStack.size() - 1]); return 3; } unsigned PCHStmtReader::VisitImplicitCastExpr(ImplicitCastExpr *E) { VisitCastExpr(E); E->setLvalueCast(Record[Idx++]); return 1; } unsigned PCHStmtReader::VisitExplicitCastExpr(ExplicitCastExpr *E) { VisitCastExpr(E); E->setTypeAsWritten(Reader.GetType(Record[Idx++])); return 1; } unsigned PCHStmtReader::VisitCStyleCastExpr(CStyleCastExpr *E) { VisitExplicitCastExpr(E); E->setLParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); E->setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++])); return 1; } // FIXME: use the diagnostics machinery static bool Error(const char *Str) { std::fprintf(stderr, "%s\n", Str); return true; } /// \brief Check the contents of the predefines buffer against the /// contents of the predefines buffer used to build the PCH file. /// /// The contents of the two predefines buffers should be the same. If /// not, then some command-line option changed the preprocessor state /// and we must reject the PCH file. /// /// \param PCHPredef The start of the predefines buffer in the PCH /// file. /// /// \param PCHPredefLen The length of the predefines buffer in the PCH /// file. /// /// \param PCHBufferID The FileID for the PCH predefines buffer. /// /// \returns true if there was a mismatch (in which case the PCH file /// should be ignored), or false otherwise. bool PCHReader::CheckPredefinesBuffer(const char *PCHPredef, unsigned PCHPredefLen, FileID PCHBufferID) { const char *Predef = PP.getPredefines().c_str(); unsigned PredefLen = PP.getPredefines().size(); // If the two predefines buffers compare equal, we're done!. if (PredefLen == PCHPredefLen && strncmp(Predef, PCHPredef, PCHPredefLen) == 0) return false; // The predefines buffers are different. Produce a reasonable // diagnostic showing where they are different. // The source locations (potentially in the two different predefines // buffers) SourceLocation Loc1, Loc2; SourceManager &SourceMgr = PP.getSourceManager(); // Create a source buffer for our predefines string, so // that we can build a diagnostic that points into that // source buffer. FileID BufferID; if (Predef && Predef[0]) { llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(Predef, Predef + PredefLen, ""); BufferID = SourceMgr.createFileIDForMemBuffer(Buffer); } unsigned MinLen = std::min(PredefLen, PCHPredefLen); std::pair Locations = std::mismatch(Predef, Predef + MinLen, PCHPredef); if (Locations.first != Predef + MinLen) { // We found the location in the two buffers where there is a // difference. Form source locations to point there (in both // buffers). unsigned Offset = Locations.first - Predef; Loc1 = SourceMgr.getLocForStartOfFile(BufferID) .getFileLocWithOffset(Offset); Loc2 = SourceMgr.getLocForStartOfFile(PCHBufferID) .getFileLocWithOffset(Offset); } else if (PredefLen > PCHPredefLen) { Loc1 = SourceMgr.getLocForStartOfFile(BufferID) .getFileLocWithOffset(MinLen); } else { Loc1 = SourceMgr.getLocForStartOfFile(PCHBufferID) .getFileLocWithOffset(MinLen); } Diag(Loc1, diag::warn_pch_preprocessor); if (Loc2.isValid()) Diag(Loc2, diag::note_predef_in_pch); Diag(diag::note_ignoring_pch) << FileName; return true; } /// \brief Read the line table in the source manager block. /// \returns true if ther was an error. static bool ParseLineTable(SourceManager &SourceMgr, llvm::SmallVectorImpl &Record) { unsigned Idx = 0; LineTableInfo &LineTable = SourceMgr.getLineTable(); // Parse the file names std::map FileIDs; for (int I = 0, N = Record[Idx++]; I != N; ++I) { // Extract the file name unsigned FilenameLen = Record[Idx++]; std::string Filename(&Record[Idx], &Record[Idx] + FilenameLen); Idx += FilenameLen; FileIDs[I] = LineTable.getLineTableFilenameID(Filename.c_str(), Filename.size()); } // Parse the line entries std::vector Entries; while (Idx < Record.size()) { int FID = FileIDs[Record[Idx++]]; // Extract the line entries unsigned NumEntries = Record[Idx++]; Entries.clear(); Entries.reserve(NumEntries); for (unsigned I = 0; I != NumEntries; ++I) { unsigned FileOffset = Record[Idx++]; unsigned LineNo = Record[Idx++]; int FilenameID = Record[Idx++]; SrcMgr::CharacteristicKind FileKind = (SrcMgr::CharacteristicKind)Record[Idx++]; unsigned IncludeOffset = Record[Idx++]; Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID, FileKind, IncludeOffset)); } LineTable.AddEntry(FID, Entries); } return false; } /// \brief Read the source manager block PCHReader::PCHReadResult PCHReader::ReadSourceManagerBlock() { using namespace SrcMgr; if (Stream.EnterSubBlock(pch::SOURCE_MANAGER_BLOCK_ID)) { Error("Malformed source manager block record"); return Failure; } SourceManager &SourceMgr = Context.getSourceManager(); RecordData Record; while (true) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) { Error("Error at end of Source Manager block"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) { Error("Malformed block record"); return Failure; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read a record. const char *BlobStart; unsigned BlobLen; Record.clear(); switch (Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case pch::SM_SLOC_FILE_ENTRY: { // FIXME: We would really like to delay the creation of this // FileEntry until it is actually required, e.g., when producing // a diagnostic with a source location in this file. const FileEntry *File = PP.getFileManager().getFile(BlobStart, BlobStart + BlobLen); // FIXME: Error recovery if file cannot be found. FileID ID = SourceMgr.createFileID(File, SourceLocation::getFromRawEncoding(Record[1]), (CharacteristicKind)Record[2]); if (Record[3]) const_cast(SourceMgr.getSLocEntry(ID).getFile()) .setHasLineDirectives(); break; } case pch::SM_SLOC_BUFFER_ENTRY: { const char *Name = BlobStart; unsigned Code = Stream.ReadCode(); Record.clear(); unsigned RecCode = Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen); assert(RecCode == pch::SM_SLOC_BUFFER_BLOB && "Ill-formed PCH file"); (void)RecCode; llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(BlobStart, BlobStart + BlobLen - 1, Name); FileID BufferID = SourceMgr.createFileIDForMemBuffer(Buffer); if (strcmp(Name, "") == 0 && CheckPredefinesBuffer(BlobStart, BlobLen - 1, BufferID)) return IgnorePCH; break; } case pch::SM_SLOC_INSTANTIATION_ENTRY: { SourceLocation SpellingLoc = SourceLocation::getFromRawEncoding(Record[1]); SourceMgr.createInstantiationLoc( SpellingLoc, SourceLocation::getFromRawEncoding(Record[2]), SourceLocation::getFromRawEncoding(Record[3]), Record[4]); break; } case pch::SM_LINE_TABLE: if (ParseLineTable(SourceMgr, Record)) return Failure; break; } } } bool PCHReader::ReadPreprocessorBlock() { if (Stream.EnterSubBlock(pch::PREPROCESSOR_BLOCK_ID)) return Error("Malformed preprocessor block record"); RecordData Record; llvm::SmallVector MacroArgs; MacroInfo *LastMacro = 0; while (true) { unsigned Code = Stream.ReadCode(); switch (Code) { case llvm::bitc::END_BLOCK: if (Stream.ReadBlockEnd()) return Error("Error at end of preprocessor block"); return false; case llvm::bitc::ENTER_SUBBLOCK: // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) return Error("Malformed block record"); continue; case llvm::bitc::DEFINE_ABBREV: Stream.ReadAbbrevRecord(); continue; default: break; } // Read a record. Record.clear(); pch::PreprocessorRecordTypes RecType = (pch::PreprocessorRecordTypes)Stream.ReadRecord(Code, Record); switch (RecType) { default: // Default behavior: ignore unknown records. break; case pch::PP_COUNTER_VALUE: if (!Record.empty()) PP.setCounterValue(Record[0]); break; case pch::PP_MACRO_OBJECT_LIKE: case pch::PP_MACRO_FUNCTION_LIKE: { IdentifierInfo *II = DecodeIdentifierInfo(Record[0]); if (II == 0) return Error("Macro must have a name"); SourceLocation Loc = SourceLocation::getFromRawEncoding(Record[1]); bool isUsed = Record[2]; MacroInfo *MI = PP.AllocateMacroInfo(Loc); MI->setIsUsed(isUsed); if (RecType == pch::PP_MACRO_FUNCTION_LIKE) { // Decode function-like macro info. bool isC99VarArgs = Record[3]; bool isGNUVarArgs = Record[4]; MacroArgs.clear(); unsigned NumArgs = Record[5]; for (unsigned i = 0; i != NumArgs; ++i) MacroArgs.push_back(DecodeIdentifierInfo(Record[6+i])); // Install function-like macro info. MI->setIsFunctionLike(); if (isC99VarArgs) MI->setIsC99Varargs(); if (isGNUVarArgs) MI->setIsGNUVarargs(); MI->setArgumentList(&MacroArgs[0], MacroArgs.size(), PP.getPreprocessorAllocator()); } // Finally, install the macro. PP.setMacroInfo(II, MI); // Remember that we saw this macro last so that we add the tokens that // form its body to it. LastMacro = MI; break; } case pch::PP_TOKEN: { // If we see a TOKEN before a PP_MACRO_*, then the file is eroneous, just // pretend we didn't see this. if (LastMacro == 0) break; Token Tok; Tok.startToken(); Tok.setLocation(SourceLocation::getFromRawEncoding(Record[0])); Tok.setLength(Record[1]); if (IdentifierInfo *II = DecodeIdentifierInfo(Record[2])) Tok.setIdentifierInfo(II); Tok.setKind((tok::TokenKind)Record[3]); Tok.setFlag((Token::TokenFlags)Record[4]); LastMacro->AddTokenToBody(Tok); break; } } } } PCHReader::PCHReadResult PCHReader::ReadPCHBlock() { if (Stream.EnterSubBlock(pch::PCH_BLOCK_ID)) { Error("Malformed block record"); return Failure; } uint64_t PreprocessorBlockBit = 0; // Read all of the records and blocks for the PCH file. RecordData Record; while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { // If we saw the preprocessor block, read it now. if (PreprocessorBlockBit) { uint64_t SavedPos = Stream.GetCurrentBitNo(); Stream.JumpToBit(PreprocessorBlockBit); if (ReadPreprocessorBlock()) { Error("Malformed preprocessor block"); return Failure; } Stream.JumpToBit(SavedPos); } if (Stream.ReadBlockEnd()) { Error("Error at end of module block"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { switch (Stream.ReadSubBlockID()) { case pch::DECLS_BLOCK_ID: // Skip decls block (lazily loaded) case pch::TYPES_BLOCK_ID: // Skip types block (lazily loaded) default: // Skip unknown content. if (Stream.SkipBlock()) { Error("Malformed block record"); return Failure; } break; case pch::PREPROCESSOR_BLOCK_ID: // Skip the preprocessor block for now, but remember where it is. We // want to read it in after the identifier table. if (PreprocessorBlockBit) { Error("Multiple preprocessor blocks found."); return Failure; } PreprocessorBlockBit = Stream.GetCurrentBitNo(); if (Stream.SkipBlock()) { Error("Malformed block record"); return Failure; } break; case pch::SOURCE_MANAGER_BLOCK_ID: switch (ReadSourceManagerBlock()) { case Success: break; case