//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements C++ semantic analysis for scope specifiers. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "Lookup.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Parse/DeclSpec.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/raw_ostream.h" using namespace clang; /// \brief Find the current instantiation that associated with the given type. static CXXRecordDecl * getCurrentInstantiationOf(ASTContext &Context, DeclContext *CurContext, QualType T) { if (T.isNull()) return 0; T = Context.getCanonicalType(T); for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getParent()) { // If we've hit a namespace or the global scope, then the // nested-name-specifier can't refer to the current instantiation. if (Ctx->isFileContext()) return 0; // Skip non-class contexts. CXXRecordDecl *Record = dyn_cast(Ctx); if (!Record) continue; // If this record type is not dependent, if (!Record->isDependentType()) return 0; // C++ [temp.dep.type]p1: // // In the definition of a class template, a nested class of a // class template, a member of a class template, or a member of a // nested class of a class template, a name refers to the current // instantiation if it is // -- the injected-class-name (9) of the class template or // nested class, // -- in the definition of a primary class template, the name // of the class template followed by the template argument // list of the primary template (as described below) // enclosed in <>, // -- in the definition of a nested class of a class template, // the name of the nested class referenced as a member of // the current instantiation, or // -- in the definition of a partial specialization, the name // of the class template followed by the template argument // list of the partial specialization enclosed in <>. If // the nth template parameter is a parameter pack, the nth // template argument is a pack expansion (14.6.3) whose // pattern is the name of the parameter pack. // (FIXME: parameter packs) // // All of these options come down to having the // nested-name-specifier type that is equivalent to the // injected-class-name of one of the types that is currently in // our context. if (Context.getCanonicalType(Context.getTypeDeclType(Record)) == T) return Record; if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) { QualType InjectedClassName = Template->getInjectedClassNameType(Context); if (T == Context.getCanonicalType(InjectedClassName)) return Template->getTemplatedDecl(); } // FIXME: check for class template partial specializations } return 0; } /// \brief Compute the DeclContext that is associated with the given type. /// /// \param T the type for which we are attempting to find a DeclContext. /// /// \returns the declaration context represented by the type T, /// or NULL if the declaration context cannot be computed (e.g., because it is /// dependent and not the current instantiation). DeclContext *Sema::computeDeclContext(QualType T) { if (const TagType *Tag = T->getAs()) return Tag->getDecl(); return ::getCurrentInstantiationOf(Context, CurContext, T); } /// \brief Compute the DeclContext that is associated with the given /// scope specifier. /// /// \param SS the C++ scope specifier as it appears in the source /// /// \param EnteringContext when true, we will be entering the context of /// this scope specifier, so we can retrieve the declaration context of a /// class template or class template partial specialization even if it is /// not the current instantiation. /// /// \returns the declaration context represented by the scope specifier @p SS, /// or NULL if the declaration context cannot be computed (e.g., because it is /// dependent and not the current instantiation). DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS, bool EnteringContext) { if (!SS.isSet() || SS.isInvalid()) return 0; NestedNameSpecifier *NNS = static_cast(SS.getScopeRep()); if (NNS->isDependent()) { // If this nested-name-specifier refers to the current // instantiation, return its DeclContext. if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS)) return Record; if (EnteringContext) { if (const TemplateSpecializationType *SpecType = dyn_cast_or_null(NNS->getAsType())) { // We are entering the context of the nested name specifier, so try to // match the nested name specifier to either a primary class template // or a class template partial specialization. if (ClassTemplateDecl *ClassTemplate = dyn_cast_or_null( SpecType->getTemplateName().getAsTemplateDecl())) { QualType ContextType = Context.getCanonicalType(QualType(SpecType, 0)); // If the type of the nested name specifier is the same as the // injected class name of the named class template, we're entering // into that class template definition. QualType Injected = ClassTemplate->getInjectedClassNameType(Context); if (Context.hasSameType(Injected, ContextType)) return ClassTemplate->getTemplatedDecl(); // If the type of the nested name specifier is the same as the // type of one of the class template's class template partial // specializations, we're entering into the definition of that // class template partial specialization. if (ClassTemplatePartialSpecializationDecl *PartialSpec = ClassTemplate->findPartialSpecialization(ContextType)) return