//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This coordinates the per-module state used while generating code. // //===----------------------------------------------------------------------===// #include "CodeGenModule.h" #include "CGDebugInfo.h" #include "CodeGenFunction.h" #include "CGCall.h" #include "CGObjCRuntime.h" #include "Mangle.h" #include "clang/Frontend/CompileOptions.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclCXX.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/ConvertUTF.h" #include "llvm/CallingConv.h" #include "llvm/Module.h" #include "llvm/Intrinsics.h" #include "llvm/Target/TargetData.h" using namespace clang; using namespace CodeGen; CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, llvm::Module &M, const llvm::TargetData &TD, Diagnostic &diags) : BlockModule(C, M, TD, Types, *this), Context(C), Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), VtableInfo(*this), Runtime(0), MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), VMContext(M.getContext()) { if (!Features.ObjC1) Runtime = 0; else if (!Features.NeXTRuntime) Runtime = CreateGNUObjCRuntime(*this); else if (Features.ObjCNonFragileABI) Runtime = CreateMacNonFragileABIObjCRuntime(*this); else Runtime = CreateMacObjCRuntime(*this); // If debug info generation is enabled, create the CGDebugInfo object. DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; } CodeGenModule::~CodeGenModule() { delete Runtime; delete DebugInfo; } void CodeGenModule::Release() { // We need to call this first because it can add deferred declarations. EmitCXXGlobalInitFunc(); EmitDeferred(); if (Runtime) if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) AddGlobalCtor(ObjCInitFunction); EmitCtorList(GlobalCtors, "llvm.global_ctors"); EmitCtorList(GlobalDtors, "llvm.global_dtors"); EmitAnnotations(); EmitLLVMUsed(); } /// ErrorUnsupported - Print out an error that codegen doesn't support the /// specified stmt yet. void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, bool OmitOnError) { if (OmitOnError && getDiags().hasErrorOccurred()) return; unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, "cannot compile this %0 yet"); std::string Msg = Type; getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) << Msg << S->getSourceRange(); } /// ErrorUnsupported - Print out an error that codegen doesn't support the /// specified decl yet. void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, bool OmitOnError) { if (OmitOnError && getDiags().hasErrorOccurred()) return; unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, "cannot compile this %0 yet"); std::string Msg = Type; getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; } LangOptions::VisibilityMode CodeGenModule::getDeclVisibilityMode(const Decl *D) const { if (const VarDecl *VD = dyn_cast(D)) if (VD->getStorageClass() == VarDecl::PrivateExtern) return LangOptions::Hidden; if (const VisibilityAttr *attr = D->getAttr()) { switch (attr->getVisibility()) { default: assert(0 && "Unknown visibility!"); case VisibilityAttr::DefaultVisibility: return LangOptions::Default; case VisibilityAttr::HiddenVisibility: return LangOptions::Hidden; case VisibilityAttr::ProtectedVisibility: return LangOptions::Protected; } } return getLangOptions().getVisibilityMode(); } void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, const Decl *D) const { // Internal definitions always have default visibility. if (GV->hasLocalLinkage()) { GV->setVisibility(llvm::GlobalValue::DefaultVisibility); return; } switch (getDeclVisibilityMode(D)) { default: assert(0 && "Unknown visibility!"); case LangOptions::Default: return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); case LangOptions::Hidden: return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); case LangOptions::Protected: return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); } } const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { const NamedDecl *ND = cast(GD.getDecl()); if (const CXXConstructorDecl *D = dyn_cast(ND)) return getMangledCXXCtorName(D, GD.getCtorType()); if (const CXXDestructorDecl *D = dyn_cast(ND)) return getMangledCXXDtorName(D, GD.getDtorType()); return getMangledName(ND); } /// \brief Retrieves the mangled name for the given declaration. /// /// If the given declaration requires a mangled name, returns an /// const char* containing the mangled name. Otherwise, returns /// the unmangled name. /// const char *CodeGenModule::getMangledName(const NamedDecl *ND) { // In C, functions with no attributes never need to be mangled. Fastpath them. if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); return ND->getNameAsCString(); } llvm::SmallString<256> Name; llvm::raw_svector_ostream Out(Name); if (!mangleName(getMangleContext(), ND, Out)) { assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); return ND->getNameAsCString(); } Name += '\0'; return UniqueMangledName(Name.begin(), Name.end()); } const char *CodeGenModule::UniqueMangledName(const char *NameStart, const char *NameEnd) { assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); } /// AddGlobalCtor - Add a function to the list that will be called before /// main() runs. void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { // FIXME: Type coercion of void()* types. GlobalCtors.push_back(std::make_pair(Ctor, Priority)); } /// AddGlobalDtor - Add a function to the list that will be called /// when the module is unloaded. void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { // FIXME: Type coercion of void()* types. GlobalDtors.push_back(std::make_pair(Dtor, Priority)); } void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { // Ctor function type is void()*. llvm::FunctionType* CtorFTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), std::vector(), false); llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); // Get the type of a ctor entry, { i32, void ()* }. llvm::StructType* CtorStructTy = llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), llvm::PointerType::getUnqual(CtorFTy), NULL); // Construct the constructor and destructor arrays. std::vector Ctors; for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { std::vector S; S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), I->second, false)); S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); } if (!Ctors.empty()) { llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); new llvm::GlobalVariable(TheModule, AT, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(AT, Ctors), GlobalName); } } void CodeGenModule::EmitAnnotations() { if (Annotations.empty()) return; // Create a new global variable for the ConstantStruct in the Module. llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), Annotations.size()), Annotations); llvm::GlobalValue *gv = new llvm::GlobalVariable(TheModule, Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, "llvm.global.annotations"); gv->setSection("llvm.metadata"); } static