//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ expressions. // //===----------------------------------------------------------------------===// #include "SemaInherit.h" #include "Sema.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ASTContext.h" #include "clang/Parse/DeclSpec.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/STLExtras.h" using namespace clang; /// ActOnCXXConversionFunctionExpr - Parse a C++ conversion function /// name (e.g., operator void const *) as an expression. This is /// very similar to ActOnIdentifierExpr, except that instead of /// providing an identifier the parser provides the type of the /// conversion function. Sema::OwningExprResult Sema::ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc, TypeTy *Ty, bool HasTrailingLParen, const CXXScopeSpec &SS, bool isAddressOfOperand) { QualType ConvType = QualType::getFromOpaquePtr(Ty); QualType ConvTypeCanon = Context.getCanonicalType(ConvType); DeclarationName ConvName = Context.DeclarationNames.getCXXConversionFunctionName(ConvTypeCanon); return ActOnDeclarationNameExpr(S, OperatorLoc, ConvName, HasTrailingLParen, &SS, isAddressOfOperand); } /// ActOnCXXOperatorFunctionIdExpr - Parse a C++ overloaded operator /// name (e.g., @c operator+ ) as an expression. This is very /// similar to ActOnIdentifierExpr, except that instead of providing /// an identifier the parser provides the kind of overloaded /// operator that was parsed. Sema::OwningExprResult Sema::ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc, OverloadedOperatorKind Op, bool HasTrailingLParen, const CXXScopeSpec &SS, bool isAddressOfOperand) { DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op); return ActOnDeclarationNameExpr(S, OperatorLoc, Name, HasTrailingLParen, &SS, isAddressOfOperand); } /// ActOnCXXTypeidOfType - Parse typeid( type-id ). Action::ExprResult Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc) { NamespaceDecl *StdNs = GetStdNamespace(); if (!StdNs) return Diag(OpLoc, diag::err_need_header_before_typeid); IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); Decl *TypeInfoDecl = LookupQualifiedName(StdNs, TypeInfoII, LookupTagName); RecordDecl *TypeInfoRecordDecl = dyn_cast_or_null(TypeInfoDecl); if (!TypeInfoRecordDecl) return Diag(OpLoc, diag::err_need_header_before_typeid); QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl); return new (Context) CXXTypeidExpr(isType, TyOrExpr, TypeInfoType.withConst(), SourceRange(OpLoc, RParenLoc)); } /// ActOnCXXBoolLiteral - Parse {true,false} literals. Action::ExprResult Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { assert((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"); return new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); } /// ActOnCXXThrow - Parse throw expressions. Action::ExprResult Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprTy *E) { return new (Context) CXXThrowExpr((Expr*)E, Context.VoidTy, OpLoc); } Action::ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) { /// C++ 9.3.2: In the body of a non-static member function, the keyword this /// is a non-lvalue expression whose value is the address of the object for /// which the function is called. if (!isa(CurContext)) { Diag(ThisLoc, diag::err_invalid_this_use); return ExprResult(true); } if (CXXMethodDecl *MD = dyn_cast(CurContext)) if (MD->isInstance()) return new (Context) CXXThisExpr(ThisLoc, MD->getThisType(Context)); return Diag(ThisLoc, diag::err_invalid_this_use); } /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). Action::ExprResult Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, SourceLocation LParenLoc, ExprTy **ExprTys, unsigned NumExprs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { assert(TypeRep && "Missing type!"); QualType Ty = QualType::getFromOpaquePtr(TypeRep); Expr **Exprs = (Expr**)ExprTys; SourceLocation TyBeginLoc = TypeRange.getBegin(); SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc); // C++ [expr.type.conv]p1: // If the expression list is a single expression, the type conversion // expression is equivalent (in definedness, and if defined in meaning) to the // corresponding cast expression. // if (NumExprs == 1) { if (CheckCastTypes(TypeRange, Ty, Exprs[0])) return true; return new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(), Ty, TyBeginLoc, Exprs[0], RParenLoc); } if (const RecordType *RT = Ty->getAsRecordType()) { CXXRecordDecl *Record = cast(RT->getDecl()); if (NumExprs > 1 || Record->hasUserDeclaredConstructor()) { CXXConstructorDecl *Constructor = PerformInitializationByConstructor(Ty, Exprs, NumExprs, TypeRange.getBegin(), SourceRange(TypeRange.getBegin(), RParenLoc), DeclarationName(), IK_Direct); if (!Constructor) return true; return new (Context) CXXTemporaryObjectExpr(Constructor, Ty, TyBeginLoc, Exprs, NumExprs, RParenLoc); } // Fall through to value-initialize an object of class type that // doesn't have a user-declared default constructor. } // C++ [expr.type.conv]p1: // If the expression list specifies more than a single value, the type shall // be a class with a suitably declared constructor. // if (NumExprs > 1) return Diag(CommaLocs[0], diag::err_builtin_func_cast_more_than_one_arg) << FullRange; assert(NumExprs == 0 && "Expected 0 expressions"); // C++ [expr.type.conv]p2: // The expression T(), where T is a simple-type-specifier for a non-array // complete object type or the (possibly cv-qualified) void type, creates an // rvalue of the specified type, which is value-initialized. // if (Ty->isArrayType()) return Diag(TyBeginLoc, diag::err_value_init_for_array_type) << FullRange; if (!Ty->isDependentType() && !Ty->isVoidType() && DiagnoseIncompleteType(TyBeginLoc, Ty, diag::err_invalid_incomplete_type_use, FullRange)) return true; return new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc); } /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.: /// @code new (memory) int[size][4] @endcode /// or /// @code ::new Foo(23, "hello") @endcode /// For the interpretation of this heap of arguments, consult the base version. Action::ExprResult Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, ExprTy **PlacementArgs, unsigned NumPlaceArgs, SourceLocation PlacementRParen, bool ParenTypeId, Declarator &D, SourceLocation ConstructorLParen, ExprTy **ConstructorArgs, unsigned NumConsArgs, SourceLocation ConstructorRParen) { // FIXME: Throughout this function, we have rather bad location information. // Implementing Declarator::getSourceRange() would go a long way toward // fixing that. Expr *ArraySize = 0; unsigned Skip = 0; // If the specified type is an array, unwrap it and save the expression. if (D.getNumTypeObjects() > 0 && D.getTypeObject(0).Kind == DeclaratorChunk::Array) { DeclaratorChunk &Chunk = D.getTypeObject(0); if (Chunk.Arr.hasStatic) return Diag(Chunk.Loc, diag::err_static_illegal_in_new); if (!Chunk.Arr.NumElts) return Diag(Chunk.Loc, diag::err_array_new_needs_size); ArraySize = static_cast(Chunk.Arr.NumElts); Skip = 1; } QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, Skip); if (D.getInvalidType()) return true; if (CheckAllocatedType(AllocType, D)) return true; QualType ResultType = Context.getPointerType(AllocType); // That every array dimension except the first is constant was already // checked by the type check above. // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral // or enumeration type with a non-negative value." if (ArraySize) { QualType SizeType = ArraySize->getType(); if (!SizeType->isIntegralType() && !SizeType->isEnumeralType()) return Diag(ArraySize->getSourceRange().getBegin(), diag::err_array_size_not_integral) << SizeType << ArraySize->getSourceRange(); // Let's see if this is a constant < 0. If so, we reject it out of hand. // We don't care about special rules, so we tell the machinery it's not // evaluated - it gives us a result in more cases. llvm::APSInt Value; if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) { if (Value < llvm::APSInt( llvm::APInt::getNullValue(Value.getBitWidth()), false)) return Diag(ArraySize->getSourceRange().getBegin(), diag::err_typecheck_negative_array_size) << ArraySize->getSourceRange(); } } FunctionDecl *OperatorNew = 0; FunctionDecl *OperatorDelete = 0; Expr **PlaceArgs = (Expr**)PlacementArgs; if (FindAllocationFunctions(StartLoc, UseGlobal, AllocType, ArraySize, PlaceArgs, NumPlaceArgs, OperatorNew, OperatorDelete)) return true; bool Init = ConstructorLParen.isValid(); // --- Choosing a constructor --- // C++ 5.3.4p15 // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid) // the object is not initialized. If the object, or any part of it, is // const-qualified, it's an error. // 2) If T is a POD and there's an empty initializer, the object is value- // initialized. // 3) If T is a POD and there's one initializer argument, the object is copy- // constructed. // 4) If T is a POD and there's more initializer arguments, it's