//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ expressions. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "Lookup.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/ExprCXX.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/Preprocessor.h" #include "clang/Parse/DeclSpec.h" #include "llvm/ADT/STLExtras.h" using namespace clang; /// ActOnCXXTypeidOfType - Parse typeid( type-id ). Action::OwningExprResult Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc) { if (!StdNamespace) return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); if (isType) // FIXME: Preserve type source info. TyOrExpr = GetTypeFromParser(TyOrExpr).getAsOpaquePtr(); IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); LookupQualifiedName(R, StdNamespace); Decl *TypeInfoDecl = R.getAsSingleDecl(Context); RecordDecl *TypeInfoRecordDecl = dyn_cast_or_null(TypeInfoDecl); if (!TypeInfoRecordDecl) return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl); if (!isType) { // C++0x [expr.typeid]p3: // When typeid is applied to an expression other than an lvalue of a // polymorphic class type [...] [the] expression is an unevaluated // operand. // FIXME: if the type of the expression is a class type, the class // shall be completely defined. bool isUnevaluatedOperand = true; Expr *E = static_cast(TyOrExpr); if (E && !E->isTypeDependent() && E->isLvalue(Context) == Expr::LV_Valid) { QualType T = E->getType(); if (const RecordType *RecordT = T->getAs()) { CXXRecordDecl *RecordD = cast(RecordT->getDecl()); if (RecordD->isPolymorphic()) isUnevaluatedOperand = false; } } // If this is an unevaluated operand, clear out the set of declaration // references we have been computing. if (isUnevaluatedOperand) PotentiallyReferencedDeclStack.back().clear(); } return Owned(new (Context) CXXTypeidExpr(isType, TyOrExpr, TypeInfoType.withConst(), SourceRange(OpLoc, RParenLoc))); } /// ActOnCXXBoolLiteral - Parse {true,false} literals. Action::OwningExprResult Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { assert((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"); return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc)); } /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. Action::OwningExprResult Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); } /// ActOnCXXThrow - Parse throw expressions. Action::OwningExprResult Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) { Expr *Ex = E.takeAs(); if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex)) return ExprError(); return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc)); } /// CheckCXXThrowOperand - Validate the operand of a throw. bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) { // C++ [except.throw]p3: // [...] adjusting the type from "array of T" or "function returning T" // to "pointer to T" or "pointer to function returning T", [...] DefaultFunctionArrayConversion(E); // If the type of the exception would be an incomplete type or a pointer // to an incomplete type other than (cv) void the program is ill-formed. QualType Ty = E->getType(); int isPointer = 0; if (const PointerType* Ptr = Ty->getAs()) { Ty = Ptr->getPointeeType(); isPointer = 1; } if (!isPointer || !Ty->isVoidType()) { if (RequireCompleteType(ThrowLoc, Ty, PDiag(isPointer ? diag::err_throw_incomplete_ptr : diag::err_throw_incomplete) << E->getSourceRange())) return true; } // FIXME: Construct a temporary here. return false; } Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) { /// C++ 9.3.2: In the body of a non-static member function, the keyword this /// is a non-lvalue expression whose value is the address of the object for /// which the function is called. if (!isa(CurContext)) return ExprError(Diag(ThisLoc, diag::err_invalid_this_use)); if (CXXMethodDecl *MD = dyn_cast(CurContext)) if (MD->isInstance()) return Owned(new (Context) CXXThisExpr(ThisLoc, MD->getThisType(Context))); return ExprError(Diag(ThisLoc, diag::err_invalid_this_use)); } /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). Action::OwningExprResult Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, SourceLocation LParenLoc, MultiExprArg exprs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { assert(TypeRep && "Missing type!"); // FIXME: Preserve type source info. QualType Ty = GetTypeFromParser(TypeRep); unsigned NumExprs = exprs.size(); Expr **Exprs = (Expr**)exprs.get(); SourceLocation TyBeginLoc = TypeRange.getBegin(); SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc); if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) { exprs.release(); return Owned(CXXUnresolvedConstructExpr::Create(Context, TypeRange.getBegin(), Ty, LParenLoc, Exprs, NumExprs, RParenLoc)); } if (Ty->isArrayType()) return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) << FullRange); if (!Ty->isVoidType() && RequireCompleteType(TyBeginLoc, Ty, PDiag(diag::err_invalid_incomplete_type_use) << FullRange)) return ExprError(); if (RequireNonAbstractType(TyBeginLoc, Ty, diag::err_allocation_of_abstract_type)) return ExprError(); // C++ [expr.type.conv]p1: // If the expression list is a single expression, the type conversion // expression is equivalent (in definedness, and if defined in meaning) to the // corresponding cast expression. // if (NumExprs == 1) { CastExpr::CastKind Kind = CastExpr::CK_Unknown; CXXMethodDecl *Method = 0; if (CheckCastTypes(TypeRange, Ty, Exprs[0], Kind, Method, /*FunctionalStyle=*/true)) return ExprError(); exprs.release(); if (Method) { OwningExprResult CastArg = BuildCXXCastArgument(TypeRange.getBegin(), Ty.getNonReferenceType(), Kind, Method, Owned(Exprs[0])); if (CastArg.isInvalid()) return ExprError(); Exprs[0] = CastArg.takeAs(); } return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(), Ty, TyBeginLoc, Kind, Exprs[0], RParenLoc)); } if (const RecordType *RT = Ty->getAs()) { CXXRecordDecl *Record = cast(RT->getDecl()); if (NumExprs > 1 || !Record->hasTrivialConstructor() || !Record->hasTrivialDestructor()) { ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); CXXConstructorDecl *Constructor = PerformInitializationByConstructor(Ty, move(exprs), TypeRange.getBegin(), SourceRange(TypeRange.getBegin(), RParenLoc), DeclarationName(), IK_Direct, ConstructorArgs); if (!Constructor) return ExprError(); OwningExprResult Result = BuildCXXTemporaryObjectExpr(Constructor, Ty, TyBeginLoc, move_arg(ConstructorArgs), RParenLoc); if (Result.isInvalid()) return ExprError(); return MaybeBindToTemporary(Result.takeAs()); } // Fall through to value-initialize an object of class type that // doesn't have a user-declared default constructor. } // C++ [expr.type.conv]p1: // If the expression list specifies more than a single value, the type shall // be a class with a suitably declared constructor. // if (NumExprs > 1) return ExprError(Diag(CommaLocs[0], diag::err_builtin_func_cast_more_than_one_arg) << FullRange); assert(NumExprs == 0 && "Expected 0 expressions"); // C++ [expr.type.conv]p2: // The expression T(), where T is a simple-type-specifier for a non-array // complete object type or the (possibly cv-qualified) void type, creates an // rvalue of the specified type, which is value-initialized. // exprs.release(); return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc)); } /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.: /// @code new (memory) int[size][4] @endcode /// or /// @code ::new Foo(23, "hello") @endcode /// For the interpretation of this heap of arguments, consult the base version. Action::OwningExprResult Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, bool ParenTypeId, Declarator &D, SourceLocation ConstructorLParen, MultiExprArg ConstructorArgs, SourceLocation ConstructorRParen) { Expr *ArraySize = 0; // If the specified type is an array, unwrap it and save the expression. if (D.getNumTypeObjects() > 0 && D.getTypeObject(0).Kind == DeclaratorChunk::Array) { DeclaratorChunk &Chunk = D.getTypeObject(0); if (Chunk.Arr.hasStatic) return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) << D.getSourceRange()); if (!Chunk.Arr.NumElts) return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) << D.getSourceRange()); if (ParenTypeId) { // Can't have dynamic array size when the type-id is in parentheses. Expr *NumElts = (Expr *)Chunk.Arr.NumElts; if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() && !NumElts->isIntegerConstantExpr(Context)) { Diag(D.getTypeObject(0).Loc, diag::err_new_paren_array_nonconst) << NumElts->getSourceRange(); return ExprError(); } } ArraySize = static_cast(Chunk.Arr.NumElts); D.DropFirstTypeObject(); } // Every dimension shall be of constant size. if (ArraySize) { for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) break; DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; if (Expr *NumElts = (Expr *)Array.NumElts) { if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() && !NumElts->isIntegerConstantExpr(Context)) { Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst) << NumElts->getSourceRange(); return ExprError(); } } } } //FIXME: Store DeclaratorInfo in CXXNew expression. DeclaratorInfo *DInfo = 0; QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, &DInfo); if (D.isInvalidType()) return ExprError(); return