CodeGenModule::GVALinkage GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, const LangOptions &Features) { // Everything located semantically within an anonymous namespace is // always internal. if (FD->isInAnonymousNamespace()) return CodeGenModule::GVA_Internal; // "static" functions get internal linkage. if (FD->getStorageClass() == FunctionDecl::Static && !isa(FD)) return CodeGenModule::GVA_Internal; // The kind of external linkage this function will have, if it is not // inline or static. CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; if (Context.getLangOptions().CPlusPlus && FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) External = CodeGenModule::GVA_TemplateInstantiation; if (!FD->isInlined()) return External; if (!Features.CPlusPlus || FD->hasAttr()) { // GNU or C99 inline semantics. Determine whether this symbol should be // externally visible. if (FD->isInlineDefinitionExternallyVisible()) return External; // C99 inline semantics, where the symbol is not externally visible. return CodeGenModule::GVA_C99Inline; } // C++0x [temp.explicit]p9: // [ Note: The intent is that an inline function that is the subject of // an explicit instantiation declaration will still be implicitly // instantiated when used so that the body can be considered for // inlining, but that no out-of-line copy of the inline function would be // generated in the translation unit. -- end note ] if (FD->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDeclaration) return CodeGenModule::GVA_C99Inline; return CodeGenModule::GVA_CXXInline; } /// SetFunctionDefinitionAttributes - Set attributes for a global. /// /// FIXME: This is currently only done for aliases and functions, but not for /// variables (these details are set in EmitGlobalVarDefinition for variables). void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, llvm::GlobalValue *GV) { GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); if (Linkage == GVA_Internal) { GV->setLinkage(llvm::Function::InternalLinkage); } else if (D->hasAttr()) { GV->setLinkage(llvm::Function::DLLExportLinkage); } else if (D->hasAttr()) { GV->setLinkage(llvm::Function::WeakAnyLinkage); } else if (Linkage == GVA_C99Inline) { // In C99 mode, 'inline' functions are guaranteed to have a strong // definition somewhere else, so we can use available_externally linkage. GV->setLinkage(llvm::Function::AvailableExternallyLinkage); } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { // In C++, the compiler has to emit a definition in every translation unit // that references the function. We should use linkonce_odr because // a) if all references in this translation unit are optimized away, we // don't need to codegen it. b) if the function persists, it needs to be // merged with other definitions. c) C++ has the ODR, so we know the // definition is dependable. GV->setLinkage(llvm::Function::LinkOnceODRLinkage); } else { assert(Linkage == GVA_StrongExternal); // Otherwise, we have strong external linkage. GV->setLinkage(llvm::Function::ExternalLinkage); } SetCommonAttributes(D, GV); } void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, const CGFunctionInfo &Info, llvm::Function *F) { unsigned CallingConv; AttributeListType AttributeList; ConstructAttributeList(Info, D, AttributeList, CallingConv); F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), AttributeList.size())); F->setCallingConv(static_cast(CallingConv)); } void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, llvm::Function *F) { if (!Features.Exceptions && !Features.ObjCNonFragileABI) F->addFnAttr(llvm::Attribute::NoUnwind); if (D->hasAttr()) F->addFnAttr(llvm::Attribute::AlwaysInline); if (D->hasAttr()) F->addFnAttr(llvm::Attribute::NoInline); if (const AlignedAttr *AA = D->getAttr()) F->setAlignment(AA->getAlignment()/8); // C++ ABI requires 2-byte alignment for member functions. if (F->getAlignment() < 2 && isa(D)) F->setAlignment(2); } void CodeGenModule::SetCommonAttributes(const Decl *D, llvm::GlobalValue *GV) { setGlobalVisibility(GV, D); if (D->hasAttr()) AddUsedGlobal(GV); if (const SectionAttr *SA = D->getAttr()) GV->setSection(SA->getName()); } void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, llvm::Function *F, const CGFunctionInfo &FI) { SetLLVMFunctionAttributes(D, FI, F); SetLLVMFunctionAttributesForDefinition(D, F); F->setLinkage(llvm::Function::InternalLinkage); SetCommonAttributes(D, F); } void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, llvm::Function *F, bool IsIncompleteFunction) { if (!IsIncompleteFunction) SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); // Only a few attributes are set on declarations; these may later be // overridden by a definition. if (FD->hasAttr()) { F->setLinkage(llvm::Function::DLLImportLinkage); } else if (FD->hasAttr() || FD->hasAttr()) { // "extern_weak" is overloaded in LLVM; we probably should have // separate linkage types for this. F->setLinkage(llvm::Function::ExternalWeakLinkage); } else { F->setLinkage(llvm::Function::ExternalLinkage); } if (const SectionAttr *SA = FD->getAttr()) F->setSection(SA->getName()); } void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { assert(!GV->isDeclaration() && "Only globals with definition can force usage."); LLVMUsed.push_back(GV); } void CodeGenModule::EmitLLVMUsed() { // Don't create llvm.used if there is no need. if (LLVMUsed.empty()) return; const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); // Convert LLVMUsed to what ConstantArray needs. std::vector UsedArray; UsedArray.resize(LLVMUsed.size()); for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { UsedArray[i] = llvm::ConstantExpr::getBitCast(cast(&*LLVMUsed[i]), i8PTy); } if (UsedArray.empty()) return; llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(ATy, UsedArray), "llvm.used"); GV->setSection("llvm.metadata"); } void CodeGenModule::EmitDeferred() { // Emit code for any potentially referenced deferred decls. Since a // previously unused static decl may become used during the generation of code // for a static function, iterate until no changes are made. while (!DeferredDeclsToEmit.empty()) { GlobalDecl D = DeferredDeclsToEmit.back(); DeferredDeclsToEmit.pop_back(); // The mangled name for the decl must have been emitted in GlobalDeclMap. // Look it up to see if it was defined with a stronger definition (e.g. an // extern inline function with a strong function redefinition). If so, // just ignore the deferred decl. llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; assert(CGRef && "Deferred decl wasn't referenced?"); if (!CGRef->isDeclaration()) continue; // Otherwise, emit the definition and move on to the next one. EmitGlobalDefinition(D); } } /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the /// annotation information for a given GlobalValue. The annotation struct is /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the /// GlobalValue being annotated. The second field is the constant string /// created from the AnnotateAttr's annotation. The third field is a constant /// string containing the name of the translation unit. The fourth field is /// the line number in the file of the annotated value declaration. /// /// FIXME: this does not unique the annotation string constants, as llvm-gcc /// appears to. /// llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, const AnnotateAttr *AA, unsigned LineNo) { llvm::Module *M = &getModule(); // get [N x i8] constants for the annotation string, and the filename string // which are the 2nd and 3rd elements of the global annotation structure. const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); llvm::Constant *anno = llvm::ConstantArray::get(VMContext, AA->getAnnotation(), true); llvm::Constant *unit = llvm::ConstantArray::get(VMContext, M->getModuleIdentifier(), true); // Get the two global values corresponding to the ConstantArrays we just // created to hold the bytes of the strings. llvm::GlobalValue *annoGV = new llvm::GlobalVariable(*M, anno->getType(), false, llvm::GlobalValue::PrivateLinkage, anno, GV->getName()); // translation unit name string, emitted into the llvm.metadata section. llvm::GlobalValue *unitGV = new llvm::GlobalVariable(*M, unit->getType(), false, llvm::GlobalValue::PrivateLinkage, unit, ".str"); // Create the ConstantStruct for the global annotation. llvm::Constant *Fields[4] = { llvm::ConstantExpr::getBitCast(GV, SBP), llvm::ConstantExpr::getBitCast(annoGV, SBP), llvm::ConstantExpr::getBitCast(unitGV, SBP), llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) }; return llvm::ConstantStruct::get(VMContext, Fields, 4, false); } bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { // Never defer when EmitAllDecls is specified or the decl has // attribute used. if (Features.EmitAllDecls || Global->hasAttr()) return false; if (const FunctionDecl *FD = dyn_cast(Global)) { // Constructors and destructors should never be deferred. if (FD->hasAttr() || FD->hasAttr()) return false; GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); // static, static inline, always_inline, and extern inline functions can // always be deferred. Normal inline functions can be deferred in C99/C++. if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || Linkage == GVA_CXXInline) return true; return false; } const VarDecl *VD = cast(Global); assert(VD->isFileVarDecl() && "Invalid decl"); // We never want to defer structs that have non-trivial constructors or // destructors. // FIXME: Handle references. if (const RecordType *RT = VD->getType()->getAs()) { if (const CXXRecordDecl *RD = dyn_cast(RT->getDecl())) { if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) return false; } } // Static data may be deferred, but out-of-line static data members // cannot be. // FIXME: What if the initializer has side effects? return VD->isInAnonymousNamespace() || (VD->getStorageClass() == VarDecl::Static && !(VD->isStaticDataMember() && VD->isOutOfLine())); } void CodeGenModule::EmitGlobal(GlobalDecl GD) { const ValueDecl *Global = cast(GD.getDecl()); // If this is an alias definition (which otherwise looks like a declaration) // emit it now. if (Global->hasAttr()) return EmitAliasDefinition(Global); // Ignore declarations, they will be emitted on their first use. if (const FunctionDecl *FD = dyn_cast(Global)) { // Forward declarations are emitted lazily on first use. if (!FD->isThisDeclarationADefinition()) return; } else { const VarDecl *VD = cast(Global); assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); // In C++, if this is marked "extern", defer code generation. if (getLangOptions().CPlusPlus && !VD->getInit() && (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())) return; // In C, if this isn't a definition, defer code generation. if (!getLangOptions().CPlusPlus && !VD->getInit()) return; } // Defer code generation when possible if this is a static definition, inline // function etc. These we only want to emit if they are used. if (MayDeferGeneration(Global)) { // If the value has already been used, add it directly to the // DeferredDeclsToEmit list. const char *MangledName = getMangledName(GD); if (GlobalDeclMap.count(MangledName)) DeferredDeclsToEmit.push_back(GD); else { // Otherwise, remember that we saw a deferred decl with this name. The // first use of the mangled name will cause it to move into // DeferredDeclsToEmit. DeferredDecls[MangledName] = GD; } return; } // Otherwise emit the definition. EmitGlobalDefinition(GD); } void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { const ValueDecl *D = cast(GD.getDecl()); PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), Context.getSourceManager(), "Generating code for declaration"); if (const CXXConstructorDecl *CD = dyn_cast(D)) EmitCXXConstructor(CD, GD.getCtorType()); else if (const CXXDestructorDecl *DD = dyn_cast(D)) EmitCXXDestructor(DD, GD.getDtorType()); else if (isa(D)) EmitGlobalFunctionDefinition(GD); else if (const VarDecl *VD = dyn_cast(D)) EmitGlobalVarDefinition(VD); else { assert(0 && "Invalid argument to EmitGlobalDefinition()"); } } /// GetOrCreateLLVMFunction - If the specified mangled name is not in the /// module, create and return an llvm Function with the specified type. If there /// is something in the module with the specified name, return it potentially /// bitcasted to the right type. /// /// If D is non-null, it specifies a decl that correspond to this. This is used /// to set the attributes on the function when it is first created. llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, const llvm::Type *Ty, GlobalDecl D) { // Lookup the entry, lazily creating it if necessary. llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; if (Entry) { if (Entry->getType()->getElementType() == Ty) return Entry; // Make sure the result is of the correct type. const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); return llvm::ConstantExpr::getBitCast(Entry, PTy); } // This is the first use or definition of a mangled name. If there is a // deferred decl with this name, remember that we need to emit it at the end // of the file. llvm::DenseMap::iterator DDI = DeferredDecls.find(MangledName); if (DDI != DeferredDecls.end()) { // Move the potentially referenced deferred decl to the DeferredDeclsToEmit // list, and remove it from DeferredDecls (since we don't need it anymore). DeferredDeclsToEmit.push_back(DDI->second); DeferredDecls.erase(DDI); } else if (const FunctionDecl *FD = cast_or_null(D.getDecl())) { // If this the first reference to a C++ inline function in a class, queue up // the deferred function body for emission. These are not seen as // top-level declarations. if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) DeferredDeclsToEmit.push_back(D); // A called constructor which has no definition or