//===--- Expr.cpp - Expression AST Node Implementation --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Expr class and subclasses. // //===----------------------------------------------------------------------===// #include "clang/AST/Expr.h" #include "clang/AST/APValue.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/TargetInfo.h" using namespace clang; //===----------------------------------------------------------------------===// // Primary Expressions. //===----------------------------------------------------------------------===// /// getValueAsApproximateDouble - This returns the value as an inaccurate /// double. Note that this may cause loss of precision, but is useful for /// debugging dumps, etc. double FloatingLiteral::getValueAsApproximateDouble() const { llvm::APFloat V = getValue(); bool ignored; V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, &ignored); return V.convertToDouble(); } StringLiteral::StringLiteral(const char *strData, unsigned byteLength, bool Wide, QualType t, SourceLocation firstLoc, SourceLocation lastLoc) : Expr(StringLiteralClass, t) { // OPTIMIZE: could allocate this appended to the StringLiteral. char *AStrData = new char[byteLength]; memcpy(AStrData, strData, byteLength); StrData = AStrData; ByteLength = byteLength; IsWide = Wide; firstTokLoc = firstLoc; lastTokLoc = lastLoc; } StringLiteral::~StringLiteral() { delete[] StrData; } bool UnaryOperator::isPostfix(Opcode Op) { switch (Op) { case PostInc: case PostDec: return true; default: return false; } } bool UnaryOperator::isPrefix(Opcode Op) { switch (Op) { case PreInc: case PreDec: return true; default: return false; } } /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it /// corresponds to, e.g. "sizeof" or "[pre]++". const char *UnaryOperator::getOpcodeStr(Opcode Op) { switch (Op) { default: assert(0 && "Unknown unary operator"); case PostInc: return "++"; case PostDec: return "--"; case PreInc: return "++"; case PreDec: return "--"; case AddrOf: return "&"; case Deref: return "*"; case Plus: return "+"; case Minus: return "-"; case Not: return "~"; case LNot: return "!"; case Real: return "__real"; case Imag: return "__imag"; case Extension: return "__extension__"; case OffsetOf: return "__builtin_offsetof"; } } //===----------------------------------------------------------------------===// // Postfix Operators. //===----------------------------------------------------------------------===// CallExpr::CallExpr(StmtClass SC, Expr *fn, Expr **args, unsigned numargs, QualType t, SourceLocation rparenloc) : Expr(SC, t, fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), fn->isValueDependent() || hasAnyValueDependentArguments(args, numargs)), NumArgs(numargs) { SubExprs = new Stmt*[numargs+1]; SubExprs[FN] = fn; for (unsigned i = 0; i != numargs; ++i) SubExprs[i+ARGS_START] = args[i]; RParenLoc = rparenloc; } CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t, SourceLocation rparenloc) : Expr(CallExprClass, t, fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs), fn->isValueDependent() || hasAnyValueDependentArguments(args, numargs)), NumArgs(numargs) { SubExprs = new Stmt*[numargs+1]; SubExprs[FN] = fn; for (unsigned i = 0; i != numargs; ++i) SubExprs[i+ARGS_START] = args[i]; RParenLoc = rparenloc; } /// setNumArgs - This changes the number of arguments present in this call. /// Any orphaned expressions are deleted by this, and any new operands are set /// to null. void CallExpr::setNumArgs(unsigned NumArgs) { // No change, just return. if (NumArgs == getNumArgs()) return; // If shrinking # arguments, just delete the extras and forgot them. if (NumArgs < getNumArgs()) { for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i) delete getArg(i); this->NumArgs = NumArgs; return; } // Otherwise, we are growing the # arguments. New an bigger argument array. Stmt **NewSubExprs = new Stmt*[NumArgs+1]; // Copy over args. for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i) NewSubExprs[i] = SubExprs[i]; // Null out new args. for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i) NewSubExprs[i] = 0; delete[] SubExprs; SubExprs = NewSubExprs; this->NumArgs = NumArgs; } /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If /// not, return 0. unsigned CallExpr::isBuiltinCall() const { // All simple function calls (e.g. func()) are implicitly cast to pointer to // function. As a result, we try and obtain the DeclRefExpr from the // ImplicitCastExpr. const ImplicitCastExpr *ICE = dyn_cast(getCallee()); if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). return 0; const DeclRefExpr *DRE = dyn_cast(ICE->getSubExpr()); if (!DRE) return 0; const FunctionDecl *FDecl = dyn_cast(DRE->getDecl()); if (!FDecl) return 0; if (!FDecl->getIdentifier()) return 0; return FDecl->getIdentifier()->getBuiltinID(); } /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it /// corresponds to, e.g. "<<=". const char *BinaryOperator::getOpcodeStr(Opcode Op) { switch (Op) { default: assert(0 && "Unknown binary operator"); case Mul: return "*"; case Div: return "/"; case Rem: return "%"; case Add: return "+"; case Sub: return "-"; case Shl: return "<<"; case Shr: return ">>"; case LT: return "<"; case GT: return ">"; case LE: return "<="; case GE: return ">="; case EQ: return "=="; case NE: return "!="; case And: return "&"; case Xor: return "^"; case Or: return "|"; case LAnd: return "&&"; case LOr: return "||"; case Assign: return "="; case MulAssign: return "*="; case DivAssign: return "/="; case RemAssign: return "%="; case AddAssign: return "+="; case SubAssign: return "-="; case ShlAssign: return "<<="; case ShrAssign: return ">>="; case AndAssign: return "&="; case XorAssign: return "^="; case OrAssign: return "|="; case Comma: return ","; } } InitListExpr::InitListExpr(SourceLocation lbraceloc, Expr **initExprs, unsigned numInits, SourceLocation rbraceloc) : Expr(InitListExprClass, QualType()), LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0), UnionFieldInit(0) { InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits); } void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) { for (unsigned Idx = NumInits, LastIdx = InitExprs.size(); Idx < LastIdx; ++Idx) delete InitExprs[Idx]; InitExprs.resize(NumInits, 0); } Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) { if (Init >= InitExprs.size()) { InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0); InitExprs.back() = expr; return 0; } Expr *Result = cast_or_null(InitExprs[Init]); InitExprs[Init] = expr; return Result; } /// getFunctionType - Return the underlying function type