BuildCXXNew(StartLoc, UseGlobal, PlacementLParen, move(PlacementArgs), PlacementRParen, ParenTypeId, AllocType, D.getSourceRange().getBegin(), D.getSourceRange(), Owned(ArraySize), ConstructorLParen, move(ConstructorArgs), ConstructorRParen); } Sema::OwningExprResult Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, bool ParenTypeId, QualType AllocType, SourceLocation TypeLoc, SourceRange TypeRange, ExprArg ArraySizeE, SourceLocation ConstructorLParen, MultiExprArg ConstructorArgs, SourceLocation ConstructorRParen) { if (CheckAllocatedType(AllocType, TypeLoc, TypeRange)) return ExprError(); QualType ResultType = Context.getPointerType(AllocType); // That every array dimension except the first is constant was already // checked by the type check above. // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral // or enumeration type with a non-negative value." Expr *ArraySize = (Expr *)ArraySizeE.get(); if (ArraySize && !ArraySize->isTypeDependent()) { QualType SizeType = ArraySize->getType(); if (!SizeType->isIntegralType() && !SizeType->isEnumeralType()) return ExprError(Diag(ArraySize->getSourceRange().getBegin(), diag::err_array_size_not_integral) << SizeType << ArraySize->getSourceRange()); // Let's see if this is a constant < 0. If so, we reject it out of hand. // We don't care about special rules, so we tell the machinery it's not // evaluated - it gives us a result in more cases. if (!ArraySize->isValueDependent()) { llvm::APSInt Value; if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) { if (Value < llvm::APSInt( llvm::APInt::getNullValue(Value.getBitWidth()), Value.isUnsigned())) return ExprError(Diag(ArraySize->getSourceRange().getBegin(), diag::err_typecheck_negative_array_size) << ArraySize->getSourceRange()); } } ImpCastExprToType(ArraySize, Context.getSizeType(), CastExpr::CK_IntegralCast); } FunctionDecl *OperatorNew = 0; FunctionDecl *OperatorDelete = 0; Expr **PlaceArgs = (Expr**)PlacementArgs.get(); unsigned NumPlaceArgs = PlacementArgs.size(); if (!AllocType->isDependentType() && !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) && FindAllocationFunctions(StartLoc, SourceRange(PlacementLParen, PlacementRParen), UseGlobal, AllocType, ArraySize, PlaceArgs, NumPlaceArgs, OperatorNew, OperatorDelete)) return ExprError(); llvm::SmallVector AllPlaceArgs; if (OperatorNew) { // Add default arguments, if any. const FunctionProtoType *Proto = OperatorNew->getType()->getAs(); VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; bool Invalid = GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1, PlaceArgs, NumPlaceArgs, AllPlaceArgs, CallType); if (Invalid) return ExprError(); NumPlaceArgs = AllPlaceArgs.size(); if (NumPlaceArgs > 0) PlaceArgs = &AllPlaceArgs[0]; } bool Init = ConstructorLParen.isValid(); // --- Choosing a constructor --- // C++ 5.3.4p15 // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid) // the object is not initialized. If the object, or any part of it, is // const-qualified, it's an error. // 2) If T is a POD and there's an empty initializer, the object is value- // initialized. // 3) If T is a POD and there's one initializer argument, the object is copy- // constructed. // 4) If T is a POD and there's more initializer arguments, it's an error. // 5) If T is not a POD, the initializer arguments are used as constructor // arguments. // // Or by the C++0x formulation: // 1) If there's no initializer, the object is default-initialized according // to C++0x rules. // 2) Otherwise, the object is direct-initialized. CXXConstructorDecl *Constructor = 0; Expr **ConsArgs = (Expr**)ConstructorArgs.get(); const RecordType *RT; unsigned NumConsArgs = ConstructorArgs.size(); ASTOwningVector<&ActionBase::DeleteExpr> ConvertedConstructorArgs(*this); if (AllocType->isDependentType() || Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) { // Skip all the checks. } else if ((RT = AllocType->getAs()) && !AllocType->isAggregateType()) { Constructor = PerformInitializationByConstructor( AllocType, move(ConstructorArgs), TypeLoc, SourceRange(TypeLoc, ConstructorRParen), RT->getDecl()->getDeclName(), NumConsArgs != 0 ? IK_Direct : IK_Default, ConvertedConstructorArgs); if (!Constructor) return ExprError(); // Take the converted constructor arguments and use them for the new // expression. NumConsArgs = ConvertedConstructorArgs.size(); ConsArgs = (Expr **)ConvertedConstructorArgs.take(); } else { if (!Init) { // FIXME: Check that no subpart is const. if (AllocType.isConstQualified()) return ExprError(Diag(StartLoc, diag::err_new_uninitialized_const) << TypeRange); } else if (NumConsArgs == 0) { // Object is value-initialized. Do nothing. } else if (NumConsArgs == 1) { // Object is direct-initialized. // FIXME: What DeclarationName do we pass in here? if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc, DeclarationName() /*AllocType.getAsString()*/, /*DirectInit=*/true)) return ExprError(); } else { return ExprError(Diag(StartLoc, diag::err_builtin_direct_init_more_than_one_arg) << SourceRange(ConstructorLParen, ConstructorRParen)); } } // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16) PlacementArgs.release(); ConstructorArgs.release(); ArraySizeE.release(); return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs, NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init, ConsArgs, NumConsArgs, OperatorDelete, ResultType, StartLoc, Init ? ConstructorRParen : SourceLocation())); } /// CheckAllocatedType - Checks that a type is suitable as the allocated type /// in a new-expression. /// dimension off and stores the size expression in ArraySize. bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, SourceRange R) { // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an // abstract class type or array thereof. if (AllocType->isFunctionType()) return Diag(Loc, diag::err_bad_new_type) << AllocType << 0 << R; else if (AllocType->isReferenceType()) return Diag(Loc, diag::err_bad_new_type) << AllocType << 1 << R; else if (!AllocType->isDependentType() && RequireCompleteType(Loc, AllocType, PDiag(diag::err_new_incomplete_type) << R)) return true; else if (RequireNonAbstractType(Loc, AllocType, diag::err_allocation_of_abstract_type)) return true; return false; } /// FindAllocationFunctions - Finds the overloads of operator new and delete /// that are appropriate for the allocation. bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, bool UseGlobal, QualType AllocType, bool IsArray, Expr **PlaceArgs, unsigned NumPlaceArgs, FunctionDecl *&OperatorNew, FunctionDecl *&OperatorDelete) { // --- Choosing an allocation function --- // C++ 5.3.4p8 - 14 & 18 // 1) If UseGlobal is true, only look in the global scope. Else, also look // in the scope of the allocated class. // 2) If an array size is given, look for operator new[], else look for // operator new. // 3) The first argument is always size_t. Append the arguments from the // placement form. // FIXME: Also find the appropriate delete operator. llvm::SmallVector AllocArgs(1 + NumPlaceArgs); // We don't care about the actual value of this argument. // FIXME: Should the Sema create the expression and embed it in the syntax // tree? Or should the consumer just recalculate the value? IntegerLiteral Size(llvm::APInt::getNullValue( Context.Target.getPointerWidth(0)), Context.getSizeType(), SourceLocation()); AllocArgs[0] = &Size; std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1); DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( IsArray ? OO_Array_New : OO_New); if (AllocType->isRecordType() && !UseGlobal) { CXXRecordDecl *Record = cast(AllocType->getAs()->getDecl()); // FIXME: We fail to find inherited overloads. if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], AllocArgs.size(), Record, /*AllowMissing=*/true, OperatorNew)) return true; } if (!OperatorNew) { // Didn't find a member overload. Look for a global one. DeclareGlobalNewDelete(); DeclContext *TUDecl = Context.getTranslationUnitDecl(); if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], AllocArgs.size(), TUDecl, /*AllowMissing=*/false, OperatorNew)) return true; } // FindAllocationOverload can change the passed in arguments, so we need to // copy them back. if (NumPlaceArgs > 0) std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs); return false; } /// FindAllocationOverload - Find an fitting overload for the allocation /// function in the specified scope. bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, DeclarationName Name, Expr** Args, unsigned NumArgs, DeclContext *Ctx, bool AllowMissing, FunctionDecl *&Operator) { LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); LookupQualifiedName(R, Ctx); if (R.empty()) { if (AllowMissing) return false; return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) << Name << Range; } // FIXME: handle ambiguity OverloadCandidateSet Candidates; for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); Alloc != AllocEnd; ++Alloc) { // Even member operator new/delete are implicitly treated as // static, so don't use AddMemberCandidate. if (FunctionDecl *Fn = dyn_cast(*Alloc)) { AddOverloadCandidate(Fn, Args, NumArgs, Candidates, /*SuppressUserConversions=*/false); continue; } // FIXME: Handle function templates } // Do the resolution. OverloadCandidateSet::iterator Best; switch(BestViableFunction(Candidates, StartLoc, Best)) { case OR_Success: { // Got one! FunctionDecl *FnDecl = Best->Function; // The first argument is size_t, and the first parameter must be size_t, // too. This is checked on declaration and can be assumed. (It can't be // asserted on, though, since invalid decls are left in there.) // Whatch out for variadic allocator function. unsigned NumArgsInFnDecl = FnDecl->getNumParams(); for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) { // FIXME: Passing word to diagnostic. if (PerformCopyInitialization(Args[i], FnDecl->getParamDecl(i)->getType(), "passing")) return true; } Operator = FnDecl; return false; } case OR_No_Viable_Function: Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) << Name << Range; PrintOverloadCandidates(Candidates, /*OnlyViable=*/false); return true; case OR_Ambiguous: Diag(StartLoc, diag::err_ovl_ambiguous_call) << Name << Range; PrintOverloadCandidates(Candidates, /*OnlyViable=*/true); return true; case OR_Deleted: Diag(StartLoc, diag::err_ovl_deleted_call) << Best->Function->isDeleted() << Name << Range; PrintOverloadCandidates(Candidates, /*OnlyViable=*/true); return true; } assert(false && "Unreachable, bad result from BestViableFunction"); return true; } /// DeclareGlobalNewDelete - Declare the global forms of operator new and /// delete. These are: /// @code /// void* operator new(std::size_t) throw(std::bad_alloc); /// void* operator new[](std::size_t) throw(std::bad_alloc); /// void operator delete(void *) throw(); /// void operator delete[](void *) throw(); /// @endcode /// Note that the placement and nothrow forms of new are *not* implicitly /// declared. Their use requires including \. void Sema::DeclareGlobalNewDelete() { if (GlobalNewDeleteDeclared) return; // C++ [basic.std.dynamic]p2: // [...] The following allocation and deallocation functions (18.4) are // implicitly declared in global scope in each translation unit of a // program // // void* operator new(std::size_t) throw(std::bad_alloc); // void* operator new[](std::size_t) throw(std::bad_alloc); // void operator delete(void*) throw(); // void operator delete[](void*) throw(); // // These implicit declarations introduce only the function names operator // new, operator new[], operator delete, operator delete[]. // // Here, we need to refer to std::bad_alloc, so we will implicitly declare // "std" or "bad_alloc" as necessary to form the exception specification. // However, we do not make these implicit declarations visible to name // lookup. if (!StdNamespace) { // The "std" namespace has not yet been defined, so build one implicitly. StdNamespace = NamespaceDecl::Create(Context, Context.getTranslationUnitDecl(), SourceLocation(), &PP.getIdentifierTable().get("std")); StdNamespace->setImplicit(true); } if (!StdBadAlloc) { // The "std::bad_alloc" class has not yet been declared, so build it // implicitly. StdBadAlloc = CXXRecordDecl::Create(Context, TagDecl::TK_class, StdNamespace, SourceLocation(), &PP.getIdentifierTable().get("bad_alloc"), SourceLocation(), 0); StdBadAlloc->setImplicit(true); } GlobalNewDeleteDeclared = true; QualType VoidPtr = Context.getPointerType(Context.VoidTy); QualType SizeT = Context.getSizeType(); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_New), VoidPtr, SizeT); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_Array_New), VoidPtr, SizeT); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_Delete), Context.VoidTy, VoidPtr); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), Context.VoidTy, VoidPtr); } /// DeclareGlobalAllocationFunction - Declares a single implicit global /// allocation function if it doesn't already exist. void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return, QualType Argument) { DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); // Check if this function is already declared. { DeclContext::lookup_iterator Alloc, AllocEnd; for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name); Alloc != AllocEnd; ++Alloc) { // FIXME: Do we need to check for default arguments here? FunctionDecl *Func = cast(*Alloc); if (Func->getNumParams() == 1 && Context.getCanonicalType(Func->getParamDecl(0)->getType())==Argument) return; } } QualType BadAllocType; bool HasBadAllocExceptionSpec = (Name.getCXXOverloadedOperator() == OO_New || Name.getCXXOverloadedOperator() == OO_Array_New); if (HasBadAllocExceptionSpec) { assert(StdBadAlloc && "Must have std::bad_alloc declared"); BadAllocType = Context.getTypeDeclType(StdBadAlloc); } QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0, true, false, HasBadAllocExceptionSpec? 1 : 0, &BadAllocType); FunctionDecl *Alloc = FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name, FnType, /*DInfo=*/0, FunctionDecl::None, false, true); Alloc->setImplicit(); ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(), 0, Argument, /*DInfo=*/0, VarDecl::None, 0); Alloc->setParams(Context, &Param, 1); // FIXME: Also add this declaration to the IdentifierResolver, but // make sure it is at the end of the chain to coincide with the // global scope. ((DeclContext *)TUScope->getEntity())->addDecl(Alloc); } bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, DeclarationName Name, FunctionDecl* &Operator) { LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); // Try to find operator delete/operator delete[] in class scope. LookupQualifiedName(Found, RD); if (Found.isAmbiguous()) return true; for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); F != FEnd; ++F) { if (CXXMethodDecl *Delete = dyn_cast(*F)) if (Delete->isUsualDeallocationFunction()) { Operator = Delete; return false; } } // We did find operator delete/operator delete[] declarations, but // none of them were suitable. if (!Found.empty()) { Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) << Name << RD; for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); F != FEnd; ++F) { Diag((*F)->getLocation(), diag::note_delete_member_function_declared_here) << Name; } return true; } // Look for a global declaration. DeclareGlobalNewDelete(); DeclContext *TUDecl = Context.getTranslationUnitDecl(); CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation()); Expr* DeallocArgs[1]; DeallocArgs[0] = &Null; if (FindAllocationOverload(StartLoc, SourceRange(), Name, DeallocArgs, 1, TUDecl, /*AllowMissing=*/false, Operator)) return true; assert(Operator && "Did not find a deallocation function!"); return false; } /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: /// @code ::delete ptr; @endcode /// or /// @code delete [] ptr; @endcode Action::OwningExprResult Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, bool ArrayForm, ExprArg Operand) { // C++ [expr.delete]p1: // The operand shall have a pointer type, or a class type having a single // conversion function to a pointer type. The result has type void. // // DR599 amends "pointer type" to "pointer to object type" in both cases. FunctionDecl *OperatorDelete = 0; Expr *Ex = (Expr *)Operand.get(); if (!Ex->isTypeDependent()) { QualType Type = Ex->getType(); if (const RecordType *Record = Type->getAs()) { llvm::SmallVector ObjectPtrConversions; CXXRecordDecl *RD = cast(Record->getDecl()); const UnresolvedSet *Conversions = RD->getVisibleConversionFunctions(); for (UnresolvedSet::iterator I = Conversions->begin(), E = Conversions->end(); I != E; ++I) { // Skip over templated conversion functions; they aren't considered. if (isa(*I)) continue; CXXConversionDecl *Conv = cast(*I); QualType ConvType = Conv->getConversionType().getNonReferenceType(); if (const PointerType *ConvPtrType = ConvType->getAs()) if (ConvPtrType->getPointeeType()->isObjectType()) ObjectPtrConversions.push_back(Conv); } if (ObjectPtrConversions.size() == 1) { // We have a single conversion to a pointer-to-object type. Perform // that conversion. Operand.release(); if (!PerformImplicitConversion(Ex, ObjectPtrConversions.front()->getConversionType(), "converting")) { Operand = Owned(Ex); Type = Ex->getType(); } } else if (ObjectPtrConversions.size() > 1) { Diag(StartLoc, diag::err_ambiguous_delete_operand) << Type << Ex->getSourceRange(); for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) { CXXConversionDecl *Conv = ObjectPtrConversions[i]; Diag(Conv->getLocation(), diag::err_ovl_candidate); } return ExprError(); } } if (!Type->isPointerType()) return ExprError(Diag(StartLoc, diag::err_delete_operand) << Type << Ex->getSourceRange()); QualType Pointee = Type->getAs()->getPointeeType(); if (Pointee->isFunctionType() || Pointee->isVoidType()) return ExprError(Diag(StartLoc, diag::err_delete_operand) << Type << Ex->getSourceRange()); else if (!Pointee->isDependentType() && RequireCompleteType(StartLoc, Pointee, PDiag(diag::warn_delete_incomplete) << Ex->getSourceRange())) return ExprError(); // C++ [expr.delete]p2: // [Note: a pointer to a const type can be the operand of a // delete-expression; it is not necessary to cast away the constness // (5.2.11) of the pointer expression before it is used as the operand // of the delete-expression. ] ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy), CastExpr::CK_NoOp); // Update the operand. Operand.take(); Operand = ExprArg(*this, Ex); DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( ArrayForm ? OO_Array_Delete : OO_Delete); if (const RecordType *RT = Pointee->getAs()) { CXXRecordDecl *RD = cast(RT->getDecl()); if (!UseGlobal && FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete)) return ExprError(); if (!RD->hasTrivialDestructor()) if (const CXXDestructorDecl *Dtor = RD->getDestructor(Context)) MarkDeclarationReferenced(StartLoc, const_cast(Dtor)); } if (!OperatorDelete) { // Look for a global declaration. DeclareGlobalNewDelete(); DeclContext *TUDecl = Context.getTranslationUnitDecl(); if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName, &Ex, 1, TUDecl, /*AllowMissing=*/false, OperatorDelete)) return ExprError(); } // FIXME: Check access and ambiguity of operator delete and destructor. } Operand.release(); return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, OperatorDelete, Ex, StartLoc)); } /// \brief Check the use of the given variable as a C++ condition in an if, /// while, do-while, or switch statement. Action::OwningExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar) { QualType T = ConditionVar->getType(); // C++ [stmt.select]p2: // The declarator shall not specify a function or an array. if (T->isFunctionType()) return ExprError(Diag(ConditionVar->getLocation(), diag::err_invalid_use_of_function_type) << ConditionVar->getSourceRange()); else if (T->isArrayType()) return ExprError(Diag(ConditionVar->getLocation(), diag::err_invalid_use_of_array_type) << ConditionVar->getSourceRange()); return Owned(DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar, ConditionVar->getLocation(), ConditionVar->getType().getNonReferenceType())); } /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) { // C++ 6.4p4: // The value of a condition that is an initialized declaration in a statement // other than a switch statement is the value of the declared variable // implicitly converted to type bool. If that conversion is ill-formed, the // program is ill-formed. // The value of a condition that is an expression is the value of the // expression, implicitly converted to bool. // return PerformContextuallyConvertToBool(CondExpr); } /// Helper function to determine whether this is the (deprecated) C++ /// conversion from a string literal to a pointer to non-const char or /// non-const wchar_t (for narrow and wide string literals, /// respectively). bool Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { // Look inside the implicit cast, if it exists. if (ImplicitCastExpr *Cast = dyn_cast(From)) From = Cast->getSubExpr(); // A string literal (2.13.4) that is not a wide string literal can // be converted to an rvalue of type "pointer to char"; a wide // string literal can be converted to an rvalue of type "pointer // to wchar_t" (C++ 4.2p2). if (StringLiteral *StrLit = dyn_cast(From)) if (const PointerType *ToPtrType = ToType->getAs()) if (const BuiltinType *ToPointeeType = ToPtrType->getPointeeType()->getAs()) { // This conversion is considered only when there is an // explicit appropriate pointer target type (C++ 4.2p2). if (!ToPtrType->getPointeeType().hasQualifiers() && ((StrLit->isWide() && ToPointeeType->isWideCharType()) || (!StrLit->isWide() && (ToPointeeType->getKind() == BuiltinType::Char_U || ToPointeeType->getKind() == BuiltinType::Char_S)))) return true; } return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType. Returns true if there was an /// error, false otherwise. The expression From is replaced with the /// converted expression. Flavor is the kind of conversion we're /// performing, used in the error message. If @p AllowExplicit, /// explicit user-defined conversions are permitted. @p Elidable should be true /// when called for copies which may be elided (C++ 12.8p15). C++0x overload /// resolution works differently in that case. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, const char *Flavor, bool AllowExplicit, bool Elidable) { ImplicitConversionSequence ICS; return PerformImplicitConversion(From, ToType, Flavor, AllowExplicit, Elidable, ICS); } bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, const char *Flavor, bool AllowExplicit, bool Elidable, ImplicitConversionSequence& ICS) { ICS.ConversionKind = ImplicitConversionSequence::BadConversion; if (Elidable && getLangOptions().CPlusPlus0x) { ICS = TryImplicitConversion(From, ToType, /*SuppressUserConversions=*/false, AllowExplicit, /*ForceRValue=*/true, /*InOverloadResolution=*/false); } if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) { ICS = TryImplicitConversion(From, ToType, /*SuppressUserConversions=*/false, AllowExplicit, /*ForceRValue=*/false, /*InOverloadResolution=*/false); } return PerformImplicitConversion(From, ToType, ICS, Flavor); } /// BuildCXXDerivedToBaseExpr - This routine generates the suitable AST /// for the derived to base conversion of the expression 'From'. All /// necessary information is passed in ICS. bool Sema::BuildCXXDerivedToBaseExpr(Expr *&From, CastExpr::CastKind CastKind, const ImplicitConversionSequence& ICS, const char *Flavor) { QualType BaseType = QualType::getFromOpaquePtr(ICS.UserDefined.After.ToTypePtr); // Must do additional defined to base conversion. QualType DerivedType = QualType::getFromOpaquePtr(ICS.UserDefined.After.FromTypePtr); From = new (Context) ImplicitCastExpr( DerivedType.getNonReferenceType(), CastKind, From, DerivedType->isLValueReferenceType()); From = new (Context) ImplicitCastExpr(BaseType.getNonReferenceType(), CastExpr::CK_DerivedToBase, From, BaseType->isLValueReferenceType()); ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); OwningExprResult FromResult = BuildCXXConstructExpr( ICS.UserDefined.After.CopyConstructor->getLocation(), BaseType, ICS.UserDefined.After.CopyConstructor, MultiExprArg(*this, (void **)&From, 1)); if (FromResult.isInvalid()) return true; From = FromResult.takeAs(); return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType using the pre-computed implicit /// conversion sequence ICS. Returns true if there was an error, false /// otherwise. The expression From is replaced with the converted /// expression. Flavor is the kind of conversion we're performing, /// used in the error message. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, const ImplicitConversionSequence &ICS, const char* Flavor, bool IgnoreBaseAccess) { switch (ICS.ConversionKind) { case ImplicitConversionSequence::StandardConversion: if (PerformImplicitConversion(From, ToType, ICS.Standard, Flavor, IgnoreBaseAccess)) return true; break; case ImplicitConversionSequence::UserDefinedConversion: { FunctionDecl *FD = ICS.UserDefined.ConversionFunction; CastExpr::CastKind CastKind = CastExpr::CK_Unknown; QualType BeforeToType; if (const CXXConversionDecl *Conv = dyn_cast(FD)) { CastKind = CastExpr::CK_UserDefinedConversion; // If the user-defined conversion is specified by a conversion function, // the initial standard conversion sequence converts the source type to // the implicit object parameter of the conversion function. BeforeToType = Context.getTagDeclType(Conv->getParent()); } else if (const CXXConstructorDecl *Ctor = dyn_cast(FD)) { CastKind = CastExpr::CK_ConstructorConversion; // Do no conversion if dealing with ... for the first conversion. if (!ICS.UserDefined.EllipsisConversion) { // If the user-defined conversion is specified by a constructor, the // initial standard conversion sequence converts the source type to the // type required by the argument of the constructor BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); } } else assert(0 && "Unknown conversion function kind!"); // Whatch out for elipsis conversion. if (!ICS.UserDefined.EllipsisConversion) { if (PerformImplicitConversion(From, BeforeToType, ICS.UserDefined.Before, "converting", IgnoreBaseAccess)) return true; } OwningExprResult CastArg = BuildCXXCastArgument(From->getLocStart(), ToType.getNonReferenceType(), CastKind, cast(FD), Owned(From)); if (CastArg.isInvalid()) return true; if (ICS.UserDefined.After.Second == ICK_Derived_To_Base && ICS.UserDefined.After.CopyConstructor) { From = CastArg.takeAs(); return BuildCXXDerivedToBaseExpr(From, CastKind, ICS, Flavor); } if (ICS.UserDefined.After.Second == ICK_Pointer_Member && ToType.getNonReferenceType()->isMemberFunctionPointerType()) CastKind = CastExpr::CK_BaseToDerivedMemberPointer; From = new (Context) ImplicitCastExpr(ToType.getNonReferenceType(), CastKind, CastArg.takeAs(), ToType->isLValueReferenceType()); return false; } case ImplicitConversionSequence::EllipsisConversion: assert(false && "Cannot perform an ellipsis conversion"); return false; case ImplicitConversionSequence::BadConversion: return true; } // Everything went well. return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType by following the standard /// conversion sequence SCS. Returns true if there was an error, false /// otherwise. The expression From is replaced with the converted /// expression. Flavor is the context in which we're performing this /// conversion, for use in error messages. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, const StandardConversionSequence& SCS, const char *Flavor, bool IgnoreBaseAccess) { // Overall FIXME: we are recomputing too many types here and doing far too // much extra work. What this means is that we need to keep track of more // information that is computed when we try the implicit conversion initially, // so that we don't need to recompute anything here. QualType FromType = From->getType(); if (SCS.CopyConstructor) { // FIXME: When can ToType be a reference type? assert(!ToType->isReferenceType()); if (SCS.Second == ICK_Derived_To_Base) { ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); if (CompleteConstructorCall(cast(SCS.CopyConstructor), MultiExprArg(*this, (void **)&From, 1), /*FIXME:ConstructLoc*/SourceLocation(), ConstructorArgs)) return true; OwningExprResult FromResult = BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), ToType, SCS.CopyConstructor, move_arg(ConstructorArgs)); if (FromResult.isInvalid()) return true; From = FromResult.takeAs(); return false; } OwningExprResult FromResult = BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), ToType, SCS.CopyConstructor, MultiExprArg(*this, (void**)&From, 1)); if (FromResult.isInvalid()) return true; From = FromResult.takeAs(); return false; } // Perform the first implicit conversion. switch (SCS.First) { case ICK_Identity: case ICK_Lvalue_To_Rvalue: // Nothing to do. break; case ICK_Array_To_Pointer: FromType = Context.getArrayDecayedType(FromType); ImpCastExprToType(From, FromType, CastExpr::CK_ArrayToPointerDecay); break; case ICK_Function_To_Pointer: if (Context.getCanonicalType(FromType) == Context.OverloadTy) { FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true); if (!Fn) return true; if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin())) return true; From = FixOverloadedFunctionReference(From, Fn); FromType = From->getType(); // If there's already an address-of operator in the expression, we have // the right type already, and the code below would just introduce an // invalid additional pointer level. if (FromType->isPointerType() || FromType->isMemberFunctionPointerType()) break; } FromType = Context.getPointerType(FromType); ImpCastExprToType(From, FromType, CastExpr::CK_FunctionToPointerDecay); break; default: assert(false && "Improper first standard conversion"); break; } // Perform the second implicit conversion switch (SCS.Second) { case ICK_Identity: // If both sides are functions (or pointers/references to them), there could // be incompatible exception declarations. if (CheckExceptionSpecCompatibility(From, ToType)) return true; // Nothing else to do. break; case ICK_Integral_Promotion: case ICK_Integral_Conversion: ImpCastExprToType(From, ToType, CastExpr::CK_IntegralCast); break; case ICK_Floating_Promotion: case ICK_Floating_Conversion: ImpCastExprToType(From, ToType, CastExpr::CK_FloatingCast); break; case ICK_Complex_Promotion: case ICK_Complex_Conversion: ImpCastExprToType(From, ToType, CastExpr::CK_Unknown); break; case ICK_Floating_Integral: if (ToType->isFloatingType()) ImpCastExprToType(From, ToType, CastExpr::CK_IntegralToFloating); else ImpCastExprToType(From, ToType, CastExpr::CK_FloatingToIntegral); break; case ICK_Complex_Real: ImpCastExprToType(From, ToType, CastExpr::CK_Unknown); break; case ICK_Compatible_Conversion: ImpCastExprToType(From, ToType, CastExpr::CK_NoOp); break; case ICK_Pointer_Conversion: { if (SCS.IncompatibleObjC) { // Diagnose incompatible Objective-C conversions Diag(From->getSourceRange().getBegin(), diag::ext_typecheck_convert_incompatible_pointer) << From->getType() << ToType << Flavor << From->getSourceRange(); } CastExpr::CastKind Kind = CastExpr::CK_Unknown; if (CheckPointerConversion(From, ToType, Kind, IgnoreBaseAccess)) return true; ImpCastExprToType(From, ToType, Kind); break; } case ICK_Pointer_Member: { CastExpr::CastKind Kind = CastExpr::CK_Unknown; if (CheckMemberPointerConversion(From, ToType, Kind, IgnoreBaseAccess)) return true; if (CheckExceptionSpecCompatibility(From, ToType)) return true; ImpCastExprToType(From, ToType, Kind); break; } case ICK_Boolean_Conversion: { CastExpr::CastKind Kind = CastExpr::CK_Unknown; if (FromType->isMemberPointerType()) Kind = CastExpr::CK_MemberPointerToBoolean; ImpCastExprToType(From, Context.BoolTy, Kind); break; } case ICK_Derived_To_Base: if (CheckDerivedToBaseConversion(From->getType(), ToType.getNonReferenceType(), From->getLocStart(), From->getSourceRange(), IgnoreBaseAccess)) return true; ImpCastExprToType(From, ToType.getNonReferenceType(), CastExpr::CK_DerivedToBase); break; default: assert(false && "Improper second standard conversion"); break; } switch (SCS.Third) { case ICK_Identity: // Nothing to do. break; case ICK_Qualification: // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue // references. ImpCastExprToType(From, ToType.getNonReferenceType(), CastExpr::CK_NoOp, ToType->isLValueReferenceType()); break; default: assert(false && "Improper second standard conversion"); break; } return false; } Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT, SourceLocation KWLoc, SourceLocation LParen, TypeTy *Ty, SourceLocation RParen) { QualType T = GetTypeFromParser(Ty); // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html // all traits except __is_class, __is_enum and __is_union require a the type // to be complete. if (OTT != UTT_IsClass && OTT != UTT_IsEnum && OTT != UTT_IsUnion) { if (RequireCompleteType(KWLoc, T, diag::err_incomplete_type_used_in_type_trait_expr)) return ExprError(); } // There is no point in eagerly computing the value. The traits are designed // to be used from type trait templates, so Ty will be a template parameter // 99% of the time. return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, T, RParen, Context.BoolTy)); } QualType Sema::CheckPointerToMemberOperands( Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) { const char *OpSpelling = isIndirect ? "->*" : ".*"; // C++ 5.5p2 // The binary operator .* [p3: ->*] binds its second operand, which shall // be of type "pointer to member of T" (where T is a completely-defined // class type) [...] QualType RType = rex->getType(); const MemberPointerType *MemPtr = RType->getAs(); if (!MemPtr) { Diag(Loc, diag::err_bad_memptr_rhs) << OpSpelling << RType << rex->getSourceRange(); return QualType(); } QualType Class(MemPtr->getClass(), 0); // C++ 5.5p2 // [...] to its first operand, which shall be of class T or of a class of // which T is an unambiguous and accessible base class. [p3: a pointer to // such a class] QualType LType = lex->getType(); if (isIndirect) { if (const PointerType *Ptr = LType->getAs()) LType = Ptr->getPointeeType().getNonReferenceType(); else { Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling << 1 << LType << CodeModificationHint::CreateReplacement(SourceRange(Loc), ".*"); return QualType(); } } if (!Context.hasSameUnqualifiedType(Class, LType)) { CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, /*DetectVirtual=*/false); // FIXME: Would it be useful to print full ambiguity paths, or is that // overkill? if (!IsDerivedFrom(LType, Class, Paths) || Paths.isAmbiguous(Context.getCanonicalType(Class))) { const char *ReplaceStr = isIndirect ? ".*" : "->*"; Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling << (int)isIndirect << lex->getType() << CodeModificationHint::CreateReplacement(SourceRange(Loc), ReplaceStr); return QualType(); } } if (isa(rex->IgnoreParens())) { // Diagnose use of pointer-to-member type which when used as // the functional cast in a pointer-to-member expression. Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; return QualType(); } // C++ 5.5p2 // The result is an object or a function of the type specified by the // second operand. // The cv qualifiers are the union of those in the pointer and the left side, // in accordance with 5.5p5 and 5.2.5. // FIXME: This returns a dereferenced member function pointer as a normal // function type. However, the only operation valid on such functions is // calling them. There's also a GCC extension to get a function pointer to the // thing, which is another complication, because this type - unlike the type // that is the result of this expression - takes the class as the first // argument. // We probably need a "MemberFunctionClosureType" or something like that. QualType Result = MemPtr->getPointeeType(); Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers()); return Result; } /// \brief Get the target type of a standard or user-defined conversion. static QualType TargetType(const ImplicitConversionSequence &ICS) { assert((ICS.ConversionKind == ImplicitConversionSequence::StandardConversion || ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) && "function only valid for standard or user-defined conversions"); if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion) return QualType::getFromOpaquePtr(ICS.Standard.ToTypePtr); return QualType::getFromOpaquePtr(ICS.UserDefined.After.ToTypePtr); } /// \brief Try to convert a type to another according to C++0x 5.16p3. /// /// This is part of the parameter validation for the ? operator. If either /// value operand is a class type, the two operands are attempted to be /// converted to each other. This function does the conversion in one direction. /// It emits a diagnostic and returns true only if it finds an ambiguous /// conversion. static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, SourceLocation QuestionLoc, ImplicitConversionSequence &ICS) { // C++0x 5.16p3 // The process for determining whether an operand expression E1 of type T1 // can be converted to match an operand expression E2 of type T2 is defined // as follows: // -- If E2 is an lvalue: if (To->isLvalue(Self.Context) == Expr::LV_Valid) { // E1 