an error. // 5) If T is not a POD, the initializer arguments are used as constructor // arguments. // // Or by the C++0x formulation: // 1) If there's no initializer, the object is default-initialized according // to C++0x rules. // 2) Otherwise, the object is direct-initialized. CXXConstructorDecl *Constructor = 0; Expr **ConsArgs = (Expr**)ConstructorArgs; if (const RecordType *RT = AllocType->getAsRecordType()) { // FIXME: This is incorrect for when there is an empty initializer and // no user-defined constructor. Must zero-initialize, not default-construct. Constructor = PerformInitializationByConstructor( AllocType, ConsArgs, NumConsArgs, D.getDeclSpec().getSourceRange().getBegin(), SourceRange(D.getDeclSpec().getSourceRange().getBegin(), ConstructorRParen), RT->getDecl()->getDeclName(), NumConsArgs != 0 ? IK_Direct : IK_Default); if (!Constructor) return true; } else { if (!Init) { // FIXME: Check that no subpart is const. if (AllocType.isConstQualified()) { Diag(StartLoc, diag::err_new_uninitialized_const) << D.getSourceRange(); return true; } } else if (NumConsArgs == 0) { // Object is value-initialized. Do nothing. } else if (NumConsArgs == 1) { // Object is direct-initialized. // FIXME: WHAT DeclarationName do we pass in here? if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc, DeclarationName() /*AllocType.getAsString()*/, /*DirectInit=*/true)) return true; } else { Diag(StartLoc, diag::err_builtin_direct_init_more_than_one_arg) << SourceRange(ConstructorLParen, ConstructorRParen); } } // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16) return new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs, NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init, ConsArgs, NumConsArgs, OperatorDelete, ResultType, StartLoc, Init ? ConstructorRParen : SourceLocation()); } /// CheckAllocatedType - Checks that a type is suitable as the allocated type /// in a new-expression. /// dimension off and stores the size expression in ArraySize. bool Sema::CheckAllocatedType(QualType AllocType, const Declarator &D) { // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an // abstract class type or array thereof. // FIXME: We don't have abstract types yet. // FIXME: Under C++ semantics, an incomplete object type is still an object // type. This code assumes the C semantics, where it's not. if (!AllocType->isObjectType()) { unsigned type; // For the select in the message. if (AllocType->isFunctionType()) { type = 0; } else if(AllocType->isIncompleteType()) { type = 1; } else { assert(AllocType->isReferenceType() && "What else could it be?"); type = 2; } SourceRange TyR = D.getDeclSpec().getSourceRange(); // FIXME: This is very much a guess and won't work for, e.g., pointers. if (D.getNumTypeObjects() > 0) TyR.setEnd(D.getTypeObject(0).Loc); Diag(TyR.getBegin(), diag::err_bad_new_type) << AllocType.getAsString() << type << TyR; return true; } // Every dimension shall be of constant size. unsigned i = 1; while (const ArrayType *Array = Context.getAsArrayType(AllocType)) { if (!Array->isConstantArrayType()) { Diag(D.getTypeObject(i).Loc, diag::err_new_array_nonconst) << static_cast(D.getTypeObject(i).Arr.NumElts)->getSourceRange(); return true; } AllocType = Array->getElementType(); ++i; } return false; } /// FindAllocationFunctions - Finds the overloads of operator new and delete /// that are appropriate for the allocation. bool Sema::FindAllocationFunctions(SourceLocation StartLoc, bool UseGlobal, QualType AllocType, bool IsArray, Expr **PlaceArgs, unsigned NumPlaceArgs, FunctionDecl *&OperatorNew, FunctionDecl *&OperatorDelete) { // --- Choosing an allocation function --- // C++ 5.3.4p8 - 14 & 18 // 1) If UseGlobal is true, only look in the global scope. Else, also look // in the scope of the allocated class. // 2) If an array size is given, look for operator new[], else look for // operator new. // 3) The first argument is always size_t. Append the arguments from the // placement form. // FIXME: Also find the appropriate delete operator. llvm::SmallVector AllocArgs(1 + NumPlaceArgs); // We don't care about the actual value of this argument. // FIXME: Should the Sema create the expression and embed it in the syntax // tree? Or should the consumer just recalculate the value? AllocArgs[0] = new (Context) IntegerLiteral(llvm::APInt::getNullValue( Context.Target.getPointerWidth(0)), Context.getSizeType(), SourceLocation()); std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1); DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( IsArray ? OO_Array_New : OO_New); if (AllocType->isRecordType() && !UseGlobal) { CXXRecordDecl *Record = cast(AllocType->getAsRecordType()) ->getDecl(); // FIXME: We fail to find inherited overloads. if (FindAllocationOverload(StartLoc, NewName, &AllocArgs[0], AllocArgs.size(), Record, /*AllowMissing=*/true, OperatorNew)) return true; } if (!OperatorNew) { // Didn't find a member overload. Look for a global one. DeclareGlobalNewDelete(); DeclContext *TUDecl = Context.getTranslationUnitDecl(); if (FindAllocationOverload(StartLoc, NewName, &AllocArgs[0], AllocArgs.size(), TUDecl, /*AllowMissing=*/false, OperatorNew)) return true; } // FIXME: This is leaked on error. But so much is currently in Sema that it's // easier to clean it in one go. AllocArgs[0]->Destroy(Context); return false; } /// FindAllocationOverload - Find an fitting overload for the allocation /// function in the specified scope. bool Sema::FindAllocationOverload(SourceLocation StartLoc, DeclarationName Name, Expr** Args, unsigned NumArgs, DeclContext *Ctx, bool AllowMissing, FunctionDecl *&Operator) { DeclContext::lookup_iterator Alloc, AllocEnd; llvm::tie(Alloc, AllocEnd) = Ctx->lookup(Name); if (Alloc == AllocEnd) { if (AllowMissing) return false; // FIXME: Bad location information. return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) << Name << 0; } OverloadCandidateSet Candidates; for (; Alloc != AllocEnd; ++Alloc) { // Even member operator new/delete are implicitly treated as // static, so don't use AddMemberCandidate. if (FunctionDecl *Fn = dyn_cast(*Alloc)) AddOverloadCandidate(Fn, Args, NumArgs, Candidates, /*SuppressUserConversions=*/false); } // Do the resolution. OverloadCandidateSet::iterator Best; switch(BestViableFunction(Candidates, Best)) { case OR_Success: { // Got one! FunctionDecl *FnDecl = Best->Function; // The first argument is size_t, and the first parameter must be size_t, // too. This is checked on declaration and can be assumed. (It can't be // asserted on, though, since invalid decls are left in there.) for (unsigned i = 1; i < NumArgs; ++i) { // FIXME: Passing word to diagnostic. if (PerformCopyInitialization(Args[i-1], FnDecl->getParamDecl(i)->getType(), "passing")) return true; } Operator = FnDecl; return false; } case OR_No_Viable_Function: if (AllowMissing) return false; // FIXME: Bad location information. Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) << Name << (unsigned)Candidates.size(); PrintOverloadCandidates(Candidates, /*OnlyViable=*/false); return true; case OR_Ambiguous: // FIXME: Bad location information. Diag(StartLoc, diag::err_ovl_ambiguous_call) << Name; PrintOverloadCandidates(Candidates, /*OnlyViable=*/true); return true; } assert(false && "Unreachable, bad result from BestViableFunction"); return true; } /// DeclareGlobalNewDelete - Declare the global forms of operator new and /// delete. These are: /// @code /// void* operator new(std::size_t) throw(std::bad_alloc); /// void* operator new[](std::size_t) throw(std::bad_alloc); /// void operator delete(void *) throw(); /// void operator delete[](void *) throw(); /// @endcode /// Note that the placement and nothrow forms of new are *not* implicitly /// declared. Their use requires including \. void Sema::DeclareGlobalNewDelete() { if (GlobalNewDeleteDeclared) return; GlobalNewDeleteDeclared = true; QualType VoidPtr = Context.getPointerType(Context.VoidTy); QualType SizeT = Context.getSizeType(); // FIXME: Exception specifications are not added. DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_New), VoidPtr, SizeT); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_Array_New), VoidPtr, SizeT); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_Delete), Context.VoidTy, VoidPtr); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), Context.VoidTy, VoidPtr); } /// DeclareGlobalAllocationFunction - Declares a single implicit global /// allocation function if it doesn't already exist. void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return, QualType Argument) { DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); // Check if this function is already declared. { DeclContext::lookup_iterator Alloc, AllocEnd; for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name); Alloc != AllocEnd; ++Alloc) { // FIXME: Do we need to check for default arguments here? FunctionDecl *Func = cast(*Alloc); if (Func->getNumParams() == 1 && Context.getCanonicalType(Func->getParamDecl(0)->getType())==Argument) return; } } QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0); FunctionDecl *Alloc = FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name, FnType, FunctionDecl::None, false, SourceLocation()); Alloc->setImplicit(); ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(), 0, Argument, VarDecl::None, 0); Alloc->setParams(Context, &Param, 1); // FIXME: Also add this declaration to the IdentifierResolver, but // make sure it is at the end of the chain to coincide with the // global scope. ((DeclContext *)TUScope->getEntity())->addDecl(Alloc); } /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: /// @code ::delete ptr; @endcode /// or /// @code delete [] ptr; @endcode Action::ExprResult Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, bool ArrayForm, ExprTy *Operand) { // C++ 5.3.5p1: "The operand shall have a pointer type, or a class type // having a single conversion function to a pointer type. The result has // type void." // DR599 amends "pointer type" to "pointer to object type" in both cases. Expr *Ex = (Expr *)Operand; QualType Type = Ex->getType(); if (Type->isRecordType()) { // FIXME: Find that one conversion function and amend the type. } if (!Type->isPointerType()) { Diag(StartLoc, diag::err_delete_operand) << Type << Ex->getSourceRange(); return true; } QualType Pointee = Type->getAsPointerType()->getPointeeType(); if (!Pointee->isVoidType() && DiagnoseIncompleteType(StartLoc, Pointee, diag::warn_delete_incomplete, Ex->getSourceRange())) return true; else if (!Pointee->isObjectType()) { Diag(StartLoc, diag::err_delete_operand) << Type << Ex->getSourceRange(); return true; } // FIXME: Look up the correct operator delete overload and pass a pointer // along. // FIXME: Check access and ambiguity of operator delete and destructor. return new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, 0, Ex, StartLoc); } /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a /// C++ if/switch/while/for statement. /// e.g: "if (int x = f()) {...}" Action::ExprResult Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc, Declarator &D, SourceLocation EqualLoc, ExprTy *AssignExprVal) { assert(AssignExprVal && "Null assignment expression"); // C++ 6.4p2: // The declarator shall not specify a function or an array. // The type-specifier-seq shall not contain typedef and shall not declare a // new class or enumeration. assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."); QualType Ty = GetTypeForDeclarator(D, S); if (Ty->isFunctionType()) { // The declarator shall not specify a function... // We exit without creating a CXXConditionDeclExpr because a FunctionDecl // would be created and CXXConditionDeclExpr wants a VarDecl. return Diag(StartLoc, diag::err_invalid_use_of_function_type) << SourceRange(StartLoc, EqualLoc); } else if (Ty->isArrayType()) { // ...or an array. Diag(StartLoc, diag::err_invalid_use_of_array_type) << SourceRange(StartLoc, EqualLoc); } else if (const RecordType *RT = Ty->getAsRecordType()) { RecordDecl *RD = RT->getDecl(); // The type-specifier-seq shall not declare a new class... if (RD->isDefinition() && (RD->getIdentifier() == 0 || S->isDeclScope(RD))) Diag(RD->getLocation(), diag::err_type_defined_in_condition); } else if (const EnumType *ET = Ty->getAsEnumType()) { EnumDecl *ED = ET->getDecl(); // ...or enumeration. if (ED->isDefinition() && (ED->getIdentifier() == 0 || S->isDeclScope(ED))) Diag(ED->getLocation(), diag::err_type_defined_in_condition); } DeclTy *Dcl = ActOnDeclarator(S, D, 0); if (!Dcl) return true; AddInitializerToDecl(Dcl, ExprArg(*this, AssignExprVal)); // Mark this variable as one that is declared within a conditional. if (VarDecl *VD = dyn_cast((Decl *)Dcl)) VD->setDeclaredInCondition(true); return new (Context) CXXConditionDeclExpr(StartLoc, EqualLoc, cast(static_cast(Dcl))); } /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) { // C++ 6.4p4: // The value of a condition that is an initialized declaration in a statement // other than a switch statement is the value of the declared variable // implicitly converted to type bool. If that conversion is ill-formed, the // program is ill-formed. // The value of a condition that is an expression is the value of the // expression, implicitly converted to bool. // return PerformContextuallyConvertToBool(CondExpr); } /// Helper function to determine whether