for this block. /// const FunctionType *BlockExpr::getFunctionType() const { return getType()->getAsBlockPointerType()-> getPointeeType()->getAsFunctionType(); } SourceLocation BlockExpr::getCaretLocation() const { return TheBlock->getCaretLocation(); } const Stmt *BlockExpr::getBody() const { return TheBlock->getBody(); } Stmt *BlockExpr::getBody() { return TheBlock->getBody(); } //===----------------------------------------------------------------------===// // Generic Expression Routines //===----------------------------------------------------------------------===// /// hasLocalSideEffect - Return true if this immediate expression has side /// effects, not counting any sub-expressions. bool Expr::hasLocalSideEffect() const { switch (getStmtClass()) { default: return false; case ParenExprClass: return cast(this)->getSubExpr()->hasLocalSideEffect(); case UnaryOperatorClass: { const UnaryOperator *UO = cast(this); switch (UO->getOpcode()) { default: return false; case UnaryOperator::PostInc: case UnaryOperator::PostDec: case UnaryOperator::PreInc: case UnaryOperator::PreDec: return true; // ++/-- case UnaryOperator::Deref: // Dereferencing a volatile pointer is a side-effect. return getType().isVolatileQualified(); case UnaryOperator::Real: case UnaryOperator::Imag: // accessing a piece of a volatile complex is a side-effect. return UO->getSubExpr()->getType().isVolatileQualified(); case UnaryOperator::Extension: return UO->getSubExpr()->hasLocalSideEffect(); } } case BinaryOperatorClass: { const BinaryOperator *BinOp = cast(this); // Consider comma to have side effects if the LHS and RHS both do. if (BinOp->getOpcode() == BinaryOperator::Comma) return BinOp->getLHS()->hasLocalSideEffect() && BinOp->getRHS()->hasLocalSideEffect(); return BinOp->isAssignmentOp(); } case CompoundAssignOperatorClass: return true; case ConditionalOperatorClass: { const ConditionalOperator *Exp = cast(this); return Exp->getCond()->hasLocalSideEffect() || (Exp->getLHS() && Exp->getLHS()->hasLocalSideEffect()) || (Exp->getRHS() && Exp->getRHS()->hasLocalSideEffect()); } case MemberExprClass: case ArraySubscriptExprClass: // If the base pointer or element is to a volatile pointer/field, accessing // if is a side effect. return getType().isVolatileQualified(); case CallExprClass: case CXXOperatorCallExprClass: // TODO: check attributes for pure/const. "void foo() { strlen("bar"); }" // should warn. return true; case ObjCMessageExprClass: return true; case StmtExprClass: { // Statement exprs don't logically have side effects themselves, but are // sometimes used in macros in ways that give them a type that is unused. // For example ({ blah; foo(); }) will end up with a type if foo has a type. // however, if the result of the stmt expr is dead, we don't want to emit a // warning. const CompoundStmt *CS = cast(this)->getSubStmt(); if (!CS->body_empty()) if (const Expr *E = dyn_cast(CS->body_back())) return E->hasLocalSideEffect(); return false; } case CStyleCastExprClass: case CXXFunctionalCastExprClass: // If this is a cast to void, check the operand. Otherwise, the result of // the cast is unused. if (getType()->isVoidType()) return cast(this)->getSubExpr()->hasLocalSideEffect(); return false; case ImplicitCastExprClass: // Check the operand, since implicit casts are inserted by Sema return cast(this)->getSubExpr()->hasLocalSideEffect(); case CXXDefaultArgExprClass: return cast(this)->getExpr()->hasLocalSideEffect(); case CXXNewExprClass: // FIXME: In theory, there might be new expressions that don't have side // effects (e.g. a placement new with an uninitialized POD). case CXXDeleteExprClass: return true; } } /// DeclCanBeLvalue - Determine whether the given declaration can be /// an lvalue. This is a helper routine for isLvalue. static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) { // C++ [temp.param]p6: // A non-type non-reference template-parameter is not an lvalue. if (const NonTypeTemplateParmDecl *NTTParm = dyn_cast(Decl)) return NTTParm->getType()->isReferenceType(); return isa(Decl) || isa(Decl) || // C++ 3.10p2: An lvalue refers to an object or function. (Ctx.getLangOptions().CPlusPlus && (isa(Decl) || isa(Decl))); } /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an /// incomplete type other than void. Nonarray expressions that can be lvalues: /// - name, where name must be a variable /// - e[i] /// - (e), where e must be an lvalue /// - e.name, where e must be an lvalue /// - e->name /// - *e, the type of e cannot be a function type /// - string-constant /// - (__real__ e) and (__imag__ e) where e is an lvalue [GNU extension] /// - reference type [C++ [expr]] /// Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const { // first, check the type (C99 6.3.2.1). Expressions with function // type in C are not lvalues, but they can be lvalues in C++. if (!Ctx.getLangOptions().CPlusPlus && TR->isFunctionType()) return LV_NotObjectType; // Allow qualified void which is an incomplete type other than void (yuck). if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers()) return LV_IncompleteVoidType; /// FIXME: Expressions can't have reference type, so the following /// isn't needed. if (TR->isReferenceType()) // C++ [expr] return LV_Valid; // the type looks fine, now check the expression switch (getStmtClass()) { case StringLiteralClass: // C99 6.5.1p4 return LV_Valid; case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2)))) // For vectors, make sure base is an lvalue (i.e. not a function call). if (cast(this)->getBase()->getType()->isVectorType()) return cast(this)->getBase()->isLvalue(Ctx); return LV_Valid; case DeclRefExprClass: case QualifiedDeclRefExprClass: { // C99 6.5.1p2 const NamedDecl *RefdDecl = cast(this)->getDecl(); if (DeclCanBeLvalue(RefdDecl, Ctx)) return LV_Valid; break; } case BlockDeclRefExprClass: { const BlockDeclRefExpr *BDR = cast(this); if (isa(BDR->getDecl())) return LV_Valid; break; } case MemberExprClass: { const MemberExpr *m = cast(this); if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4: NamedDecl *Member = m->getMemberDecl(); // C++ [expr.ref]p4: // If E2 is declared to have type "reference to T", then E1.E2 // is an lvalue. if (ValueDecl *Value = dyn_cast(Member)) if (Value->getType()->isReferenceType()) return LV_Valid; // -- If E2 is a static data member [...] then E1.E2 is an lvalue. if (isa(Member)) return LV_Valid; // -- If E2 is a non-static data member [...]