//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for declarations. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/APValue.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ExprCXX.h" #include "clang/Parse/DeclSpec.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/SourceManager.h" // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's) #include "clang/Lex/Preprocessor.h" #include "clang/Lex/HeaderSearch.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace clang; /// \brief If the identifier refers to a type name within this scope, /// return the declaration of that type. /// /// This routine performs ordinary name lookup of the identifier II /// within the given scope, with optional C++ scope specifier SS, to /// determine whether the name refers to a type. If so, returns an /// opaque pointer (actually a QualType) corresponding to that /// type. Otherwise, returns NULL. /// /// If name lookup results in an ambiguity, this routine will complain /// and then return NULL. Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc, Scope *S, const CXXScopeSpec *SS) { Decl *IIDecl = 0; LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false); switch (Result.getKind()) { case LookupResult::NotFound: case LookupResult::FoundOverloaded: return 0; case LookupResult::AmbiguousBaseSubobjectTypes: case LookupResult::AmbiguousBaseSubobjects: case LookupResult::AmbiguousReference: DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc); return 0; case LookupResult::Found: IIDecl = Result.getAsDecl(); break; } if (IIDecl) { if (TypeDecl *TD = dyn_cast(IIDecl)) return Context.getTypeDeclType(TD).getAsOpaquePtr(); else if (ObjCInterfaceDecl *IDecl = dyn_cast(IIDecl)) return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr(); } return 0; } DeclContext *Sema::getContainingDC(DeclContext *DC) { if (CXXMethodDecl *MD = dyn_cast(DC)) { // A C++ out-of-line method will return to the file declaration context. if (MD->isOutOfLineDefinition()) return MD->getLexicalDeclContext(); // A C++ inline method is parsed *after* the topmost class it was declared in // is fully parsed (it's "complete"). // The parsing of a C++ inline method happens at the declaration context of // the topmost (non-nested) class it is lexically declared in. assert(isa(MD->getParent()) && "C++ method not in Record."); DC = MD->getParent(); while (CXXRecordDecl *RD = dyn_cast(DC->getLexicalParent())) DC = RD; // Return the declaration context of the topmost class the inline method is // declared in. return DC; } if (isa(DC)) return Context.getTranslationUnitDecl(); if (Decl *D = dyn_cast(DC)) return D->getLexicalDeclContext(); return DC->getLexicalParent(); } void Sema::PushDeclContext(Scope *S, DeclContext *DC) { assert(getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."); CurContext = DC; S->setEntity(DC); } void Sema::PopDeclContext() { assert(CurContext && "DeclContext imbalance!"); CurContext = getContainingDC(CurContext); } /// \brief Determine whether we allow overloading of the function /// PrevDecl with another declaration. /// /// This routine determines whether overloading is possible, not /// whether some new function is actually an overload. It will return /// true in C++ (where we can always provide overloads) or, as an /// extension, in C when the previous function is already an /// overloaded function declaration or has the "overloadable" /// attribute. static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) { if (Context.getLangOptions().CPlusPlus) return true; if (isa(PrevDecl)) return true; return PrevDecl->getAttr() != 0; } /// Add this decl to the scope shadowed decl chains. void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) { // Move up the scope chain until we find the nearest enclosing // non-transparent context. The declaration will be introduced into this // scope. while (S->getEntity() && ((DeclContext *)S->getEntity())->isTransparentContext()) S = S->getParent(); S->AddDecl(D); // Add scoped declarations into their context, so that they can be // found later. Declarations without a context won't be inserted // into any context. CurContext->addDecl(D); // C++ [basic.scope]p4: // -- exactly one declaration shall declare a class name or // enumeration name that is not a typedef name and the other // declarations shall all refer to the same object or // enumerator, or all refer to functions and function templates; // in this case the class name or enumeration name is hidden. if (TagDecl *TD = dyn_cast(D)) { // We are pushing the name of a tag (enum or class). if (CurContext->getLookupContext() == TD->getDeclContext()->getLookupContext()) { // We're pushing the tag into the current context, which might // require some reshuffling in the identifier resolver. IdentifierResolver::iterator I = IdResolver.begin(TD->getDeclName()), IEnd = IdResolver.end(); if (I != IEnd && isDeclInScope(*I, CurContext, S)) { NamedDecl *PrevDecl = *I; for (; I != IEnd && isDeclInScope(*I, CurContext, S); PrevDecl = *I, ++I) { if (TD->declarationReplaces(*I)) { // This is a redeclaration. Remove it from the chain and // break out, so that we'll add in the shadowed // declaration. S->RemoveDecl(*I); if (PrevDecl == *I) { IdResolver.RemoveDecl(*I); IdResolver.AddDecl(TD); return; } else { IdResolver.RemoveDecl(*I); break; } } } // There is already a declaration with the same name in the same // scope, which is not a tag declaration. It must be found // before we find the new declaration, so insert the new // declaration at the end of the chain. IdResolver.AddShadowedDecl(TD, PrevDecl); return; } } } else if (isa(D) && AllowOverloadingOfFunction(D, Context)) { // We are pushing the name of a function, which might be an // overloaded name. FunctionDecl *FD = cast(D); IdentifierResolver::iterator Redecl = std::find_if(IdResolver.begin(FD->getDeclName()), IdResolver.end(), std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces), FD)); if (Redecl != IdResolver.end()) { // There is already a declaration of a function on our // IdResolver chain. Replace it with this declaration. S->RemoveDecl(*Redecl); IdResolver.RemoveDecl(*Redecl); } } IdResolver.AddDecl(D); } void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { if (S->decl_empty()) return; assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && "Scope shouldn't contain decls!"); for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end(); I != E; ++I) { Decl *TmpD = static_cast(*I); assert(TmpD && "This decl didn't get pushed??"); assert(isa(TmpD) && "Decl isn't NamedDecl?"); NamedDecl *D = cast(TmpD); if (!D->getDeclName()) continue; // Remove this name from our lexical scope. IdResolver.RemoveDecl(D); } } /// getObjCInterfaceDecl - Look up a for a class declaration in the scope. /// return 0 if one not found. ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) { // The third "scope" argument is 0 since we aren't enabling lazy built-in // creation from this context. NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName); return dyn_cast_or_null(IDecl); } /// getNonFieldDeclScope - Retrieves the innermost scope, starting /// from S, where a non-field would be declared. This routine copes /// with the difference between C and C++ scoping rules in structs and /// unions. For example, the following code is well-formed in C but /// ill-formed in C++: /// @code /// struct S6 { /// enum { BAR } e; /// }; /// /// void test_S6() { /// struct S6 a; /// a.e = BAR; /// } /// @endcode /// For the declaration of BAR, this routine will return a different /// scope. The scope S will be the scope of the unnamed enumeration /// within S6. In C++, this routine will return the scope associated /// with S6, because the enumeration's scope is a transparent /// context but structures can contain non-field names. In C, this /// routine will return the translation unit scope, since the /// enumeration's scope is a transparent context and structures cannot /// contain non-field names. Scope *Sema::getNonFieldDeclScope(Scope *S) { while (((S->getFlags() & Scope::DeclScope) == 0) || (S->getEntity() && ((DeclContext *)S->getEntity())->isTransparentContext()) || (S->isClassScope() && !getLangOptions().CPlusPlus)) S = S->getParent(); return S; } void Sema::InitBuiltinVaListType() { if (!Context.getBuiltinVaListType().isNull()) return; IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list"); NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName); TypedefDecl *VaTypedef = cast(VaDecl); Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef)); } /// LazilyCreateBuiltin - The specified Builtin-ID was first used at /// file scope. lazily create a decl for it. ForRedeclaration is true /// if we're creating this built-in in anticipation of redeclaring the /// built-in. NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, Scope *S, bool ForRedeclaration, SourceLocation Loc) { Builtin::ID BID = (Builtin::ID)bid; if (Context.BuiltinInfo.hasVAListUse(BID)) InitBuiltinVaListType(); Builtin::Context::GetBuiltinTypeError Error; QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error); switch (Error) { case Builtin::Context::GE_None: // Okay break; case Builtin::Context::GE_Missing_FILE: if (ForRedeclaration) Diag(Loc, diag::err_implicit_decl_requires_stdio) << Context.BuiltinInfo.GetName(BID); return 0; } if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) { Diag(Loc, diag::ext_implicit_lib_function_decl) << Context.BuiltinInfo.GetName(BID) << R; if (!Context.BuiltinInfo.getHeaderName(BID).empty() && Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl) != diag::MAP_IGNORE) Diag(Loc, diag::note_please_include_header) << Context.BuiltinInfo.getHeaderName(BID) << Context.BuiltinInfo.GetName(BID); } FunctionDecl *New = FunctionDecl::Create(Context, Context.getTranslationUnitDecl(), Loc, II, R, FunctionDecl::Extern, false); New->setImplicit(); // Create Decl objects for each parameter, adding them to the // FunctionDecl. if (FunctionTypeProto *FT = dyn_cast(R)) { llvm::SmallVector Params; for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0, FT->getArgType(i), VarDecl::None, 0)); New->setParams(Context, &Params[0], Params.size()); } AddKnownFunctionAttributes(New); // TUScope is the translation-unit scope to insert this function into. // FIXME: This is hideous. We need to teach PushOnScopeChains to // relate Scopes to DeclContexts, and probably eliminate CurContext // entirely, but we're not there yet. DeclContext *SavedContext = CurContext; CurContext = Context.getTranslationUnitDecl(); PushOnScopeChains(New, TUScope); CurContext = SavedContext; return New; } /// GetStdNamespace - This method gets the C++ "std" namespace. This is where /// everything from the standard library is defined. NamespaceDecl *Sema::GetStdNamespace() { if (!StdNamespace) { IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std"); DeclContext *Global = Context.getTranslationUnitDecl(); Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName); StdNamespace = dyn_cast_or_null(Std); } return StdNamespace; } /// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name /// and scope as a previous declaration 'Old'. Figure out how to resolve this /// situation, merging decls or emitting diagnostics as appropriate. /// TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) { bool objc_types = false; // Allow multiple definitions for ObjC built-in typedefs. // FIXME: Verify the underlying types are equivalent! if (getLangOptions().ObjC1) { const IdentifierInfo *TypeID = New->getIdentifier(); switch (TypeID->getLength()) { default: break; case 2: if (!TypeID->isStr("id")) break; Context.setObjCIdType(New); objc_types = true; break; case 5: if (!TypeID->isStr("Class")) break; Context.setObjCClassType(New); objc_types = true; return New; case 3: if (!TypeID->isStr("SEL")) break; Context.setObjCSelType(New); objc_types = true; return New; case 8: if (!TypeID->isStr("Protocol")) break; Context.setObjCProtoType(New->getUnderlyingType()); objc_types = true; return New; } // Fall through - the typedef name was not a builtin type. } // Verify the old decl was also a type. TypeDecl *Old = dyn_cast(OldD); if (!Old) { Diag(New->getLocation(), diag::err_redefinition_different_kind) << New->getDeclName(); if (!objc_types) Diag(OldD->getLocation(), diag::note_previous_definition); return New; } // Determine the "old" type we'll use for checking and diagnostics. QualType OldType; if (TypedefDecl *OldTypedef = dyn_cast(Old)) OldType = OldTypedef->getUnderlyingType(); else OldType = Context.getTypeDeclType(Old); // If the typedef types are not identical, reject them in all languages and // with any extensions enabled. if (OldType != New->getUnderlyingType() && Context.getCanonicalType(OldType) != Context.getCanonicalType(New->getUnderlyingType())) { Diag(New->getLocation(), diag::err_redefinition_different_typedef) << New->getUnderlyingType() << OldType; if (!objc_types) Diag(Old->getLocation(), diag::note_previous_definition); return New; } if (objc_types) return New; if (getLangOptions().Microsoft) return New; // C++ [dcl.typedef]p2: // In a given non-class scope, a typedef specifier can be used to // redefine the name of any type declared in that scope to refer // to the type to which it already refers. if (getLangOptions().CPlusPlus && !isa(CurContext)) return New; // In C, redeclaration of a type is a constraint violation (6.7.2.3p1). // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if // *either* declaration is in a system header. The code below implements // this adhoc compatibility rule. FIXME: The following code will not // work properly when compiling ".i" files (containing preprocessed output). if (PP.getDiagnostics().getSuppressSystemWarnings()) { SourceManager &SrcMgr = Context.getSourceManager(); if (SrcMgr.isInSystemHeader(Old->getLocation())) return New; if (SrcMgr.isInSystemHeader(New->getLocation())) return New; } Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); Diag(Old->getLocation(), diag::note_previous_definition); return New; } /// DeclhasAttr - returns true if decl Declaration already has the target /// attribute. static bool DeclHasAttr(const Decl *decl, const Attr *target) { for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext()) if (attr->getKind() == target->getKind()) return true; return false; } /// MergeAttributes - append attributes from the Old decl to the New one. static void MergeAttributes(Decl *New, Decl *Old) { Attr *attr = const_cast(Old->getAttrs()), *tmp; while (attr) { tmp = attr; attr = attr->getNext(); if (!DeclHasAttr(New, tmp) && tmp->isMerged()) { tmp->setInherited(true); New->addAttr(tmp); } else { tmp->setNext(0); delete(tmp); } } Old->invalidateAttrs(); } /// MergeFunctionDecl - We just parsed a function 'New' from /// declarator D which has the same name and scope as a previous /// declaration 'Old'. Figure out how to resolve this situation, /// merging decls or emitting diagnostics as appropriate. /// Redeclaration will be set true if this New is a redeclaration OldD. /// /// In C++, New and Old must be declarations that are not /// overloaded. Use IsOverload to determine whether New and Old are /// overloaded, and to select the Old declaration that New should be /// merged with. FunctionDecl * Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) { assert(!isa(OldD) && "Cannot merge with an overloaded function declaration"); Redeclaration = false; // Verify the old decl was also a function. FunctionDecl *Old = dyn_cast(OldD); if (!Old) { Diag(New->getLocation(), diag::err_redefinition_different_kind) << New->getDeclName(); Diag(OldD->getLocation(), diag::note_previous_definition); return New; } // Determine