can be converted to match E2 if E1 can be implicitly converted to // type "lvalue reference to T2", subject to the constraint that in the // conversion the reference must bind directly to E1. if (!Self.CheckReferenceInit(From, Self.Context.getLValueReferenceType(To->getType()), To->getLocStart(), /*SuppressUserConversions=*/false, /*AllowExplicit=*/false, /*ForceRValue=*/false, &ICS)) { assert((ICS.ConversionKind == ImplicitConversionSequence::StandardConversion || ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) && "expected a definite conversion"); bool DirectBinding = ICS.ConversionKind == ImplicitConversionSequence::StandardConversion ? ICS.Standard.DirectBinding : ICS.UserDefined.After.DirectBinding; if (DirectBinding) return false; } } ICS.ConversionKind = ImplicitConversionSequence::BadConversion; // -- If E2 is an rvalue, or if the conversion above cannot be done: // -- if E1 and E2 have class type, and the underlying class types are // the same or one is a base class of the other: QualType FTy = From->getType(); QualType TTy = To->getType(); const RecordType *FRec = FTy->getAs(); const RecordType *TRec = TTy->getAs(); bool FDerivedFromT = FRec && TRec && Self.IsDerivedFrom(FTy, TTy); if (FRec && TRec && (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { // E1 can be converted to match E2 if the class of T2 is the // same type as, or a base class of, the class of T1, and // [cv2 > cv1]. if ((FRec == TRec || FDerivedFromT) && TTy.isAtLeastAsQualifiedAs(FTy)) { // Could still fail if there's no copy constructor. // FIXME: Is this a hard error then, or just a conversion failure? The // standard doesn't say. ICS = Self.TryCopyInitialization(From, TTy, /*SuppressUserConversions=*/false, /*ForceRValue=*/false, /*InOverloadResolution=*/false); } } else { // -- Otherwise: E1 can be converted to match E2 if E1 can be // implicitly converted to the type that expression E2 would have // if E2 were converted to an rvalue. // First find the decayed type. if (TTy->isFunctionType()) TTy = Self.Context.getPointerType(TTy); else if (TTy->isArrayType()) TTy = Self.Context.getArrayDecayedType(TTy); // Now try the implicit conversion. // FIXME: This doesn't detect ambiguities. ICS = Self.TryImplicitConversion(From, TTy, /*SuppressUserConversions=*/false, /*AllowExplicit=*/false, /*ForceRValue=*/false, /*InOverloadResolution=*/false); } return false; } /// \brief Try to find a common type for two according to C++0x 5.16p5. /// /// This is part of the parameter validation for the ? operator. If either /// value operand is a class type, overload resolution is used to find a /// conversion to a common type. static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS, SourceLocation Loc) { Expr *Args[2] = { LHS, RHS }; OverloadCandidateSet CandidateSet; Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet); OverloadCandidateSet::iterator Best; switch (Self.BestViableFunction(CandidateSet, Loc, Best)) { case Sema::OR_Success: // We found a match. Perform the conversions on the arguments and move on. if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0], Best->Conversions[0], "converting") || Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1], Best->Conversions[1], "converting")) break; return false; case Sema::OR_No_Viable_Function: Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) << LHS->getType() << RHS->getType() << LHS->getSourceRange() << RHS->getSourceRange(); return true; case Sema::OR_Ambiguous: Self.Diag(Loc, diag::err_conditional_ambiguous_ovl) << LHS->getType() << RHS->getType() << LHS->getSourceRange() << RHS->getSourceRange(); // FIXME: Print the possible common types by printing the return types of // the viable candidates. break; case Sema::OR_Deleted: assert(false && "Conditional operator has only built-in overloads"); break; } return true; } /// \brief Perform an "extended" implicit conversion as returned by /// TryClassUnification. /// /// TryClassUnification generates ICSs that include reference bindings. /// PerformImplicitConversion is not suitable for this; it chokes if the /// second part of a standard conversion is ICK_DerivedToBase. This function /// handles the reference binding specially. static bool ConvertForConditional(Sema &Self, Expr *&E, const ImplicitConversionSequence &ICS) { if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion && ICS.Standard.ReferenceBinding) { assert(ICS.Standard.DirectBinding && "TryClassUnification should never generate indirect ref bindings"); // FIXME: CheckReferenceInit should be able to reuse the ICS instead of // redoing all the work. return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType( TargetType(ICS)), /*FIXME:*/E->getLocStart(), /*SuppressUserConversions=*/false, /*AllowExplicit=*/false, /*ForceRValue=*/false); } if (ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion && ICS.UserDefined.After.ReferenceBinding) { assert(ICS.UserDefined.After.DirectBinding && "TryClassUnification should never generate indirect ref bindings"); return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType( TargetType(ICS)), /*FIXME:*/E->getLocStart(), /*SuppressUserConversions=*/false, /*AllowExplicit=*/false, /*ForceRValue=*/false); } if (Self.PerformImplicitConversion(E, TargetType(ICS), ICS, "converting")) return true; return false; } /// \brief Check the operands of ?: under C++ semantics. /// /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y /// extension. In this case, LHS == Cond. (But they're not aliases.) QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, SourceLocation QuestionLoc) { // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ // interface pointers. // C++0x 5.16p1 // The first expression is contextually converted to bool. if (!Cond->isTypeDependent()) { if (CheckCXXBooleanCondition(Cond)) return QualType(); } // Either of the arguments dependent? if (LHS->isTypeDependent() || RHS->isTypeDependent()) return Context.DependentTy; CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional); // C++0x 5.16p2 // If either the second or the third operand has type (cv) void, ... QualType LTy = LHS->getType(); QualType RTy = RHS->getType(); bool LVoid = LTy->isVoidType(); bool RVoid = RTy->isVoidType(); if (LVoid || RVoid) { // ... then the [l2r] conversions are performed on the second and third // operands ... DefaultFunctionArrayConversion(LHS); DefaultFunctionArrayConversion(RHS); LTy = LHS->getType(); RTy = RHS->getType(); // ... and one of the following shall hold: // -- The second or the third operand (but not both) is a throw- // expression; the result is of the type of the other and is an rvalue. bool LThrow = isa(LHS); bool RThrow = isa(RHS); if (LThrow && !RThrow) return RTy; if (RThrow && !LThrow) return LTy; // -- Both the second and third operands have type void; the result is of // type void and is an rvalue. if (LVoid && RVoid) return Context.VoidTy; // Neither holds, error. Diag(QuestionLoc, diag::err_conditional_void_nonvoid) << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) << LHS->getSourceRange() << RHS->getSourceRange(); return QualType(); } // Neither is void. // C++0x 5.16p3 // Otherwise, if the second and third operand have different types, and // either has (cv) class type, and attempt is made to convert each of those // operands to the other. if (Context.getCanonicalType(LTy) != Context.getCanonicalType(RTy) && (LTy->isRecordType() || RTy->isRecordType())) { ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft; // These return true if a single direction is already ambiguous. if (TryClassUnification(*this, LHS, RHS, QuestionLoc, ICSLeftToRight)) return QualType(); if (TryClassUnification(*this, RHS, LHS, QuestionLoc, ICSRightToLeft)) return QualType(); bool HaveL2R = ICSLeftToRight.ConversionKind != ImplicitConversionSequence::BadConversion; bool HaveR2L = ICSRightToLeft.ConversionKind != ImplicitConversionSequence::BadConversion; // If both can be converted, [...] the program is ill-formed. if (HaveL2R && HaveR2L) { Diag(QuestionLoc, diag::err_conditional_ambiguous) << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange(); return QualType(); } // If exactly one conversion is possible, that conversion is applied to // the chosen operand and the converted operands are used in place of the // original operands for the remainder of this section. if (HaveL2R) { if (ConvertForConditional(*this, LHS, ICSLeftToRight)) return QualType(); LTy = LHS->getType(); } else if (HaveR2L) { if (ConvertForConditional(*this, RHS, ICSRightToLeft)) return QualType(); RTy = RHS->getType(); } } // C++0x 5.16p4 // If the second and third operands are lvalues and have the same type, // the result is of that type [...] bool Same = Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy); if (Same && LHS->isLvalue(Context) == Expr::LV_Valid && RHS->isLvalue(Context) == Expr::LV_Valid) return LTy; // C++0x 5.16p5 // Otherwise, the result is an rvalue. If the second and third operands // do not have the same type, and either has (cv) class type, ... if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { // ... overload resolution is used to determine the conversions (if any) // to be applied to the operands. If the overload resolution fails, the // program is