this is the (deprecated) C++ /// conversion from a string literal to a pointer to non-const char or /// non-const wchar_t (for narrow and wide string literals, /// respectively). bool Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { // Look inside the implicit cast, if it exists. if (ImplicitCastExpr *Cast = dyn_cast(From)) From = Cast->getSubExpr(); // A string literal (2.13.4) that is not a wide string literal can // be converted to an rvalue of type "pointer to char"; a wide // string literal can be converted to an rvalue of type "pointer // to wchar_t" (C++ 4.2p2). if (StringLiteral *StrLit = dyn_cast(From)) if (const PointerType *ToPtrType = ToType->getAsPointerType()) if (const BuiltinType *ToPointeeType = ToPtrType->getPointeeType()->getAsBuiltinType()) { // This conversion is considered only when there is an // explicit appropriate pointer target type (C++ 4.2p2). if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 && ((StrLit->isWide() && ToPointeeType->isWideCharType()) || (!StrLit->isWide() && (ToPointeeType->getKind() == BuiltinType::Char_U || ToPointeeType->getKind() == BuiltinType::Char_S)))) return true; } return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType. Returns true if there was an /// error, false otherwise. The expression From is replaced with the /// converted expression. Flavor is the kind of conversion we're /// performing, used in the error message. If @p AllowExplicit, /// explicit user-defined conversions are permitted. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, const char *Flavor, bool AllowExplicit) { ImplicitConversionSequence ICS = TryImplicitConversion(From, ToType, false, AllowExplicit); return PerformImplicitConversion(From, ToType, ICS, Flavor); } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType using the pre-computed implicit /// conversion sequence ICS. Returns true if there was an error, false /// otherwise. The expression From is replaced with the converted /// expression. Flavor is the kind of conversion we're performing, /// used in the error message. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, const ImplicitConversionSequence &ICS, const char* Flavor) { switch (ICS.ConversionKind) { case ImplicitConversionSequence::StandardConversion: if (PerformImplicitConversion(From, ToType, ICS.Standard, Flavor)) return true; break; case ImplicitConversionSequence::UserDefinedConversion: // FIXME: This is, of course, wrong. We'll need to actually call // the constructor or conversion operator, and then cope with the // standard conversions. ImpCastExprToType(From, ToType.getNonReferenceType(), ToType->isReferenceType()); return false; case ImplicitConversionSequence::EllipsisConversion: assert(false && "Cannot perform an ellipsis conversion"); return false; case ImplicitConversionSequence::BadConversion: return true; } // Everything went well. return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType by following the standard /// conversion sequence SCS. Returns true if there was an error, false /// otherwise. The expression From is replaced with the converted /// expression. Flavor is the context in which we're performing this /// conversion, for use in error messages. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, const StandardConversionSequence& SCS, const char *Flavor) { // Overall FIXME: we are recomputing too many types here and doing // far too much extra work. What this means is that we need to keep // track of more information that is computed when we try the // implicit conversion initially, so that we don't need to recompute // anything here. QualType FromType = From->getType(); if (SCS.CopyConstructor) { // FIXME: Create a temporary object by calling the copy // constructor. ImpCastExprToType(From, ToType.getNonReferenceType(), ToType->isReferenceType()); return false; } // Perform the first implicit conversion. switch (SCS.First) { case ICK_Identity: case ICK_Lvalue_To_Rvalue: // Nothing to do. break; case ICK_Array_To_Pointer: if (FromType->isOverloadType()) { FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true); if (!Fn) return true; FixOverloadedFunctionReference(From, Fn); FromType = From->getType(); } else { FromType = Context.getArrayDecayedType(FromType); } ImpCastExprToType(From, FromType); break; case ICK_Function_To_Pointer: FromType = Context.getPointerType(FromType); ImpCastExprToType(From, FromType); break; default: assert(false && "Improper