PartialSpec; } } else if (const RecordType *RecordT = dyn_cast_or_null(NNS->getAsType())) { // The nested name specifier refers to a member of a class template. return RecordT->getDecl(); } } return 0; } switch (NNS->getKind()) { case NestedNameSpecifier::Identifier: assert(false && "Dependent nested-name-specifier has no DeclContext"); break; case NestedNameSpecifier::Namespace: return NNS->getAsNamespace(); case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { const TagType *Tag = NNS->getAsType()->getAs(); assert(Tag && "Non-tag type in nested-name-specifier"); return Tag->getDecl(); } break; case NestedNameSpecifier::Global: return Context.getTranslationUnitDecl(); } // Required to silence a GCC warning. return 0; } bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) { if (!SS.isSet() || SS.isInvalid()) return false; NestedNameSpecifier *NNS = static_cast(SS.getScopeRep()); return NNS->isDependent(); } // \brief Determine whether this C++ scope specifier refers to an // unknown specialization, i.e., a dependent type that is not the // current instantiation. bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) { if (!isDependentScopeSpecifier(SS)) return false; NestedNameSpecifier *NNS = static_cast(SS.getScopeRep()); return getCurrentInstantiationOf(NNS) == 0; } /// \brief If the given nested name specifier refers to the current /// instantiation, return the declaration that corresponds to that /// current instantiation (C++0x [temp.dep.type]p1). /// /// \param NNS a dependent nested name specifier. CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) { assert(getLangOptions().CPlusPlus && "Only callable in C++"); assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed"); if (!NNS->getAsType()) return 0; QualType T = QualType(NNS->getAsType(), 0); return ::getCurrentInstantiationOf(Context, CurContext, T); } /// \brief Require that the context specified by SS be complete. /// /// If SS refers to a type, this routine checks whether the type is /// complete enough (or can be made complete enough) for name lookup /// into the DeclContext. A type that is not yet completed can be /// considered "complete enough" if it is a class/struct/union/enum /// that is currently being defined. Or, if we have a type that names /// a class template specialization that is not a complete type, we /// will attempt to instantiate that class template. bool Sema::RequireCompleteDeclContext(const CXXScopeSpec &SS) { if (!SS.isSet() || SS.isInvalid()) return false; DeclContext *DC = computeDeclContext(SS, true); if (TagDecl *Tag = dyn_cast(DC)) { // If we're currently defining this type, then lookup into the // type is okay: don't complain that it isn't complete yet. const TagType *TagT = Context.getTypeDeclType(Tag)->getAs(); if (TagT->isBeingDefined()) return false; // The type must be complete. return RequireCompleteType(SS.getRange().getBegin(), Context.getTypeDeclType(Tag), PDiag(diag::err_incomplete_nested_name_spec) << SS.getRange()); } return false; } /// ActOnCXXGlobalScopeSpecifier - Return the object that represents the /// global scope ('::'). Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc) { return NestedNameSpecifier::GlobalSpecifier(Context); } /// \brief Determines whether the given declaration is an valid acceptable /// result for name lookup of a nested-name-specifier. bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) { if (!SD) return false; // Namespace and namespace aliases are fine. if (isa(SD) || isa(SD)) return true; if (!isa(SD)) return false; // Determine whether we have a class (or, in C++0x, an enum) or // a typedef thereof. If so, build the nested-name-specifier. QualType T = Context.getTypeDeclType(cast(SD)); if (T->isDependentType()) return true; else if (TypedefDecl *TD = dyn_cast(SD)) { if (TD->getUnderlyingType()->isRecordType() || (Context.getLangOptions().CPlusPlus0x && TD->getUnderlyingType()->isEnumeralType())) return true; } else if (isa(SD) || (Context.getLangOptions().CPlusPlus0x && isa(SD))) return true; return false; } /// \brief If the given nested-name-specifier begins with a bare identifier /// (e.g., Base::), perform name lookup for that identifier as a /// nested-name-specifier within the given scope, and return the result of that /// name lookup. NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) { if (!S || !NNS) return 0; while (NNS->getPrefix()) NNS = NNS->getPrefix(); if (NNS->getKind() != NestedNameSpecifier::Identifier) return 0; LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(), LookupNestedNameSpecifierName); LookupName(Found, S); assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet"); if (!Found.isSingleResult()) return 0; NamedDecl *Result = Found.getFoundDecl(); if (isAcceptableNestedNameSpecifier(Result)) return Result; return 0; } /// \brief Build a new nested-name-specifier for "identifier::", as described /// by ActOnCXXNestedNameSpecifier. /// /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in /// that it contains an extra parameter \p ScopeLookupResult, which provides /// the result of name lookup within the scope of the nested-name-specifier /// that was computed at template definitino time. /// /// If ErrorRecoveryLookup is true, then this call is used to improve error /// recovery. This means that it should not emit diagnostics, it should /// just return null on failure. It also means it should only return a valid /// scope if it *knows* that the result is correct. It should not return in a /// dependent context, for example. Sema::CXXScopeTy *Sema::BuildCXXNestedNameSpecifier(Scope *S, const CXXScopeSpec &SS, SourceLocation IdLoc, SourceLocation CCLoc, IdentifierInfo &II, QualType ObjectType, NamedDecl *ScopeLookupResult, bool EnteringContext, bool ErrorRecoveryLookup) { NestedNameSpecifier *Prefix = static_cast(SS.getScopeRep()); LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName); // Determine where to perform name lookup DeclContext *LookupCtx = 0; bool isDependent = false; if (!ObjectType.isNull()) { // This nested-name-specifier occurs in a member access expression, e.g., // x->B::f, and we are looking into the type of the object. assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); LookupCtx = computeDeclContext(ObjectType); isDependent = ObjectType->isDependentType(); } else if (SS.isSet()) { // This nested-name-specifier occurs after another nested-name-specifier, // so long into the context associated with the prior nested-name-specifier. LookupCtx = computeDeclContext(SS, EnteringContext); isDependent = isDependentScopeSpecifier(SS); Found.setContextRange(SS.getRange()); } bool ObjectTypeSearchedInScope = false; if (LookupCtx) { // Perform "qualified" name lookup into the declaration context we // computed, which is either the type of the base of a member access // expression or the declaration context associated with a prior // nested-name-specifier. // The declaration context must be complete. if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS)) return 0; LookupQualifiedName(Found, LookupCtx); if (!ObjectType.isNull() && Found.empty()) { // C++ [basic.lookup.classref]p4: // If the id-expression in a class member access is a qualified-id of // the form // // class-name-or-namespace-name::... // // the class-name-or-namespace-name following the . or -> operator is // looked up both in the context of the entire postfix-expression and in // the scope of the class of the object expression. If the name is found // only in the scope of the class of the object expression, the name // shall refer to a class-name. If the name is found only in the // context of the entire postfix-expression, the name shall refer to a // class-name or namespace-name. [...] // // Qualified name lookup into a class will not find a namespace-name, // so we do not need to diagnoste that case specifically. However, // this qualified name lookup may find nothing. In that case, perform // unqualified name lookup in the given scope (if available) or // reconstruct the result from when name lookup was performed at template // definition time. if (S) LookupName(Found, S); else if (ScopeLookupResult) Found.addDecl(ScopeLookupResult); ObjectTypeSearchedInScope = true; } } else if (isDependent) { // Don't speculate if we're just trying to improve error recovery. if (ErrorRecoveryLookup) return 0; // We were not able to compute the declaration context for a dependent // base object type or prior nested-name-specifier, so this // nested-name-specifier refers to an unknown specialization. Just build // a dependent nested-name-specifier. if (!Prefix) return NestedNameSpecifier::Create(Context, &II); return NestedNameSpecifier::Create(Context, Prefix, &II); } else { // Perform unqualified name lookup in the current scope. LookupName(Found, S); } // FIXME: Deal with ambiguities cleanly. NamedDecl *SD = Found.getAsSingle(); if (isAcceptableNestedNameSpecifier(SD)) { if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) { // C++ [basic.lookup.classref]p4: // [...] If the name is found in both contexts, the // class-name-or-namespace-name shall refer to the same entity. // // We already found the name in the scope of the object. Now, look // into the current scope (the scope of the postfix-expression) to // see if we can find the same name there. As above, if there is no // scope, reconstruct the result from the template instantiation itself. NamedDecl *OuterDecl; if (S) { LookupResult FoundOuter(*this, &II, IdLoc, LookupNestedNameSpecifierName); LookupName(FoundOuter, S); OuterDecl = FoundOuter.getAsSingle(); } else OuterDecl = ScopeLookupResult; if (isAcceptableNestedNameSpecifier(OuterDecl) && OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() && (!isa(OuterDecl) || !isa(SD) || !Context.hasSameType( Context.getTypeDeclType(cast(OuterDecl)), Context.getTypeDeclType(cast(SD))))) { if (ErrorRecoveryLookup) return 0; Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous) << &II; Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type) << ObjectType; Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope); // Fall through so that we'll pick the name we found in the object // type, since that's probably what the user wanted anyway. } } if (NamespaceDecl *Namespace = dyn_cast(SD)) return NestedNameSpecifier::Create(Context, Prefix, Namespace); // FIXME: It would be nice to maintain the namespace alias name, then // see through that alias when resolving the nested-name-specifier down to // a declaration context. if (NamespaceAliasDecl *Alias = dyn_cast(SD)) return NestedNameSpecifier::Create(Context, Prefix, Alias->getNamespace()); QualType T = Context.getTypeDeclType(cast(SD)); return NestedNameSpecifier::Create(Context, Prefix, false, T.getTypePtr()); } // Otherwise, we have an error case. If we don't want diagnostics, just // return an error now. if (ErrorRecoveryLookup) return 0; // If we didn't find anything during our lookup, try again with // ordinary name lookup, which can help us produce better error // messages. if (Found.empty()) { Found.clear(LookupOrdinaryName); LookupName(Found, S); } unsigned DiagID; if (!Found.empty()) DiagID = diag::err_expected_class_or_namespace; else if (SS.isSet()) { Diag(IdLoc, diag::err_no_member) << &II << LookupCtx << SS.getRange(); return 0; } else DiagID = diag::err_undeclared_var_use; if (SS.isSet()) Diag(IdLoc, DiagID) << &II << SS.getRange(); else Diag(IdLoc, DiagID) << &II; return 0; } /// ActOnCXXNestedNameSpecifier - Called during parsing of a /// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now /// we want to resolve "bar::". 'SS' is empty or the previously parsed /// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar', /// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'. /// Returns a CXXScopeTy* object representing the C++ scope. Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S, const CXXScopeSpec &SS, SourceLocation IdLoc, SourceLocation CCLoc, IdentifierInfo &II, TypeTy *ObjectTypePtr, bool EnteringContext) { return BuildCXXNestedNameSpecifier(S, SS, IdLoc, CCLoc, II, QualType::getFromOpaquePtr(ObjectTypePtr), /*ScopeLookupResult=*/0, EnteringContext, false); } /// IsInvalidUnlessNestedName - This method is used for error recovery /// purposes to determine whether the specified identifier is only valid as /// a nested name specifier, for example a namespace name. It is /// conservatively correct to always return false from this method. /// /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier. bool Sema::IsInvalidUnlessNestedName(Scope *S, const CXXScopeSpec &SS, IdentifierInfo &II, TypeTy *ObjectType, bool EnteringContext) { return BuildCXXNestedNameSpecifier(S, SS, SourceLocation(), SourceLocation(), II, QualType::getFromOpaquePtr(ObjectType), /*ScopeLookupResult=*/0, EnteringContext, true); } Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S, const CXXScopeSpec &SS, TypeTy *Ty, SourceRange TypeRange, SourceLocation CCLoc) { NestedNameSpecifier *Prefix = static_cast(SS.getScopeRep()); QualType T = GetTypeFromParser(Ty); return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false, T.getTypePtr()); } bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) { assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); NestedNameSpecifier *Qualifier = static_cast(SS.getScopeRep()); // There are only two places a well-formed program may qualify a // declarator: first, when defining a namespace or class member // out-of-line, and second, when naming an explicitly-qualified // friend function. The latter case is governed by // C++03 [basic.lookup.unqual]p10: // In a friend declaration naming a member function, a name used // in the function declarator and not part of a template-argument // in a template-id is first looked up in the scope of the member // function's class. If it is not found, or if the name is part of // a template-argument in a template-id, the look up is as // described for unqualified names in the definition of the class // granting friendship. // i.e. we don't push a scope unless it's a class member. switch (Qualifier->getKind()) { case NestedNameSpecifier::Global: case NestedNameSpecifier::Namespace: // These are always namespace scopes. We never want to enter a // namespace scope from anything but a file context. return CurContext->getLookupContext()->isFileContext(); case NestedNameSpecifier::Identifier: case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: // These are never namespace scopes. return true; } // Silence bogus warning. return false; } /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global /// scope or nested-name-specifier) is parsed, part of a declarator-id. /// After this method is called, according to [C++ 3.4.3p3], names should be /// looked up in the declarator-id's scope, until the declarator is parsed and /// ActOnCXXExitDeclaratorScope is called. /// The 'SS' should be a non-empty valid CXXScopeSpec. bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) { assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); if (SS.isInvalid()) return true; DeclContext *DC = computeDeclContext(SS, true); if (!DC) return true; // Before we enter a declarator's context, we need to make sure that // it is a complete declaration context. if (!DC->isDependentContext() && RequireCompleteDeclContext(SS)) return true; EnterDeclaratorContext(S, DC); return false; } /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. /// Used to indicate that names should revert to being looked up in the /// defining scope. void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) { assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); if (SS.isInvalid()) return; assert(!SS.isInvalid() && computeDeclContext(SS, true) && "exiting declarator scope we never really entered"); ExitDeclaratorContext(S); }