Failure: Error("Malformed source manager block"); return Failure; case IgnorePCH: return IgnorePCH; } break; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read and process a record. Record.clear(); const char *BlobStart = 0; unsigned BlobLen = 0; switch ((pch::PCHRecordTypes)Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case pch::TYPE_OFFSET: if (!TypeOffsets.empty()) { Error("Duplicate TYPE_OFFSET record in PCH file"); return Failure; } TypeOffsets.swap(Record); TypeAlreadyLoaded.resize(TypeOffsets.size(), false); break; case pch::DECL_OFFSET: if (!DeclOffsets.empty()) { Error("Duplicate DECL_OFFSET record in PCH file"); return Failure; } DeclOffsets.swap(Record); DeclAlreadyLoaded.resize(DeclOffsets.size(), false); break; case pch::LANGUAGE_OPTIONS: if (ParseLanguageOptions(Record)) return IgnorePCH; break; case pch::TARGET_TRIPLE: { std::string TargetTriple(BlobStart, BlobLen); if (TargetTriple != Context.Target.getTargetTriple()) { Diag(diag::warn_pch_target_triple) << TargetTriple << Context.Target.getTargetTriple(); Diag(diag::note_ignoring_pch) << FileName; return IgnorePCH; } break; } case pch::IDENTIFIER_TABLE: IdentifierTable = BlobStart; break; case pch::IDENTIFIER_OFFSET: if (!IdentifierData.empty()) { Error("Duplicate IDENTIFIER_OFFSET record in PCH file"); return Failure; } IdentifierData.swap(Record); #ifndef NDEBUG for (unsigned I = 0, N = IdentifierData.size(); I != N; ++I) { if ((IdentifierData[I] & 0x01) == 0) { Error("Malformed identifier table in the precompiled header"); return Failure; } } #endif break; case pch::EXTERNAL_DEFINITIONS: if (!ExternalDefinitions.empty()) { Error("Duplicate EXTERNAL_DEFINITIONS record in PCH file"); return Failure; } ExternalDefinitions.swap(Record); break; } } Error("Premature end of bitstream"); return Failure; } PCHReader::PCHReadResult PCHReader::ReadPCH(const std::string &FileName) { // Set the PCH file name. this->FileName = FileName; // Open the PCH file. std::string ErrStr; Buffer.reset(llvm::MemoryBuffer::getFile(FileName.c_str(), &ErrStr)); if (!Buffer) { Error(ErrStr.c_str()); return IgnorePCH; } // Initialize the stream Stream.init((const unsigned char *)Buffer->getBufferStart(), (const unsigned char *)Buffer->getBufferEnd()); // Sniff for the signature. if (Stream.Read(8) != 'C' || Stream.Read(8) != 'P' || Stream.Read(8) != 'C' || Stream.Read(8) != 'H') { Error("Not a PCH file"); return IgnorePCH; } // We expect a number of well-defined blocks, though we don't necessarily // need to understand them all. while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code != llvm::bitc::ENTER_SUBBLOCK) { Error("Invalid record at top-level"); return Failure; } unsigned BlockID = Stream.ReadSubBlockID(); // We only know the PCH subblock ID. switch (BlockID) { case llvm::bitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) { Error("Malformed BlockInfoBlock"); return Failure; } break; case pch::PCH_BLOCK_ID: switch (ReadPCHBlock()) { case Success: break; case Failure: return Failure; case IgnorePCH: // FIXME: We could consider reading through to the end of this // PCH block, skipping subblocks, to see if there are other // PCH blocks elsewhere. return IgnorePCH; } break; default: if (Stream.SkipBlock()) { Error("Malformed block record"); return Failure; } break; } } // Load the translation unit declaration ReadDeclRecord(DeclOffsets[0], 0); return Success; } namespace { /// \brief Helper class that saves the current stream position and /// then restores it when destroyed. struct VISIBILITY_HIDDEN SavedStreamPosition { explicit SavedStreamPosition(llvm::BitstreamReader &Stream) : Stream(Stream), Offset(Stream.GetCurrentBitNo()) { } ~SavedStreamPosition() { Stream.JumpToBit(Offset); } private: llvm::BitstreamReader &Stream; uint64_t Offset; }; } /// \brief Parse the record that corresponds to a LangOptions data /// structure. /// /// This routine compares the language options used to generate the /// PCH file against the language options set for the current /// compilation. For each option, we classify differences between the /// two compiler states as either "benign" or "important". Benign /// differences don't matter, and we accept them without complaint /// (and without modifying the language options). Differences between /// the states for important options cause the PCH file to be /// unusable, so we emit a warning and return true to indicate that /// there was an error. /// /// \returns true if the PCH file is unacceptable, false otherwise. bool PCHReader::ParseLanguageOptions( const llvm::SmallVectorImpl &Record) { const LangOptions &LangOpts = Context.getLangOptions(); #define PARSE_LANGOPT_BENIGN(Option) ++Idx #define PARSE_LANGOPT_IMPORTANT(Option, DiagID) \ if (Record[Idx] != LangOpts.Option) { \ Diag(DiagID) << (unsigned)Record[Idx] << LangOpts.Option; \ Diag(diag::note_ignoring_pch) << FileName; \ return true; \ } \ ++Idx unsigned Idx = 