declaration need be // synthesized. else if (const CXXConstructorDecl *CD = dyn_cast(FD)) { const CXXRecordDecl *ClassDecl = cast(CD->getDeclContext()); if (CD->isCopyConstructor(getContext())) DeferredCopyConstructorToEmit(D); else if (!ClassDecl->hasUserDeclaredConstructor()) DeferredDeclsToEmit.push_back(D); } else if (isa(FD)) DeferredDestructorToEmit(D); else if (const CXXMethodDecl *MD = dyn_cast(FD)) if (MD->isCopyAssignment()) DeferredCopyAssignmentToEmit(D); } // This function doesn't have a complete type (for example, the return // type is an incomplete struct). Use a fake type instead, and make // sure not to try to set attributes. bool IsIncompleteFunction = false; if (!isa(Ty)) { Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), std::vector(), false); IsIncompleteFunction = true; } llvm::Function *F = llvm::Function::Create(cast(Ty), llvm::Function::ExternalLinkage, "", &getModule()); F->setName(MangledName); if (D.getDecl()) SetFunctionAttributes(cast(D.getDecl()), F, IsIncompleteFunction); Entry = F; return F; } /// Defer definition of copy constructor(s) which need be implicitly defined. void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { const CXXConstructorDecl *CD = cast(CopyCtorDecl.getDecl()); const CXXRecordDecl *ClassDecl = cast(CD->getDeclContext()); if (ClassDecl->hasTrivialCopyConstructor() || ClassDecl->hasUserDeclaredCopyConstructor()) return; // First make sure all direct base classes and virtual bases and non-static // data mebers which need to have their copy constructors implicitly defined // are defined. 12.8.p7 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) { CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); if (CXXConstructorDecl *BaseCopyCtor = BaseClassDecl->getCopyConstructor(Context, 0)) GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); } for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), FieldEnd = ClassDecl->field_end(); Field != FieldEnd; ++Field) { QualType FieldType = Context.getCanonicalType((*Field)->getType()); if (const ArrayType *Array = Context.getAsArrayType(FieldType)) FieldType = Array->getElementType(); if (const RecordType *FieldClassType = FieldType->getAs()) { if ((*Field)->isAnonymousStructOrUnion()) continue; CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); if (CXXConstructorDecl *FieldCopyCtor = FieldClassDecl->getCopyConstructor(Context, 0)) GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); } } DeferredDeclsToEmit.push_back(CopyCtorDecl); } /// Defer definition of copy assignments which need be implicitly defined. void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { const CXXMethodDecl *CD = cast(CopyAssignDecl.getDecl()); const CXXRecordDecl *ClassDecl = cast(CD->getDeclContext()); if (ClassDecl->hasTrivialCopyAssignment() || ClassDecl->hasUserDeclaredCopyAssignment()) return; // First make sure all direct base classes and virtual bases and non-static // data mebers which need to have their copy assignments implicitly defined // are defined. 12.8.p12 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) { CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); const CXXMethodDecl *MD = 0; if (!BaseClassDecl->hasTrivialCopyAssignment() && !BaseClassDecl->hasUserDeclaredCopyAssignment() && BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) GetAddrOfFunction(MD, 0); } for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), FieldEnd = ClassDecl->field_end(); Field != FieldEnd; ++Field) { QualType FieldType = Context.getCanonicalType((*Field)->getType()); if (const ArrayType *Array = Context.getAsArrayType(FieldType)) FieldType = Array->getElementType(); if (const RecordType *FieldClassType = FieldType->getAs()) { if ((*Field)->isAnonymousStructOrUnion()) continue; CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); const CXXMethodDecl *MD = 0; if (!FieldClassDecl->hasTrivialCopyAssignment() && !FieldClassDecl->hasUserDeclaredCopyAssignment() && FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) GetAddrOfFunction(MD, 0); } } DeferredDeclsToEmit.push_back(CopyAssignDecl); } void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { const CXXDestructorDecl *DD = cast(DtorDecl.getDecl()); const CXXRecordDecl *ClassDecl = cast(DD->getDeclContext()); if (ClassDecl->hasTrivialDestructor() || ClassDecl->hasUserDeclaredDestructor()) return; for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) { CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); if (const CXXDestructorDecl *BaseDtor = BaseClassDecl->getDestructor(Context)) GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); } for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), FieldEnd = ClassDecl->field_end(); Field != FieldEnd; ++Field) { QualType FieldType = Context.getCanonicalType((*Field)->getType()); if (const ArrayType *Array = Context.getAsArrayType(FieldType)) FieldType = Array->getElementType(); if (const RecordType *FieldClassType = FieldType->getAs()) { if ((*Field)->isAnonymousStructOrUnion()) continue; CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); if (const CXXDestructorDecl *FieldDtor = FieldClassDecl->getDestructor(Context)) GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); } } DeferredDeclsToEmit.push_back(DtorDecl); } /// GetAddrOfFunction - Return the address of the given function. If Ty is /// non-null, then this function will use the specified type if it has to /// create it (this occurs when we see a definition of the function). llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, const llvm::Type *Ty) { // If there was no specific requested type, just convert it now. if (!Ty) Ty = getTypes().ConvertType(cast(GD.getDecl())->getType()); return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); } /// CreateRuntimeFunction - Create a new runtime function with the specified /// type and name. llvm::Constant * CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, const char *Name) { // Convert Name to be a uniqued string from the IdentifierInfo table. Name = getContext().Idents.get(Name).getNameStart(); return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); } /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, /// create and return an llvm GlobalVariable with the specified type. If there /// is something in the module with the specified name, return it potentially /// bitcasted to the right type. /// /// If D is non-null, it specifies a decl that correspond to this. This is used /// to set the attributes on the global when it is first created. llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, const llvm::PointerType*Ty, const VarDecl *D) { // Lookup the entry, lazily creating it if necessary. llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; if (Entry) { if (Entry->getType() == Ty) return Entry; // Make sure the result is of the correct type. return llvm::ConstantExpr::getBitCast(Entry, Ty); } // This is the first use or definition of a mangled name. If there is a // deferred decl with this name, remember that we need to emit it at the end // of the file. llvm::DenseMap::iterator DDI = DeferredDecls.find(MangledName); if (DDI != DeferredDecls.end()) { // Move the potentially referenced deferred decl to the DeferredDeclsToEmit // list, and remove it from DeferredDecls (since we don't need it anymore). DeferredDeclsToEmit.push_back(DDI->second); DeferredDecls.erase(DDI); } llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, llvm::GlobalValue::ExternalLinkage, 0, "", 0, false, Ty->getAddressSpace()); GV->setName(MangledName); // Handle things which are present even on external declarations. if (D) { // FIXME: This code is overly simple and should be merged with other global // handling. GV->setConstant(D->getType().isConstant(Context)); // FIXME: Merge with other attribute handling code. if (D->getStorageClass() == VarDecl::PrivateExtern) GV->setVisibility(llvm::GlobalValue::HiddenVisibility); if (D->hasAttr() || D->hasAttr()) GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); GV->setThreadLocal(D->isThreadSpecified()); } return Entry = GV; } /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the /// given global variable. If Ty is non-null and if the global doesn't exist, /// then it will be greated with the specified type instead of whatever the /// normal requested type would be. llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, const llvm::Type *Ty) { assert(D->hasGlobalStorage() && "Not a global variable"); QualType ASTTy = D->getType(); if (Ty == 0) Ty = getTypes().ConvertTypeForMem(ASTTy); const llvm::PointerType *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); } /// CreateRuntimeVariable - Create a new runtime global variable with the /// specified type and name. llvm::Constant * CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, const char *Name) { // Convert Name to be a uniqued string from the IdentifierInfo table. Name = getContext().Idents.get(Name).getNameStart(); return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); } void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { assert(!D->getInit() && "Cannot emit definite definitions here!"); if (MayDeferGeneration(D)) { // If we have not seen a reference to this variable yet, place it // into the deferred declarations table to be emitted if needed // later. const char *MangledName = getMangledName(D); if (GlobalDeclMap.count(MangledName) == 0) { DeferredDecls[MangledName] = D; return; } } // The tentative definition is the only definition. EmitGlobalVarDefinition(D); } static CodeGenModule::GVALinkage GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { // Everything located semantically within an anonymous namespace is // always internal. if (VD->isInAnonymousNamespace()) return CodeGenModule::GVA_Internal; // Handle linkage for static data members. if (VD->isStaticDataMember()) { switch (VD->getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: case TSK_ExplicitInstantiationDefinition: return CodeGenModule::GVA_StrongExternal; case TSK_ExplicitInstantiationDeclaration: llvm::llvm_unreachable("Variable should not be instantiated"); // Fall through to treat this like any other instantiation. case TSK_ImplicitInstantiation: return CodeGenModule::GVA_TemplateInstantiation; } } // Static variables get internal linkage. if (VD->getStorageClass() == VarDecl::Static) return CodeGenModule::GVA_Internal; return CodeGenModule::GVA_StrongExternal; } void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { llvm::Constant *Init = 0; QualType ASTTy = D->getType(); if (D->getInit() == 0) { // This is a tentative definition; tentative definitions are // implicitly initialized with { 0 }. // // Note that tentative definitions are only emitted at the end of // a translation unit, so they should never have incomplete // type. In addition, EmitTentativeDefinition makes sure that we // never attempt to emit a tentative definition if a real one // exists. A use may still exists, however, so we still may need // to do a RAUW. assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); Init = EmitNullConstant(D->getType()); } else { Init = EmitConstantExpr(D->getInit(), D->getType()); if (!Init) { QualType T = D->getInit()->getType(); if (getLangOptions().CPlusPlus) { CXXGlobalInits.push_back(D); Init = EmitNullConstant(T); } else { ErrorUnsupported(D, "static initializer"); Init = llvm::UndefValue::get(getTypes().ConvertType(T)); } } } const llvm::Type* InitType = Init->getType(); llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); // Strip off a bitcast if we got one back. if (llvm::ConstantExpr *CE = dyn_cast(Entry)) { assert(CE->getOpcode() == llvm::Instruction::BitCast || // all zero index gep. CE->getOpcode() == llvm::Instruction::GetElementPtr); Entry = CE->getOperand(0); } // Entry is now either a Function or GlobalVariable. llvm::GlobalVariable *GV = dyn_cast(Entry); // We have a definition after a declaration with the wrong type. // We must make a new GlobalVariable* and update everything that used OldGV // (a declaration or tentative definition) with the new GlobalVariable* // (which will be a definition). // // This happens if there is a prototype for a global (e.g. // "extern int x[];") and then a definition of a different type (e.g. // "int x[10];"). This also happens when an initializer has a different type // from the type of the global (this happens with unions). if (GV == 0 || GV->getType()->getElementType() != InitType || GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { // Remove the old entry from GlobalDeclMap so that we'll create a new one. GlobalDeclMap.erase(getMangledName(D)); // Make a new global with the correct type, this is now guaranteed to work. GV = cast(GetAddrOfGlobalVar(D, InitType)); GV->takeName(cast(Entry)); // Replace all uses of the old global with the new global llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(GV, Entry->getType()); Entry->replaceAllUsesWith(NewPtrForOldDecl); // Erase the old global, since it is no longer used. cast(Entry)->eraseFromParent(); } if (const AnnotateAttr *AA = D->getAttr()) { SourceManager &SM = Context.getSourceManager(); AddAnnotation(EmitAnnotateAttr(GV, AA, SM.getInstantiationLineNumber(D->getLocation()))); } GV->setInitializer(Init); // If it is safe to mark the global 'constant', do so now. GV->setConstant(false); if (D->getType().isConstant(Context)) { // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable // members, it cannot be declared "LLVM const". GV->setConstant(true); } GV->setAlignment(getContext().getDeclAlignInBytes(D)); // Set the llvm linkage type as appropriate. GVALinkage Linkage = GetLinkageForVariable(getContext(), D); if (Linkage == GVA_Internal) GV->setLinkage(llvm::Function::InternalLinkage); else if (D->hasAttr()) GV->setLinkage(llvm::Function::DLLImportLinkage); else if (D->hasAttr()) GV->setLinkage(llvm::Function::DLLExportLinkage); else if (D->hasAttr()) { if (GV->isConstant()) GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); else GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); } else if (Linkage == GVA_TemplateInstantiation) GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); else if (!CompileOpts.NoCommon && !D->hasExternalStorage() && !D->getInit() && !D->getAttr()) { GV->setLinkage(llvm::GlobalVariable::CommonLinkage); // common vars aren't constant even if declared const. GV->setConstant(false); } else GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); SetCommonAttributes(D, GV); // Emit global variable debug information. if (CGDebugInfo *DI = getDebugInfo()) { DI->setLocation(D->getLocation()); DI->EmitGlobalVariable(GV, D); } } /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we /// implement a function with no prototype, e.g. "int foo() {}". If there are /// existing call uses of the old function in the module, this adjusts them to /// call the new function directly. /// /// This is not just a cleanup: the always_inline pass requires direct calls to /// functions to be able to inline them. If there is a bitcast in the way, it /// won't inline them. Instcombine normally deletes these calls, but it isn't /// run at -O0. static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, llvm::Function *NewFn) { // If we're redefining a global as a function, don't transform it. llvm::Function *OldFn = dyn_cast(Old); if (OldFn == 0) return; const llvm::Type *NewRetTy = NewFn->getReturnType(); llvm::SmallVector ArgList; for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); UI != E; ) { // TODO: Do invokes ever occur in C code? If so, we should handle them too. unsigned OpNo = UI.getOperandNo(); llvm::CallInst *CI = dyn_cast(*UI++); if (!CI || OpNo != 0) continue; // If the return types don't match exactly, and if the call isn't dead, then // we can't transform this call. if (CI->getType() != NewRetTy && !CI->use_empty()) continue; // If the function was passed too few arguments, don't transform. If extra // arguments were passed, we silently drop them. If any of the types // mismatch, we don't transform. unsigned ArgNo = 0; bool DontTransform = false; for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { if (CI->getNumOperands()-1 == ArgNo || CI->getOperand(ArgNo+1)->getType() != AI->getType()) { DontTransform = true; break; } } if (DontTransform) continue; // Okay, we can transform this. Create the new call instruction and copy // over the required information. ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), ArgList.end(), "", CI); ArgList.clear(); if (!NewCall->getType()->isVoidTy()) NewCall->takeName(CI); NewCall->setAttributes(CI->getAttributes()); NewCall->setCallingConv(CI->getCallingConv()); // Finally, remove the old call, replacing any uses with the new one. if (!CI->use_empty()) CI->replaceAllUsesWith(NewCall); // Copy any custom metadata attached with CI. llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata(); TheMetadata.copyMD(CI, NewCall); CI->eraseFromParent(); } } void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { const llvm::FunctionType *Ty; const FunctionDecl *D = cast(GD.getDecl()); if (const CXXMethodDecl *MD = dyn_cast(D)) { bool isVariadic = D->getType()->getAs()->isVariadic(); Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); } else { Ty = cast(getTypes().ConvertType(D->getType())); // As a special case, make sure that definitions of K&R function // "type foo()" aren't declared as varargs (which forces the backend // to do unnecessary work). if (D->getType()->isFunctionNoProtoType()) { assert(Ty->isVarArg() && "Didn't lower type as expected"); // Due to stret, the lowered function could have arguments. // Just create the same type as was lowered by ConvertType // but strip off the varargs bit. std::vector Args(Ty->param_begin(), Ty->param_end()); Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); } } // Get or create the prototype for the function. llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); // Strip off a bitcast if we got one back. if (llvm::ConstantExpr *CE = dyn_cast(Entry)) { assert(CE->getOpcode() == llvm::Instruction::BitCast); Entry = CE->getOperand(0); } if (cast(Entry)->getType()->getElementType() != Ty) { llvm::GlobalValue *OldFn = cast(Entry); // If the types mismatch then we have to rewrite the definition. assert(OldFn->isDeclaration() && "Shouldn't replace non-declaration"); // F is the Function* for the one with the wrong type, we must make a new // Function* and update everything that used F (a declaration) with the new // Function* (which will be a definition). // // This happens if there is a prototype for a function // (e.g. "int f()") and then a definition of a different type // (e.g. "int f(int x)"). Start by making a new function of the // correct type, RAUW, then steal the name. GlobalDeclMap.erase(getMangledName(D)); llvm::Function *NewFn = cast(GetAddrOfFunction(GD, Ty)); NewFn->takeName(OldFn); // If this is an implementation of a function without a prototype, try to // replace any existing uses of the function (which may be calls) with uses // of the new function if (D->getType()->isFunctionNoProtoType()) { ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); OldFn->removeDeadConstantUsers(); } // Replace uses of F with the Function we will endow with a body. if (!Entry->use_empty()) { llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); Entry->replaceAllUsesWith(NewPtrForOldDecl); } // Ok, delete the old function now, which is dead. OldFn->eraseFromParent(); Entry = NewFn; } llvm::Function *Fn = cast(Entry); CodeGenFunction(*this).GenerateCode(D, Fn); SetFunctionDefinitionAttributes(D, Fn); SetLLVMFunctionAttributesForDefinition(D, Fn); if (const ConstructorAttr *CA = D->getAttr()) AddGlobalCtor(Fn, CA->getPriority()); if (const DestructorAttr *DA = D->getAttr()) AddGlobalDtor(Fn, DA->getPriority()); } void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { const AliasAttr *AA = D->getAttr(); assert(AA && "Not an alias?"); const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); // Unique the name through the identifier table. const char *AliaseeName = AA->getAliasee().c_str(); AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); // Create a reference to the named value. This ensures that it is emitted // if a deferred decl. llvm::Constant *Aliasee; if (isa(DeclTy)) Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); else Aliasee = GetOrCreateLLVMGlobal(AliaseeName, llvm::PointerType::getUnqual(DeclTy), 0); // Create the new alias itself, but don't set a name yet. llvm::GlobalValue *GA = new llvm::GlobalAlias(Aliasee->getType(), llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); // See if there is already something with the alias' name in the module. const char *MangledName = getMangledName(D); llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; if (Entry && !Entry->isDeclaration()) { // If there is a definition in the module, then it wins over the alias. // This is dubious, but allow it to be safe. Just ignore the alias. GA->eraseFromParent(); return; } if (Entry) { // If there is a declaration in the module, then we had an extern followed // by the alias, as in: // extern int test6(); // ... // int test6() __attribute__((alias("test7"))); // // Remove it and replace uses of it with the alias. Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, Entry->getType())); Entry->eraseFromParent(); } // Now we know that there is no conflict, set the name. Entry = GA; GA->setName(MangledName); // Set attributes which are particular to an alias; this is a // specialization of the attributes which may be set on a global // variable/function. if (D->hasAttr()) { if (const FunctionDecl *FD = dyn_cast(D)) { // The dllexport attribute is ignored for undefined symbols. if (FD->getBody()) GA->setLinkage(llvm::Function::DLLExportLinkage); } else { GA->setLinkage(llvm::Function::DLLExportLinkage); } } else if (D->hasAttr() || D->hasAttr()) { GA->setLinkage(llvm::Function::WeakAnyLinkage); } SetCommonAttributes(D, GA); } /// getBuiltinLibFunction - Given a builtin id for a function like /// "__builtin_fabsf", return a Function* for "fabsf". llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, unsigned BuiltinID) { assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && "isn't a lib fn"); // Get the name, skip over the __builtin_ prefix (if necessary). const char *Name = Context.BuiltinInfo.GetName(BuiltinID); if (Context.BuiltinInfo.isLibFunction(BuiltinID)) Name += 10; // Get the type for the builtin. ASTContext::GetBuiltinTypeError Error; QualType Type = Context.GetBuiltinType(BuiltinID, Error); assert(Error == ASTContext::GE_None && "Can't get builtin type"); const llvm::FunctionType *Ty = cast(getTypes().ConvertType(Type)); // Unique the name through the identifier table. Name = getContext().Idents.get(Name).getNameStart(); return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); } llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, unsigned NumTys) { return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, Tys, NumTys); } llvm::Function *CodeGenModule::getMemCpyFn() { if (MemCpyFn) return MemCpyFn; const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); } llvm::Function *CodeGenModule::getMemMoveFn() { if (MemMoveFn) return MemMoveFn; const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); } llvm::Function *CodeGenModule::getMemSetFn() { if (MemSetFn) return MemSetFn; const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); } static llvm::StringMapEntry & GetConstantCFStringEntry(llvm::StringMap &Map, const StringLiteral *Literal, bool TargetIsLSB, bool &IsUTF16, unsigned &StringLength) { unsigned NumBytes = Literal->getByteLength(); // Check for simple case. if (!Literal->containsNonAsciiOrNull()) { StringLength = NumBytes; return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), StringLength)); } // Otherwise, convert the UTF8 literals into a byte string. llvm::SmallVector ToBuf(NumBytes); const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); UTF16 *ToPtr = &ToBuf[0]; ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, ToPtr + NumBytes, strictConversion); // Check for conversion failure. if (Result != conversionOK) { // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove // this duplicate code. assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); StringLength = NumBytes; return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), StringLength)); } // ConvertUTF8toUTF16 returns the length in ToPtr. StringLength = ToPtr - &ToBuf[0]; // Render the UTF-16 string into a byte array and convert to the target byte // order. // // FIXME: This isn't something we should need to do here. llvm::SmallString<128> AsBytes; AsBytes.reserve(StringLength * 2); for (unsigned i = 0; i != StringLength; ++i) { unsigned short Val = ToBuf[i]; if (TargetIsLSB) { AsBytes.push_back(Val & 0xFF); AsBytes.push_back(Val >> 8); } else { AsBytes.push_back(Val >> 8); AsBytes.push_back(Val & 0xFF); } } // Append one extra null character, the second is automatically added by our // caller. AsBytes.push_back(0); IsUTF16 = true; return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); } llvm::Constant * CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { unsigned StringLength = 0; bool isUTF16 = false; llvm::StringMapEntry &Entry = GetConstantCFStringEntry(CFConstantStringMap, Literal, getTargetData().isLittleEndian(), isUTF16, StringLength); if (llvm::Constant *C = Entry.getValue()) return C; llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); llvm::Constant *Zeros[] = { Zero, Zero }; // If we don't already have it, get __CFConstantStringClassReference. if (!CFConstantStringClassRef) { const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); Ty = llvm::ArrayType::get(Ty, 0); llvm::Constant *GV = CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); // Decay array -> ptr CFConstantStringClassRef = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); } QualType CFTy = getContext().getCFConstantStringType(); const llvm::StructType *STy = cast(getTypes().ConvertType(CFTy)); std::vector Fields(4); // Class pointer. Fields[0] = CFConstantStringClassRef; // Flags. const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : llvm::ConstantInt::get(Ty, 0x07C8); // String pointer. llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); const char *Sect = 0; llvm::GlobalValue::LinkageTypes Linkage; bool isConstant; if (isUTF16) { Sect = getContext().Target.getUnicodeStringSection(); // FIXME: why do utf strings get "_" labels instead of "L" labels? Linkage = llvm::GlobalValue::InternalLinkage; // Note: -fwritable-strings doesn't make unicode CFStrings writable, but // does make plain ascii ones writable. isConstant = true; } else { Linkage = llvm::GlobalValue::PrivateLinkage; isConstant = !Features.WritableStrings; } llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, ".str"); if (Sect) GV->setSection(Sect); if (isUTF16) { unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; GV->setAlignment(Align); } Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); // String length. Ty = getTypes().ConvertType(getContext().LongTy); Fields[3] = llvm::ConstantInt::get(Ty, StringLength); // The struct. C = llvm::ConstantStruct::get(STy, Fields); GV = new llvm::GlobalVariable(getModule(), C->getType(), true, llvm::GlobalVariable::PrivateLinkage, C, "_unnamed_cfstring_"); if (const char *Sect = getContext().Target.getCFStringSection()) GV->setSection(Sect); Entry.setValue(GV); return GV; } /// GetStringForStringLiteral - Return the appropriate bytes for a /// string literal, properly padded to match the literal