. If E1 is an // lvalue, then E1.E2 is an lvalue. if (isa(Member)) return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx); // -- If it refers to a static member function [...], then // E1.E2 is an lvalue. // -- Otherwise, if E1.E2 refers to a non-static member // function [...], then E1.E2 is not an lvalue. if (CXXMethodDecl *Method = dyn_cast(Member)) return Method->isStatic()? LV_Valid : LV_MemberFunction; // -- If E2 is a member enumerator [...], the expression E1.E2 // is not an lvalue. if (isa(Member)) return LV_InvalidExpression; // Not an lvalue. return LV_InvalidExpression; } // C99 6.5.2.3p4 return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx); } case UnaryOperatorClass: if (cast(this)->getOpcode() == UnaryOperator::Deref) return LV_Valid; // C99 6.5.3p4 if (cast(this)->getOpcode() == UnaryOperator::Real || cast(this)->getOpcode() == UnaryOperator::Imag || cast(this)->getOpcode() == UnaryOperator::Extension) return cast(this)->getSubExpr()->isLvalue(Ctx); // GNU. if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1 (cast(this)->getOpcode() == UnaryOperator::PreInc || cast(this)->getOpcode() == UnaryOperator::PreDec)) return LV_Valid; break; case ImplicitCastExprClass: return cast(this)->isLvalueCast()? LV_Valid : LV_InvalidExpression; case ParenExprClass: // C99 6.5.1p5 return cast(this)->getSubExpr()->isLvalue(Ctx); case BinaryOperatorClass: case CompoundAssignOperatorClass: { const BinaryOperator *BinOp = cast(this); if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1 BinOp->getOpcode() == BinaryOperator::Comma) return BinOp->getRHS()->isLvalue(Ctx); if (!BinOp->isAssignmentOp()) return LV_InvalidExpression; if (Ctx.getLangOptions().CPlusPlus) // C++ [expr.ass]p1: // The result of an assignment operation [...] is an lvalue. return LV_Valid; // C99 6.5.16: // An assignment expression [...] is not an lvalue. return LV_InvalidExpression; } // FIXME: OverloadExprClass case CallExprClass: case CXXOperatorCallExprClass: case CXXMemberCallExprClass: { // C++ [expr.call]p10: // A function call is an lvalue if and only if the result type // is a reference. QualType CalleeType = cast(this)->getCallee()->getType(); if (const PointerType *FnTypePtr = CalleeType->getAsPointerType()) CalleeType = FnTypePtr->getPointeeType(); if (const FunctionType *FnType = CalleeType->getAsFunctionType()) if (FnType->getResultType()->isReferenceType()) return LV_Valid; break; } case CompoundLiteralExprClass: // C99 6.5.2.5p5 return LV_Valid; case ChooseExprClass: // __builtin_choose_expr is an lvalue if the selected operand is. if (cast(this)->isConditionTrue(Ctx)) return cast(this)->getLHS()->isLvalue(Ctx); else return cast(this)->getRHS()->isLvalue(Ctx); case ExtVectorElementExprClass: if (cast(this)->containsDuplicateElements()) return LV_DuplicateVectorComponents; return LV_Valid; case ObjCIvarRefExprClass: // ObjC instance variables are lvalues. return LV_Valid; case ObjCPropertyRefExprClass: // FIXME: check if read-only property. return LV_Valid; case ObjCKVCRefExprClass: // FIXME: check if read-only property. return LV_Valid; case PredefinedExprClass: return LV_Valid; case VAArgExprClass: return LV_Valid; case CXXDefaultArgExprClass: return cast(this)->getExpr()->isLvalue(Ctx); case CXXConditionDeclExprClass: return LV_Valid; case CStyleCastExprClass: case CXXFunctionalCastExprClass: case CXXStaticCastExprClass: case CXXDynamicCastExprClass: case CXXReinterpretCastExprClass: case CXXConstCastExprClass: // The result of an explicit cast is an lvalue if the type we are // casting to is a reference type. See C++ [expr.cast]p1, // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2, // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1. if (cast(this)->getTypeAsWritten()->isReferenceType()) return LV_Valid; break; case CXXTypeidExprClass: // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ... return LV_Valid; default: break; } return LV_InvalidExpression; } /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, /// does not have an incomplete type, does not have a const-qualified type, and /// if it is a structure or union, does not have any member (including, /// recursively, any member or element of all contained aggregates or unions) /// with a const-qualified type. Expr::isModifiableLvalueResult Expr::isModifiableLvalue(ASTContext &Ctx) const { isLvalueResult lvalResult = isLvalue(Ctx); switch (lvalResult) { case LV_Valid: // C++ 3.10p11: Functions cannot be modified, but pointers to // functions can be modifiable. if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType()) return MLV_NotObjectType; break; case LV_NotObjectType: return MLV_NotObjectType; case LV_IncompleteVoidType: return MLV_IncompleteVoidType; case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; case LV_InvalidExpression: // If the top level is a C-style cast, and the subexpression is a valid // lvalue, then this is probably a use of the old-school "cast as lvalue" // GCC extension. We don't support it, but we want to produce good // diagnostics when it happens so that the user knows why. if (const CStyleCastExpr *CE = dyn_cast(this)) if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) return MLV_LValueCast; return MLV_InvalidExpression; case LV_MemberFunction: return MLV_MemberFunction; } QualType CT = Ctx.getCanonicalType(getType()); if (CT.isConstQualified()) return MLV_ConstQualified; if (CT->isArrayType()) return MLV_ArrayType; if (CT->isIncompleteType()) return MLV_IncompleteType; if (const RecordType *r = CT->getAsRecordType()) { if (r->hasConstFields()) return MLV_ConstQualified; } // The following is illegal: // void takeclosure(void (^C)(void)); // void func() { int x = 1; takeclosure(^{ x = 7 }); } // if (getStmtClass() == BlockDeclRefExprClass) { const BlockDeclRefExpr *BDR = cast(this); if (!BDR->isByRef() && isa(BDR->getDecl())) return MLV_NotBlockQualified; } // Assigning to an 'implicit' property? else if (getStmtClass() == ObjCKVCRefExprClass) { const ObjCKVCRefExpr* KVCExpr = cast(this); if (KVCExpr->getSetterMethod() == 0) return MLV_NoSetterProperty; } return MLV_Valid; } /// hasGlobalStorage - Return true if this expression has static storage /// duration. This means that the address of this expression is a link-time /// constant. bool Expr::hasGlobalStorage() const { switch (getStmtClass()) { default: return false; case ParenExprClass: return cast(this)->getSubExpr()->hasGlobalStorage(); case ImplicitCastExprClass: return cast(this)->getSubExpr()->hasGlobalStorage(); case CompoundLiteralExprClass: return cast(this)->isFileScope(); case DeclRefExprClass: case QualifiedDeclRefExprClass: { const Decl *D = cast(this)->getDecl(); if (const VarDecl *VD = dyn_cast(D)) return VD->hasGlobalStorage(); if (isa(D)) return true; return false; } case MemberExprClass: { const MemberExpr *M = cast(this); return !M->isArrow() && M->getBase()->hasGlobalStorage(); } case ArraySubscriptExprClass: return cast(this)->getBase()->hasGlobalStorage(); case PredefinedExprClass: return true; case CXXDefaultArgExprClass: return cast(this)->getExpr()->hasGlobalStorage(); } } Expr* Expr::IgnoreParens() { Expr* E = this; while (ParenExpr* P = dyn_cast(E)) E = P->getSubExpr(); return E; } /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr /// or CastExprs or ImplicitCastExprs, returning their operand. Expr *Expr::IgnoreParenCasts() { Expr *E = this; while (true) { if (ParenExpr *P = dyn_cast(E)) E = P->getSubExpr(); else if (CastExpr *P = dyn_cast(E)) E = P->getSubExpr(); else return E; } } /// hasAnyTypeDependentArguments - Determines if any of the expressions /// in Exprs is type-dependent. bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) { for (unsigned I = 0; I < NumExprs; ++I) if (Exprs[I]->isTypeDependent()) return true; return false; } /// hasAnyValueDependentArguments - Determines if any of the expressions /// in Exprs is value-dependent. bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) { for (unsigned I = 0; I < NumExprs; ++I) if (Exprs[I]->isValueDependent()) return true; return false; } bool Expr::isConstantInitializer(ASTContext &Ctx) const { // This function is attempting whether an expression is an initializer // which can be evaluated at compile-time. isEvaluatable handles most // of the cases, but it can't deal with some initializer-specific // expressions, and it can't deal with aggregates; we deal with those here, // and fall back to isEvaluatable for the other cases. switch (getStmtClass()) { default: break; case StringLiteralClass: return true; case CompoundLiteralExprClass: { const Expr *Exp = cast(this)->getInitializer(); return Exp->isConstantInitializer(Ctx); } case InitListExprClass: { const InitListExpr *Exp = cast(this); unsigned numInits = Exp->getNumInits(); for (unsigned i = 0; i < numInits; i++) { if (!Exp->getInit(i)->isConstantInitializer(Ctx)) return false; } return true; } case ImplicitValueInitExprClass: return true; case ParenExprClass: { return cast(this)->getSubExpr()->isConstantInitializer(Ctx); } case UnaryOperatorClass: { const UnaryOperator* Exp = cast(this); if (Exp->getOpcode() == UnaryOperator::Extension) return Exp->getSubExpr()->isConstantInitializer(Ctx); break; } case CStyleCastExprClass: // Handle casts with a destination that's a struct or union; this // deals with both the gcc no-op struct cast extension and the // cast-to-union extension. if (getType()->isRecordType()) return cast(this)->getSubExpr()->isConstantInitializer(Ctx); break; case DesignatedInitExprClass: return cast(this)-> getInit()->isConstantInitializer(Ctx); } return isEvaluatable(Ctx); } /// isIntegerConstantExpr - this recursive routine will test if an expression is /// an integer constant expression. Note: With the introduction of VLA's in /// C99 the result of the sizeof operator is no longer always a constant /// expression. The generalization of the wording to include any subexpression /// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions /// can appear as operands to other operators (e.g. &&, ||, ?:). For instance, /// "0 || f()" can be treated as a constant expression. In C90 this expression, /// occurring in a context requiring a constant, would have been a constraint /// violation. FIXME: This routine currently implements C90 semantics. /// To properly implement C99 semantics this routine will need to evaluate /// expressions involving operators previously mentioned. /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, /// comma, etc /// /// FIXME: This should ext-warn on overflow during evaluation! ISO C does not /// permit this. This includes things like (int)1e1000 /// /// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof /// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer /// cast+dereference. bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, SourceLocation *Loc, bool isEvaluated) const { // Pretest for integral type; some parts of the code crash for types that // can't be sized. if (!getType()->isIntegralType()) { if (Loc) *Loc = getLocStart(); return false; } switch (getStmtClass()) { default: if (Loc) *Loc = getLocStart(); return false; case ParenExprClass: return cast(this)->getSubExpr()-> isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated); case IntegerLiteralClass: Result = cast(this)->getValue(); break; case CharacterLiteralClass: { const CharacterLiteral *CL = cast(this); Result.zextOrTrunc(static_cast(Ctx.getTypeSize(getType()))); Result = CL->getValue(); Result.setIsUnsigned(!getType()->isSignedIntegerType()); break; } case CXXBoolLiteralExprClass: { const CXXBoolLiteralExpr *BL = cast(this); Result.zextOrTrunc(static_cast(Ctx.getTypeSize(getType()))); Result = BL->getValue(); Result.setIsUnsigned(!getType()->isSignedIntegerType()); break; } case CXXZeroInitValueExprClass: Result.clear(); break; case TypesCompatibleExprClass: { const TypesCompatibleExpr *TCE = cast(this); Result.zextOrTrunc(static_cast(Ctx.getTypeSize(getType()))); // Per gcc docs "this built-in function ignores top level // qualifiers". We need to use the canonical version to properly // be able to strip CRV qualifiers from the type. QualType T0 = Ctx.getCanonicalType(TCE->getArgType1()); QualType T1 = Ctx.getCanonicalType(TCE->getArgType2()); Result = Ctx.typesAreCompatible(T0.getUnqualifiedType(), T1.getUnqualifiedType()); break; } case CallExprClass: case CXXOperatorCallExprClass: { const CallExpr *CE = cast(this); Result.zextOrTrunc(static_cast(Ctx.getTypeSize(getType()))); // If this is a call to a builtin function, constant fold it otherwise // reject it. if (CE->isBuiltinCall()) { EvalResult EvalResult; if (CE->Evaluate(EvalResult, Ctx)) { assert(!EvalResult.HasSideEffects && "Foldable builtin call should not have side effects!"); Result = EvalResult.Val.getInt(); break; // It is a constant, expand it. } } if (Loc) *Loc = getLocStart(); return false; } case DeclRefExprClass: case QualifiedDeclRefExprClass: if (const EnumConstantDecl *D = dyn_cast(cast(this)->getDecl())) { Result = D->getInitVal(); break; } if (Loc) *Loc = getLocStart(); return false; case UnaryOperatorClass: { const UnaryOperator *Exp = cast(this); // Get the operand value. If this is offsetof, do not evalute the // operand. This affects C99 6.6p3. if (!Exp->isOffsetOfOp() && !Exp->getSubExpr()-> isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) return