first standard conversion"); break; } // Perform the second implicit conversion switch (SCS.Second) { case ICK_Identity: // Nothing to do. break; case ICK_Integral_Promotion: case ICK_Floating_Promotion: case ICK_Integral_Conversion: case ICK_Floating_Conversion: case ICK_Floating_Integral: FromType = ToType.getUnqualifiedType(); ImpCastExprToType(From, FromType); break; case ICK_Pointer_Conversion: if (SCS.IncompatibleObjC) { // Diagnose incompatible Objective-C conversions Diag(From->getSourceRange().getBegin(), diag::ext_typecheck_convert_incompatible_pointer) << From->getType() << ToType << Flavor << From->getSourceRange(); } if (CheckPointerConversion(From, ToType)) return true; ImpCastExprToType(From, ToType); break; case ICK_Pointer_Member: if (CheckMemberPointerConversion(From, ToType)) return true; ImpCastExprToType(From, ToType); break; case ICK_Boolean_Conversion: FromType = Context.BoolTy; ImpCastExprToType(From, FromType); break; default: assert(false && "Improper second standard conversion"); break; } switch (SCS.Third) { case ICK_Identity: // Nothing to do. break; case ICK_Qualification: ImpCastExprToType(From, ToType.getNonReferenceType(), ToType->isReferenceType()); break; default: assert(false && "Improper second standard conversion"); break; } return false; } Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT, SourceLocation KWLoc, SourceLocation LParen, TypeTy *Ty, SourceLocation RParen) { // FIXME: Some of the type traits have requirements. Interestingly, only the // __is_base_of requirement is explicitly stated to be diagnosed. Indeed, // G++ accepts __is_pod(Incomplete) without complaints, and claims that the // type is indeed a POD. // There is no point in eagerly computing the value. The traits are designed // to be used from type trait templates, so Ty will be a template parameter // 99% of the time. return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, QualType::getFromOpaquePtr(Ty), RParen, Context.BoolTy)); } QualType Sema::CheckPointerToMemberOperands( Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) { const char *OpSpelling = isIndirect ? "->*" : ".*"; // C++ 5.5p2 // The binary operator .* [p3: ->*] binds its second operand, which shall // be of type "pointer to member of T" (where T is a completely-defined // class type) [...] QualType RType = rex->getType(); const MemberPointerType *MemPtr = RType->getAsMemberPointerType(); if (!MemPtr || MemPtr->getClass()->isIncompleteType()) { Diag(Loc, diag::err_bad_memptr_rhs) << OpSpelling << RType << rex->getSourceRange(); return QualType(); } QualType Class(MemPtr->getClass(), 0); // C++ 5.5p2 // [...] to its first operand, which shall be of class T or of a class of // which T is an unambiguous and accessible base class. [p3: a pointer to // such a class] QualType LType = lex->getType(); if (isIndirect) { if (const PointerType *Ptr = LType->getAsPointerType()) LType = Ptr->getPointeeType().getNonReferenceType(); else { Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling << 1 << LType << lex->getSourceRange(); return QualType(); } } if (Context.getCanonicalType(Class).getUnqualifiedType() != Context.getCanonicalType(LType).getUnqualifiedType()) { BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, /*DetectVirtual=*/false); // FIXME: Would it be useful to print full ambiguity paths, // or is that overkill? if (!IsDerivedFrom(LType, Class, Paths) || Paths.isAmbiguous(Context.getCanonicalType(Class))) { Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling << (int)isIndirect << lex->getType() << lex->getSourceRange(); return QualType(); } } // C++ 5.5p2 // The result is an object or a function of the type specified by the // second operand. // The cv qualifiers are the union of those in the pointer and the left side, // in accordance with 5.5p5 and 5.2.5. // FIXME: This returns a dereferenced member function pointer as a normal // function type. However, the only operation valid on such functions is // calling them. There's also a GCC extension to get a function pointer to // the thing, which is another complication, because this type - unlike the // type that is the result of this expression - takes the class as the first // argument. // We probably need a "MemberFunctionClosureType" or something like that. QualType Result = MemPtr->getPointeeType(); if (LType.isConstQualified()) Result.addConst(); if (LType.isVolatileQualified()) Result.addVolatile(); return Result; }