whether the previous declaration was a definition, // implicit declaration, or a declaration. diag::kind PrevDiag; if (Old->isThisDeclarationADefinition()) PrevDiag = diag::note_previous_definition; else if (Old->isImplicit()) { if (Old->getBuiltinID(Context)) PrevDiag = diag::note_previous_builtin_declaration; else PrevDiag = diag::note_previous_implicit_declaration; } else PrevDiag = diag::note_previous_declaration; QualType OldQType = Context.getCanonicalType(Old->getType()); QualType NewQType = Context.getCanonicalType(New->getType()); if (getLangOptions().CPlusPlus) { // (C++98 13.1p2): // Certain function declarations cannot be overloaded: // -- Function declarations that differ only in the return type // cannot be overloaded. QualType OldReturnType = cast(OldQType.getTypePtr())->getResultType(); QualType NewReturnType = cast(NewQType.getTypePtr())->getResultType(); if (OldReturnType != NewReturnType) { Diag(New->getLocation(), diag::err_ovl_diff_return_type); Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); Redeclaration = true; return New; } const CXXMethodDecl* OldMethod = dyn_cast(Old); const CXXMethodDecl* NewMethod = dyn_cast(New); if (OldMethod && NewMethod) { // -- Member function declarations with the same name and the // same parameter types cannot be overloaded if any of them // is a static member function declaration. if (OldMethod->isStatic() || NewMethod->isStatic()) { Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); return New; } // C++ [class.mem]p1: // [...] A member shall not be declared twice in the // member-specification, except that a nested class or member // class template can be declared and then later defined. if (OldMethod->getLexicalDeclContext() == NewMethod->getLexicalDeclContext()) { unsigned NewDiag; if (isa(OldMethod)) NewDiag = diag::err_constructor_redeclared; else if (isa(NewMethod)) NewDiag = diag::err_destructor_redeclared; else if (isa(NewMethod)) NewDiag = diag::err_conv_function_redeclared; else NewDiag = diag::err_member_redeclared; Diag(New->getLocation(), NewDiag); Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); } } // (C++98 8.3.5p3): // All declarations for a function shall agree exactly in both the // return type and the parameter-type-list. if (OldQType == NewQType) { // We have a redeclaration. MergeAttributes(New, Old); Redeclaration = true; return MergeCXXFunctionDecl(New, Old); } // Fall through for conflicting redeclarations and redefinitions. } // C: Function types need to be compatible, not identical. This handles // duplicate function decls like "void f(int); void f(enum X);" properly. if (!getLangOptions().CPlusPlus && Context.typesAreCompatible(OldQType, NewQType)) { MergeAttributes(New, Old); Redeclaration = true; return New; } // A function that has already been declared has been redeclared or defined // with a different type- show appropriate diagnostic // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. // TODO: This is totally simplistic. It should handle merging functions // together etc, merging extern int X; int X; ... Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); return New; } /// Predicate for C "tentative" external object definitions (C99 6.9.2). static bool isTentativeDefinition(VarDecl *VD) { if (VD->isFileVarDecl()) return (!VD->getInit() && (VD->getStorageClass() == VarDecl::None || VD->getStorageClass() == VarDecl::Static)); return false; } /// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors /// when dealing with C "tentative" external object definitions (C99 6.9.2). void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) { bool VDIsTentative = isTentativeDefinition(VD); bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType(); // FIXME: I don't think this will actually see all of the // redefinitions. Can't we check this property on-the-fly? for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()), E = IdResolver.end(); I != E; ++I) { if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) { VarDecl *OldDecl = dyn_cast(*I); // Handle the following case: // int a[10]; // int a[]; - the code below makes sure we set the correct type. // int a[11]; - this is an error, size isn't 10. if (OldDecl && VDIsTentative && VDIsIncompleteArray && OldDecl->getType()->isConstantArrayType()) VD->setType(OldDecl->getType()); // Check for "tentative" definitions. We can't accomplish this in // MergeVarDecl since the initializer hasn't been attached. if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative) continue; // Handle __private_extern__ just like extern. if (OldDecl->getStorageClass() != VarDecl::Extern && OldDecl->getStorageClass() != VarDecl::PrivateExtern && VD->getStorageClass() != VarDecl::Extern && VD->getStorageClass() != VarDecl::PrivateExtern) { Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName(); Diag(OldDecl->getLocation(), diag::note_previous_definition); // One redefinition error is enough. break; } } } } /// MergeVarDecl - We just parsed a variable 'New' which has the same name /// and scope as a previous declaration 'Old'. Figure out how to resolve this /// situation, merging decls or emitting diagnostics as appropriate. /// /// Tentative definition rules (C99 6.9.2p2) are checked by /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative /// definitions here, since the initializer hasn't been attached. /// VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) { // Verify the old decl was also a variable. VarDecl *Old = dyn_cast(OldD); if (!Old) { Diag(New->getLocation(), diag::err_redefinition_different_kind) << New->getDeclName(); Diag(OldD->getLocation(), diag::note_previous_definition); return New; } MergeAttributes(New, Old); // Merge the types QualType MergedT = Context.mergeTypes(New->getType(), Old->getType()); if (MergedT.isNull()) { Diag(New->getLocation(), diag::err_redefinition_different_type) << New->getDeclName(); Diag(Old->getLocation(), diag::note_previous_definition); return New; } New->setType(MergedT); // C99 6.2.2p4: Check if we have a static decl followed by a non-static. if (New->getStorageClass() == VarDecl::Static && (Old->getStorageClass() == VarDecl::None || Old->getStorageClass() == VarDecl::Extern)) { Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName(); Diag(Old->getLocation(), diag::note_previous_definition); return New; } // C99 6.2.2p4: Check if we have a non-static decl followed by a static. if (New->getStorageClass() != VarDecl::Static && Old->getStorageClass() == VarDecl::Static) { Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); Diag(Old->getLocation(), diag::note_previous_definition); return New; } // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) { Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); Diag(Old->getLocation(), diag::note_previous_definition); } return New; } /// CheckParmsForFunctionDef - Check that the parameters of the given /// function are appropriate for the definition of a function. This /// takes care of any checks that cannot be performed on the /// declaration itself, e.g., that the types of each of the function /// parameters are complete. bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) { bool HasInvalidParm = false; for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); // C99 6.7.5.3p4: the parameters in a parameter type list in a // function declarator that is part of a function definition of // that function shall not have incomplete type. if (!Param->isInvalidDecl() && DiagnoseIncompleteType(Param->getLocation(), Param->getType(), diag::err_typecheck_decl_incomplete_type)) { Param->setInvalidDecl(); HasInvalidParm = true; } // C99 6.9.1p5: If the declarator includes a parameter type list, the // declaration of each parameter shall include an identifier. if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus) Diag(Param->getLocation(), diag::err_parameter_name_omitted); } return HasInvalidParm; } /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with /// no declarator (e.g. "struct foo;") is parsed. Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) { TagDecl *Tag = 0; if (DS.getTypeSpecType() == DeclSpec::TST_class || DS.getTypeSpecType() == DeclSpec::TST_struct || DS.getTypeSpecType() == DeclSpec::TST_union || DS.getTypeSpecType() == DeclSpec::TST_enum) Tag = dyn_cast(static_cast(DS.getTypeRep())); if (RecordDecl *Record = dyn_cast_or_null(Tag)) { if (!Record->getDeclName() && Record->isDefinition() && DS.getStorageClassSpec() != DeclSpec::SCS_typedef) return BuildAnonymousStructOrUnion(S, DS, Record); // Microsoft allows unnamed struct/union fields. Don't complain // about them. // FIXME: Should we support Microsoft's extensions in this area? if (Record->getDeclName() && getLangOptions().Microsoft) return Tag; } if (!DS.isMissingDeclaratorOk() && DS.getTypeSpecType() != DeclSpec::TST_error) { // Warn about typedefs of enums without names, since this is an // extension in both Microsoft an GNU. if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef && Tag && isa(Tag)) { Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name) << DS.getSourceRange(); return Tag; } Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators) << DS.getSourceRange(); return 0; } return Tag; } /// InjectAnonymousStructOrUnionMembers - Inject the members of the /// anonymous struct or union AnonRecord into the owning context Owner /// and scope S. This routine will be invoked just after we realize /// that an unnamed union or struct is actually an anonymous union or /// struct, e.g., /// /// @code /// union { /// int i; /// float f; /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and /// // f into the surrounding scope.x /// @endcode /// /// This routine is recursive, injecting the names of nested anonymous /// structs/unions into the owning context and scope as well. bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner, RecordDecl *AnonRecord) { bool Invalid = false; for (RecordDecl::field_iterator F = AnonRecord->field_begin(), FEnd = AnonRecord->field_end(); F != FEnd; ++F) { if ((*F)->getDeclName()) { NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(), LookupOrdinaryName, true); if (PrevDecl && !isa(PrevDecl)) { // C++ [class.union]p2: // The names of the members of an anonymous union shall be // distinct from the names of any other entity in the // scope in which the anonymous union is declared. unsigned diagKind = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl : diag::err_anonymous_struct_member_redecl; Diag((*F)->getLocation(), diagKind) << (*F)->getDeclName(); Diag(PrevDecl->getLocation(), diag::note_previous_declaration); Invalid = true; } else { // C++ [class.union]p2: // For the purpose of name lookup, after the anonymous union // definition, the members of the anonymous union are // considered to have been defined in the scope in which the // anonymous union is declared. Owner->makeDeclVisibleInContext(*F); S->AddDecl(*F); IdResolver.AddDecl(*F); } } else if (const RecordType *InnerRecordType = (*F)->getType()->getAsRecordType()) { RecordDecl *InnerRecord = InnerRecordType->getDecl(); if (InnerRecord->isAnonymousStructOrUnion()) Invalid = Invalid || InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord); } } return Invalid; } /// ActOnAnonymousStructOrUnion - Handle the declaration of an /// anonymous structure or union. Anonymous unions are a C++ feature /// (C++ [class.union]) and a GNU C extension; anonymous structures /// are a GNU C and GNU C++ extension. Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, RecordDecl *Record) { DeclContext *Owner = Record->getDeclContext(); // Diagnose whether this anonymous struct/union is an extension. if (Record->isUnion() && !getLangOptions().CPlusPlus) Diag(Record->getLocation(), diag::ext_anonymous_union); else if (!Record->isUnion()) Diag(Record->getLocation(), diag::ext_anonymous_struct); // C and C++ require different kinds of checks for anonymous // structs/unions. bool Invalid = false; if (getLangOptions().CPlusPlus) { const char* PrevSpec = 0; // C++ [class.union]p3: // Anonymous unions declared in a named namespace or in the // global namespace shall be declared static. if (DS.getStorageClassSpec() != DeclSpec::SCS_static && (isa(Owner) || (isa(Owner) && cast(Owner)->getDeclName()))) { Diag(Record->getLocation(), diag::err_anonymous_union_not_static); Invalid = true; // Recover by adding 'static'. DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec); } // C++ [class.union]p3: // A storage class is not allowed in a declaration of an // anonymous union in a class scope. else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && isa(Owner)) { Diag(DS.getStorageClassSpecLoc(), diag::err_anonymous_union_with_storage_spec); Invalid = true; // Recover by removing the storage specifier. DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(), PrevSpec); } // C++ [class.union]p2: // The member-specification of an anonymous union shall only // define non-static data members. [Note: nested types and // functions cannot be declared within an anonymous union. ] for (DeclContext::decl_iterator Mem = Record->decls_begin(), MemEnd = Record->decls_end(); Mem != MemEnd; ++Mem) { if (FieldDecl *FD = dyn_cast(*Mem)) { // C++ [class.union]p3: // An anonymous union shall not have private or protected // members (clause 11). if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) { Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected); Invalid = true; } } else if ((*Mem)->isImplicit()) { // Any implicit members are fine. } else if (isa(*Mem) && (*Mem)->getDeclContext() != Record) { // This is a type that showed up in an // elaborated-type-specifier inside the anonymous struct or // union, but which actually declares a type outside of the // anonymous struct or union. It's okay. } else if (RecordDecl *MemRecord = dyn_cast(*Mem)) { if (!MemRecord->isAnonymousStructOrUnion() && MemRecord->getDeclName()) { // This is a nested type declaration. Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) << (int)Record->isUnion(); Invalid = true; } } else { // We have something that isn't a non-static data // member. Complain about it. unsigned DK = diag::err_anonymous_record_bad_member; if (isa(*Mem)) DK = diag::err_anonymous_record_with_type; else if (isa(*Mem)) DK = diag::err_anonymous_record_with_function; else if (isa(*Mem)) DK = diag::err_anonymous_record_with_static; Diag((*Mem)->getLocation(), DK) << (int)Record->isUnion(); Invalid = true; } } } else { // FIXME: Check GNU C semantics if (Record->isUnion() && !Owner->isRecord()) { Diag(Record->getLocation(), diag::err_anonymous_union_not_member) << (int)getLangOptions().CPlusPlus; Invalid = true; } } if (!Record->isUnion() && !Owner->isRecord()) { Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) << (int)getLangOptions().CPlusPlus; Invalid = true; } // Create a declaration for this anonymous struct/union. NamedDecl *Anon = 0; if (RecordDecl *OwningClass = dyn_cast(Owner)) { Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(), /*IdentifierInfo=*/0, Context.getTypeDeclType(Record), /*BitWidth=*/0, /*Mutable=*/false); Anon->setAccess(AS_public); if (getLangOptions().CPlusPlus) FieldCollector->Add(cast(Anon)); } else { VarDecl::StorageClass SC; switch (DS.getStorageClassSpec()) { default: assert(0 && "Unknown storage class!"); case DeclSpec::SCS_unspecified: SC = VarDecl::None; break; case DeclSpec::SCS_extern: SC = VarDecl::Extern; break; case DeclSpec::SCS_static: SC = VarDecl::Static; break; case DeclSpec::SCS_auto: SC = VarDecl::Auto; break; case DeclSpec::SCS_register: SC = VarDecl::Register; break; case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break; case DeclSpec::SCS_mutable: // mutable can only appear on non-static class members, so it's always // an error here Diag(Record->getLocation(), diag::err_mutable_nonmember); Invalid = true; SC = VarDecl::None; break; } Anon = VarDecl::Create(Context, Owner, Record->getLocation(), /*IdentifierInfo=*/0, Context.getTypeDeclType(Record), SC, DS.getSourceRange().getBegin()); } Anon->setImplicit(); // Add the anonymous struct/union object to the current // context. We'll be referencing this object when we refer to one of // its members. Owner->addDecl(Anon); // Inject the members of the anonymous struct/union into the owning // context and into the identifier resolver chain for name lookup // purposes. if (InjectAnonymousStructOrUnionMembers(S, Owner, Record)) Invalid = true; // Mark this as an anonymous struct/union type. Note that we do not // do this until after we have already checked and injected the // members of this anonymous struct/union type, because otherwise // the members could be injected twice: once by DeclContext when it // builds its lookup table, and once by // InjectAnonymousStructOrUnionMembers. Record->setAnonymousStructOrUnion(true); if (Invalid) Anon->setInvalidDecl(); return Anon; } bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType, bool DirectInit) { // Get the type before calling CheckSingleAssignmentConstraints(), since // it can promote the expression. QualType InitType = Init->getType(); if (getLangOptions().CPlusPlus) { // FIXME: I dislike this error message. A lot. if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit)) return Diag(Init->getSourceRange().getBegin(), diag::err_typecheck_convert_incompatible) << DeclType << Init->getType() << "initializing" << Init->getSourceRange(); return false; } AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init); return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType, InitType, Init, "initializing"); } bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) { const ArrayType *AT = Context.getAsArrayType(DeclT); if (const IncompleteArrayType *IAT = dyn_cast(AT)) { // C99 6.7.8p14. We have an array of character type with unknown size // being initialized to a string literal. llvm::APSInt ConstVal(32); ConstVal = strLiteral->getByteLength() + 1; // Return a new array type (C99 6.7.8p22). DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal, ArrayType::Normal, 0); } else { const ConstantArrayType *CAT = cast(AT); // C99 6.7.8p14. We have an array of character type with known size. // FIXME: Avoid truncation for 64-bit length strings. if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue()) Diag(strLiteral->getSourceRange().getBegin(), diag::warn_initializer_string_for_char_array_too_long) << strLiteral->getSourceRange(); } // Set type from "char *" to "constant array of char". strLiteral->setType(DeclT); // For now, we always return false (meaning success). return false; } StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) { const ArrayType *AT = Context.getAsArrayType(DeclType); if (AT && AT->getElementType()->isCharType()) { return dyn_cast(Init->IgnoreParens()); } return 0; } bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType, SourceLocation InitLoc, DeclarationName InitEntity, bool DirectInit) { if (DeclType->isDependentType() || Init->isTypeDependent()) return false; // C++ [dcl.init.ref]p1: // A variable declared to be a T&, that is "reference to type T" // (8.3.2), shall be initialized by an object, or function, of // type T or by an object that can be converted into a T. if (DeclType->isReferenceType()) return CheckReferenceInit(Init, DeclType, 0, false, DirectInit); // C99 6.7.8p3: The type of the entity to be initialized shall be an array // of unknown size ("[]") or an object type that is not a variable array type. if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType)) return Diag(InitLoc, diag::err_variable_object_no_init) << VAT->getSizeExpr()->getSourceRange(); InitListExpr *InitList = dyn_cast(Init); if (!InitList) { // FIXME: Handle wide strings if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType)) return CheckStringLiteralInit(strLiteral, DeclType); // C++ [dcl.init]p14: // -- If the destination type is a (possibly cv-qualified) class // type: if (getLangOptions().CPlusPlus && DeclType->isRecordType()) { QualType DeclTypeC = Context.getCanonicalType(DeclType); QualType InitTypeC = Context.getCanonicalType(Init->getType()); // -- If the initialization is direct-initialization, or if it is // copy-initialization where the cv-unqualified version of the // source type is the same class as, or a derived class of, the // class of the destination, constructors are considered. if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) || IsDerivedFrom(InitTypeC, DeclTypeC)) { CXXConstructorDecl *Constructor = PerformInitializationByConstructor(DeclType, &Init, 1, InitLoc, Init->getSourceRange(), InitEntity, DirectInit? IK_Direct : IK_Copy); return Constructor == 0; } // -- Otherwise (i.e., for the remaining copy-initialization // cases), user-defined conversion sequences that can // convert from the source type to the destination type or // (when a conversion function is used) to a derived class // thereof are enumerated as described in 13.3.1.4, and the // best one is chosen through overload resolution // (13.3). If the conversion cannot be done or is // ambiguous, the initialization is ill-formed. The // function selected is called with the initializer // expression as its argument; if the function is a // constructor, the call initializes a temporary of the // destination type. // FIXME: We're pretending to do copy elision here; return to // this when we have ASTs for such things. if (!PerformImplicitConversion(Init, DeclType, "initializing")) return false; if (InitEntity) return Diag(InitLoc, diag::err_cannot_initialize_decl) << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid) << Init->getType() << Init->getSourceRange(); else return Diag(InitLoc, diag::err_cannot_initialize_decl_noname) << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid) << Init->getType() << Init->getSourceRange(); } // C99 6.7.8p16. if (DeclType->isArrayType()) return Diag(Init->getLocStart(), diag::err_array_init_list_required) << Init->getSourceRange(); return CheckSingleInitializer(Init, DeclType, DirectInit); } bool hadError = CheckInitList(InitList, DeclType); Init = InitList; return hadError; } /// GetNameForDeclarator - Determine the full declaration name for the /// given Declarator. DeclarationName Sema::GetNameForDeclarator(Declarator &D) { switch (D.getKind()) { case Declarator::DK_Abstract: assert(D.getIdentifier() == 0 && "abstract declarators have no name"); return DeclarationName(); case Declarator::DK_Normal: assert (D.getIdentifier() != 0 && "normal declarators have an identifier"); return DeclarationName(D.getIdentifier()); case Declarator::DK_Constructor: { QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType()); Ty = Context.getCanonicalType(Ty); return Context.DeclarationNames.getCXXConstructorName(Ty); } case Declarator::DK_Destructor: { QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType()); Ty = Context.getCanonicalType(Ty); return Context.DeclarationNames.getCXXDestructorName(Ty); } case Declarator::DK_Conversion: { // FIXME: We'd like to keep the non-canonical type for diagnostics! QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType()); Ty = Context.getCanonicalType(Ty); return Context.DeclarationNames.getCXXConversionFunctionName(Ty); } case Declarator::DK_Operator: assert(D.getIdentifier() == 0 && "operator names have no identifier"); return Context.DeclarationNames.getCXXOperatorName( D.getOverloadedOperator()); } assert(false && "Unknown name kind"); return DeclarationName(); } /// isNearlyMatchingFunction - Determine whether the C++ functions /// Declaration and Definition are "nearly" matching. This heuristic /// is used to improve diagnostics in the case where an out-of-line /// function definition doesn't match any declaration within /// the class or namespace. static bool isNearlyMatchingFunction(ASTContext &Context, FunctionDecl *Declaration, FunctionDecl *Definition) { if (Declaration->param_size() != Definition->param_size()) return false; for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType()); DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType()); if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType()) return false; } return true; } Sema::DeclTy * Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl, bool IsFunctionDefinition) { NamedDecl *LastDeclarator = dyn_cast_or_null((Decl *)lastDecl); DeclarationName Name = GetNameForDeclarator(D); // All of these full declarators require an identifier. If it doesn't have // one, the ParsedFreeStandingDeclSpec action should be used. if (!Name) { if (!D.getInvalidType()) // Reject this if we think it is valid. Diag(D.getDeclSpec().getSourceRange().getBegin(), diag::err_declarator_need_ident) << D.getDeclSpec().getSourceRange() << D.getSourceRange(); return 0; } // The scope passed in may not be a decl scope. Zip up the scope tree until // we find one that is. while ((S->getFlags() & Scope::DeclScope) == 0 || (S->getFlags() & Scope::TemplateParamScope) != 0) S = S->getParent(); DeclContext *DC; NamedDecl *PrevDecl; NamedDecl *New; bool InvalidDecl = false; // See if this is a redefinition of a variable in the same scope. if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) { DC = CurContext; PrevDecl = LookupName(S, Name, LookupOrdinaryName, true, true, D.getIdentifierLoc()); } else { // Something like "int foo::x;" DC = static_cast(D.getCXXScopeSpec().getScopeRep()); PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true); // C++ 7.3.1.2p2: // Members (including explicit specializations of templates) of a named // namespace can also be defined outside that namespace by explicit // qualification of the name being defined, provided that the entity being // defined was already declared in the namespace and the definition appears // after the point of declaration in a namespace that encloses the // declarations namespace. // // Note that we only check the context at this point. We don't yet // have enough information to make sure that PrevDecl is actually // the declaration we want to match. For example, given: // // class X { // void f(); // void f(float); // }; // // void X::f(int) { } // ill-formed // // In this case, PrevDecl will point to the overload set // containing the two f's declared in X, but neither of them // matches. // First check whether we named the global scope. if (isa(DC)) { Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope) << Name << D.getCXXScopeSpec().getRange(); } else if (!CurContext->Encloses(DC)) { // The qualifying scope doesn't enclose the original declaration. // Emit diagnostic based on current scope. SourceLocation L = D.getIdentifierLoc(); SourceRange R = D.getCXXScopeSpec().getRange(); if (isa(CurContext)) Diag(L, diag::err_invalid_declarator_in_function) << Name << R; else Diag(L, diag::err_invalid_declarator_scope) << Name << cast(DC) << R; InvalidDecl = true; } } if (PrevDecl && PrevDecl->isTemplateParameter()) { // Maybe we will complain about the shadowed template parameter. InvalidDecl = InvalidDecl || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); // Just pretend that we didn't see the previous declaration. PrevDecl = 0; } // In C++, the previous declaration we find might be a tag type // (class or enum). In this case, the new declaration will hide the // tag type. Note that this does does not apply if we're declaring a // typedef (C++ [dcl.typedef]p4). if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag && D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef) PrevDecl = 0; QualType R = GetTypeForDeclarator(D, S); assert(!R.isNull() && "GetTypeForDeclarator() returned null type"); if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl, InvalidDecl); } else if (R.getTypePtr()->isFunctionType()) { New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl, IsFunctionDefinition, InvalidDecl); } else { New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl, InvalidDecl); } if (New == 0) return 0; // Set the lexical context. If the declarator has a C++ scope specifier, the // lexical context will be different from the semantic context. New->setLexicalDeclContext(CurContext); // If this has an identifier, add it to the scope stack. if (Name) PushOnScopeChains(New, S); // If any semantic error occurred, mark the decl as invalid. if (D.getInvalidType() || InvalidDecl) New->setInvalidDecl(); return New; } NamedDecl* Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, QualType R, Decl* LastDeclarator, Decl* PrevDecl, bool& InvalidDecl) { // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). if (D.getCXXScopeSpec().isSet()) { Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) << D.getCXXScopeSpec().getRange(); InvalidDecl = true; // Pretend we didn't see the scope specifier. DC = 0; } // Check that there are no default arguments (C++ only). if (getLangOptions().CPlusPlus) CheckExtraCXXDefaultArguments(D); TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator); if (!NewTD) return 0; // Handle attributes prior to checking for duplicates in MergeVarDecl ProcessDeclAttributes(NewTD, D); // Merge the decl with the existing one if appropriate. If the decl is // in an outer scope, it isn't the same thing. if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) { NewTD = MergeTypeDefDecl(NewTD, PrevDecl); if (NewTD == 0) return 0; } if (S->getFnParent() == 0) { // C99 6.7.7p2: If a typedef name specifies a variably modified type // then it shall have block scope. if (NewTD->getUnderlyingType()->isVariablyModifiedType()) { if (NewTD->getUnderlyingType()->isVariableArrayType()) Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope); else Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope); InvalidDecl = true; } } return NewTD; } NamedDecl* Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC, QualType R, Decl* LastDeclarator, Decl* PrevDecl, bool& InvalidDecl) { DeclarationName Name = GetNameForDeclarator(D); // Check that there are no default arguments (C++ only). if (getLangOptions().CPlusPlus) CheckExtraCXXDefaultArguments(D); if (R.getTypePtr()->isObjCInterfaceType()) { Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object) << D.getIdentifier(); InvalidDecl = true; } VarDecl *NewVD; VarDecl::StorageClass SC; switch (D.getDeclSpec().getStorageClassSpec()) { default: assert(0 && "Unknown storage class!"); case DeclSpec::SCS_unspecified: SC = VarDecl::None; break; case DeclSpec::SCS_extern: SC = VarDecl::Extern; break; case DeclSpec::SCS_static: SC = VarDecl::Static; break; case DeclSpec::SCS_auto: SC = VarDecl::Auto; break; case DeclSpec::SCS_register: SC = VarDecl::Register; break; case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break; case DeclSpec::SCS_mutable: // mutable can only appear on non-static class members, so it's always // an error here Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); InvalidDecl = true; SC = VarDecl::None; break; } IdentifierInfo *II = Name.getAsIdentifierInfo(); if (!II) { Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name.getAsString(); return 0; } if (DC->isRecord()) { // This is a static data member for a C++ class. NewVD = CXXClassVarDecl::Create(Context, cast(DC), D.getIdentifierLoc(), II, R); } else { bool ThreadSpecified = D.getDeclSpec().isThreadSpecified(); if (S->getFnParent() == 0) { // C99 6.9p2: The storage-class specifiers auto and register shall not // appear in the declaration specifiers in an external declaration. if (SC == VarDecl::Auto || SC == VarDecl::Register) { Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); InvalidDecl = true; } } NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(), II, R, SC, // FIXME: Move to DeclGroup... D.getDeclSpec().getSourceRange().getBegin()); NewVD->setThreadSpecified(ThreadSpecified); } NewVD->setNextDeclarator(LastDeclarator); // Handle attributes prior to checking for duplicates in MergeVarDecl ProcessDeclAttributes(NewVD, D); // Handle GNU asm-label extension (encoded as an attribute). if (Expr *E = (Expr*) D.getAsmLabel()) { // The parser guarantees this is a string. StringLiteral *SE = cast(E); NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(), SE->getByteLength()))); } // Emit an error if an address space was applied to decl with local storage. // This includes arrays of objects with address space qualifiers, but not // automatic variables that point to other address spaces. // ISO/IEC TR 18037 S5.1.2 if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) { Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl); InvalidDecl = true; } // Merge the decl with the existing one if appropriate. If the decl is // in an outer scope, it isn't the same thing. if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) { if (isa(PrevDecl) && D.getCXXScopeSpec().isSet()) { // The user tried to define a non-static data member // out-of-line (C++ [dcl.meaning]p1). Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) << D.getCXXScopeSpec().getRange(); NewVD->Destroy(Context); return 0; } NewVD = MergeVarDecl(NewVD, PrevDecl); if (NewVD == 0) return 0; if (D.getCXXScopeSpec().isSet()) { // No previous declaration in the qualifying scope. Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member) << Name << D.getCXXScopeSpec().getRange(); InvalidDecl = true; } } return NewVD; } NamedDecl* Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC, QualType R, Decl *LastDeclarator, Decl* PrevDecl, bool IsFunctionDefinition, bool& InvalidDecl) { assert(R.getTypePtr()->isFunctionType()); DeclarationName Name = GetNameForDeclarator(D); FunctionDecl::StorageClass SC = FunctionDecl::None; switch (D.getDeclSpec().getStorageClassSpec()) { default: assert(0 && "Unknown storage class!"); case DeclSpec::SCS_auto: case DeclSpec::SCS_register: case DeclSpec::SCS_mutable: Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func); InvalidDecl = true; break; case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break; case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break; case DeclSpec::SCS_static: SC = FunctionDecl::Static; break; case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break; } bool isInline = D.getDeclSpec().isInlineSpecified(); // bool isVirtual = D.getDeclSpec().isVirtualSpecified(); bool isExplicit = D.getDeclSpec().isExplicitSpecified(); FunctionDecl *NewFD; if (D.getKind() == Declarator::DK_Constructor) { // This is a C++ constructor declaration. assert(DC->isRecord() && "Constructors can only be declared in a member context"); InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC); // Create the new declaration NewFD = CXXConstructorDecl::Create(Context, cast(DC), D.getIdentifierLoc(), Name, R, isExplicit, isInline, /*isImplicitlyDeclared=*/false); if (InvalidDecl) NewFD->setInvalidDecl(); } else if (D.getKind() == Declarator::DK_Destructor) { // This is a C++ destructor declaration. if (DC->isRecord()) { InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC); NewFD = CXXDestructorDecl::Create(Context, cast(DC), D.getIdentifierLoc(), Name, R, isInline, /*isImplicitlyDeclared=*/false); if (InvalidDecl) NewFD->setInvalidDecl(); } else { Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); // Create a FunctionDecl to satisfy the function definition parsing // code path. NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(), Name, R, SC, isInline, // FIXME: Move to DeclGroup... D.getDeclSpec().getSourceRange().getBegin()); InvalidDecl = true; NewFD->setInvalidDecl(); } } else if (D.getKind() == Declarator::DK_Conversion) { if (!DC->isRecord()) { Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member); return 0; } else { InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC); NewFD = CXXConversionDecl::Create(Context, cast(DC), D.getIdentifierLoc(), Name, R, isInline, isExplicit); if (InvalidDecl) NewFD->setInvalidDecl(); } } else if (DC->isRecord()) { // This is a C++ method declaration. NewFD = CXXMethodDecl::Create(Context, cast(DC), D.getIdentifierLoc(), Name, R, (SC == FunctionDecl::Static), isInline); } else { NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(), Name, R, SC, isInline, // FIXME: Move to DeclGroup... D.getDeclSpec().getSourceRange().getBegin()); } NewFD->setNextDeclarator(LastDeclarator); // Set the lexical context. If the declarator has a C++ // scope specifier, the lexical context will be different // from the semantic context. NewFD->setLexicalDeclContext(CurContext); // Handle GNU asm-label extension (encoded as an attribute). if (Expr *E = (Expr*) D.getAsmLabel()) { // The parser guarantees this is a string. StringLiteral *SE = cast(E); NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(), SE->getByteLength()))); } // Copy the parameter declarations from the declarator D to // the function declaration NewFD, if they are available. if (D.getNumTypeObjects() > 0) { DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; // Create Decl objects for each parameter, adding them to the // FunctionDecl. llvm::SmallVector Params; // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs // function that takes no arguments, not a function that takes a // single void argument. // We let through "const void" here because Sema::GetTypeForDeclarator // already checks for that case. if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && FTI.ArgInfo[0].Param && ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) { // empty arg list, don't push any params. ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param; // In C++, the empty parameter-type-list must be spelled "void"; a // typedef of void is not permitted. if (getLangOptions().CPlusPlus && Param->getType().getUnqualifiedType() != Context.VoidTy) { Diag(Param->getLocation(), diag::ext_param_typedef_of_void); } } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) { for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param); } NewFD->setParams(Context, &Params[0], Params.size()); } else if (R->getAsTypedefType()) { // When we're declaring a function with a typedef, as in the // following example, we'll need to synthesize (unnamed) // parameters for use in the declaration. // // @code // typedef void fn(int); // fn f; // @endcode const FunctionTypeProto *FT = R->getAsFunctionTypeProto(); if (!FT) { // This is a typedef of a function with no prototype, so we // don't need to do anything. } else if ((FT->getNumArgs() == 0) || (FT->getNumArgs() == 1 && !FT->isVariadic() && FT->getArgType(0)->isVoidType())) { // This is a zero-argument function. We don't need to do anything. } else { // Synthesize a parameter for each argument type. llvm::SmallVector Params; for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin(); ArgType != FT->arg_type_end(); ++ArgType) { Params.push_back(ParmVarDecl::Create(Context, DC, SourceLocation(), 0, *ArgType, VarDecl::None, 0)); } NewFD->setParams(Context, &Params[0], Params.size()); } } if (CXXConstructorDecl *Constructor = dyn_cast(NewFD)) InvalidDecl = InvalidDecl || CheckConstructor(Constructor); else if (isa(NewFD)) { CXXRecordDecl *Record = cast(NewFD->getParent()); Record->setUserDeclaredDestructor(true); // C++ [class]p4: A POD-struct is an aggregate class that has [...] no // user-defined destructor. Record->setPOD(false); } else if (CXXConversionDecl *Conversion = dyn_cast(NewFD)) ActOnConversionDeclarator(Conversion); // Extra checking for C++ overloaded operators (C++ [over.oper]). if (NewFD->isOverloadedOperator() && CheckOverloadedOperatorDeclaration(NewFD)) NewFD->setInvalidDecl(); // Merge the decl with the existing one if appropriate. Since C functions // are in a flat namespace, make sure we consider decls in outer scopes. bool OverloadableAttrRequired = false; bool Redeclaration = false; if (PrevDecl && (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) { // Determine whether NewFD is an overload of PrevDecl or // a declaration that requires merging. If it's an overload, // there's no more work to do here; we'll just add the new // function to the scope. OverloadedFunctionDecl::function_iterator MatchedDecl; if (!getLangOptions().CPlusPlus && AllowOverloadingOfFunction(PrevDecl, Context)) OverloadableAttrRequired = true; if (!AllowOverloadingOfFunction(PrevDecl, Context) || !IsOverload(NewFD, PrevDecl, MatchedDecl)) { Decl *OldDecl = PrevDecl; // If PrevDecl was an overloaded function, extract the // FunctionDecl that matched. if (isa(PrevDecl)) OldDecl = *MatchedDecl; // NewFD and PrevDecl represent declarations that need to be // merged. NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration); if (NewFD == 0) return 0; if (Redeclaration) { NewFD->setPreviousDeclaration(cast(OldDecl)); // An out-of-line member function declaration must also be a // definition (C++ [dcl.meaning]p1). if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) { Diag(NewFD->getLocation(), diag::err_out_of_line_declaration) << D.getCXXScopeSpec().getRange(); NewFD->setInvalidDecl(); } } } } if (D.getCXXScopeSpec().isSet() && (!PrevDecl || !Redeclaration)) { // The user tried to provide an out-of-line definition for a // function that is a member of a class or namespace, but there // was no such member function declared (C++ [class.mfct]p2, // C++ [namespace.memdef]p2). For example: // // class X { // void f() const; // }; // // void X::f() { } // ill-formed // // Complain about this problem, and attempt to suggest close // matches (e.g., those that differ only in cv-qualifiers and // whether the parameter types are references). Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match) << cast(DC) << D.getCXXScopeSpec().getRange(); InvalidDecl = true; LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName, true); assert(!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"); for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); Func != FuncEnd; ++Func) { if (isa(*Func) && isNearlyMatchingFunction(Context, cast(*Func), NewFD)) Diag((*Func)->getLocation(), diag::note_member_def_close_match); } PrevDecl = 0; } // Handle attributes. We need to have merged decls when handling attributes // (for example to check for conflicts, etc). ProcessDeclAttributes(NewFD, D); AddKnownFunctionAttributes(NewFD); if (OverloadableAttrRequired && !NewFD->getAttr()) { // If a function name is overloadable in C, then every function // with that name must be marked "overloadable". Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing) << Redeclaration << NewFD; if (PrevDecl) Diag(PrevDecl->getLocation(), diag::note_attribute_overloadable_prev_overload); NewFD->addAttr(new OverloadableAttr); } if (getLangOptions().CPlusPlus) { // In C++, check default arguments now that we have merged decls. Unless // the lexical context is the class, because in this case this is done // during delayed parsing anyway. if (!CurContext->isRecord()) CheckCXXDefaultArguments(NewFD); // An out-of-line member function declaration must also be a // definition (C++ [dcl.meaning]p1). if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) { Diag(NewFD->getLocation(), diag::err_out_of_line_declaration) << D.getCXXScopeSpec().getRange(); InvalidDecl = true; } } return NewFD; } void Sema::InitializerElementNotConstant(const Expr *Init) { Diag(Init->getExprLoc(), diag::err_init_element_not_constant) << Init->getSourceRange(); } bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) { switch (Init->getStmtClass()) { default: InitializerElementNotConstant(Init); return true; case Expr::ParenExprClass: { const ParenExpr* PE = cast(Init); return CheckAddressConstantExpressionLValue(PE->getSubExpr()); } case Expr::CompoundLiteralExprClass: return cast(Init)->isFileScope(); case Expr::DeclRefExprClass: case Expr::QualifiedDeclRefExprClass: { const Decl *D = cast(Init)->getDecl(); if (const VarDecl *VD = dyn_cast(D)) { if (VD->hasGlobalStorage()) return false; InitializerElementNotConstant(Init); return true; } if (isa(D)) return false; InitializerElementNotConstant(Init); return true; } case Expr::MemberExprClass: { const MemberExpr *M = cast(Init); if (M->isArrow()) return CheckAddressConstantExpression(M->getBase()); return CheckAddressConstantExpressionLValue(M->getBase()); } case Expr::ArraySubscriptExprClass: { // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)? const ArraySubscriptExpr *ASE = cast(Init); return CheckAddressConstantExpression(ASE->getBase()) || CheckArithmeticConstantExpression(ASE->getIdx()); } case Expr::StringLiteralClass: case Expr::PredefinedExprClass: return false; case Expr::UnaryOperatorClass: { const UnaryOperator *Exp = cast(Init); // C99 6.6p9 if (Exp->getOpcode() == UnaryOperator::Deref) return CheckAddressConstantExpression(Exp->getSubExpr()); InitializerElementNotConstant(Init); return true; } } } bool Sema::CheckAddressConstantExpression(const Expr* Init) { switch (Init->getStmtClass()) { default: InitializerElementNotConstant(Init); return true; case Expr::ParenExprClass: return CheckAddressConstantExpression(cast(Init)->getSubExpr()); case Expr::StringLiteralClass: case Expr::ObjCStringLiteralClass: return false; case Expr::CallExprClass: case Expr::CXXOperatorCallExprClass: // __builtin___CFStringMakeConstantString is a valid constant l-value. if (cast(Init)->isBuiltinCall(Context) == Builtin::BI__builtin___CFStringMakeConstantString) return false; InitializerElementNotConstant(Init); return true; case Expr::UnaryOperatorClass: { const UnaryOperator *Exp = cast(Init); // C99 6.6p9 if (Exp->getOpcode() == UnaryOperator::AddrOf) return CheckAddressConstantExpressionLValue(Exp->getSubExpr()); if (Exp->getOpcode() == UnaryOperator::Extension) return CheckAddressConstantExpression(Exp->getSubExpr()); InitializerElementNotConstant(Init); return true; } case Expr::BinaryOperatorClass: { // FIXME: Should we pedwarn for expressions like "a + 1 + 2"? const BinaryOperator *Exp = cast(Init); Expr *PExp = Exp->getLHS(); Expr *IExp = Exp->getRHS(); if (IExp->getType()->isPointerType()) std::swap(PExp, IExp); // FIXME: Should we pedwarn if IExp isn't an integer constant expression? return CheckAddressConstantExpression(PExp) || CheckArithmeticConstantExpression(IExp); } case Expr::ImplicitCastExprClass: case Expr::CStyleCastExprClass: { const Expr* SubExpr = cast(Init)->getSubExpr(); if (Init->getStmtClass() == Expr::ImplicitCastExprClass) { // Check for implicit promotion if (SubExpr->getType()->isFunctionType() || SubExpr->getType()->isArrayType()) return CheckAddressConstantExpressionLValue(SubExpr); } // Check for pointer->pointer cast if (SubExpr->getType()->isPointerType()) return CheckAddressConstantExpression(SubExpr); if (SubExpr->getType()->isIntegralType()) { // Check for the special-case of a pointer->int->pointer cast; // this isn't standard, but some code requires it. See // PR2720 for an example. if (const CastExpr* SubCast = dyn_cast(SubExpr)) { if (SubCast->getSubExpr()->getType()->isPointerType()) { unsigned IntWidth = Context.getIntWidth(SubCast->getType()); unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy); if (IntWidth >= PointerWidth) { return CheckAddressConstantExpression(SubCast->getSubExpr()); } } } } if (SubExpr->getType()->isArithmeticType()) { return