false; switch (Exp->getOpcode()) { // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. // See C99 6.6p3. default: if (Loc) *Loc = Exp->getOperatorLoc(); return false; case UnaryOperator::Extension: return true; // FIXME: this is wrong. case UnaryOperator::LNot: { bool Val = Result == 0; Result.zextOrTrunc(static_cast(Ctx.getTypeSize(getType()))); Result = Val; break; } case UnaryOperator::Plus: break; case UnaryOperator::Minus: Result = -Result; break; case UnaryOperator::Not: Result = ~Result; break; case UnaryOperator::OffsetOf: Result.zextOrTrunc(static_cast(Ctx.getTypeSize(getType()))); Result = Exp->evaluateOffsetOf(Ctx); } break; } case SizeOfAlignOfExprClass: { const SizeOfAlignOfExpr *Exp = cast(this); // Return the result in the right width. Result.zextOrTrunc(static_cast(Ctx.getTypeSize(getType()))); QualType ArgTy = Exp->getTypeOfArgument(); // sizeof(void) and __alignof__(void) = 1 as a gcc extension. if (ArgTy->isVoidType()) { Result = 1; break; } // alignof always evaluates to a constant, sizeof does if arg is not VLA. if (Exp->isSizeOf() && !ArgTy->isConstantSizeType()) { if (Loc) *Loc = Exp->getOperatorLoc(); return false; } // Get information about the size or align. if (ArgTy->isFunctionType()) { // GCC extension: sizeof(function) = 1. Result = Exp->isSizeOf() ? 1 : 4; } else { unsigned CharSize = Ctx.Target.getCharWidth(); if (Exp->isSizeOf()) Result = Ctx.getTypeSize(ArgTy) / CharSize; else Result = Ctx.getTypeAlign(ArgTy) / CharSize; } break; } case BinaryOperatorClass: { const BinaryOperator *Exp = cast(this); llvm::APSInt LHS, RHS; // Initialize result to have correct signedness and width. Result = llvm::APSInt(static_cast(Ctx.getTypeSize(getType())), !getType()->isSignedIntegerType()); // The LHS of a constant expr is always evaluated and needed. if (!Exp->getLHS()->isIntegerConstantExpr(LHS, Ctx, Loc, isEvaluated)) return false; // The short-circuiting &&/|| operators don't necessarily evaluate their // RHS. Make sure to pass isEvaluated down correctly. if (Exp->isLogicalOp()) { bool RHSEval; if (Exp->getOpcode() == BinaryOperator::LAnd) RHSEval = LHS != 0; else { assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical"); RHSEval = LHS == 0; } if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated & RHSEval)) return false; } else { if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated)) return false; } switch (Exp->getOpcode()) { default: if (Loc) *Loc = getLocStart(); return false; case BinaryOperator::Mul: Result = LHS * RHS; break; case BinaryOperator::Div: if (RHS == 0) { if (!isEvaluated) break; if (Loc) *Loc = getLocStart(); return false; } Result = LHS / RHS; break; case BinaryOperator::Rem: if (RHS == 0) { if (!isEvaluated) break; if (Loc) *Loc = getLocStart(); return false; } Result = LHS % RHS; break; case BinaryOperator::Add: Result = LHS + RHS; break; case BinaryOperator::Sub: Result = LHS - RHS; break; case BinaryOperator::Shl: Result = LHS << static_cast(RHS.getLimitedValue(LHS.getBitWidth()-1)); break; case BinaryOperator::Shr: Result = LHS >> static_cast(RHS.getLimitedValue(LHS.getBitWidth()-1)); break; case BinaryOperator::LT: Result = LHS < RHS; break; case BinaryOperator::GT: Result = LHS > RHS; break; case BinaryOperator::LE: Result = LHS <= RHS; break; case BinaryOperator::GE: Result = LHS >= RHS; break; case BinaryOperator::EQ: Result = LHS == RHS; break; case BinaryOperator::NE: Result = LHS != RHS; break; case BinaryOperator::And: Result = LHS & RHS; break; case BinaryOperator::Xor: Result = LHS ^ RHS; break; case BinaryOperator::Or: Result = LHS | RHS; break; case BinaryOperator::LAnd: Result = LHS != 0 && RHS != 0; break; case BinaryOperator::LOr: Result = LHS != 0 || RHS != 0; break; case BinaryOperator::Comma: // C99 6.6p3: "shall not contain assignment, ..., or comma operators, // *except* when they are contained within a subexpression that is not // evaluated". Note that Assignment can never happen due to constraints // on the LHS subexpr, so we don't need to check it here. if (isEvaluated) { if (Loc) *Loc = getLocStart(); return false; } // The result of the constant expr is the RHS. Result = RHS; return true; } assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!"); break; } case ImplicitCastExprClass: case CStyleCastExprClass: case CXXFunctionalCastExprClass: { const Expr *SubExpr = cast(this)->getSubExpr(); SourceLocation CastLoc = getLocStart(); // C99 6.6p6: shall only convert arithmetic types to integer types. if (!SubExpr->getType()->isArithmeticType() || !getType()->isIntegerType()) { if (Loc) *Loc = SubExpr->getLocStart(); return false; } uint32_t DestWidth = static_cast(Ctx.getTypeSize(getType())); // Handle simple integer->integer casts. if (SubExpr->getType()->isIntegerType()) { if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) return false; // Figure out if this is a truncate, extend or noop cast. // If the input is signed, do a sign extend, noop, or truncate. if (getType()->isBooleanType()) { // Conversion to bool compares against zero. Result = Result != 0; Result.zextOrTrunc(DestWidth); } else if (SubExpr->getType()->isSignedIntegerType()) Result.sextOrTrunc(DestWidth); else // If the input is unsigned, do a zero extend, noop, or truncate. Result.zextOrTrunc(DestWidth); break; } // Allow floating constants that are the immediate operands of casts or that // are parenthesized. const Expr *Operand = SubExpr; while (const ParenExpr *PE = dyn_cast(Operand)) Operand = PE->getSubExpr(); // If this isn't a floating literal, we can't handle it. const FloatingLiteral *FL = dyn_cast(Operand); if (!FL) { if (Loc) *Loc = Operand->getLocStart(); return false; } // If the destination is boolean, compare against zero. if (getType()->isBooleanType()) { Result = !FL->getValue().isZero(); Result.zextOrTrunc(DestWidth); break; } // Determine whether we are converting to unsigned or signed. bool DestSigned = getType()->isSignedIntegerType(); // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can // be called multiple times per AST. uint64_t Space[4]; bool ignored; (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned, llvm::APFloat::rmTowardZero, &ignored); Result = llvm::APInt(DestWidth, 4, Space); break; } case ConditionalOperatorClass: { const ConditionalOperator *Exp = cast(this); const Expr *Cond = Exp->getCond(); if (!Cond->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) return false; const Expr *TrueExp = Exp->getLHS(); const Expr *FalseExp = Exp->getRHS(); if (Result == 0) std::swap(TrueExp, FalseExp); // If the condition (ignoring parens) is a __builtin_constant_p call, // then only the true side is actually considered in an integer constant // expression, and it is fully evaluated. This is an important GNU // extension. See GCC PR38377 for discussion. if (const CallExpr *CallCE = dyn_cast(Cond->IgnoreParenCasts())) if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p) { EvalResult EVResult; if (!Evaluate(EVResult, Ctx) || EVResult.HasSideEffects) return false; assert(EVResult.Val.isInt() && "FP conditional expr not expected"); Result = EVResult.Val.getInt(); if (Loc) *Loc = EVResult.DiagLoc; return true; } // Evaluate the false one first, discard the result. if (FalseExp && !FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false)) return false; // Evalute the true one, capture the result. if (TrueExp && !