0; PARSE_LANGOPT_BENIGN(Trigraphs); PARSE_LANGOPT_BENIGN(BCPLComment); PARSE_LANGOPT_BENIGN(DollarIdents); PARSE_LANGOPT_BENIGN(AsmPreprocessor); PARSE_LANGOPT_IMPORTANT(GNUMode, diag::warn_pch_gnu_extensions); PARSE_LANGOPT_BENIGN(ImplicitInt); PARSE_LANGOPT_BENIGN(Digraphs); PARSE_LANGOPT_BENIGN(HexFloats); PARSE_LANGOPT_IMPORTANT(C99, diag::warn_pch_c99); PARSE_LANGOPT_IMPORTANT(Microsoft, diag::warn_pch_microsoft_extensions); PARSE_LANGOPT_IMPORTANT(CPlusPlus, diag::warn_pch_cplusplus); PARSE_LANGOPT_IMPORTANT(CPlusPlus0x, diag::warn_pch_cplusplus0x); PARSE_LANGOPT_IMPORTANT(NoExtensions, diag::warn_pch_extensions); PARSE_LANGOPT_BENIGN(CXXOperatorName); PARSE_LANGOPT_IMPORTANT(ObjC1, diag::warn_pch_objective_c); PARSE_LANGOPT_IMPORTANT(ObjC2, diag::warn_pch_objective_c2); PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI, diag::warn_pch_nonfragile_abi); PARSE_LANGOPT_BENIGN(PascalStrings); PARSE_LANGOPT_BENIGN(Boolean); PARSE_LANGOPT_BENIGN(WritableStrings); PARSE_LANGOPT_IMPORTANT(LaxVectorConversions, diag::warn_pch_lax_vector_conversions); PARSE_LANGOPT_IMPORTANT(Exceptions, diag::warn_pch_exceptions); PARSE_LANGOPT_IMPORTANT(NeXTRuntime, diag::warn_pch_objc_runtime); PARSE_LANGOPT_IMPORTANT(Freestanding, diag::warn_pch_freestanding); PARSE_LANGOPT_IMPORTANT(NoBuiltin, diag::warn_pch_builtins); PARSE_LANGOPT_IMPORTANT(ThreadsafeStatics, diag::warn_pch_thread_safe_statics); PARSE_LANGOPT_IMPORTANT(Blocks, diag::warn_pch_blocks); PARSE_LANGOPT_BENIGN(EmitAllDecls); PARSE_LANGOPT_IMPORTANT(MathErrno, diag::warn_pch_math_errno); PARSE_LANGOPT_IMPORTANT(OverflowChecking, diag::warn_pch_overflow_checking); PARSE_LANGOPT_IMPORTANT(HeinousExtensions, diag::warn_pch_heinous_extensions); // FIXME: Most of the options below are benign if the macro wasn't // used. Unfortunately, this means that a PCH compiled without // optimization can't be used with optimization turned on, even // though the only thing that changes is whether __OPTIMIZE__ was // defined... but if __OPTIMIZE__ never showed up in the header, it // doesn't matter. We could consider making this some special kind // of check. PARSE_LANGOPT_IMPORTANT(Optimize, diag::warn_pch_optimize); PARSE_LANGOPT_IMPORTANT(OptimizeSize, diag::warn_pch_optimize_size); PARSE_LANGOPT_IMPORTANT(Static, diag::warn_pch_static); PARSE_LANGOPT_IMPORTANT(PICLevel, diag::warn_pch_pic_level); PARSE_LANGOPT_IMPORTANT(GNUInline, diag::warn_pch_gnu_inline); PARSE_LANGOPT_IMPORTANT(NoInline, diag::warn_pch_no_inline); if ((LangOpts.getGCMode() != 0) != (Record[Idx] != 0)) { Diag(diag::warn_pch_gc_mode) << (unsigned)Record[Idx] << LangOpts.getGCMode(); Diag(diag::note_ignoring_pch) << FileName; return true; } ++Idx; PARSE_LANGOPT_BENIGN(getVisibilityMode()); PARSE_LANGOPT_BENIGN(InstantiationDepth); #undef PARSE_LANGOPT_IRRELEVANT #undef PARSE_LANGOPT_BENIGN return false; } /// \brief Read and return the type at the given offset. /// /// This routine actually reads the record corresponding to the type /// at the given offset in the bitstream. It is a helper routine for /// GetType, which deals with reading type IDs. QualType PCHReader::ReadTypeRecord(uint64_t Offset) { // Keep track of where we are in the stream, then jump back there // after reading this type. SavedStreamPosition SavedPosition(Stream); Stream.JumpToBit(Offset); RecordData Record; unsigned Code = Stream.ReadCode(); switch ((pch::TypeCode)Stream.ReadRecord(Code, Record)) { case pch::TYPE_ATTR: assert(false && "Should never jump to an attribute block"); return QualType(); case pch::TYPE_EXT_QUAL: { assert(Record.size() == 3 && "Incorrect encoding of extended qualifier type"); QualType Base = GetType(Record[0]); QualType::GCAttrTypes GCAttr = (QualType::GCAttrTypes)Record[1]; unsigned AddressSpace = Record[2]; QualType T = Base; if (GCAttr != QualType::GCNone) T = Context.getObjCGCQualType(T, GCAttr); if (AddressSpace) T = Context.getAddrSpaceQualType(T, AddressSpace); return T; } case pch::TYPE_FIXED_WIDTH_INT: { assert(Record.size() == 2 && "Incorrect encoding of fixed-width int type"); return Context.getFixedWidthIntType(Record[0], Record[1]); } case pch::TYPE_COMPLEX: { assert(Record.size() == 1 && "Incorrect encoding of complex type"); QualType ElemType = GetType(Record[0]); return Context.getComplexType(ElemType); } case pch::TYPE_POINTER: { assert(Record.size() == 1 && "Incorrect encoding of pointer type"); QualType PointeeType = GetType(Record[0]); return Context.getPointerType(PointeeType); } case pch::TYPE_BLOCK_POINTER: { assert(Record.size() == 1 && "Incorrect encoding of block pointer type"); QualType PointeeType = GetType(Record[0]); return Context.getBlockPointerType(PointeeType); } case pch::TYPE_LVALUE_REFERENCE: { assert(Record.size() == 1 && "Incorrect encoding of lvalue reference type"); QualType PointeeType = GetType(Record[0]); return Context.getLValueReferenceType(PointeeType); } case pch::TYPE_RVALUE_REFERENCE: { assert(Record.size() == 1 && "Incorrect encoding of rvalue reference type"); QualType PointeeType = GetType(Record[0]); return Context.getRValueReferenceType(PointeeType); } case pch::TYPE_MEMBER_POINTER: { assert(Record.size() == 1 && "Incorrect encoding of member pointer type"); QualType PointeeType = GetType(Record[0]); QualType ClassType = GetType(Record[1]); return Context.getMemberPointerType(PointeeType, ClassType.getTypePtr()); } case pch::TYPE_CONSTANT_ARRAY: { QualType ElementType = GetType(Record[0]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; unsigned Idx = 3; llvm::APInt Size = ReadAPInt(Record, Idx); return Context.getConstantArrayType(ElementType, Size, ASM, IndexTypeQuals); } case