ill-formed. if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) return QualType(); } // C++0x 5.16p6 // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard // conversions are performed on the second and third operands. DefaultFunctionArrayConversion(LHS); DefaultFunctionArrayConversion(RHS); LTy = LHS->getType(); RTy = RHS->getType(); // After those conversions, one of the following shall hold: // -- The second and third operands have the same type; the result // is of that type. if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) return LTy; // -- The second and third operands have arithmetic or enumeration type; // the usual arithmetic conversions are performed to bring them to a // common type, and the result is of that type. if (LTy->isArithmeticType() && RTy->isArithmeticType()) { UsualArithmeticConversions(LHS, RHS); return LHS->getType(); } // -- The second and third operands have pointer type, or one has pointer // type and the other is a null pointer constant; pointer conversions // and qualification conversions are performed to bring them to their // composite pointer type. The result is of the composite pointer type. QualType Composite = FindCompositePointerType(LHS, RHS); if (!Composite.isNull()) return Composite; // Fourth bullet is same for pointers-to-member. However, the possible // conversions are far more limited: we have null-to-pointer, upcast of // containing class, and second-level cv-ness. // cv-ness is not a union, but must match one of the two operands. (Which, // frankly, is stupid.) const MemberPointerType *LMemPtr = LTy->getAs(); const MemberPointerType *RMemPtr = RTy->getAs(); if (LMemPtr && RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { ImpCastExprToType(RHS, LTy, CastExpr::CK_NullToMemberPointer); return LTy; } if (RMemPtr && LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { ImpCastExprToType(LHS, RTy, CastExpr::CK_NullToMemberPointer); return RTy; } if (LMemPtr && RMemPtr) { QualType LPointee = LMemPtr->getPointeeType(); QualType RPointee = RMemPtr->getPointeeType(); QualifierCollector LPQuals, RPQuals; const Type *LPCan = LPQuals.strip(Context.getCanonicalType(LPointee)); const Type *RPCan = RPQuals.strip(Context.getCanonicalType(RPointee)); // First, we check that the unqualified pointee type is the same. If it's // not, there's no conversion that will unify the two pointers. if (LPCan == RPCan) { // Second, we take the greater of the two qualifications. If neither // is greater than the other, the conversion is not possible. Qualifiers MergedQuals = LPQuals + RPQuals; bool CompatibleQuals = true; if (MergedQuals.getCVRQualifiers() != LPQuals.getCVRQualifiers() && MergedQuals.getCVRQualifiers() != RPQuals.getCVRQualifiers()) CompatibleQuals = false; else if (LPQuals.getAddressSpace() != RPQuals.getAddressSpace()) // FIXME: // C99 6.5.15 as modified by TR 18037: // If the second and third operands are pointers into different // address spaces, the address spaces must overlap. CompatibleQuals = false; // FIXME: GC qualifiers? if (CompatibleQuals) { // Third, we check if either of the container classes is derived from // the other. QualType LContainer(LMemPtr->getClass(), 0); QualType RContainer(RMemPtr->getClass(), 0); QualType MoreDerived; if (Context.getCanonicalType(LContainer) == Context.getCanonicalType(RContainer)) MoreDerived = LContainer; else if (IsDerivedFrom(LContainer, RContainer)) MoreDerived = LContainer; else if (IsDerivedFrom(RContainer, LContainer)) MoreDerived = RContainer; if (!MoreDerived.isNull()) { // The type 'Q Pointee (MoreDerived::*)' is the common type. // We don't use ImpCastExprToType here because this could still fail // for ambiguous or inaccessible conversions. LPointee = Context.getQualifiedType(LPointee, MergedQuals); QualType Common = Context.getMemberPointerType(LPointee, MoreDerived.getTypePtr()); if (PerformImplicitConversion(LHS, Common, "converting")) return QualType(); if (PerformImplicitConversion(RHS, Common, "converting")) return QualType(); return Common; } } } } Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) << LHS->getType() << RHS->getType() << LHS->getSourceRange() << RHS->getSourceRange(); return QualType(); } /// \brief Find a merged pointer type and convert the two expressions to it. /// /// This finds the composite pointer type (or member pointer type) for @p E1 /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this /// type and returns it. /// It does not emit diagnostics. QualType Sema::FindCompositePointerType(Expr *&E1, Expr *&E2) { assert(getLangOptions().CPlusPlus && "This function assumes C++"); QualType T1 = E1->getType(), T2 = E2->getType(); if (!T1->isPointerType() && !T1->isMemberPointerType() && !T2->isPointerType() && !T2->isMemberPointerType()) return QualType(); // C++0x 5.9p2 // Pointer conversions and qualification conversions are performed on // pointer operands to bring them to their composite pointer type. If // one operand is a null pointer constant, the composite pointer type is // the type of the other operand. if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { if (T2->isMemberPointerType()) ImpCastExprToType(E1, T2, CastExpr::CK_NullToMemberPointer); else ImpCastExprToType(E1, T2, CastExpr::CK_IntegralToPointer); return T2; } if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { if (T1->isMemberPointerType()) ImpCastExprToType(E2, T1, CastExpr::CK_NullToMemberPointer); else ImpCastExprToType(E2, T1, CastExpr::CK_IntegralToPointer); return T1; } // Now both have to be pointers or member pointers. if ((!T1->isPointerType() && !T1->isMemberPointerType()) || (!T2->isPointerType() && !T2->isMemberPointerType())) return QualType(); // Otherwise, of one of the operands has type "pointer to cv1 void," then // the other has type "pointer to cv2 T" and the composite pointer type is // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. // Otherwise, the composite pointer type is a pointer type similar to the // type of one of the operands, with a cv-qualification signature that is // the union of the cv-qualification signatures of the operand types. // In practice, the first part here is redundant; it's subsumed by the second. // What we do here is, we build the two possible composite types, and try the // conversions in both directions. If only one works, or if the two composite // types are the same, we have succeeded. // FIXME: extended qualifiers? typedef llvm::SmallVector QualifierVector; QualifierVector QualifierUnion; typedef llvm::SmallVector, 4> ContainingClassVector; ContainingClassVector MemberOfClass; QualType Composite1 = Context.getCanonicalType(T1), Composite2 = Context.getCanonicalType(T2); do { const PointerType *Ptr1, *Ptr2; if ((Ptr1 = Composite1->getAs()) && (Ptr2 = Composite2->getAs())) { Composite1 = Ptr1->getPointeeType(); Composite2 = Ptr2->getPointeeType(); QualifierUnion.push_back( Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0)); continue; } const MemberPointerType *MemPtr1, *MemPtr2; if ((MemPtr1 = Composite1->getAs()) && (MemPtr2 = Composite2->getAs())) { Composite1 = MemPtr1->getPointeeType(); Composite2 = MemPtr2->getPointeeType(); QualifierUnion.push_back( Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), MemPtr2->getClass())); continue; } // FIXME: block pointer types? // Cannot unwrap any more types. break; } while (true); // Rewrap the composites as pointers or member pointers with the union CVRs. ContainingClassVector::reverse_iterator MOC = MemberOfClass.rbegin(); for (QualifierVector::reverse_iterator I = QualifierUnion.rbegin(), E = QualifierUnion.rend(); I != E; (void)++I, ++MOC) { Qualifiers Quals = Qualifiers::fromCVRMask(*I); if (MOC->first && MOC->second) { // Rebuild member pointer type Composite1 = Context.getMemberPointerType( Context.getQualifiedType(Composite1, Quals), MOC->first); Composite2 = Context.getMemberPointerType( Context.getQualifiedType(Composite2, Quals), MOC->second); } else { // Rebuild pointer type Composite1 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); Composite2 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); } } ImplicitConversionSequence E1ToC1 = TryImplicitConversion(E1, Composite1, /*SuppressUserConversions=*/false, /*AllowExplicit=*/false, /*ForceRValue=*/false, /*InOverloadResolution=*/false); ImplicitConversionSequence E2ToC1 = TryImplicitConversion(E2, Composite1, /*SuppressUserConversions=*/false, /*AllowExplicit=*/false, /*ForceRValue=*/false, /*InOverloadResolution=*/false); ImplicitConversionSequence E1ToC2, E2ToC2; E1ToC2.ConversionKind = ImplicitConversionSequence::BadConversion; E2ToC2.ConversionKind = ImplicitConversionSequence::BadConversion; if (Context.getCanonicalType(Composite1) != Context.getCanonicalType(Composite2)) { E1ToC2 = TryImplicitConversion(E1, Composite2, /*SuppressUserConversions=*/false, /*AllowExplicit=*/false, /*ForceRValue=*/false, /*InOverloadResolution=*/false); E2ToC2 = TryImplicitConversion(E2, Composite2, /*SuppressUserConversions=*/false, /*AllowExplicit=*/false, /*ForceRValue=*/false, /*InOverloadResolution=*/false); } bool ToC1Viable = E1ToC1.ConversionKind != ImplicitConversionSequence::BadConversion && E2ToC1.ConversionKind != ImplicitConversionSequence::BadConversion; bool ToC2Viable = E1ToC2.ConversionKind != ImplicitConversionSequence::BadConversion && E2ToC2.ConversionKind != ImplicitConversionSequence::BadConversion; if (ToC1Viable && !ToC2Viable) { if (!PerformImplicitConversion(E1, Composite1, E1ToC1, "converting") && !PerformImplicitConversion(E2, Composite1, E2ToC1, "converting")) return Composite1; } if (ToC2Viable && !ToC1Viable) { if (!PerformImplicitConversion(E1, Composite2, E1ToC2, "converting") && !PerformImplicitConversion(E2, Composite2, E2ToC2, "converting")) return Composite2; } return QualType(); } Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) { if (!Context.getLangOptions().CPlusPlus) return Owned(E); const RecordType *RT = E->getType()->getAs(); if (!RT) return Owned(E); CXXRecordDecl *RD = cast(RT->getDecl()); if (RD->hasTrivialDestructor()) return Owned(E); if (CallExpr *CE = dyn_cast(E)) { QualType Ty = CE->getCallee()->getType(); if (const PointerType *PT = Ty->getAs()) Ty = PT->getPointeeType(); const FunctionType *FTy = Ty->getAs(); if (FTy->getResultType()->isReferenceType()) return Owned(E); } CXXTemporary *Temp = CXXTemporary::Create(Context, RD->getDestructor(Context)); ExprTemporaries.push_back(Temp); if (CXXDestructorDecl *Destructor = const_cast(RD->getDestructor(Context))) MarkDeclarationReferenced(E->getExprLoc(), Destructor); // FIXME: Add the temporary to the temporaries vector. return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E)); } Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr, bool ShouldDestroyTemps) { assert(SubExpr && "sub expression can't be null!"); if (ExprTemporaries.empty()) return SubExpr; Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr, &ExprTemporaries[0], ExprTemporaries.size(), ShouldDestroyTemps); ExprTemporaries.clear(); return E; } Sema::OwningExprResult Sema::ActOnStartCXXMemberReference(Scope *S, ExprArg Base, SourceLocation OpLoc, tok::TokenKind OpKind, TypeTy *&ObjectType) { // Since this might be a postfix expression, get rid of ParenListExprs. Base = MaybeConvertParenListExprToParenExpr(S, move(Base)); Expr *BaseExpr = (Expr*)Base.get(); assert(BaseExpr && "no record expansion"); QualType BaseType = BaseExpr->getType(); if (BaseType->isDependentType()) { // If we have a pointer to a dependent type and are using the -> operator, // the object type is the type that the pointer points to. We might still // have enough information about that type to do something useful. if (OpKind == tok::arrow) if (const PointerType *Ptr = BaseType->getAs()) BaseType = Ptr->getPointeeType(); ObjectType = BaseType.getAsOpaquePtr(); return move(Base); } // C++ [over.match.oper]p8: // [...] When operator->returns, the operator-> is applied to the value // returned, with the original second operand. if (OpKind == tok::arrow) { // The set of types we've considered so far. llvm::SmallPtrSet CTypes; llvm::SmallVector Locations; CTypes.insert(Context.getCanonicalType(BaseType)); while (BaseType->isRecordType()) { Base = BuildOverloadedArrowExpr(S, move(Base), OpLoc); BaseExpr = (Expr*)Base.get(); if (BaseExpr == NULL) return ExprError(); if (CXXOperatorCallExpr *OpCall = dyn_cast(BaseExpr)) Locations.push_back(OpCall->getDirectCallee()->getLocation()); BaseType = BaseExpr->getType(); CanQualType CBaseType = Context.getCanonicalType(BaseType); if (!CTypes.insert(CBaseType)) { Diag(OpLoc, diag::err_operator_arrow_circular); for (unsigned i = 0; i < Locations.size(); i++) Diag(Locations[i], diag::note_declared_at); return ExprError(); } } if (BaseType->isPointerType()) BaseType = BaseType->getPointeeType(); } // We could end up with various non-record types here, such as extended // vector types or Objective-C interfaces. Just return early and let // ActOnMemberReferenceExpr do the work. if (!BaseType->isRecordType()) { // C++ [basic.lookup.classref]p2: // [...] If the type of the object expression is of pointer to scalar // type, the unqualified-id is looked up in the context of the complete // postfix-expression. ObjectType = 0; return move(Base); } // The object type must be complete (or dependent). if (!BaseType->isDependentType() && RequireCompleteType(OpLoc, BaseType, PDiag(diag::err_incomplete_member_access))) return ExprError(); // C++ [basic.lookup.classref]p2: // If the id-expression in a class member access (5.2.5) is an // unqualified-id, and the type of the object expression is of a class // type C (or of pointer to a class type C), the unqualified-id is looked // up in the scope of class C. [...] ObjectType = BaseType.getAsOpaquePtr(); return move(Base); } CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp, CXXMethodDecl *Method) { MemberExpr *ME = new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method, SourceLocation(), Method->getType()); QualType ResultType; if (const CXXConversionDecl *Conv = dyn_cast(Method)) ResultType = Conv->getConversionType().getNonReferenceType(); else ResultType = Method->getResultType().getNonReferenceType(); MarkDeclarationReferenced(Exp->getLocStart(), Method); CXXMemberCallExpr *CE = new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, Exp->getLocEnd()); return CE; } Sema::OwningExprResult Sema::BuildCXXCastArgument(SourceLocation CastLoc, QualType Ty, CastExpr::CastKind Kind, CXXMethodDecl *Method, ExprArg Arg) { Expr *From = Arg.takeAs(); switch (Kind) { default: assert(0 && "Unhandled cast kind!"); case CastExpr::CK_ConstructorConversion: { ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); if (CompleteConstructorCall(cast(Method), MultiExprArg(*this, (void **)&From, 1), CastLoc, ConstructorArgs)) return ExprError(); OwningExprResult Result = BuildCXXConstructExpr(CastLoc, Ty, cast(Method), move_arg(ConstructorArgs)); if (Result.isInvalid()) return ExprError(); return MaybeBindToTemporary(Result.takeAs()); } case CastExpr::CK_UserDefinedConversion: { assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); // Cast to base if needed. if (PerformObjectArgumentInitialization(From, Method)) return ExprError(); // Create an implicit call expr that calls it. CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(From, Method); return MaybeBindToTemporary(CE); } } } Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) { Expr *FullExpr = Arg.takeAs(); if (FullExpr) FullExpr = MaybeCreateCXXExprWithTemporaries(FullExpr, /*ShouldDestroyTemps=*/true); return Owned(FullExpr); } /// \brief Determine whether a reference to the given declaration in the /// current context is an implicit member access /// (C++ [class.mfct.non-static]p2). /// /// FIXME: Should Objective-C also use this approach? /// /// \param SS if non-NULL, the C++ nested-name-specifier that precedes the /// name of the declaration referenced. /// /// \param D the declaration being referenced from the current scope. /// /// \param NameLoc the location of the name in the source. /// /// \param ThisType if the reference to this declaration is an implicit member /// access, will be set to the type of the "this" pointer to be used when /// building that implicit member access. /// /// \param MemberType if the reference to this declaration is an implicit /// member access, will be set to the type of the member being referenced /// (for use at the type of the resulting member access expression). /// /// \returns true if this is an implicit member reference (in which case /// \p ThisType and \p MemberType will be set), or false if it is not an /// implicit member reference. bool Sema::isImplicitMemberReference(const CXXScopeSpec &SS, NamedDecl *D, SourceLocation NameLoc, QualType &ThisType, QualType &MemberType) { // If this isn't a C++ method, then it isn't an implicit member reference. CXXMethodDecl *MD = dyn_cast(CurContext); if (!MD || MD->isStatic()) return false; // C++ [class.mfct.nonstatic]p2: // [...] if name lookup (3.4.1) resolves the name in the // id-expression to a nonstatic nontype member of class X or of // a base class of X, the id-expression is transformed into a // class member access expression (5.2.5) using (*this) (9.3.2) // as the postfix-expression to the left of the '.' operator. DeclContext *Ctx = 0; if (FieldDecl *FD = dyn_cast(D)) { Ctx = FD->getDeclContext(); MemberType = FD->getType(); if (const ReferenceType *RefType = MemberType->getAs()) MemberType = RefType->getPointeeType(); else if (!FD->isMutable()) MemberType = Context.getQualifiedType(MemberType, Qualifiers::fromCVRMask(MD->getTypeQualifiers())); } else if (isa(D)) { Ctx = D->getDeclContext(); MemberType = Context.DependentTy; } else { for (OverloadIterator Ovl(D), OvlEnd; Ovl != OvlEnd; ++Ovl) { CXXMethodDecl *Method = dyn_cast(*Ovl); FunctionTemplateDecl *FunTmpl = 0; if (!Method && (FunTmpl = dyn_cast(*Ovl))) Method = dyn_cast(FunTmpl->getTemplatedDecl()); // FIXME: Do we have to know if there are explicit template arguments? if (Method && !Method->isStatic()) { Ctx = Method->getParent(); if (isa(D) && !FunTmpl) MemberType = Method->getType(); else MemberType = Context.OverloadTy; break; } } } if (!Ctx || !Ctx->isRecord()) return false; // Determine whether the declaration(s) we found are actually in a base // class. If not, this isn't an implicit member reference. ThisType = MD->getThisType(Context); QualType CtxType = Context.getTypeDeclType(cast(Ctx)); QualType ClassType = Context.getTypeDeclType(cast(MD->getParent())); return Context.hasSameType(CtxType, ClassType) || IsDerivedFrom(ClassType, CtxType); }