CheckArithmeticConstantExpression(SubExpr); } InitializerElementNotConstant(Init); return true; } case Expr::ConditionalOperatorClass: { // FIXME: Should we pedwarn here? const ConditionalOperator *Exp = cast(Init); if (!Exp->getCond()->getType()->isArithmeticType()) { InitializerElementNotConstant(Init); return true; } if (CheckArithmeticConstantExpression(Exp->getCond())) return true; if (Exp->getLHS() && CheckAddressConstantExpression(Exp->getLHS())) return true; return CheckAddressConstantExpression(Exp->getRHS()); } case Expr::AddrLabelExprClass: return false; } } static const Expr* FindExpressionBaseAddress(const Expr* E); static const Expr* FindExpressionBaseAddressLValue(const Expr* E) { switch (E->getStmtClass()) { default: return E; case Expr::ParenExprClass: { const ParenExpr* PE = cast(E); return FindExpressionBaseAddressLValue(PE->getSubExpr()); } case Expr::MemberExprClass: { const MemberExpr *M = cast(E); if (M->isArrow()) return FindExpressionBaseAddress(M->getBase()); return FindExpressionBaseAddressLValue(M->getBase()); } case Expr::ArraySubscriptExprClass: { const ArraySubscriptExpr *ASE = cast(E); return FindExpressionBaseAddress(ASE->getBase()); } case Expr::UnaryOperatorClass: { const UnaryOperator *Exp = cast(E); if (Exp->getOpcode() == UnaryOperator::Deref) return FindExpressionBaseAddress(Exp->getSubExpr()); return E; } } } static const Expr* FindExpressionBaseAddress(const Expr* E) { switch (E->getStmtClass()) { default: return E; case Expr::ParenExprClass: { const ParenExpr* PE = cast(E); return FindExpressionBaseAddress(PE->getSubExpr()); } case Expr::UnaryOperatorClass: { const UnaryOperator *Exp = cast(E); // C99 6.6p9 if (Exp->getOpcode() == UnaryOperator::AddrOf) return FindExpressionBaseAddressLValue(Exp->getSubExpr()); if (Exp->getOpcode() == UnaryOperator::Extension) return FindExpressionBaseAddress(Exp->getSubExpr()); return E; } case Expr::BinaryOperatorClass: { const BinaryOperator *Exp = cast(E); Expr *PExp = Exp->getLHS(); Expr *IExp = Exp->getRHS(); if (IExp->getType()->isPointerType()) std::swap(PExp, IExp); return FindExpressionBaseAddress(PExp); } case Expr::ImplicitCastExprClass: { const Expr* SubExpr = cast(E)->getSubExpr(); // Check for implicit promotion if (SubExpr->getType()->isFunctionType() || SubExpr->getType()->isArrayType()) return FindExpressionBaseAddressLValue(SubExpr); // Check for pointer->pointer cast if (SubExpr->getType()->isPointerType()) return FindExpressionBaseAddress(SubExpr); // We assume that we have an arithmetic expression here; // if we don't, we'll figure it out later return 0; } case Expr::CStyleCastExprClass: { const Expr* SubExpr = cast(E)->getSubExpr(); // Check for pointer->pointer cast if (SubExpr->getType()->isPointerType()) return FindExpressionBaseAddress(SubExpr); // We assume that we have an arithmetic expression here; // if we don't, we'll figure it out later return 0; } } } bool Sema::CheckArithmeticConstantExpression(const Expr* Init) { switch (Init->getStmtClass()) { default: InitializerElementNotConstant(Init); return true; case Expr::ParenExprClass: { const ParenExpr* PE = cast(Init); return CheckArithmeticConstantExpression(PE->getSubExpr()); } case Expr::FloatingLiteralClass: case Expr::IntegerLiteralClass: case Expr::CharacterLiteralClass: case Expr::ImaginaryLiteralClass: case Expr::TypesCompatibleExprClass: case Expr::CXXBoolLiteralExprClass: return false; case Expr::CallExprClass: case Expr::CXXOperatorCallExprClass: { const CallExpr *CE = cast(Init); // Allow any constant foldable calls to builtins. if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context)) return false; InitializerElementNotConstant(Init); return true; } case Expr::DeclRefExprClass: case Expr::QualifiedDeclRefExprClass: { const Decl *D = cast(Init)->getDecl(); if (isa(D)) return false; InitializerElementNotConstant(Init); return true; } case Expr::CompoundLiteralExprClass: // Allow "(vector type){2,4}"; normal C constraints don't allow this, // but vectors are allowed to be magic. if (Init->getType()->isVectorType()) return false; InitializerElementNotConstant(Init); return true; case Expr::UnaryOperatorClass: { const UnaryOperator *Exp = cast(Init); switch (Exp->getOpcode()) { // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. // See C99 6.6p3. default: InitializerElementNotConstant(Init); return true; case UnaryOperator::OffsetOf: if (Exp->getSubExpr()->getType()->isConstantSizeType()) return false; InitializerElementNotConstant(Init); return true; case UnaryOperator::Extension: case UnaryOperator::LNot: case UnaryOperator::Plus: case UnaryOperator::Minus: case UnaryOperator::Not: return CheckArithmeticConstantExpression(Exp->getSubExpr()); } } case Expr::SizeOfAlignOfExprClass: { const SizeOfAlignOfExpr *Exp = cast(Init); // Special check for void types, which are allowed as an extension if (Exp->getTypeOfArgument()->isVoidType()) return false; // alignof always evaluates to a constant. // FIXME: is sizeof(int[3.0]) a constant expression? if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) { InitializerElementNotConstant(Init); return true; } return false; } case Expr::BinaryOperatorClass: { const BinaryOperator *Exp = cast(Init); if (Exp->getLHS()->getType()->isArithmeticType() && Exp->getRHS()->getType()->isArithmeticType()) { return CheckArithmeticConstantExpression(Exp->getLHS()) || CheckArithmeticConstantExpression(Exp->getRHS()); } if (Exp->getLHS()->getType()->isPointerType() && Exp->getRHS()->getType()->isPointerType()) { const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS()); const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS()); // Only allow a null (constant integer) base; we could // allow some additional cases if necessary, but this // is sufficient to cover offsetof-like constructs. if (!LHSBase && !RHSBase) { return CheckAddressConstantExpression(Exp->getLHS()) || CheckAddressConstantExpression(Exp->getRHS()); } } InitializerElementNotConstant(Init); return true; } case Expr::ImplicitCastExprClass: case Expr::CStyleCastExprClass: { const CastExpr *CE = cast(Init); const Expr *SubExpr = CE->getSubExpr(); if (SubExpr->getType()->isArithmeticType()) return CheckArithmeticConstantExpression(SubExpr); if (SubExpr->getType()->isPointerType()) { const Expr* Base = FindExpressionBaseAddress(SubExpr); if (Base) { // the cast is only valid if done to a wide enough type if (Context.getTypeSize(CE->getType()) >= Context.getTypeSize(SubExpr->getType())) return false; } else { // If the pointer has a null base, this is an offsetof-like construct return CheckAddressConstantExpression(SubExpr); } } InitializerElementNotConstant(Init); return true; } case Expr::ConditionalOperatorClass: { const ConditionalOperator *Exp = cast(Init); // If GNU extensions are disabled, we require all operands to be arithmetic // constant expressions. if (getLangOptions().NoExtensions) { return CheckArithmeticConstantExpression(Exp->getCond()) || (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) || CheckArithmeticConstantExpression(Exp->getRHS()); } // Otherwise, we have to emulate some of the behavior of fold here. // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant // because it can constant fold things away. To retain compatibility with // GCC code, we see if we can fold the condition to a constant (which we // should always be able to do in theory). If so, we only require the // specified arm of the conditional to be a constant. This is a horrible // hack, but is require by real world code that uses __builtin_constant_p. Expr::EvalResult EvalResult; if (!Exp->getCond()->Evaluate(EvalResult, Context) || EvalResult.HasSideEffects) { // If Evaluate couldn't fold it, CheckArithmeticConstantExpression // won't be able to either. Use it to emit the diagnostic though. bool Res = CheckArithmeticConstantExpression(Exp->getCond()); assert(Res && "Evaluate couldn't evaluate this constant?"); return Res; } // Verify that the side following the condition is also a constant. const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS(); if (EvalResult.Val.getInt() == 0) std::swap(TrueSide, FalseSide); if (TrueSide && CheckArithmeticConstantExpression(TrueSide)) return true; // Okay, the evaluated side evaluates to a constant, so we accept this. // Check to see if the other side is obviously not a constant. If so, // emit a warning that this is a GNU extension. if (FalseSide && !FalseSide->isEvaluatable(Context)) Diag(Init->getExprLoc(), diag::ext_typecheck_expression_not_constant_but_accepted) << FalseSide->getSourceRange(); return false; } } } bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { if (DesignatedInitExpr *DIE = dyn_cast(Init)) Init = DIE->getInit(); Init = Init->IgnoreParens(); if (Init->isEvaluatable(Context)) return false; // Look through CXXDefaultArgExprs; they have no meaning in this context. if (CXXDefaultArgExpr* DAE = dyn_cast(Init)) return CheckForConstantInitializer(DAE->getExpr(), DclT); if (CompoundLiteralExpr *e = dyn_cast(Init)) return CheckForConstantInitializer(e->getInitializer(), DclT); if (isa(Init)) { // FIXME: In C++, check for non-POD types. return false; } if (InitListExpr *Exp = dyn_cast(Init)) { unsigned numInits = Exp->getNumInits(); for (unsigned i = 0; i < numInits; i++) { // FIXME: Need to get the type of the declaration for C++, // because it could be a reference? if (CheckForConstantInitializer(Exp->getInit(i), Exp->getInit(i)->getType())) return true; } return false; } // FIXME: We can probably remove some of this code below, now that // Expr::Evaluate is doing the heavy lifting for scalars. if (Init->isNullPointerConstant(Context)) return false; if (Init->getType()->isArithmeticType()) { QualType InitTy = Context.getCanonicalType(Init->getType()) .getUnqualifiedType(); if (InitTy == Context.BoolTy) { // Special handling for pointers implicitly cast to bool; // (e.g. "_Bool rr = &rr;"). This is only legal at the top level. if (ImplicitCastExpr* ICE = dyn_cast(Init)) { Expr* SubE = ICE->getSubExpr(); if (SubE->getType()->isPointerType() || SubE->getType()->isArrayType() || SubE->getType()->isFunctionType()) { return CheckAddressConstantExpression(Init); } } } else if (InitTy->isIntegralType()) { Expr* SubE = 0; if (CastExpr* CE = dyn_cast(Init)) SubE = CE->getSubExpr(); // Special check for pointer cast to int; we allow as an extension // an address constant cast to an integer if the integer // is of an appropriate width (this sort of code is apparently used // in some places). // FIXME: Add pedwarn? // FIXME: Don't allow bitfields here! Need the FieldDecl for that. if (SubE && (SubE->getType()->isPointerType() || SubE->getType()->isArrayType() || SubE->getType()->isFunctionType())) { unsigned IntWidth = Context.getTypeSize(Init->getType()); unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy); if (IntWidth >= PointerWidth) return CheckAddressConstantExpression(Init); } } return CheckArithmeticConstantExpression(Init); } if (Init->getType()->isPointerType()) return CheckAddressConstantExpression(Init); // An array type at the top level that isn't an init-list must // be a string literal if (Init->getType()->isArrayType()) return false; if (Init->getType()->isFunctionType()) return false; // Allow block exprs at top level. if (Init->getType()->isBlockPointerType()) return false; // GCC cast to union extension // note: the validity of the cast expr is checked by CheckCastTypes() if (CastExpr *C = dyn_cast(Init)) { QualType T = C->getType(); return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T); } InitializerElementNotConstant(Init); return true; } void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) { AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false); } /// AddInitializerToDecl - Adds the initializer Init to the /// declaration dcl. If DirectInit is true, this is C++ direct /// initialization rather than copy initialization. void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) { Decl *RealDecl = static_cast(dcl); Expr *Init = static_cast(init.release()); assert(Init && "missing initializer"); // If there is no declaration, there was an error parsing it. Just ignore // the initializer. if (RealDecl == 0) { Init->Destroy(Context); return; } VarDecl *VDecl = dyn_cast(RealDecl); if (!VDecl) { Diag(RealDecl->getLocation(), diag::err_illegal_initializer); RealDecl->setInvalidDecl(); return; } // Get the decls type and save a reference for later, since // CheckInitializerTypes may change it. QualType DclT = VDecl->getType(), SavT = DclT; if (VDecl->isBlockVarDecl()) { VarDecl::StorageClass SC = VDecl->getStorageClass(); if (SC == VarDecl::Extern) { // C99 6.7.8p5 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); VDecl->setInvalidDecl(); } else if (!VDecl->isInvalidDecl()) { if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(), VDecl->getDeclName(), DirectInit)) VDecl->setInvalidDecl(); // C++ 3.6.2p2, allow dynamic initialization of static initializers. if (!getLangOptions().CPlusPlus) { if (SC == VarDecl::Static) // C99 6.7.8p4. CheckForConstantInitializer(Init, DclT); } } } else if (VDecl->isFileVarDecl()) { if (VDecl->getStorageClass() == VarDecl::Extern) Diag(VDecl->getLocation(), diag::warn_extern_init); if (!VDecl->isInvalidDecl()) if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(), VDecl->getDeclName(), DirectInit)) VDecl->setInvalidDecl(); // C++ 3.6.2p2, allow dynamic initialization of static initializers. if (!getLangOptions().CPlusPlus) { // C99 6.7.8p4. All file scoped initializers need to be constant. CheckForConstantInitializer(Init, DclT); } } // If the type changed, it means we had an incomplete type that was // completed by the initializer. For example: // int ary[] = { 1, 3, 5 }; // "ary" transitions from a VariableArrayType to a ConstantArrayType. if (!VDecl->isInvalidDecl() && (DclT != SavT)) { VDecl->setType(DclT); Init->setType(DclT); } // Attach the initializer to the decl. VDecl->setInit(Init); return; } void Sema::ActOnUninitializedDecl(DeclTy *dcl) { Decl *RealDecl = static_cast(dcl); // If there is no declaration, there was an error parsing it. Just ignore it. if (RealDecl == 0) return; if (VarDecl *Var = dyn_cast(RealDecl)) { QualType Type = Var->getType(); // C++ [dcl.init.ref]p3: // The initializer can be omitted for a reference only in a // parameter declaration (8.3.5), in the declaration of a // function return type, in the declaration of a class member // within its class declaration (9.2), and where the extern // specifier is explicitly used. if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern && Var->getStorageClass() != VarDecl::PrivateExtern) { Diag(Var->getLocation(), diag::err_reference_var_requires_init) << Var->getDeclName() << SourceRange(Var->getLocation(), Var->getLocation()); Var->setInvalidDecl(); return; } // C++ [dcl.init]p9: // // If no initializer is specified for an object, and the object // is of (possibly cv-qualified) non-POD class type (or array // thereof), the object shall be default-initialized; if the // object is of const-qualified type, the underlying class type // shall have a user-declared default constructor. if (getLangOptions().CPlusPlus) { QualType InitType = Type; if (const ArrayType *Array = Context.getAsArrayType(Type)) InitType = Array->getElementType(); if (Var->getStorageClass() != VarDecl::Extern && Var->getStorageClass() != VarDecl::PrivateExtern && InitType->isRecordType()) { const CXXConstructorDecl *Constructor = PerformInitializationByConstructor(InitType, 0, 0, Var->getLocation(), SourceRange(Var->getLocation(), Var->getLocation()), Var->getDeclName(), IK_Default); if (!Constructor) Var->setInvalidDecl(); } } #if 0 // FIXME: Temporarily disabled because we are not properly parsing // linkage specifications on declarations, e.g., // // extern "C" const CGPoint CGPointerZero; // // C++ [dcl.init]p9: // // If no initializer is specified for an object, and the // object is of (possibly cv-qualified) non-POD class type (or // array thereof), the object shall be default-initialized; if // the object is of const-qualified type, the underlying class // type shall have a user-declared default // constructor. Otherwise, if no initializer is specified for // an object, the object and its subobjects, if any, have an // indeterminate initial value; if the object or any of its // subobjects are of const-qualified type, the program is // ill-formed. // // This isn't technically an error in C, so we don't diagnose it. // // FIXME: Actually perform the POD/user-defined default // constructor check. if (getLangOptions().CPlusPlus && Context.getCanonicalType(Type).isConstQualified() && Var->getStorageClass() != VarDecl::Extern) Diag(Var->getLocation(), diag::err_const_var_requires_init) << Var->getName() << SourceRange(Var->getLocation(), Var->getLocation()); #endif } } /// The declarators are chained together backwards, reverse the list. Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) { // Often we have single declarators, handle them quickly. Decl *GroupDecl = static_cast(group); if (GroupDecl == 0) return 0; Decl *Group = dyn_cast(GroupDecl); Decl *NewGroup = 0; if (Group->getNextDeclarator() == 0) NewGroup = Group; else { // reverse the list. while (Group) { Decl *Next = Group->getNextDeclarator(); Group->setNextDeclarator(NewGroup); NewGroup = Group; Group = Next; } } // Perform semantic analysis that depends on having fully processed both // the declarator and initializer. for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) { VarDecl *IDecl = dyn_cast(ID); if (!IDecl) continue; QualType T = IDecl->getType(); if (T->isVariableArrayType()) { const VariableArrayType *VAT = Context.getAsVariableArrayType(T); // FIXME: This won't give the correct result for // int a[10][n]; SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); if (IDecl->isFileVarDecl()) { Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) << SizeRange; IDecl->setInvalidDecl(); } else { // C99 6.7.5.2p2: If an identifier is declared to be an object with // static storage duration, it shall not have a variable length array. if (IDecl->getStorageClass() == VarDecl::Static) { Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage) << SizeRange; IDecl->setInvalidDecl(); } else if (IDecl->getStorageClass() == VarDecl::Extern) { Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage) << SizeRange; IDecl->setInvalidDecl(); } } } else if (T->isVariablyModifiedType()) { if (IDecl->isFileVarDecl()) { Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope); IDecl->setInvalidDecl(); } else { if (IDecl->getStorageClass() == VarDecl::Extern) { Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage); IDecl->setInvalidDecl(); } } } // Block scope. C99 6.7p7: If an identifier for an object is declared with // no linkage (C99 6.2.2p6), the type for the object shall be complete... if (IDecl->isBlockVarDecl() && IDecl->getStorageClass() != VarDecl::Extern) { if (!IDecl->isInvalidDecl() && DiagnoseIncompleteType(IDecl->getLocation(), T, diag::err_typecheck_decl_incomplete_type)) IDecl->setInvalidDecl(); } // File scope. C99 6.9.2p2: A declaration of an identifier for and // object that has file scope without an initializer, and without a // storage-class specifier or with the storage-class specifier "static", // constitutes a tentative definition. Note: A tentative definition with // external linkage is valid (C99 6.2.2p5). if (isTentativeDefinition(IDecl)) { if (T->isIncompleteArrayType()) { // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete // array to be completed. Don't issue a diagnostic. } else if (!IDecl->isInvalidDecl() && DiagnoseIncompleteType(IDecl->getLocation(), T, diag::err_typecheck_decl_incomplete_type)) // C99 6.9.2p3: If the declaration of an identifier for an object is // a tentative definition and has internal linkage (C99 6.2.2p3), the // declared type shall not be an incomplete type. IDecl->setInvalidDecl(); } if (IDecl->isFileVarDecl()) CheckForFileScopedRedefinitions(S, IDecl); } return NewGroup; } /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() /// to introduce parameters into function prototype scope. Sema::DeclTy * Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { const DeclSpec &DS = D.getDeclSpec(); // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. VarDecl::StorageClass StorageClass = VarDecl::None; if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { StorageClass = VarDecl::Register; } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { Diag(DS.getStorageClassSpecLoc(), diag::err_invalid_storage_class_in_func_decl); D.getMutableDeclSpec().ClearStorageClassSpecs(); } if (DS.isThreadSpecified()) { Diag(DS.getThreadSpecLoc(), diag::err_invalid_storage_class_in_func_decl); D.getMutableDeclSpec().ClearStorageClassSpecs(); } // Check that there are no default arguments inside the type of this // parameter (C++ only). if (getLangOptions().CPlusPlus) CheckExtraCXXDefaultArguments(D); // In this context, we *do not* check D.getInvalidType(). If the declarator // type was invalid, GetTypeForDeclarator() still returns a "valid" type, // though it will not reflect the user specified type. QualType parmDeclType = GetTypeForDeclarator(D, S); assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type"); // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. // Can this happen for params? We already checked that they don't conflict // among each other. Here they can only shadow globals, which is ok. IdentifierInfo *II = D.getIdentifier(); if (II) { if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) { if (PrevDecl->isTemplateParameter()) { // Maybe we will complain about the shadowed template parameter. DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); // Just pretend that we didn't see the previous declaration. PrevDecl = 0; } else if (S->isDeclScope(PrevDecl)) { Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; // Recover by removing the name II = 0; D.SetIdentifier(0, D.getIdentifierLoc()); } } } // Perform the default function/array conversion (C99 6.7.5.3p[7,8]). // Doing the promotion here has a win and a loss. The win is the type for // both Decl's and DeclRefExpr's will match (a convenient invariant for the // code generator). The loss is the orginal type isn't preserved. For example: // // void func(int parmvardecl[5]) { // convert "int [5]" to "int *" // int blockvardecl[5]; // sizeof(parmvardecl); // size == 4 // sizeof(blockvardecl); // size == 20 // } // // For expressions, all implicit conversions are captured using the // ImplicitCastExpr AST node (we have no such mechanism for Decl's). // // FIXME: If a source translation tool needs to see the original type, then // we need to consider storing both types (in ParmVarDecl)... // if (parmDeclType->isArrayType()) { // int x[restrict 4] -> int *restrict parmDeclType = Context.getArrayDecayedType(parmDeclType); } else if (parmDeclType->isFunctionType()) parmDeclType = Context.getPointerType(parmDeclType); ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II, parmDeclType, StorageClass, 0); if (D.getInvalidType()) New->setInvalidDecl(); // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). if (D.getCXXScopeSpec().isSet()) { Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) << D.getCXXScopeSpec().getRange(); New->setInvalidDecl(); } // Add the parameter declaration into this scope. S->AddDecl(New); if (II) IdResolver.AddDecl(New); ProcessDeclAttributes(New, D); return New; } void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) { assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && "Not a function declarator!"); DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' // for a K&R function. if (!FTI.hasPrototype) { for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { if (FTI.ArgInfo[i].Param == 0) { Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared) << FTI.ArgInfo[i].Ident; // Implicitly declare the argument as type 'int' for lack of a better // type. DeclSpec DS; const char* PrevSpec; // unused DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc, PrevSpec); Declarator ParamD(DS, Declarator::KNRTypeListContext); ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc); FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD); } } } } Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) { assert(getCurFunctionDecl() == 0 && "Function parsing confused"); assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && "Not a function declarator!"); DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; if (FTI.hasPrototype) { // FIXME: Diagnose arguments without names in C. } Scope *ParentScope = FnBodyScope->getParent(); return ActOnStartOfFunctionDef(FnBodyScope, ActOnDeclarator(ParentScope, D, 0, /*IsFunctionDefinition=*/true)); } Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) { Decl *decl = static_cast(D); FunctionDecl *FD = cast(decl); // See if this is a redefinition. const FunctionDecl *Definition; if (FD->getBody(Definition)) { Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); Diag(Definition->getLocation(), diag::note_previous_definition); } PushDeclContext(FnBodyScope, FD); // Check the validity of our function parameters CheckParmsForFunctionDef(FD); // Introduce our parameters into the function scope for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); Param->setOwningFunction(FD); // If this has an identifier, add it to the scope stack. if (Param->getIdentifier()) PushOnScopeChains(Param, FnBodyScope); } // Checking attributes of current function definition // dllimport attribute. if (FD->getAttr() && (!FD->getAttr())) { // dllimport attribute cannot be applied to definition. if (!(FD->getAttr())->isInherited()) { Diag(FD->getLocation(), diag::err_attribute_can_be_applied_only_to_symbol_declaration) << "dllimport"; FD->setInvalidDecl(); return FD; } else { // If a symbol previously declared dllimport is later defined, the // attribute is ignored in subsequent references, and a warning is // emitted. Diag(FD->getLocation(), diag::warn_redeclaration_without_attribute_prev_attribute_ignored) << FD->getNameAsCString() << "dllimport"; } } return FD; } Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) { Decl *dcl = static_cast(D); Stmt *Body = static_cast(BodyArg.release()); if (FunctionDecl *FD = dyn_cast_or_null(dcl)) { FD->setBody(Body); assert(FD == getCurFunctionDecl() && "Function parsing confused"); } else if (ObjCMethodDecl *MD = dyn_cast_or_null(dcl)) { MD->setBody((Stmt*)Body); } else { Body->Destroy(Context); return 0; } PopDeclContext(); // Verify and clean out per-function state. // Check goto/label use. for (llvm::DenseMap::iterator I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) { // Verify that we have no forward references left. If so, there was a goto // or address of a label taken, but no definition of it. Label fwd // definitions are indicated with a null substmt. if (I->second->getSubStmt() == 0) { LabelStmt *L = I->second; // Emit error. Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName(); // At this point, we have gotos that use the bogus label. Stitch it into // the function body so that they aren't leaked and that the AST is well // formed. if (Body) { #if 0 // FIXME: Why do this? Having a 'push_back' in CompoundStmt is ugly, // and the AST is malformed anyway. We should just blow away 'L'. L->setSubStmt(new (Context) NullStmt(L->getIdentLoc())); cast(Body)->push_back(L); #else L->Destroy(Context); #endif } else { // The whole function wasn't parsed correctly, just delete this. L->Destroy(Context); } } } LabelMap.clear(); return D; } /// ImplicitlyDefineFunction - An undeclared identifier was used in a function /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, Scope *S) { // Extension in C99. Legal in C90, but warn about it. if (getLangOptions().C99) Diag(Loc, diag::ext_implicit_function_decl) << &II; else Diag(Loc, diag::warn_implicit_function_decl) << &II; // FIXME: handle stuff like: // void foo() { extern float X(); } // void bar() { X(); } <-- implicit decl for X in another scope. // Set a Declarator for the implicit definition: int foo(); const char *Dummy; DeclSpec DS; bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy); Error = Error; // Silence warning. assert(!Error && "Error setting up implicit decl!"); Declarator D(DS, Declarator::BlockContext); D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D), SourceLocation()); D.SetIdentifier(&II, Loc); // Insert this function into translation-unit scope. DeclContext *PrevDC = CurContext; CurContext = Context.getTranslationUnitDecl(); FunctionDecl *FD = dyn_cast(static_cast(ActOnDeclarator(TUScope, D, 0))); FD->setImplicit(); CurContext = PrevDC; AddKnownFunctionAttributes(FD); return FD; } /// \brief Adds any function attributes that we know a priori based on /// the declaration of this function. /// /// These attributes can apply both to implicitly-declared builtins /// (like __builtin___printf_chk) or to library-declared functions /// like NSLog or printf. void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { if (FD->isInvalidDecl()) return; // If this is a built-in function, map its builtin attributes to // actual attributes. if (unsigned BuiltinID = FD->getBuiltinID(Context)) { // Handle printf-formatting attributes. unsigned FormatIdx; bool HasVAListArg; if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { if (!FD->getAttr()) FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2)); } } IdentifierInfo *Name = FD->getIdentifier(); if (!Name) return; if ((!getLangOptions().CPlusPlus && FD->getDeclContext()->isTranslationUnit()) || (isa(FD->getDeclContext()) && cast(FD->getDeclContext())->getLanguage() == LinkageSpecDecl::lang_c)) { // Okay: this could be a libc/libm/Objective-C function we know // about. } else return; unsigned KnownID; for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID) if (KnownFunctionIDs[KnownID] == Name) break; switch (KnownID) { case id_NSLog: case id_NSLogv: if (const FormatAttr *Format = FD->getAttr()) { // FIXME: We known better than our headers. const_cast(Format)->setType("printf"); } else FD->addAttr(new FormatAttr("printf", 1, 2)); break; case id_asprintf: case id_vasprintf: if (!FD->getAttr()) FD->addAttr(new FormatAttr("printf", 2, 3)); break; default: // Unknown function or known function without any attributes to // add. Do nothing. break; } } TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, Decl *LastDeclarator) { assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); // Scope manipulation handled by caller. TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext, D.getIdentifierLoc(), D.getIdentifier(), T); NewTD->setNextDeclarator(LastDeclarator); if (D.getInvalidType()) NewTD->setInvalidDecl(); return NewTD; } /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the /// former case, Name will be non-null. In the later case, Name will be null. /// TagSpec indicates what kind of tag this is. TK indicates whether this is a /// reference/declaration/definition of a tag. Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK, SourceLocation KWLoc, const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, AttributeList *Attr) { // If this is not a definition, it must have a name. assert((Name != 0 || TK == TK_Definition) && "Nameless record must be a definition!"); TagDecl::TagKind Kind; switch (TagSpec) { default: assert(0 && "Unknown tag type!"); case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; case DeclSpec::TST_enum: Kind = TagDecl::TK_enum; break; } DeclContext *SearchDC = CurContext; DeclContext *DC = CurContext; NamedDecl *PrevDecl = 0; bool Invalid = false; if (Name && SS.isNotEmpty()) { // We have a nested-name tag ('struct foo::bar'). // Check for invalid 'foo::'. if (SS.isInvalid()) { Name = 0; goto CreateNewDecl; } DC = static_cast(SS.getScopeRep()); SearchDC = DC; // Look-up name inside 'foo::'. PrevDecl = dyn_cast_or_null( LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl()); // A tag 'foo::bar' must already exist. if (PrevDecl == 0) { Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange(); Name = 0; goto CreateNewDecl; } } else if (Name) { // If this is a named struct, check to see if there was a previous forward // declaration or definition. // FIXME: We're looking into outer scopes here, even when we // shouldn't be. Doing so can result in ambiguities that we // shouldn't be diagnosing. LookupResult R = LookupName(S, Name, LookupTagName, /*RedeclarationOnly=*/(TK != TK_Reference)); if (R.isAmbiguous()) { DiagnoseAmbiguousLookup(R, Name, NameLoc); // FIXME: This is not best way to recover from case like: // // struct S s; // // causes needless err_ovl_no_viable_function_in_init latter. Name = 0; PrevDecl = 0; Invalid = true; } else PrevDecl = R; if (!getLangOptions().CPlusPlus && TK != TK_Reference) { // FIXME: This makes sure that we ignore the contexts associated // with C structs, unions, and enums when looking for a matching // tag declaration or definition. See the similar lookup tweak // in Sema::LookupName; is there a better way to deal with this? while (isa(SearchDC) || isa(SearchDC)) SearchDC = SearchDC->getParent(); } } if (PrevDecl && PrevDecl->isTemplateParameter()) { // Maybe we will complain about the shadowed template parameter. DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); // Just pretend that we didn't see the previous declaration. PrevDecl = 0; } if (PrevDecl) { if (TagDecl *PrevTagDecl = dyn_cast(PrevDecl)) { // If this is a use of a previous tag, or if the tag is already declared // in the same scope (so that the definition/declaration completes or // rementions the tag), reuse the decl. if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) { // Make sure that this wasn't declared as an enum and now used as a // struct or something similar. if (PrevTagDecl->getTagKind() != Kind) { Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; Diag(PrevDecl->getLocation(), diag::note_previous_use); // Recover by making this an anonymous redefinition. Name = 0; PrevDecl = 0; Invalid = true; } else { // If this is a use, just return the declaration we found. // FIXME: In the future, return a variant or some other clue // for the consumer of this Decl to know it doesn't own it. // For our current ASTs this shouldn't be a problem, but will // need to be changed with DeclGroups. if (TK == TK_Reference) return PrevDecl; // Diagnose attempts to redefine a tag. if (TK == TK_Definition) { if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) { Diag(NameLoc, diag::err_redefinition) << Name; Diag(Def->getLocation(), diag::note_previous_definition); // If this is a redefinition, recover by making this // struct be anonymous, which will make any later // references get the previous definition. Name = 0; PrevDecl = 0; Invalid = true; } else { // If the type is currently being defined, complain // about a nested redefinition. TagType *Tag = cast(Context.getTagDeclType(PrevTagDecl)); if (Tag->isBeingDefined()) { Diag(NameLoc, diag::err_nested_redefinition) << Name; Diag(PrevTagDecl->getLocation(), diag::note_previous_definition); Name = 0; PrevDecl = 0; Invalid = true; } } // Okay, this is definition of a previously declared or referenced // tag PrevDecl. We're going to create a new Decl for it. } } // If we get here we have (another) forward declaration or we // have a definition. Just create a new decl. } else { // If we get here, this is a definition of a new tag type in a nested // scope, e.g. "struct foo; void bar() { struct foo; }", just create a // new decl/type. We set PrevDecl to NULL so that the entities // have distinct types. PrevDecl = 0; } // If we get here, we're going to create a new Decl. If PrevDecl // is non-NULL, it's a definition of the tag declared by // PrevDecl. If it's NULL, we have a new definition. } else { // PrevDecl is a namespace, template, or anything else // that lives in the IDNS_Tag identifier namespace. if (isDeclInScope(PrevDecl, SearchDC, S)) { // The tag name clashes with a namespace name, issue an error and // recover by making this tag be anonymous. Diag(NameLoc, diag::err_redefinition_different_kind) << Name; Diag(PrevDecl->getLocation(), diag::note_previous_definition); Name = 0; PrevDecl = 0; Invalid = true; } else { // The existing declaration isn't relevant to us; we're in a // new scope, so clear out the previous declaration. PrevDecl = 0; } } } else if (TK == TK_Reference && SS.isEmpty() && Name && (Kind != TagDecl::TK_enum)) { // C++ [basic.scope.pdecl]p5: // -- for an elaborated-type-specifier of the form // // class-key identifier // // if the elaborated-type-specifier is used in the // decl-specifier-seq or parameter-declaration-clause of a // function defined in namespace scope, the identifier is // declared as a class-name in the namespace that contains // the declaration; otherwise, except as a friend // declaration, the identifier is declared in the smallest // non-class, non-function-prototype scope that contains the // declaration. // // C99 6.7.2.3p8 has a similar (but not identical!) provision for // C structs and unions. // Find the context where we'll be declaring the tag. // FIXME: We would like to maintain the current DeclContext as the // lexical context, while (SearchDC->isRecord()) SearchDC = SearchDC->getParent(); // Find the scope where we'll be declaring the tag. while (S->isClassScope() || (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) || ((S->getFlags() & Scope::DeclScope) == 0) || (S->getEntity() && ((DeclContext *)S->getEntity())->isTransparentContext())) S = S->getParent(); } CreateNewDecl: // If there is an identifier, use the location of the identifier as the // location of the decl, otherwise use the location of the struct/union // keyword. SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; // Otherwise, create a new declaration. If there is a previous // declaration of the same entity, the two will be linked via // PrevDecl. TagDecl *New; if (Kind == TagDecl::TK_enum) { // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: // enum X { A, B, C } D; D should chain to X. New = EnumDecl::Create(Context, SearchDC, Loc, Name, cast_or_null(PrevDecl)); // If this is an undefined enum, warn. if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum); } else { // struct/union/class // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: // struct X { int A; } D; D should chain to X. if (getLangOptions().CPlusPlus) // FIXME: Look for a way to use RecordDecl for simple structs. New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, cast_or_null(PrevDecl)); else New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, cast_or_null(PrevDecl)); } if (Kind != TagDecl::TK_enum) { // Handle #pragma pack: if the #pragma pack stack has non-default // alignment, make up a packed attribute for this decl. These // attributes are checked when the ASTContext lays out the // structure. // // It is important for implementing the correct semantics that this // happen here (in act on tag decl). The #pragma pack stack is // maintained as a result of parser callbacks which can occur at // many points during the parsing of a struct declaration (because // the #pragma tokens are effectively skipped over during the // parsing of the struct). if (unsigned Alignment = PackContext.getAlignment()) New->addAttr(new PackedAttr(Alignment * 8)); } if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) { // C++ [dcl.typedef]p3: // [...] Similarly, in a given scope, a class or enumeration // shall not be declared with the same name as a typedef-name // that is declared in that scope and refers to a type other // than the class or enumeration itself. LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true); TypedefDecl *PrevTypedef = 0; if (Lookup.getKind() == LookupResult::Found) PrevTypedef = dyn_cast(Lookup.getAsDecl()); if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) && Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) != Context.getCanonicalType(Context.getTypeDeclType(New))) { Diag(Loc, diag::err_tag_definition_of_typedef) << Context.getTypeDeclType(New) << PrevTypedef->getUnderlyingType(); Diag(PrevTypedef->getLocation(), diag::note_previous_definition); Invalid = true; } } if (Invalid) New->setInvalidDecl(); if (Attr) ProcessDeclAttributeList(New, Attr); // If we're declaring or defining a tag in function prototype scope // in C, note that this type can only be used within the function. if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus) Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); // Set the lexical context. If the tag has a C++ scope specifier, the // lexical context will be different from the semantic context. New->setLexicalDeclContext(CurContext); if (TK == TK_Definition) New->startDefinition(); // If this has an identifier, add it to the scope stack. if (Name) { S = getNonFieldDeclScope(S); PushOnScopeChains(New, S); } else { CurContext->addDecl(New); } return New; } void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) { AdjustDeclIfTemplate(TagD); TagDecl *Tag = cast((Decl *)TagD); // Enter the tag context. PushDeclContext(S, Tag); if (CXXRecordDecl *Record = dyn_cast(Tag)) { FieldCollector->StartClass(); if (Record->getIdentifier()) { // C++ [class]p2: // [...] The class-name is also inserted into the scope of the // class itself; this is known as the injected-class-name. For // purposes of access checking, the injected-class-name is treated // as if it were a public member name. RecordDecl *InjectedClassName = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext, Record->getLocation(), Record->getIdentifier(), Record); InjectedClassName->setImplicit(); PushOnScopeChains(InjectedClassName, S); } } } void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) { AdjustDeclIfTemplate(TagD); TagDecl *Tag = cast((Decl *)TagD); if (isa(Tag)) FieldCollector->FinishClass(); // Exit this scope of this tag's definition. PopDeclContext(); // Notify the consumer that we've defined a tag. Consumer.HandleTagDeclDefinition(Tag); } /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array /// types into constant array types in certain situations which would otherwise /// be errors (for GCC compatibility). static QualType TryToFixInvalidVariablyModifiedType(QualType T, ASTContext &Context) { // This method tries to turn a variable array into a constant // array even when the size isn't an ICE. This is necessary // for compatibility with code that depends on gcc's buggy // constant expression folding, like struct {char x[(int)(char*)2];} const VariableArrayType* VLATy = dyn_cast(T); if (!VLATy) return QualType(); Expr::EvalResult EvalResult; if (!VLATy->getSizeExpr() || !VLATy->getSizeExpr()->Evaluate(EvalResult, Context)) return QualType(); assert(EvalResult.Val.isInt() && "Size expressions must be integers!"); llvm::APSInt &Res = EvalResult.Val.getInt(); if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) return Context.getConstantArrayType(VLATy->getElementType(), Res, ArrayType::Normal, 0); return QualType(); } bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, QualType FieldTy, const Expr *BitWidth) { // FIXME: 6.7.2.1p4 - verify the field type. llvm::APSInt Value; if (VerifyIntegerConstantExpression(BitWidth, &Value)) return true; // Zero-width bitfield is ok for anonymous field. if (Value == 0 && FieldName) return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; if (Value.isNegative()) return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName; uint64_t TypeSize = Context.getTypeSize(FieldTy); // FIXME: We won't need the 0 size once we check that the field type is valid. if (TypeSize && Value.getZExtValue() > TypeSize) return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size) << FieldName << (unsigned)TypeSize; return false; } /// ActOnField - Each field of a struct/union/class is passed into this in order /// to create a FieldDecl object for it. Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD, SourceLocation DeclStart, Declarator &D, ExprTy *BitfieldWidth) { IdentifierInfo *II = D.getIdentifier(); Expr *BitWidth = (Expr*)BitfieldWidth; SourceLocation Loc = DeclStart; RecordDecl *Record = (RecordDecl *)TagD; if (II) Loc = D.getIdentifierLoc(); // FIXME: Unnamed fields can be handled in various different ways, for // example, unnamed unions inject all members into the struct namespace! QualType T = GetTypeForDeclarator(D, S); assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); bool InvalidDecl = false; // C99 6.7.2.1p8: A member of a structure or union may have any type other // than a variably modified type. if (T->isVariablyModifiedType()) { QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context); if (!FixedTy.isNull()) { Diag(Loc, diag::warn_illegal_constant_array_size); T = FixedTy; } else { Diag(Loc, diag::err_typecheck_field_variable_size); T = Context.IntTy; InvalidDecl = true; } } if (BitWidth) { if (VerifyBitField(Loc, II, T, BitWidth)) InvalidDecl = true; } else { // Not a bitfield. // validate II. } // FIXME: Chain fielddecls together. FieldDecl *NewFD; NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth, D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); if (II) { NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true); if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S) && !isa(PrevDecl)) { Diag(Loc, diag::err_duplicate_member) << II; Diag(PrevDecl->getLocation(), diag::note_previous_declaration); NewFD->setInvalidDecl(); Record->setInvalidDecl(); } } if (getLangOptions().CPlusPlus) { CheckExtraCXXDefaultArguments(D); if (!T->isPODType()) cast(Record)->setPOD(false); } ProcessDeclAttributes(NewFD, D); if (D.getInvalidType() || InvalidDecl) NewFD->setInvalidDecl(); if (II) { PushOnScopeChains(NewFD, S); } else Record->addDecl(NewFD); return NewFD; } /// TranslateIvarVisibility - Translate visibility from a token ID to an /// AST enum value. static ObjCIvarDecl::AccessControl TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { switch (ivarVisibility) { default: assert(0 && "Unknown visitibility kind"); case tok::objc_private: return ObjCIvarDecl::Private; case tok::objc_public: return ObjCIvarDecl::Public; case tok::objc_protected: return ObjCIvarDecl::Protected; case tok::objc_package: return ObjCIvarDecl::Package; } } /// ActOnIvar - Each ivar field of an objective-c class is passed into this /// in order to create an IvarDecl object for it. Sema::DeclTy *Sema::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, ExprTy *BitfieldWidth, tok::ObjCKeywordKind Visibility) { IdentifierInfo *II = D.getIdentifier(); Expr *BitWidth = (Expr*)BitfieldWidth; SourceLocation Loc = DeclStart; if (II) Loc = D.getIdentifierLoc(); // FIXME: Unnamed fields can be handled in various different ways, for // example, unnamed unions inject all members into the struct namespace! QualType T = GetTypeForDeclarator(D, S); assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); bool InvalidDecl = false; if (BitWidth) { // TODO: Validate. //printf("WARNING: BITFIELDS IGNORED!