type. std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { const char *StrData = E->getStrData(); unsigned Len = E->getByteLength(); const ConstantArrayType *CAT = getContext().getAsConstantArrayType(E->getType()); assert(CAT && "String isn't pointer or array!"); // Resize the string to the right size. std::string Str(StrData, StrData+Len); uint64_t RealLen = CAT->getSize().getZExtValue(); if (E->isWide()) RealLen *= getContext().Target.getWCharWidth()/8; Str.resize(RealLen, '\0'); return Str; } /// GetAddrOfConstantStringFromLiteral - Return a pointer to a /// constant array for the given string literal. llvm::Constant * CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { // FIXME: This can be more efficient. return GetAddrOfConstantString(GetStringForStringLiteral(S)); } /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant /// array for the given ObjCEncodeExpr node. llvm::Constant * CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { std::string Str; getContext().getObjCEncodingForType(E->getEncodedType(), Str); return GetAddrOfConstantCString(Str); } /// GenerateWritableString -- Creates storage for a string literal. static llvm::Constant *GenerateStringLiteral(const std::string &str, bool constant, CodeGenModule &CGM, const char *GlobalName) { // Create Constant for this string literal. Don't add a '\0'. llvm::Constant *C = llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); // Create a global variable for this string return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, llvm::GlobalValue::PrivateLinkage, C, GlobalName); } /// GetAddrOfConstantString - Returns a pointer to a character array /// containing the literal. This contents are exactly that of the /// given string, i.e. it will not be null terminated automatically; /// see GetAddrOfConstantCString. Note that whether the result is /// actually a pointer to an LLVM constant depends on /// Feature.WriteableStrings. /// /// The result has pointer to array type. llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, const char *GlobalName) { bool IsConstant = !Features.WritableStrings; // Get the default prefix if a name wasn't specified. if (!GlobalName) GlobalName = ".str"; // Don't share any string literals if strings aren't constant. if (!IsConstant) return GenerateStringLiteral(str, false, *this, GlobalName); llvm::StringMapEntry &Entry = ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); if (Entry.getValue()) return Entry.getValue(); // Create a global variable for this. llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); Entry.setValue(C); return C; } /// GetAddrOfConstantCString - Returns a pointer to a character /// array containing the literal and a terminating '\-' /// character. The result has pointer to array type. llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, const char *GlobalName){ return GetAddrOfConstantString(str + '\0', GlobalName); } /// EmitObjCPropertyImplementations - Emit information for synthesized /// properties for an implementation. void CodeGenModule::EmitObjCPropertyImplementations(const ObjCImplementationDecl *D) { for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { ObjCPropertyImplDecl *PID = *i; // Dynamic is just for type-checking. if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { ObjCPropertyDecl *PD = PID->getPropertyDecl(); // Determine which methods need to be implemented, some may have // been overridden. Note that ::isSynthesized is not the method // we want, that just indicates if the decl came from a // property. What we want to know is if the method is defined in // this implementation. if (!D->getInstanceMethod(PD->getGetterName())) CodeGenFunction(*this).GenerateObjCGetter( const_cast(D), PID); if (!PD->isReadOnly() && !D->getInstanceMethod(PD->getSetterName())) CodeGenFunction(*this).GenerateObjCSetter( const_cast(D), PID); } } } /// EmitNamespace - Emit all declarations in a namespace. void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); I != E; ++I) EmitTopLevelDecl(*I); } // EmitLinkageSpec - Emit all declarations in a linkage spec. void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { if (LSD->getLanguage() != LinkageSpecDecl::lang_c && LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { ErrorUnsupported(LSD, "linkage spec"); return; } for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); I != E; ++I) EmitTopLevelDecl(*I); } /// EmitTopLevelDecl - Emit code for a single top level declaration. void CodeGenModule::EmitTopLevelDecl(Decl *D) { // If an error has occurred, stop code generation, but continue // parsing and semantic analysis (to ensure all warnings and errors // are emitted). if (Diags.hasErrorOccurred()) return; // Ignore dependent declarations. if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) return; switch (D->getKind()) { case Decl::CXXConversion: case Decl::CXXMethod: case Decl::Function: // Skip function templates if (cast(D)->getDescribedFunctionTemplate()) return; EmitGlobal(cast(D)); break; case Decl::Var: EmitGlobal(cast(D)); break; // C++ Decls case Decl::Namespace: EmitNamespace(cast(D)); break; // No code generation needed. case Decl::Using: case Decl::UsingDirective: case Decl::ClassTemplate: case Decl::FunctionTemplate: case Decl::NamespaceAlias: break; case Decl::CXXConstructor: EmitCXXConstructors(cast(D)); break; case Decl::CXXDestructor: EmitCXXDestructors(cast(D)); break; case Decl::StaticAssert: // Nothing to do. break; // Objective-C Decls // Forward declarations, no (immediate) code generation. case Decl::ObjCClass: case Decl::ObjCForwardProtocol: case Decl::ObjCCategory: case Decl::ObjCInterface: break; case Decl::ObjCProtocol: Runtime->GenerateProtocol(cast(D)); break; case Decl::ObjCCategoryImpl: // Categories have properties but don't support synthesize so we // can ignore them here. Runtime->GenerateCategory(cast(D)); break; case Decl::ObjCImplementation: { ObjCImplementationDecl *OMD = cast(D); EmitObjCPropertyImplementations(OMD); Runtime->GenerateClass(OMD); break; } case Decl::ObjCMethod: { ObjCMethodDecl *OMD = cast(D); // If this is not a prototype, emit the body. if (OMD->getBody()) CodeGenFunction(*this).GenerateObjCMethod(OMD); break; } case Decl::ObjCCompatibleAlias: // compatibility-alias is a directive and has no code gen. break; case Decl::LinkageSpec: EmitLinkageSpec(cast(D)); break; case Decl::FileScopeAsm: { FileScopeAsmDecl *AD = cast(D); std::string AsmString(AD->getAsmString()->getStrData(), AD->getAsmString()->getByteLength()); const std::string &S = getModule().getModuleInlineAsm(); if (S.empty()) getModule().setModuleInlineAsm(AsmString); else getModule().setModuleInlineAsm(S + '\n' + AsmString); break; } default: // Make sure we handled everything we should, every other kind is a // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind // function. Need to recode Decl::Kind to do that easily. assert(isa(D) && "Unsupported decl kind"); } }