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) return false; break; } case CXXDefaultArgExprClass: return cast(this) ->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated); case UnaryTypeTraitExprClass: Result = cast(this)->Evaluate(); return true; } // Cases that are valid constant exprs fall through to here. Result.setIsUnsigned(getType()->isUnsignedIntegerType()); return true; } /// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an /// integer constant expression with the value zero, or if this is one that is /// cast to void*. bool Expr::isNullPointerConstant(ASTContext &Ctx) const { // Strip off a cast to void*, if it exists. Except in C++. if (const ExplicitCastExpr *CE = dyn_cast(this)) { if (!Ctx.getLangOptions().CPlusPlus) { // Check that it is a cast to void*. if (const PointerType *PT = CE->getType()->getAsPointerType()) { QualType Pointee = PT->getPointeeType(); if (Pointee.getCVRQualifiers() == 0 && Pointee->isVoidType() && // to void* CE->getSubExpr()->getType()->isIntegerType()) // from int. return CE->getSubExpr()->isNullPointerConstant(Ctx); } } } else if (const ImplicitCastExpr *ICE = dyn_cast(this)) { // Ignore the ImplicitCastExpr type entirely. return ICE->getSubExpr()->isNullPointerConstant(Ctx); } else if (const ParenExpr *PE = dyn_cast(this)) { // Accept ((void*)0) as a null pointer constant, as many other // implementations do. return PE->getSubExpr()->isNullPointerConstant(Ctx); } else if (const CXXDefaultArgExpr *DefaultArg = dyn_cast(this)) { // See through default argument expressions return DefaultArg->getExpr()->isNullPointerConstant(Ctx); } else if (isa(this)) { // The GNU __null extension is always a null pointer constant. return true; } // This expression must be an integer type. if (!getType()->isIntegerType()) return false; // If we have an integer constant expression, we need to *evaluate* it and // test for the value 0. // FIXME: We should probably return false if we're compiling in strict mode // and Diag is not null (this indicates that the value was foldable but not // an ICE. EvalResult Result; return Evaluate(Result, Ctx) && !Result.HasSideEffects && Result.Val.isInt() && Result.Val.getInt() == 0; } /// isBitField - Return true if this expression is a bit-field. bool Expr::isBitField() { Expr *E = this->IgnoreParenCasts(); if (MemberExpr *MemRef = dyn_cast(E)) if (FieldDecl *Field = dyn_cast(MemRef->getMemberDecl())) return Field->isBitField(); return false; } unsigned ExtVectorElementExpr::getNumElements() const { if (const VectorType *VT = getType()->getAsVectorType()) return VT->getNumElements(); return 1; } /// containsDuplicateElements - Return true if any element access is repeated. bool ExtVectorElementExpr::containsDuplicateElements() const { const char *compStr = Accessor.getName(); unsigned length = Accessor.getLength(); // Halving swizzles do not contain duplicate elements. if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || !strcmp(compStr, "even") || !strcmp(compStr, "odd")) return false; // Advance past s-char prefix on hex swizzles. if (*compStr == 's') { compStr++; length--; } for (unsigned i = 0; i != length-1; i++) { const char *s = compStr+i; for (const char c = *s++; *s; s++) if (c == *s) return true; } return false; } /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. void ExtVectorElementExpr::getEncodedElementAccess( llvm::SmallVectorImpl &Elts) const { const char *compStr = Accessor.getName(); if (*compStr == 's') compStr++; bool isHi = !strcmp(compStr, "hi"); bool isLo = !strcmp(compStr, "lo"); bool isEven = !strcmp(compStr, "even"); bool isOdd = !strcmp(compStr, "odd"); for (unsigned i = 0, e = getNumElements(); i != e; ++i) { uint64_t Index; if (isHi) Index = e + i; else if (isLo) Index = i; else if (isEven) Index = 2 * i; else if (isOdd) Index = 2 * i + 1; else Index = ExtVectorType::getAccessorIdx(compStr[i]); Elts.push_back(Index); } } // constructor for instance messages. ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo, QualType retType, ObjCMethodDecl *mproto, SourceLocation LBrac, SourceLocation RBrac, Expr **ArgExprs, unsigned nargs) : Expr(ObjCMessageExprClass, retType), SelName(selInfo), MethodProto(mproto) { NumArgs = nargs; SubExprs = new Stmt*[NumArgs+1]; SubExprs[RECEIVER] = receiver; if (NumArgs) { for (unsigned i = 0; i != NumArgs; ++i) SubExprs[i+ARGS_START] = static_cast(ArgExprs[i]); } LBracloc = LBrac; RBracloc = RBrac; } // constructor for class messages. // FIXME: clsName should be typed to ObjCInterfaceType ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo, QualType retType, ObjCMethodDecl *mproto, SourceLocation LBrac, SourceLocation RBrac, Expr **ArgExprs, unsigned nargs) : Expr(ObjCMessageExprClass, retType), SelName(selInfo), MethodProto(mproto) { NumArgs = nargs; SubExprs = new Stmt*[NumArgs+1]; SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown); if (NumArgs) { for (unsigned i = 0; i != NumArgs; ++i) SubExprs[i+ARGS_START] = static_cast(ArgExprs[i]); } LBracloc = LBrac; RBracloc = RBrac; } // constructor for class messages. ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo, QualType retType, ObjCMethodDecl *mproto, SourceLocation LBrac, SourceLocation RBrac, Expr **ArgExprs, unsigned nargs) : Expr(ObjCMessageExprClass, retType), SelName(selInfo), MethodProto(mproto) { NumArgs = nargs; SubExprs = new Stmt*[NumArgs+1]; SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown); if (NumArgs) { for (unsigned i = 0; i != NumArgs; ++i) SubExprs[i+ARGS_START] = static_cast(ArgExprs[i]); } LBracloc = LBrac; RBracloc = RBrac; } ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const { uintptr_t x = (uintptr_t) SubExprs[RECEIVER]; switch (x & Flags) { default: assert(false && "Invalid ObjCMessageExpr."); case IsInstMeth: return ClassInfo(0, 0); case IsClsMethDeclUnknown: return ClassInfo(0, (IdentifierInfo*) (x & ~Flags)); case IsClsMethDeclKnown: { ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags); return ClassInfo(D, D->getIdentifier()); } } } bool ChooseExpr::isConditionTrue(ASTContext &C) const { return getCond()->getIntegerConstantExprValue(C) != 0; } static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E) { if (const MemberExpr *ME = dyn_cast(E)) { QualType Ty = ME->getBase()->getType(); RecordDecl *RD = Ty->getAsRecordType()->getDecl(); const ASTRecordLayout &RL = C.getASTRecordLayout(RD); if (FieldDecl *FD = dyn_cast(ME->getMemberDecl())) { // FIXME: This is linear time. And the fact that we're indexing // into the layout by position in the record means that we're // either stuck numbering the fields in the AST or we have to keep // the linear search (yuck and yuck). unsigned i = 0; for (RecordDecl::field_iterator Field = RD->field_begin(), FieldEnd = RD->field_end(); Field != FieldEnd; (void)++Field, ++i) { if (*Field == FD) break; } return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase()); } } else if (const ArraySubscriptExpr *ASE = dyn_cast(E)) { const Expr *Base = ASE->getBase(); int64_t size = C.getTypeSize(ASE->getType()); size *= ASE->getIdx()->getIntegerConstantExprValue(C).getSExtValue(); return size + evaluateOffsetOf(C, Base); } else if (isa(E)) return 0; assert(0 && "Unknown offsetof subexpression!"); return 0; } int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const { assert(Opc == OffsetOf && "Unary operator not offsetof!"); unsigned CharSize = C.Target.getCharWidth(); return ::evaluateOffsetOf(C, cast(Val)) / CharSize; } void SizeOfAlignOfExpr::Destroy(ASTContext& C) { // Override default behavior of traversing children. If this has a type // operand and the type is a variable-length array, the child iteration // will iterate over the size expression. However, this expression belongs // to the type, not to this, so we don't want to delete it. // We still want to delete this expression. // FIXME: Same as in Stmt::Destroy - will be eventually in ASTContext's // pool allocator. if (isArgumentType()) delete this; else Expr::Destroy(C); } //===----------------------------------------------------------------------===// // DesignatedInitExpr //===----------------------------------------------------------------------===// IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() { assert(Kind == FieldDesignator && "Only valid on a field designator"); if (Field.NameOrField & 0x01) return reinterpret_cast(Field.NameOrField&~0x01); else return getField()->getIdentifier(); } DesignatedInitExpr * DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, unsigned NumDesignators, Expr **IndexExprs, unsigned NumIndexExprs, SourceLocation ColonOrEqualLoc, bool UsesColonSyntax, Expr *Init) { void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + sizeof(Designator) * NumDesignators + sizeof(Stmt *) * (NumIndexExprs + 1), 8); DesignatedInitExpr *DIE = new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, ColonOrEqualLoc, UsesColonSyntax, NumIndexExprs + 1); // Fill in the designators unsigned ExpectedNumSubExprs = 0; designators_iterator Desig = DIE->designators_begin(); for (unsigned Idx = 0; Idx < NumDesignators; ++Idx, ++Desig) { new (static_cast(Desig)) Designator(Designators[Idx]); if (Designators[Idx].isArrayDesignator()) ++ExpectedNumSubExprs; else if (Designators[Idx].isArrayRangeDesignator()) ExpectedNumSubExprs += 2; } assert(ExpectedNumSubExprs == NumIndexExprs && "Wrong number of indices!"); // Fill in the subexpressions, including the initializer expression. child_iterator Child = DIE->child_begin(); *Child++ = Init; for (unsigned Idx = 0; Idx < NumIndexExprs; ++Idx, ++Child) *Child = IndexExprs[Idx]; return DIE; } SourceRange DesignatedInitExpr::getSourceRange() const { SourceLocation StartLoc; Designator &First = *const_cast(this)->designators_begin(); if (First.isFieldDesignator()) { if (UsesColonSyntax) StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); else StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); } else StartLoc = SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); } DesignatedInitExpr::designators_iterator DesignatedInitExpr::designators_begin() { char* Ptr = static_cast(static_cast(this)); Ptr += sizeof(DesignatedInitExpr); return static_cast(static_cast(Ptr)); } DesignatedInitExpr::designators_iterator DesignatedInitExpr::designators_end() { return designators_begin() + NumDesignators; } Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); char* Ptr = static_cast(static_cast(this)); Ptr += sizeof(DesignatedInitExpr); Ptr += sizeof(Designator) * NumDesignators; Stmt **SubExprs = reinterpret_cast(reinterpret_cast(Ptr)); return cast(*(SubExprs + D.ArrayOrRange.Index + 1)); } Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { assert(D.Kind == Designator::ArrayRangeDesignator && "Requires array range designator"); char* Ptr = static_cast(static_cast(this)); Ptr += sizeof(DesignatedInitExpr); Ptr += sizeof(Designator) * NumDesignators; Stmt **SubExprs = reinterpret_cast(reinterpret_cast(Ptr)); return cast(*(SubExprs + D.ArrayOrRange.Index + 1)); } Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { assert(D.Kind == Designator::ArrayRangeDesignator && "Requires array range designator"); char* Ptr = static_cast(static_cast(this)); Ptr += sizeof(DesignatedInitExpr); Ptr += sizeof(Designator) * NumDesignators; Stmt **SubExprs = reinterpret_cast(reinterpret_cast(Ptr)); return cast(*(SubExprs + D.ArrayOrRange.Index + 2)); } //===----------------------------------------------------------------------===// // ExprIterator. //===----------------------------------------------------------------------===// Expr* ExprIterator::operator[](size_t idx) { return cast(I[idx]); } Expr* ExprIterator::operator*() const { return cast(*I); } Expr* ExprIterator::operator->() const { return cast(*I); } const Expr* ConstExprIterator::operator[](size_t idx) const { return cast(I[idx]); } const Expr* ConstExprIterator::operator*() const { return cast(*I); } const Expr* ConstExprIterator::operator->() const { return cast(*I); } //===----------------------------------------------------------------------===// // Child Iterators for iterating over subexpressions/substatements //===----------------------------------------------------------------------===// // DeclRefExpr Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); } Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); } // ObjCIvarRefExpr Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; } Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; } // ObjCPropertyRefExpr Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; } Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; } // ObjCKVCRefExpr