pch::TYPE_INCOMPLETE_ARRAY: { QualType ElementType = GetType(Record[0]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; return Context.getIncompleteArrayType(ElementType, ASM, IndexTypeQuals); } case pch::TYPE_VARIABLE_ARRAY: { QualType ElementType = GetType(Record[0]); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; return Context.getVariableArrayType(ElementType, ReadExpr(), ASM, IndexTypeQuals); } case pch::TYPE_VECTOR: { if (Record.size() != 2) { Error("Incorrect encoding of vector type in PCH file"); return QualType(); } QualType ElementType = GetType(Record[0]); unsigned NumElements = Record[1]; return Context.getVectorType(ElementType, NumElements); } case pch::TYPE_EXT_VECTOR: { if (Record.size() != 2) { Error("Incorrect encoding of extended vector type in PCH file"); return QualType(); } QualType ElementType = GetType(Record[0]); unsigned NumElements = Record[1]; return Context.getExtVectorType(ElementType, NumElements); } case pch::TYPE_FUNCTION_NO_PROTO: { if (Record.size() != 1) { Error("Incorrect encoding of no-proto function type"); return QualType(); } QualType ResultType = GetType(Record[0]); return Context.getFunctionNoProtoType(ResultType); } case pch::TYPE_FUNCTION_PROTO: { QualType ResultType = GetType(Record[0]); unsigned Idx = 1; unsigned NumParams = Record[Idx++]; llvm::SmallVector ParamTypes; for (unsigned I = 0; I != NumParams; ++I) ParamTypes.push_back(GetType(Record[Idx++])); bool isVariadic = Record[Idx++]; unsigned Quals = Record[Idx++]; return Context.getFunctionType(ResultType, &ParamTypes[0], NumParams, isVariadic, Quals); } case pch::TYPE_TYPEDEF: assert(Record.size() == 1 && "Incorrect encoding of typedef type"); return Context.getTypeDeclType(cast(GetDecl(Record[0]))); case pch::TYPE_TYPEOF_EXPR: return Context.getTypeOfExprType(ReadExpr()); case pch::TYPE_TYPEOF: { if (Record.size() != 1) { Error("Incorrect encoding of typeof(type) in PCH file"); return QualType(); } QualType UnderlyingType = GetType(Record[0]); return Context.getTypeOfType(UnderlyingType); } case pch::TYPE_RECORD: assert(Record.size() == 1 && "Incorrect encoding of record type"); return Context.getTypeDeclType(cast(GetDecl(Record[0]))); case pch::TYPE_ENUM: assert(Record.size() == 1 && "Incorrect encoding of enum type"); return Context.getTypeDeclType(cast(GetDecl(Record[0]))); case pch::TYPE_OBJC_INTERFACE: // FIXME: Deserialize ObjCInterfaceType assert(false && "Cannot de-serialize ObjC interface types yet"); return QualType(); case pch::TYPE_OBJC_QUALIFIED_INTERFACE: // FIXME: Deserialize ObjCQualifiedInterfaceType assert(false && "Cannot de-serialize ObjC qualified interface types yet"); return QualType(); case pch::TYPE_OBJC_QUALIFIED_ID: // FIXME: Deserialize ObjCQualifiedIdType assert(false && "Cannot de-serialize ObjC qualified id types yet"); return QualType(); case pch::TYPE_OBJC_QUALIFIED_CLASS: // FIXME: Deserialize ObjCQualifiedClassType assert(false && "Cannot de-serialize ObjC qualified class types yet"); return QualType(); } // Suppress a GCC warning return QualType(); } /// \brief Note that we have loaded the declaration with the given /// Index. /// /// This routine notes that this declaration has already been loaded, /// so that future GetDecl calls will return this declaration rather /// than trying to load a new declaration. inline void PCHReader::LoadedDecl(unsigned Index, Decl *D) { assert(!DeclAlreadyLoaded[Index] && "Decl loaded twice?"); DeclAlreadyLoaded[Index] = true; DeclOffsets[Index] = reinterpret_cast(D); } /// \brief Read the declaration at the given offset from the PCH file. Decl *PCHReader::ReadDeclRecord(uint64_t Offset, unsigned Index) { // Keep track of where we are in the stream, then jump back there // after reading this declaration. SavedStreamPosition SavedPosition(Stream); Decl *D = 0; Stream.JumpToBit(Offset); RecordData Record; unsigned Code = Stream.ReadCode(); unsigned Idx = 0; PCHDeclReader Reader(*this, Record, Idx); switch ((pch::DeclCode)Stream.ReadRecord(Code, Record)) { case pch::DECL_ATTR: case pch::DECL_CONTEXT_LEXICAL: case pch::DECL_CONTEXT_VISIBLE: assert(false && "Record cannot be de-serialized with ReadDeclRecord"); break; case pch::DECL_TRANSLATION_UNIT: assert(Index == 0 && "Translation unit must be at index 0"); Reader.VisitTranslationUnitDecl(Context.getTranslationUnitDecl()); D = Context.getTranslationUnitDecl(); LoadedDecl(Index, D); break; case pch::DECL_TYPEDEF: { TypedefDecl *Typedef = TypedefDecl::Create(Context, 0, SourceLocation(), 0, QualType()); LoadedDecl(Index, Typedef); Reader.VisitTypedefDecl(Typedef); D = Typedef; break; } case pch::DECL_ENUM: { EnumDecl *Enum = EnumDecl::Create(Context, 0, SourceLocation(), 0, 0); LoadedDecl(Index, Enum); Reader.VisitEnumDecl(Enum); D = Enum; break; } case pch::DECL_RECORD: { RecordDecl *Record = RecordDecl::Create(Context, TagDecl::TK_struct, 0, SourceLocation(), 0, 0); LoadedDecl(Index, Record); Reader.VisitRecordDecl(Record); D = Record; break; } case pch::DECL_ENUM_CONSTANT: { EnumConstantDecl *ECD = EnumConstantDecl::Create(Context, 0, SourceLocation(), 0, QualType(), 0, llvm::APSInt()); LoadedDecl(Index, ECD); Reader.VisitEnumConstantDecl(ECD); D = ECD; break; } case pch::DECL_FUNCTION: { FunctionDecl *Function = FunctionDecl::Create(Context, 0, SourceLocation(), DeclarationName(), QualType()); LoadedDecl(Index, Function); Reader.VisitFunctionDecl(Function); D = Function; break; } case pch::DECL_FIELD: { FieldDecl *Field = FieldDecl::Create(Context, 0, SourceLocation(), 0, QualType(), 0, false); LoadedDecl(Index, Field); Reader.VisitFieldDecl(Field); D = Field; break; } case pch::DECL_VAR: { VarDecl *Var = VarDecl::Create(Context, 0, SourceLocation(), 0, QualType(), VarDecl::None, SourceLocation()); LoadedDecl(Index, Var); Reader.VisitVarDecl(Var); D = Var; break; } case pch::DECL_PARM_VAR: { ParmVarDecl *Parm = ParmVarDecl::Create(Context, 0, SourceLocation(), 0, QualType(), VarDecl::None, 0); LoadedDecl(Index, Parm); Reader.VisitParmVarDecl(Parm); D = Parm; break; } case pch::DECL_ORIGINAL_PARM_VAR: { OriginalParmVarDecl *Parm = OriginalParmVarDecl::Create(Context, 0, SourceLocation(), 0, QualType(), QualType(), VarDecl::None, 0); LoadedDecl(Index, Parm); Reader.VisitOriginalParmVarDecl(Parm); D = Parm; break; } case pch::DECL_FILE_SCOPE_ASM: { FileScopeAsmDecl *Asm = FileScopeAsmDecl::Create(Context, 0, SourceLocation(), 0); LoadedDecl(Index, Asm); Reader.VisitFileScopeAsmDecl(Asm); D = Asm; break; } case pch::DECL_BLOCK: { BlockDecl *Block = BlockDecl::Create(Context, 0, SourceLocation()); LoadedDecl(Index, Block); Reader.VisitBlockDecl(Block); D = Block; break; } } // If this declaration is also a declaration context, get the // offsets for its tables of lexical and visible declarations. if (DeclContext *DC = dyn_cast(D)) { std::pair Offsets = Reader.VisitDeclContext(DC); if (Offsets.first || Offsets.second) { DC->setHasExternalLexicalStorage(Offsets.first != 0); DC->setHasExternalVisibleStorage(Offsets.second != 0); DeclContextOffsets[DC] = Offsets; } } assert(Idx == Record.size()); return D; } QualType PCHReader::GetType(pch::TypeID ID) { unsigned Quals = ID & 0x07; unsigned Index = ID >> 3; if (Index < pch::NUM_PREDEF_TYPE_IDS) { QualType T; switch ((pch::PredefinedTypeIDs)Index) { case pch::PREDEF_TYPE_NULL_ID: return QualType(); case pch::PREDEF_TYPE_VOID_ID: T = Context.VoidTy; break; case pch::PREDEF_TYPE_BOOL_ID: T = Context.BoolTy; break; case pch::PREDEF_TYPE_CHAR_U_ID: case pch::PREDEF_TYPE_CHAR_S_ID: // FIXME: Check that the signedness of CharTy is correct! T = Context.CharTy; break; case pch::PREDEF_TYPE_UCHAR_ID: T = Context.UnsignedCharTy; break; case pch::PREDEF_TYPE_USHORT_ID: T = Context.UnsignedShortTy; break; case pch::PREDEF_TYPE_UINT_ID: T = Context.UnsignedIntTy; break; case pch::PREDEF_TYPE_ULONG_ID: T = Context.UnsignedLongTy; break; case pch::PREDEF_TYPE_ULONGLONG_ID: T = Context.UnsignedLongLongTy; break; case pch::PREDEF_TYPE_SCHAR_ID: T = Context.SignedCharTy; break; case pch::PREDEF_TYPE_WCHAR_ID: T = Context.WCharTy; break; case pch::PREDEF_TYPE_SHORT_ID: T = Context.ShortTy; break; case pch::PREDEF_TYPE_INT_ID: T = Context.IntTy; break; case pch::PREDEF_TYPE_LONG_ID: T = Context.LongTy; break; case pch::PREDEF_TYPE_LONGLONG_ID: T = Context.LongLongTy; break; case pch::PREDEF_TYPE_FLOAT_ID: T = Context.FloatTy; break; case pch::PREDEF_TYPE_DOUBLE_ID: T = Context.DoubleTy; break; case pch::PREDEF_TYPE_LONGDOUBLE_ID: T = Context.LongDoubleTy; break; case pch::PREDEF_TYPE_OVERLOAD_ID: T = Context.OverloadTy; break; case pch::PREDEF_TYPE_DEPENDENT_ID: T = Context.DependentTy; break; } assert(!T.isNull() && "Unknown predefined type"); return T.getQualifiedType(Quals); } Index -= pch::NUM_PREDEF_TYPE_IDS; if (!TypeAlreadyLoaded[Index]) { // Load the type from the PCH file. TypeOffsets[Index] = reinterpret_cast( ReadTypeRecord(TypeOffsets[Index]).getTypePtr()); TypeAlreadyLoaded[Index] = true; } return QualType(reinterpret_cast(TypeOffsets[Index]), Quals); } Decl *PCHReader::GetDecl(pch::DeclID ID) { if (ID == 0) return 0; unsigned Index = ID - 1; if (DeclAlreadyLoaded[Index]) return reinterpret_cast(DeclOffsets[Index]); // Load the declaration from the PCH file. return ReadDeclRecord(DeclOffsets[Index], Index); } bool PCHReader::ReadDeclsLexicallyInContext(DeclContext *DC, llvm::SmallVectorImpl &Decls) { assert(DC->hasExternalLexicalStorage() && "DeclContext has no lexical decls in storage"); uint64_t Offset = DeclContextOffsets[DC].first; assert(Offset && "DeclContext has no lexical decls in storage"); // Keep track of where we are in the stream, then jump back there // after reading this context. SavedStreamPosition SavedPosition(Stream); // Load the record containing all of the declarations lexically in // this context. Stream.JumpToBit(Offset); RecordData Record; unsigned Code = Stream.ReadCode(); unsigned RecCode = Stream.ReadRecord(Code, Record); (void)RecCode; assert(RecCode == pch::DECL_CONTEXT_LEXICAL && "Expected lexical block"); // Load all of the declaration IDs Decls.clear(); Decls.insert(Decls.end(), Record.begin(), Record.end()); return false; } bool PCHReader::ReadDeclsVisibleInContext(DeclContext *DC, llvm::SmallVectorImpl & Decls) { assert(DC->hasExternalVisibleStorage() && "DeclContext has no visible decls in storage"); uint64_t Offset = DeclContextOffsets[DC].second; assert(Offset && "DeclContext has no visible decls in storage"); // Keep track of where we are in the stream, then jump back there // after reading this context. SavedStreamPosition SavedPosition(Stream); // Load the record containing all of the declarations visible in // this context. Stream.JumpToBit(Offset); RecordData Record; unsigned Code = Stream.ReadCode(); unsigned RecCode = Stream.ReadRecord(Code, Record); (void)RecCode; assert(RecCode == pch::DECL_CONTEXT_VISIBLE && "Expected visible block"); if (Record.size() == 0) return false; Decls.clear(); unsigned Idx = 0; while (Idx < Record.size()) { Decls.push_back(VisibleDeclaration()); Decls.back().Name = ReadDeclarationName(Record, Idx); unsigned Size = Record[Idx++]; llvm::SmallVector & LoadedDecls = Decls.back().Declarations; LoadedDecls.reserve(Size); for (unsigned I = 0; I < Size; ++I) LoadedDecls.push_back(Record[Idx++]); } return false; } void PCHReader::StartTranslationUnit(ASTConsumer *Consumer) { if (!Consumer) return; for (unsigned I = 0, N = ExternalDefinitions.size(); I != N; ++I) { Decl *D = GetDecl(ExternalDefinitions[I]); DeclGroupRef DG(D); Consumer->HandleTopLevelDecl(DG); } } void PCHReader::PrintStats() { std::fprintf(stderr, "*** PCH Statistics:\n"); unsigned NumTypesLoaded = std::count(TypeAlreadyLoaded.begin(), TypeAlreadyLoaded.end(), true); unsigned NumDeclsLoaded = std::count(DeclAlreadyLoaded.begin(), DeclAlreadyLoaded.end(), true); unsigned NumIdentifiersLoaded = 0; for (unsigned I = 0; I < IdentifierData.size(); ++I) { if ((IdentifierData[I] & 0x01) == 0) ++NumIdentifiersLoaded; } std::fprintf(stderr, " %u/%u types read (%f%%)\n", NumTypesLoaded, (unsigned)TypeAlreadyLoaded.size(), ((float)NumTypesLoaded/TypeAlreadyLoaded.size() * 100)); std::fprintf(stderr, " %u/%u declarations read (%f%%)\n", NumDeclsLoaded, (unsigned)DeclAlreadyLoaded.size(), ((float)NumDeclsLoaded/DeclAlreadyLoaded.size() * 100)); std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n", NumIdentifiersLoaded, (unsigned)IdentifierData.size(), ((float)NumIdentifiersLoaded/IdentifierData.size() * 100)); std::fprintf(stderr, "\n"); } IdentifierInfo *PCHReader::DecodeIdentifierInfo(unsigned ID) { if (ID == 0) return 0; if (!IdentifierTable || IdentifierData.empty()) { Error("No identifier table in PCH file"); return 0; } if (IdentifierData[ID - 1] & 0x01) { uint64_t Offset = IdentifierData[ID - 1]; IdentifierData[ID - 1] = reinterpret_cast( &Context.Idents.get(IdentifierTable + Offset)); } return reinterpret_cast(IdentifierData[ID - 1]); } DeclarationName PCHReader::ReadDeclarationName(const RecordData &Record, unsigned &Idx) { DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++]; switch (Kind) { case DeclarationName::Identifier: return DeclarationName(GetIdentifierInfo(Record, Idx)); case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: assert(false && "Unable to de-serialize Objective-C selectors"); break; case DeclarationName::CXXConstructorName: return Context.DeclarationNames.getCXXConstructorName( GetType(Record[Idx++])); case DeclarationName::CXXDestructorName: return Context.DeclarationNames.getCXXDestructorName( GetType(Record[Idx++])); case DeclarationName::CXXConversionFunctionName: return Context.DeclarationNames.getCXXConversionFunctionName( GetType(Record[Idx++])); case DeclarationName::CXXOperatorName: return Context.DeclarationNames.getCXXOperatorName( (OverloadedOperatorKind)Record[Idx++]); case DeclarationName::CXXUsingDirective: return DeclarationName::getUsingDirectiveName(); } // Required to silence GCC warning return DeclarationName(); } /// \brief Read an integral value llvm::APInt PCHReader::ReadAPInt(const RecordData &Record, unsigned &Idx) { unsigned BitWidth = Record[Idx++]; unsigned NumWords = llvm::APInt::getNumWords(BitWidth); llvm::APInt Result(BitWidth, NumWords, &Record[Idx]); Idx += NumWords; return Result; } /// \brief Read a signed integral value llvm::APSInt PCHReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) { bool isUnsigned = Record[Idx++]; return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned); } /// \brief Read a floating-point value llvm::APFloat PCHReader::ReadAPFloat(const RecordData &Record, unsigned &Idx) { return llvm::APFloat(ReadAPInt(Record, Idx)); } // \brief Read a string std::string PCHReader::ReadString(const RecordData &Record, unsigned &Idx) { unsigned Len = Record[Idx++]; std::string Result(&Record[Idx], &Record[Idx] + Len); Idx += Len; return Result; } /// \brief Reads attributes from the current stream position. Attr *PCHReader::ReadAttributes() { unsigned Code = Stream.ReadCode(); assert(Code == llvm::bitc::UNABBREV_RECORD && "Expected unabbreviated record"); (void)Code; RecordData Record; unsigned Idx = 0; unsigned RecCode = Stream.ReadRecord(Code, Record); assert(RecCode == pch::DECL_ATTR && "Expected attribute record"); (void)RecCode; #define SIMPLE_ATTR(Name) \ case Attr::Name: \ New = ::new (Context) Name##Attr(); \ break #define STRING_ATTR(Name) \ case Attr::Name: \ New = ::new (Context) Name##Attr(ReadString(Record, Idx)); \ break #define UNSIGNED_ATTR(Name) \ case Attr::Name: \ New = ::new (Context) Name##Attr(Record[Idx++]); \ break Attr *Attrs = 0; while (Idx < Record.size()) { Attr *New = 0; Attr::Kind Kind = (Attr::Kind)Record[Idx++]; bool IsInherited = Record[Idx++]; switch (Kind) { STRING_ATTR(Alias); UNSIGNED_ATTR(Aligned); SIMPLE_ATTR(AlwaysInline); SIMPLE_ATTR(AnalyzerNoReturn); STRING_ATTR(Annotate); STRING_ATTR(AsmLabel); case Attr::Blocks: New = ::new (Context) BlocksAttr( (BlocksAttr::BlocksAttrTypes)Record[Idx++]); break; case Attr::Cleanup: New = ::new (Context) CleanupAttr( cast(GetDecl(Record[Idx++]))); break; SIMPLE_ATTR(Const); UNSIGNED_ATTR(Constructor); SIMPLE_ATTR(DLLExport); SIMPLE_ATTR(DLLImport); SIMPLE_ATTR(Deprecated); UNSIGNED_ATTR(Destructor); SIMPLE_ATTR(FastCall); case Attr::Format: { std::string Type = ReadString(Record, Idx); unsigned FormatIdx = Record[Idx++]; unsigned FirstArg = Record[Idx++]; New = ::new (Context) FormatAttr(Type, FormatIdx, FirstArg); break; } SIMPLE_ATTR(GNUCInline); case Attr::IBOutletKind: New = ::new (Context) IBOutletAttr(); break; SIMPLE_ATTR(NoReturn); SIMPLE_ATTR(NoThrow); SIMPLE_ATTR(Nodebug); SIMPLE_ATTR(Noinline); case Attr::NonNull: { unsigned Size = Record[Idx++]; llvm::SmallVector ArgNums; ArgNums.insert(ArgNums.end(), &Record[Idx], &Record[Idx] + Size); Idx += Size; New = ::new (Context) NonNullAttr(&ArgNums[0], Size); break; } SIMPLE_ATTR(ObjCException); SIMPLE_ATTR(ObjCNSObject); SIMPLE_ATTR(Overloadable); UNSIGNED_ATTR(Packed); SIMPLE_ATTR(Pure); UNSIGNED_ATTR(Regparm); STRING_ATTR(Section); SIMPLE_ATTR(StdCall); SIMPLE_ATTR(TransparentUnion); SIMPLE_ATTR(Unavailable); SIMPLE_ATTR(Unused); SIMPLE_ATTR(Used); case Attr::Visibility: New = ::new (Context) VisibilityAttr( (VisibilityAttr::VisibilityTypes)Record[Idx++]); break; SIMPLE_ATTR(WarnUnusedResult); SIMPLE_ATTR(Weak); SIMPLE_ATTR(WeakImport); } assert(New && "Unable to decode attribute?"); New->setInherited(IsInherited); New->setNext(Attrs); Attrs = New; } #undef UNSIGNED_ATTR #undef STRING_ATTR #undef SIMPLE_ATTR // The list of attributes was built backwards. Reverse the list // before returning it. Attr *PrevAttr = 0, *NextAttr = 0; while (Attrs) { NextAttr = Attrs->getNext(); Attrs->setNext(PrevAttr); PrevAttr = Attrs; Attrs = NextAttr; } return PrevAttr; } Expr *PCHReader::ReadExpr() { // Within the bitstream, expressions are stored in Reverse Polish // Notation, with each of the subexpressions preceding the // expression they are stored in. To evaluate expressions, we // continue reading expressions and placing them on the stack, with // expressions having operands removing those operands from the // stack. Evaluation terminates when we see a EXPR_STOP record, and // the single remaining expression on the stack is our result. RecordData Record; unsigned Idx; llvm::SmallVector ExprStack; PCHStmtReader Reader(*this, Record, Idx, ExprStack); Stmt::EmptyShell Empty; while (true) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) { Error("Error at end of Source Manager block"); return 0; } break; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) { Error("Malformed block record"); return 0; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } Expr *E = 0; Idx = 0; Record.clear(); bool Finished = false; switch ((pch::StmtCode)Stream.ReadRecord(Code, Record)) { case pch::EXPR_STOP: Finished = true; break; case pch::EXPR_NULL: E = 0; break; case pch::EXPR_PREDEFINED: // FIXME: untested (until we can serialize function bodies). E = new (Context) PredefinedExpr(Empty); break; case pch::EXPR_DECL_REF: E = new (Context) DeclRefExpr(Empty); break; case pch::EXPR_INTEGER_LITERAL: E = new (Context) IntegerLiteral(Empty); break; case pch::EXPR_FLOATING_LITERAL: E = new (Context) FloatingLiteral(Empty); break; case pch::EXPR_IMAGINARY_LITERAL: E = new (Context) ImaginaryLiteral(Empty); break; case pch::EXPR_STRING_LITERAL: E = StringLiteral::CreateEmpty(Context, Record[PCHStmtReader::NumExprFields + 1]); break; case pch::EXPR_CHARACTER_LITERAL: E = new (Context) CharacterLiteral(Empty); break; case pch::EXPR_PAREN: E = new (Context) ParenExpr(Empty); break; case pch::EXPR_UNARY_OPERATOR: E = new (Context) UnaryOperator(Empty); break; case pch::EXPR_SIZEOF_ALIGN_OF: E = new (Context) SizeOfAlignOfExpr(Empty); break; case pch::EXPR_ARRAY_SUBSCRIPT: E = new (Context) ArraySubscriptExpr(Empty); break; case pch::EXPR_CALL: E = new (Context) CallExpr(Context, Empty); break; case pch::EXPR_MEMBER: E = new (Context) MemberExpr(Empty); break; case pch::EXPR_BINARY_OPERATOR: E = new (Context) BinaryOperator(Empty); break; case pch::EXPR_COMPOUND_ASSIGN_OPERATOR: E = new (Context) CompoundAssignOperator(Empty); break; case pch::EXPR_CONDITIONAL_OPERATOR: E = new (Context) ConditionalOperator(Empty); break; case pch::EXPR_IMPLICIT_CAST: E = new (Context) ImplicitCastExpr(Empty); break; case pch::EXPR_CSTYLE_CAST: E = new (Context) CStyleCastExpr(Empty); break; } // We hit an EXPR_STOP, so we're done with this expression. if (Finished) break; if (E) { unsigned NumSubExprs = Reader.Visit(E); while (NumSubExprs > 0) { ExprStack.pop_back(); --NumSubExprs; } } assert(Idx == Record.size() && "Invalid deserialization of expression"); ExprStack.push_back(E); } assert(ExprStack.size() == 1 && "Extra expressions on stack!"); return ExprStack.back(); } DiagnosticBuilder PCHReader::Diag(unsigned DiagID) { return Diag(SourceLocation(), DiagID); } DiagnosticBuilder PCHReader::Diag(SourceLocation Loc, unsigned DiagID) { return PP.getDiagnostics().Report(FullSourceLoc(Loc, Context.getSourceManager()), DiagID); }