\n"); // 6.7.2.1p3 // 6.7.2.1p4 } else { // Not a bitfield. // validate II. } // C99 6.7.2.1p8: A member of a structure or union may have any type other // than a variably modified type. if (T->isVariablyModifiedType()) { Diag(Loc, diag::err_typecheck_ivar_variable_size); InvalidDecl = true; } // Get the visibility (access control) for this ivar. ObjCIvarDecl::AccessControl ac = Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) : ObjCIvarDecl::None; // Construct the decl. ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac, (Expr *)BitfieldWidth); if (II) { NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true); if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S) && !isa(PrevDecl)) { Diag(Loc, diag::err_duplicate_member) << II; Diag(PrevDecl->getLocation(), diag::note_previous_declaration); NewID->setInvalidDecl(); } } // Process attributes attached to the ivar. ProcessDeclAttributes(NewID, D); if (D.getInvalidType() || InvalidDecl) NewID->setInvalidDecl(); if (II) { // FIXME: When interfaces are DeclContexts, we'll need to add // these to the interface. S->AddDecl(NewID); IdResolver.AddDecl(NewID); } return NewID; } void Sema::ActOnFields(Scope* S, SourceLocation RecLoc, DeclTy *RecDecl, DeclTy **Fields, unsigned NumFields, SourceLocation LBrac, SourceLocation RBrac, AttributeList *Attr) { Decl *EnclosingDecl = static_cast(RecDecl); assert(EnclosingDecl && "missing record or interface decl"); RecordDecl *Record = dyn_cast(EnclosingDecl); // Verify that all the fields are okay. unsigned NumNamedMembers = 0; llvm::SmallVector RecFields; for (unsigned i = 0; i != NumFields; ++i) { FieldDecl *FD = cast_or_null(static_cast(Fields[i])); assert(FD && "missing field decl"); // Get the type for the field. Type *FDTy = FD->getType().getTypePtr(); if (!FD->isAnonymousStructOrUnion()) { // Remember all fields written by the user. RecFields.push_back(FD); } // C99 6.7.2.1p2 - A field may not be a function type. if (FDTy->isFunctionType()) { Diag(FD->getLocation(), diag::err_field_declared_as_function) << FD->getDeclName(); FD->setInvalidDecl(); EnclosingDecl->setInvalidDecl(); continue; } // C99 6.7.2.1p2 - A field may not be an incomplete type except... if (FDTy->isIncompleteType()) { if (!Record) { // Incomplete ivar type is always an error. DiagnoseIncompleteType(FD->getLocation(), FD->getType(), diag::err_field_incomplete); FD->setInvalidDecl(); EnclosingDecl->setInvalidDecl(); continue; } if (i != NumFields-1 || // ... that the last member ... !Record->isStruct() || // ... of a structure ... !FDTy->isArrayType()) { //... may have incomplete array type. DiagnoseIncompleteType(FD->getLocation(), FD->getType(), diag::err_field_incomplete); FD->setInvalidDecl(); EnclosingDecl->setInvalidDecl(); continue; } if (NumNamedMembers < 1) { //... must have more than named member ... Diag(FD->getLocation(), diag::err_flexible_array_empty_struct) << FD->getDeclName(); FD->setInvalidDecl(); EnclosingDecl->setInvalidDecl(); continue; } // Okay, we have a legal flexible array member at the end of the struct. if (Record) Record->setHasFlexibleArrayMember(true); } /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the /// field of another structure or the element of an array. if (const RecordType *FDTTy = FDTy->getAsRecordType()) { if (FDTTy->getDecl()->hasFlexibleArrayMember()) { // If this is a member of a union, then entire union becomes "flexible". if (Record && Record->isUnion()) { Record->setHasFlexibleArrayMember(true); } else { // If this is a struct/class and this is not the last element, reject // it. Note that GCC supports variable sized arrays in the middle of // structures. if (i != NumFields-1) { Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct) << FD->getDeclName(); FD->setInvalidDecl(); EnclosingDecl->setInvalidDecl(); continue; } // We support flexible arrays at the end of structs in other structs // as an extension. Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) << FD->getDeclName(); if (Record) Record->setHasFlexibleArrayMember(true); } } } /// A field cannot be an Objective-c object if (FDTy->isObjCInterfaceType()) { Diag(FD->getLocation(), diag::err_statically_allocated_object) << FD->getDeclName(); FD->setInvalidDecl(); EnclosingDecl->setInvalidDecl(); continue; } // Keep track of the number of named members. if (FD->getIdentifier()) ++NumNamedMembers; } // Okay, we successfully defined 'Record'. if (Record) { Record->completeDefinition(Context); } else { ObjCIvarDecl **ClsFields = reinterpret_cast(&RecFields[0]); if (ObjCInterfaceDecl *ID = dyn_cast(EnclosingDecl)) { ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac); // Must enforce the rule that ivars in the base classes may not be // duplicates. if (ID->getSuperClass()) { for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), IVE = ID->ivar_end(); IVI != IVE; ++IVI) { ObjCIvarDecl* Ivar = (*IVI); IdentifierInfo *II = Ivar->getIdentifier(); ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II); if (prevIvar) { Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; Diag(prevIvar->getLocation(), diag::note_previous_declaration); } } } } else if (ObjCImplementationDecl *IMPDecl = dyn_cast(EnclosingDecl)) { assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size()); CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); } } if (Attr) ProcessDeclAttributeList(Record, Attr); } Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl, DeclTy *lastEnumConst, SourceLocation IdLoc, IdentifierInfo *Id, SourceLocation EqualLoc, ExprTy *val) { EnumDecl *TheEnumDecl = cast(static_cast(theEnumDecl)); EnumConstantDecl *LastEnumConst = cast_or_null(static_cast(lastEnumConst)); Expr *Val = static_cast(val); // The scope passed in may not be a decl scope. Zip up the scope tree until // we find one that is. S = getNonFieldDeclScope(S); // Verify that there isn't already something declared with this name in this // scope. NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName); if (PrevDecl && PrevDecl->isTemplateParameter()) { // Maybe we will complain about the shadowed template parameter. DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); // Just pretend that we didn't see the previous declaration. PrevDecl = 0; } if (PrevDecl) { // When in C++, we may get a TagDecl with the same name; in this case the // enum constant will 'hide' the tag. assert((getLangOptions().CPlusPlus || !isa(PrevDecl)) && "Received TagDecl when not in C++!"); if (!isa(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { if (isa(PrevDecl)) Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; else Diag(IdLoc, diag::err_redefinition) << Id; Diag(PrevDecl->getLocation(), diag::note_previous_definition); Val->Destroy(Context); return 0; } } llvm::APSInt EnumVal(32); QualType EltTy; if (Val) { // Make sure to promote the operand type to int. UsualUnaryConversions(Val); // C99 6.7.2.2p2: Make sure we have an integer constant expression. SourceLocation ExpLoc; if (VerifyIntegerConstantExpression(Val, &EnumVal)) { Val->Destroy(Context); Val = 0; // Just forget about it. } else { EltTy = Val->getType(); } } if (!Val) { if (LastEnumConst) { // Assign the last value + 1. EnumVal = LastEnumConst->getInitVal(); ++EnumVal; // Check for overflow on increment. if (EnumVal < LastEnumConst->getInitVal()) Diag(IdLoc, diag::warn_enum_value_overflow); EltTy = LastEnumConst->getType(); } else { // First value, set to zero. EltTy = Context.IntTy; EnumVal.zextOrTrunc(static_cast(Context.getTypeSize(EltTy))); } } EnumConstantDecl *New = EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy, Val, EnumVal); // Register this decl in the current scope stack. PushOnScopeChains(New, S); return New; } // FIXME: For consistency with ActOnFields(), we should have the parser // pass in the source location for the left/right braces. void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX, DeclTy **Elements, unsigned NumElements) { EnumDecl *Enum = cast(static_cast(EnumDeclX)); QualType EnumType = Context.getTypeDeclType(Enum); // TODO: If the result value doesn't fit in an int, it must be a long or long // long value. ISO C does not support this, but GCC does as an extension, // emit a warning. unsigned IntWidth = Context.Target.getIntWidth(); // Verify that all the values are okay, compute the size of the values, and // reverse the list. unsigned NumNegativeBits = 0; unsigned NumPositiveBits = 0; // Keep track of whether all elements have type int. bool AllElementsInt = true; for (unsigned i = 0; i != NumElements; ++i) { EnumConstantDecl *ECD = cast_or_null(static_cast(Elements[i])); if (!ECD) continue; // Already issued a diagnostic. // If the enum value doesn't fit in an int, emit an extension warning. const llvm::APSInt &InitVal = ECD->getInitVal(); assert(InitVal.getBitWidth() >= IntWidth && "Should have promoted value to int"); if (InitVal.getBitWidth() > IntWidth) { llvm::APSInt V(InitVal); V.trunc(IntWidth); V.extend(InitVal.getBitWidth()); if (V != InitVal) Diag(ECD->getLocation(), diag::ext_enum_value_not_int) << InitVal.toString(10); } // Keep track of the size of positive and negative values. if (InitVal.isUnsigned() || InitVal.isNonNegative()) NumPositiveBits = std::max(NumPositiveBits, (unsigned)InitVal.getActiveBits()); else NumNegativeBits = std::max(NumNegativeBits, (unsigned)InitVal.getMinSignedBits()); // Keep track of whether every enum element has type int (very commmon). if (AllElementsInt) AllElementsInt = ECD->getType() == Context.IntTy; } // Figure out the type that should be used for this enum. // FIXME: Support attribute(packed) on enums and -fshort-enums. QualType BestType; unsigned BestWidth; if (NumNegativeBits) { // If there is a negative value, figure out the smallest integer type (of // int/long/longlong) that fits. if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { BestType = Context.IntTy; BestWidth = IntWidth; } else { BestWidth = Context.Target.getLongWidth(); if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) BestType = Context.LongTy; else { BestWidth = Context.Target.getLongLongWidth(); if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) Diag(Enum->getLocation(), diag::warn_enum_too_large); BestType = Context.LongLongTy; } } } else { // If there is no negative value, figure out which of uint, ulong, ulonglong // fits. if (NumPositiveBits <= IntWidth) { BestType = Context.UnsignedIntTy; BestWidth = IntWidth; } else if (NumPositiveBits <= (BestWidth = Context.Target.getLongWidth())) { BestType = Context.UnsignedLongTy; } else { BestWidth = Context.Target.getLongLongWidth(); assert(NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?"); BestType = Context.UnsignedLongLongTy; } } // Loop over all of the enumerator constants, changing their types to match // the type of the enum if needed. for (unsigned i = 0; i != NumElements; ++i) { EnumConstantDecl *ECD = cast_or_null(static_cast(Elements[i])); if (!ECD) continue; // Already issued a diagnostic. // Standard C says the enumerators have int type, but we allow, as an // extension, the enumerators to be larger than int size. If each // enumerator value fits in an int, type it as an int, otherwise type it the // same as the enumerator decl itself. This means that in "enum { X = 1U }" // that X has type 'int', not 'unsigned'. if (ECD->getType() == Context.IntTy) { // Make sure the init value is signed. llvm::APSInt IV = ECD->getInitVal(); IV.setIsSigned(true); ECD->setInitVal(IV); if (getLangOptions().CPlusPlus) // C++ [dcl.enum]p4: Following the closing brace of an // enum-specifier, each enumerator has the type of its // enumeration. ECD->setType(EnumType); continue; // Already int type. } // Determine whether the value fits into an int. llvm::APSInt InitVal = ECD->getInitVal(); bool FitsInInt; if (InitVal.isUnsigned() || !InitVal.isNegative()) FitsInInt = InitVal.getActiveBits() < IntWidth; else FitsInInt = InitVal.getMinSignedBits() <= IntWidth; // If it fits into an integer type, force it. Otherwise force it to match // the enum decl type. QualType NewTy; unsigned NewWidth; bool NewSign; if (FitsInInt) { NewTy = Context.IntTy; NewWidth = IntWidth; NewSign = true; } else if (ECD->getType() == BestType) { // Already the right type! if (getLangOptions().CPlusPlus) // C++ [dcl.enum]p4: Following the closing brace of an // enum-specifier, each enumerator has the type of its // enumeration. ECD->setType(EnumType); continue; } else { NewTy = BestType; NewWidth = BestWidth; NewSign = BestType->isSignedIntegerType(); } // Adjust the APSInt value. InitVal.extOrTrunc(NewWidth); InitVal.setIsSigned(NewSign); ECD->setInitVal(InitVal); // Adjust the Expr initializer and type. if (ECD->getInitExpr()) ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(), /*isLvalue=*/false)); if (getLangOptions().CPlusPlus) // C++ [dcl.enum]p4: Following the closing brace of an // enum-specifier, each enumerator has the type of its // enumeration. ECD->setType(EnumType); else ECD->setType(NewTy); } Enum->completeDefinition(Context, BestType); } Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, ExprArg expr) { StringLiteral *AsmString = cast((Expr*)expr.release()); return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString); } void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name, ExprTy *alignment, SourceLocation PragmaLoc, SourceLocation LParenLoc, SourceLocation RParenLoc) { Expr *Alignment = static_cast(alignment); // If specified then alignment must be a "small" power of two. unsigned AlignmentVal = 0; if (Alignment) { llvm::APSInt Val; if (!Alignment->isIntegerConstantExpr(Val, Context) || !Val.isPowerOf2() || Val.getZExtValue() > 16) { Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment); Alignment->Destroy(Context); return; // Ignore } AlignmentVal = (unsigned) Val.getZExtValue(); } switch (Kind) { case Action::PPK_Default: // pack([n]) PackContext.setAlignment(AlignmentVal); break; case Action::PPK_Show: // pack(show) // Show the current alignment, making sure to show the right value // for the default. AlignmentVal = PackContext.getAlignment(); // FIXME: This should come from the target. if (AlignmentVal == 0) AlignmentVal = 8; Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal; break; case Action::PPK_Push: // pack(push [, id] [, [n]) PackContext.push(Name); // Set the new alignment if specified. if (Alignment) PackContext.setAlignment(AlignmentVal); break; case Action::PPK_Pop: // pack(pop [, id] [, n]) // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack: // "#pragma pack(pop, identifier, n) is undefined" if (Alignment && Name) Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment); // Do the pop. if (!PackContext.pop(Name)) { // If a name was specified then failure indicates the name // wasn't found. Otherwise failure indicates the stack was // empty. Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed) << (Name ? "no record matching name" : "stack empty"); // FIXME: Warn about popping named records as MSVC does. } else { // Pop succeeded, set the new alignment if specified. if (Alignment) PackContext.setAlignment(AlignmentVal); } break; default: assert(0 && "Invalid #pragma pack kind."); } } bool PragmaPackStack::pop(IdentifierInfo *Name) { if (Stack.empty()) return false; // If name is empty just pop top. if (!Name) { Alignment = Stack.back().first; Stack.pop_back(); return true; } // Otherwise, find the named record. for (unsigned i = Stack.size(); i != 0; ) { --i; if (Stack[i].second == Name) { // Found it, pop up to and including this record. Alignment = Stack[i].first; Stack.erase(Stack.begin() + i, Stack.end()); return true; } } return false; }