Stmt::child_iterator ObjCKVCRefExpr::child_begin() { return &Base; } Stmt::child_iterator ObjCKVCRefExpr::child_end() { return &Base+1; } // ObjCSuperExpr Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); } Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); } // PredefinedExpr Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); } Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); } // IntegerLiteral Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); } Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); } // CharacterLiteral Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator(); } Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); } // FloatingLiteral Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); } Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); } // ImaginaryLiteral Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; } Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; } // StringLiteral Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); } Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); } // ParenExpr Stmt::child_iterator ParenExpr::child_begin() { return &Val; } Stmt::child_iterator ParenExpr::child_end() { return &Val+1; } // UnaryOperator Stmt::child_iterator UnaryOperator::child_begin() { return &Val; } Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; } // SizeOfAlignOfExpr Stmt::child_iterator SizeOfAlignOfExpr::child_begin() { // If this is of a type and the type is a VLA type (and not a typedef), the // size expression of the VLA needs to be treated as an executable expression. // Why isn't this weirdness documented better in StmtIterator? if (isArgumentType()) { if (VariableArrayType* T = dyn_cast( getArgumentType().getTypePtr())) return child_iterator(T); return child_iterator(); } return child_iterator(&Argument.Ex); } Stmt::child_iterator SizeOfAlignOfExpr::child_end() { if (isArgumentType()) return child_iterator(); return child_iterator(&Argument.Ex + 1); } // ArraySubscriptExpr Stmt::child_iterator ArraySubscriptExpr::child_begin() { return &SubExprs[0]; } Stmt::child_iterator ArraySubscriptExpr::child_end() { return &SubExprs[0]+END_EXPR; } // CallExpr Stmt::child_iterator CallExpr::child_begin() { return &SubExprs[0]; } Stmt::child_iterator CallExpr::child_end() { return &SubExprs[0]+NumArgs+ARGS_START; } // MemberExpr Stmt::child_iterator MemberExpr::child_begin() { return &Base; } Stmt::child_iterator MemberExpr::child_end() { return &Base+1; } // ExtVectorElementExpr Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; } Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; } // CompoundLiteralExpr Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; } Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; } // CastExpr Stmt::child_iterator CastExpr::child_begin() { return &Op; } Stmt::child_iterator CastExpr::child_end() { return &Op+1; } // BinaryOperator Stmt::child_iterator BinaryOperator::child_begin() { return &SubExprs[0]; } Stmt::child_iterator BinaryOperator::child_end() { return &SubExprs[0]+END_EXPR; } // ConditionalOperator Stmt::child_iterator ConditionalOperator::child_begin() { return &SubExprs[0]; } Stmt::child_iterator ConditionalOperator::child_end() { return &SubExprs[0]+END_EXPR; } // AddrLabelExpr Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); } Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); } // StmtExpr Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; } Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; } // TypesCompatibleExpr Stmt::child_iterator TypesCompatibleExpr::child_begin() { return child_iterator(); } Stmt::child_iterator TypesCompatibleExpr::child_end() { return child_iterator(); } // ChooseExpr Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; } Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; } // GNUNullExpr Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); } Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); } // OverloadExpr Stmt::child_iterator OverloadExpr::child_begin() { return &SubExprs[0]; } Stmt::child_iterator OverloadExpr::child_end() { return &SubExprs[0]+NumExprs; } // ShuffleVectorExpr Stmt::child_iterator ShuffleVectorExpr::child_begin() { return &SubExprs[0]; } Stmt::child_iterator ShuffleVectorExpr::child_end() { return &SubExprs[0]+NumExprs; } // VAArgExpr Stmt::child_iterator VAArgExpr::child_begin() { return &Val; } Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; } // InitListExpr Stmt::child_iterator InitListExpr::child_begin() { return InitExprs.size() ? &InitExprs[0] : 0; } Stmt::child_iterator InitListExpr::child_end() { return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0; } // DesignatedInitExpr Stmt::child_iterator DesignatedInitExpr::child_begin() { char* Ptr = static_cast(static_cast(this)); Ptr += sizeof(DesignatedInitExpr); Ptr += sizeof(Designator) * NumDesignators; return reinterpret_cast(reinterpret_cast(Ptr)); } Stmt::child_iterator DesignatedInitExpr::child_end() { return child_iterator(&*child_begin() + NumSubExprs); } // ImplicitValueInitExpr Stmt::child_iterator ImplicitValueInitExpr::child_begin() { return child_iterator(); } Stmt::child_iterator ImplicitValueInitExpr::child_end() { return child_iterator(); } // ObjCStringLiteral Stmt::child_iterator ObjCStringLiteral::child_begin() { return child_iterator(); } Stmt::child_iterator ObjCStringLiteral::child_end() { return child_iterator(); } // ObjCEncodeExpr Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); } Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); } // ObjCSelectorExpr Stmt::child_iterator ObjCSelectorExpr::child_begin() { return child_iterator(); } Stmt::child_iterator ObjCSelectorExpr::child_end() { return child_iterator(); } // ObjCProtocolExpr Stmt::child_iterator ObjCProtocolExpr::child_begin() { return child_iterator(); } Stmt::child_iterator ObjCProtocolExpr::child_end() { return child_iterator(); } // ObjCMessageExpr Stmt::child_iterator ObjCMessageExpr::child_begin() { return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START; } Stmt::child_iterator ObjCMessageExpr::child_end() { return &SubExprs[0]+ARGS_START+getNumArgs(); } // Blocks Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); } Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); } Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();} Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }