//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ expressions. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "SemaInherit.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ASTContext.h" #include "clang/Parse/DeclSpec.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/Diagnostic.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Debug.h" using namespace clang; /// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's. Action::ExprResult Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, SourceLocation LAngleBracketLoc, TypeTy *Ty, SourceLocation RAngleBracketLoc, SourceLocation LParenLoc, ExprTy *E, SourceLocation RParenLoc) { Expr *Ex = (Expr*)E; QualType DestType = QualType::getFromOpaquePtr(Ty); SourceRange OpRange(OpLoc, RParenLoc); SourceRange DestRange(LAngleBracketLoc, RAngleBracketLoc); switch (Kind) { default: assert(0 && "Unknown C++ cast!"); case tok::kw_const_cast: CheckConstCast(Ex, DestType, OpRange, DestRange); return new CXXConstCastExpr(DestType.getNonReferenceType(), Ex, DestType, OpLoc); case tok::kw_dynamic_cast: CheckDynamicCast(Ex, DestType, OpRange, DestRange); return new CXXDynamicCastExpr(DestType.getNonReferenceType(), Ex, DestType, OpLoc); case tok::kw_reinterpret_cast: CheckReinterpretCast(Ex, DestType, OpRange, DestRange); return new CXXReinterpretCastExpr(DestType.getNonReferenceType(), Ex, DestType, OpLoc); case tok::kw_static_cast: CheckStaticCast(Ex, DestType, OpRange); return new CXXStaticCastExpr(DestType.getNonReferenceType(), Ex, DestType, OpLoc); } return true; } /// CheckConstCast - Check that a const_cast\(SrcExpr) is valid. /// Refer to C++ 5.2.11 for details. const_cast is typically used in code /// like this: /// const char *str = "literal"; /// legacy_function(const_cast\(str)); void Sema::CheckConstCast(Expr *&SrcExpr, QualType DestType, const SourceRange &OpRange, const SourceRange &DestRange) { QualType OrigDestType = DestType, OrigSrcType = SrcExpr->getType(); DestType = Context.getCanonicalType(DestType); QualType SrcType = SrcExpr->getType(); if (const ReferenceType *DestTypeTmp = DestType->getAsReferenceType()) { if (SrcExpr->isLvalue(Context) != Expr::LV_Valid) { // Cannot cast non-lvalue to reference type. Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue, "const_cast", OrigDestType.getAsString(), SrcExpr->getSourceRange()); return; } // C++ 5.2.11p4: An lvalue of type T1 can be [cast] to an lvalue of type T2 // [...] if a pointer to T1 can be [cast] to the type pointer to T2. DestType = Context.getPointerType(DestTypeTmp->getPointeeType()); SrcType = Context.getPointerType(SrcType); } else { // C++ 5.2.11p1: Otherwise, the result is an rvalue and the // lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard // conversions are performed on the expression. DefaultFunctionArrayConversion(SrcExpr); SrcType = SrcExpr->getType(); } if (!DestType->isPointerType()) { // Cannot cast to non-pointer, non-reference type. Note that, if DestType // was a reference type, we converted it to a pointer above. // C++ 5.2.11p3: For two pointer types [...] Diag(OpRange.getBegin(), diag::err_bad_const_cast_dest, OrigDestType.getAsString(), DestRange); return; } if (DestType->isFunctionPointerType()) { // Cannot cast direct function pointers. // C++ 5.2.11p2: [...] where T is any object type or the void type [...] // T is the ultimate pointee of source and target type. Diag(OpRange.getBegin(), diag::err_bad_const_cast_dest, OrigDestType.getAsString(), DestRange); return; } SrcType = Context.getCanonicalType(SrcType); // Unwrap the pointers. Ignore qualifiers. Terminate early if the types are // completely equal. // FIXME: const_cast should probably not be able to convert between pointers // to different address spaces. // C++ 5.2.11p3 describes the core semantics of const_cast. All cv specifiers // in multi-level pointers may change, but the level count must be the same, // as must be the final pointee type. while (SrcType != DestType && UnwrapSimilarPointerTypes(SrcType, DestType)) { SrcType = SrcType.getUnqualifiedType(); DestType = DestType.getUnqualifiedType(); } // Doug Gregor said to disallow this until users complain. #if 0 // If we end up with constant arrays of equal size, unwrap those too. A cast // from const int [N] to int (&)[N] is invalid by my reading of the // standard, but g++ accepts it even with -ansi -pedantic. // No more than one level, though, so don't embed this in the unwrap loop // above. const ConstantArrayType *SrcTypeArr, *DestTypeArr; if ((SrcTypeArr = Context.getAsConstantArrayType(SrcType)) && (DestTypeArr = Context.getAsConstantArrayType(DestType))) { if (SrcTypeArr->getSize() != DestTypeArr->getSize()) { // Different array sizes. Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic, "const_cast", OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange); return; } SrcType = SrcTypeArr->getElementType().getUnqualifiedType(); DestType = DestTypeArr->getElementType().getUnqualifiedType(); } #endif // Since we're dealing in canonical types, the remainder must be the same. if (SrcType != DestType) { // Cast between unrelated types. Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic, "const_cast", OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange); return; } } /// CheckReinterpretCast - Check that a reinterpret_cast\(SrcExpr) is /// valid. /// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code /// like this: /// char *bytes = reinterpret_cast\(int_ptr); void Sema::CheckReinterpretCast(Expr *&SrcExpr, QualType DestType, const SourceRange &OpRange, const SourceRange &DestRange) { QualType OrigDestType = DestType, OrigSrcType = SrcExpr->getType(); DestType = Context.getCanonicalType(DestType); QualType SrcType = SrcExpr->getType(); if (const ReferenceType *DestTypeTmp = DestType->getAsReferenceType()) { if (SrcExpr->isLvalue(Context) != Expr::LV_Valid) { // Cannot cast non-lvalue to reference type. Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue, "reinterpret_cast", OrigDestType.getAsString(), SrcExpr->getSourceRange()); return; } // C++ 5.2.10p10: [...] a reference cast reinterpret_cast(x) has the // same effect as the conversion *reinterpret_cast(&x) with the // built-in & and * operators. // This code does this transformation for the checked types. DestType = Context.getPointerType(DestTypeTmp->getPointeeType()); SrcType = Context.getPointerType(SrcType); } else { // C++ 5.2.10p1: [...] the lvalue-to-rvalue, array-to-pointer, and // function-to-pointer standard conversions are performed on the // expression v. DefaultFunctionArrayConversion(SrcExpr); SrcType = SrcExpr->getType(); } // Canonicalize source for comparison. SrcType = Context.getCanonicalType(SrcType); bool destIsPtr = DestType->isPointerType(); bool srcIsPtr = SrcType->isPointerType(); if (!destIsPtr && !srcIsPtr) { // Except for std::nullptr_t->integer, which is not supported yet, and // lvalue->reference, which is handled above, at least one of the two // arguments must be a pointer. Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic, "reinterpret_cast", OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange); return; } if (SrcType == DestType) { // C++ 5.2.10p2 has a note that mentions that, subject to all other // restrictions, a cast to the same type is allowed. The intent is not // entirely clear here, since all other paragraphs explicitly forbid casts // to the same type. However, the behavior of compilers is pretty consistent // on this point: allow same-type conversion if the involved are pointers, // disallow otherwise. return; } // Note: Clang treats enumeration types as integral types. If this is ever // changed for C++, the additional check here will be redundant. if (DestType->isIntegralType() && !DestType->isEnumeralType()) { assert(srcIsPtr); // C++ 5.2.10p4: A pointer can be explicitly converted to any integral // type large enough to hold it. if (Context.getTypeSize(SrcType) > Context.getTypeSize(DestType)) { Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_small_int, OrigDestType.getAsString(), DestRange); } return; } if (SrcType->isIntegralType() || SrcType->isEnumeralType()) { assert(destIsPtr); // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly // converted to a pointer. return; } if (!destIsPtr || !srcIsPtr) { // With the valid non-pointer conversions out of the way, we can be even // more stringent. Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic, "reinterpret_cast", OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange); return; } // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness. if (CastsAwayConstness(SrcType, DestType)) { Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_const_away, "reinterpret_cast", OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange); return; } // Not casting away constness, so the only remaining check is for compatible // pointer categories. if (SrcType->isFunctionPointerType()) { if (DestType->isFunctionPointerType()) { // C++ 5.2.10p6: A pointer to a function can be explicitly converted to // a pointer to a function of a different type. return; } // FIXME: Handle member pointers. // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to // an object type or vice versa is conditionally-supported. // Compilers support it in C++03 too, though, because it's necessary for // casting the return value of dlsym() and GetProcAddress(). // FIXME: Conditionally-supported behavior should be configurable in the // TargetInfo or similar. if (!getLangOptions().CPlusPlus0x) { Diag(OpRange.getBegin(), diag::ext_reinterpret_cast_fn_obj, OpRange); } return; } // FIXME: Handle member pointers. if (DestType->isFunctionPointerType()) { // See above. if (!getLangOptions().CPlusPlus0x) { Diag(OpRange.getBegin(), diag::ext_reinterpret_cast_fn_obj, OpRange); } return; } // C++ 5.2.10p7: A pointer to an object can be explicitly converted to // a pointer to an object of different type. // Void pointers are not specified, but supported by every compiler out there. // So we finish by allowing everything that remains - it's got to be two // object pointers. } /// CastsAwayConstness - Check if the pointer conversion from SrcType /// to DestType casts away constness as defined in C++ /// 5.2.11p8ff. This is used by the cast checkers. Both arguments /// must denote pointer types. bool Sema::CastsAwayConstness(QualType SrcType, QualType DestType) { // Casting away constness is defined in C++ 5.2.11p8 with reference to // C++ 4.4. // We piggyback on Sema::IsQualificationConversion for this, since the rules // are non-trivial. So first we construct Tcv *...cv* as described in // C++ 5.2.11p8. SrcType = Context.getCanonicalType(SrcType); DestType = Context.getCanonicalType(DestType); QualType UnwrappedSrcType = SrcType, UnwrappedDestType = DestType; llvm::SmallVector cv1, cv2; // Find the qualifications. while (UnwrapSimilarPointerTypes(UnwrappedSrcType, UnwrappedDestType)) { cv1.push_back(UnwrappedSrcType.getCVRQualifiers()); cv2.push_back(UnwrappedDestType.getCVRQualifiers()); } assert(cv1.size() > 0 && "Must have at least one pointer level."); // Construct void pointers with those qualifiers (in reverse order of // unwrapping, of course). QualType SrcConstruct = Context.VoidTy; QualType DestConstruct = Context.VoidTy; for (llvm::SmallVector::reverse_iterator i1 = cv1.rbegin(), i2 = cv2.rbegin(); i1 != cv1.rend(); ++i1, ++i2) { SrcConstruct = Context.getPointerType(SrcConstruct.getQualifiedType(*i1)); DestConstruct = Context.getPointerType(DestConstruct.getQualifiedType(*i2)); } // Test if they're compatible. return SrcConstruct != DestConstruct && !IsQualificationConversion(SrcConstruct, DestConstruct); } /// CheckStaticCast - Check that a static_cast\(SrcExpr) is valid. /// Refer to C++ 5.2.9 for details. Static casts are mostly used for making /// implicit conversions explicit and getting rid of data loss warnings. void Sema::CheckStaticCast(Expr *&SrcExpr, QualType DestType, const SourceRange &OpRange) { QualType OrigDestType = DestType, OrigSrcType = SrcExpr->getType(); // Conversions are tried roughly in the order the standard specifies them. // This is necessary because there are some conversions that can be // interpreted in more than one way, and the order disambiguates. // DR 427 specifies that paragraph 5 is to be applied before paragraph 2. // This option is unambiguous and simple, so put it here. // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". if (DestType->isVoidType()) { return; } DestType = Context.getCanonicalType(DestType); // C++ 5.2.9p5, reference downcast. // See the function for details. if (IsStaticReferenceDowncast(SrcExpr, DestType)) { return; } // C++ 5.2.9p2: An expression e can be explicitly converted to a type T // [...] if the declaration "T t(e);" is well-formed, [...]. ImplicitConversionSequence ICS = TryDirectInitialization(SrcExpr, DestType); if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion) { if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion && ICS.Standard.First != ICK_Identity) { DefaultFunctionArrayConversion(SrcExpr); } return; } // FIXME: Missing the validation of the conversion, e.g. for an accessible // base. // C++ 5.2.9p6: May apply the reverse of any standard conversion, except // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean // conversions, subject to further restrictions. // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal // of qualification conversions impossible. // The lvalue-to-rvalue, array-to-pointer and function-to-pointer conversions // are applied to the expression. DefaultFunctionArrayConversion(SrcExpr); QualType SrcType = Context.getCanonicalType(SrcExpr->getType()); // Reverse integral promotion/conversion. All such conversions are themselves // again integral promotions or conversions and are thus already handled by // p2 (TryDirectInitialization above). // (Note: any data loss warnings should be suppressed.) // The exception is the reverse of enum->integer, i.e. integer->enum (and // enum->enum). See also C++ 5.2.9p7. // The same goes for reverse floating point promotion/conversion and // floating-integral conversions. Again, only floating->enum is relevant. if (DestType->isEnumeralType()) { if (SrcType->isComplexType() || SrcType->isVectorType()) { // Fall through - these cannot be converted. } else if (SrcType->isArithmeticType() || SrcType->isEnumeralType()) { return; } } // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast. // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance. if (IsStaticPointerDowncast(SrcType, DestType)) { return; } // Reverse member pointer conversion. C++ 5.11 specifies member pointer // conversion. C++ 5.2.9p9 has additional information. // DR54's access restrictions apply here also. // FIXME: Don't have member pointers yet. // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to // void*. C++ 5.2.9p10 specifies additional restrictions, which really is // just the usual constness stuff. if (const PointerType *SrcPointer = SrcType->getAsPointerType()) { QualType SrcPointee = SrcPointer->getPointeeType(); if (SrcPointee->isVoidType()) { if (const PointerType *DestPointer = DestType->getAsPointerType()) { QualType DestPointee = DestPointer->getPointeeType(); if (DestPointee->isObjectType() && DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) { return; } } } } // We tried everything. Everything! Nothing works! :-( // FIXME: Error reporting could be a lot better. Should store the reason // why every substep failed and, at the end, select the most specific and // report that. Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic, "static_cast", OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange); } /// Tests whether a conversion according to C++ 5.2.9p5 is valid. bool Sema::IsStaticReferenceDowncast(Expr *SrcExpr, QualType DestType) { // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be // cast to type "reference to cv2 D", where D is a class derived from B, // if a valid standard conversion from "pointer to D" to "pointer to B" // exists, cv2 >= cv1, and B is not a virtual base class of D. // In addition, DR54 clarifies that the base must be accessible in the // current context. Although the wording of DR54 only applies to the pointer // variant of this rule, the intent is clearly for it to apply to the this // conversion as well. if (SrcExpr->isLvalue(Context) != Expr::LV_Valid) { return false; } DestType = Context.getCanonicalType(DestType); const ReferenceType *DestReference = DestType->getAsReferenceType(); if (!DestReference) { return false; } QualType DestPointee = DestReference->getPointeeType(); QualType SrcType = Context.getCanonicalType(SrcExpr->getType()); return IsStaticDowncast(SrcType, DestPointee); } /// Tests whether a conversion according to C++ 5.2.9p8 is valid. bool Sema::IsStaticPointerDowncast(QualType SrcType, QualType DestType) { // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class // type, can be converted to an rvalue of type "pointer to cv2 D", where D // is a class derived from B, if a valid standard conversion from "pointer // to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base // class of D. // In addition, DR54 clarifies that the base must be accessible in the // current context. SrcType = Context.getCanonicalType(SrcType); const PointerType *SrcPointer = SrcType->getAsPointerType(); if (!SrcPointer) { return false; } DestType = Context.getCanonicalType(DestType); const PointerType *DestPointer = DestType->getAsPointerType(); if (!DestPointer) { return false; } return IsStaticDowncast(SrcPointer->getPointeeType(), DestPointer->getPointeeType()); } /// IsStaticDowncast - Common functionality of IsStaticReferenceDowncast and /// IsStaticPointerDowncast. Tests whether a static downcast from SrcType to /// DestType, both of which must be canonical, is possible and allowed. bool Sema::IsStaticDowncast(QualType SrcType, QualType DestType) { assert(SrcType->isCanonical()); assert(DestType->isCanonical()); if (!DestType->isRecordType()) { return false; } if (!SrcType->isRecordType()) { return false; } // Comparing cv is cheaper, so do it first. if (!DestType.isAtLeastAsQualifiedAs(SrcType)) { return false; } BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, /*DetectVirtual=*/true); if (!IsDerivedFrom(DestType, SrcType, Paths)) { return false; } if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) { return false; } if (Paths.getDetectedVirtual() != 0) { return false; } // FIXME: Test accessibility. return true; } /// TryDirectInitialization - Attempt to direct-initialize a value of the /// given type (DestType) from the given expression (SrcExpr), as one would /// do when creating an object with new with parameters. This function returns /// an implicit conversion sequence that can be used to perform the /// initialization. /// This routine is very similar to TryCopyInitialization; the differences /// between the two (C++ 8.5p12 and C++ 8.5p14) are: /// 1) In direct-initialization, all constructors of the target type are /// considered, including those marked as explicit. /// 2) In direct-initialization, overload resolution is performed over the /// constructors of the target type. In copy-initialization, overload /// resolution is performed over all conversion functions that result in /// the target type. This can lead to different functions used. ImplicitConversionSequence Sema::TryDirectInitialization(Expr *SrcExpr, QualType DestType) { if (!DestType->isRecordType()) { // For non-class types, copy and direct initialization are identical. // C++ 8.5p11 // FIXME: Those parts should be in a common function, actually. return TryCopyInitialization(SrcExpr, DestType); } // Not enough support for the rest yet, actually. ImplicitConversionSequence ICS; ICS.ConversionKind = ImplicitConversionSequence::BadConversion; return ICS; } /// CheckDynamicCast - Check that a dynamic_cast\(SrcExpr) is valid. /// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime- /// checked downcasts in class hierarchies. void Sema::CheckDynamicCast(Expr *&SrcExpr, QualType DestType, const SourceRange &OpRange, const SourceRange &DestRange) { QualType OrigDestType = DestType, OrigSrcType = SrcExpr->getType(); DestType = Context.getCanonicalType(DestType); // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type, // or "pointer to cv void". QualType DestPointee; const PointerType *DestPointer = DestType->getAsPointerType(); const ReferenceType *DestReference = DestType->getAsReferenceType(); if (DestPointer) { DestPointee = DestPointer->getPointeeType(); } else if (DestReference) { DestPointee = DestReference->getPointeeType(); } else { Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand, OrigDestType.getAsString(), "not a reference or pointer", DestRange); return; } const RecordType *DestRecord = DestPointee->getAsRecordType(); if (DestPointee->isVoidType()) { assert(DestPointer && "Reference to void is not possible"); } else if (DestRecord) { if (!DestRecord->getDecl()->isDefinition()) { Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand, DestPointee.getUnqualifiedType().getAsString(), "incomplete", DestRange); return; } } else { Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand, DestPointee.getUnqualifiedType().getAsString(), "not a class", DestRange); return; } // C++ 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to // complete class type, [...]. If T is a reference type, v shall be an // lvalue of a complete class type, [...]. QualType SrcType = Context.getCanonicalType(OrigSrcType); QualType SrcPointee; if (DestPointer) { if (const PointerType *SrcPointer = SrcType->getAsPointerType()) { SrcPointee = SrcPointer->getPointeeType(); } else { Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand, OrigSrcType.getAsString(), "not a pointer", SrcExpr->getSourceRange()); return; } } else { if (SrcExpr->isLvalue(Context) != Expr::LV_Valid) { Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand, OrigDestType.getAsString(), "not an lvalue", SrcExpr->getSourceRange()); } SrcPointee = SrcType; } const RecordType *SrcRecord = SrcPointee->getAsRecordType(); if (SrcRecord) { if (!SrcRecord->getDecl()->isDefinition()) { Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand, SrcPointee.getUnqualifiedType().getAsString(), "incomplete", SrcExpr->getSourceRange()); return; } } else { Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_operand, SrcPointee.getUnqualifiedType().getAsString(), "not a class", SrcExpr->getSourceRange()); return; } // Assumptions to this point. assert(DestPointer || DestReference); assert(DestRecord || DestPointee->isVoidType()); assert(SrcRecord); // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness. if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) { Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_const_away, "dynamic_cast", OrigDestType.getAsString(), OrigSrcType.getAsString(), OpRange); return; } // C++ 5.2.7p3: If the type of v is the same as the required result type, // [except for cv]. if (DestRecord == SrcRecord) { return; } // C++ 5.2.7p5 // Upcasts are resolved statically. if (DestRecord && IsDerivedFrom(SrcPointee, DestPointee)) { CheckDerivedToBaseConversion(SrcPointee, DestPointee, OpRange.getBegin(), OpRange); // Diagnostic already emitted on error. return; } // C++ 5.2.7p6: Otherwise, v shall be [polymorphic]. // FIXME: Information not yet available. // Done. Everything else is run-time checks. } /// ActOnCXXBoolLiteral - Parse {true,false} literals. Action::ExprResult Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { assert((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"); return new CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); } /// ActOnCXXThrow - Parse throw expressions. Action::ExprResult Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprTy *E) { return new CXXThrowExpr((Expr*)E, Context.VoidTy, OpLoc); } Action::ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) { /// C++ 9.3.2: In the body of a non-static member function, the keyword this /// is a non-lvalue expression whose value is the address of the object for /// which the function is called. if (!isa(CurContext)) { Diag(ThisLoc, diag::err_invalid_this_use); return ExprResult(true); } if (CXXMethodDecl *MD = dyn_cast(CurContext)) if (MD->isInstance()) return new PredefinedExpr(ThisLoc, MD->getThisType(Context), PredefinedExpr::CXXThis); return Diag(ThisLoc, diag::err_invalid_this_use); } /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). Action::ExprResult Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep, SourceLocation LParenLoc, ExprTy **ExprTys, unsigned NumExprs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { assert(TypeRep && "Missing type!"); QualType Ty = QualType::getFromOpaquePtr(TypeRep); Expr **Exprs = (Expr**)ExprTys; SourceLocation TyBeginLoc = TypeRange.getBegin(); SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc); if (const RecordType *RT = Ty->getAsRecordType()) { // C++ 5.2.3p1: // If the simple-type-specifier specifies a class type, the class type shall // be complete. // if (!RT->getDecl()->isDefinition()) return Diag(TyBeginLoc, diag::err_invalid_incomplete_type_use, Ty.getAsString(), FullRange); unsigned DiagID = PP.getDiagnostics().getCustomDiagID(Diagnostic::Error, "class constructors are not supported yet"); return Diag(TyBeginLoc, DiagID); } // C++ 5.2.3p1: // If the expression list is a single expression, the type conversion // expression is equivalent (in definedness, and if defined in meaning) to the // corresponding cast expression. // if (NumExprs == 1) { if (CheckCastTypes(TypeRange, Ty, Exprs[0])) return true; return new CXXFunctionalCastExpr(Ty.getNonReferenceType(), Ty, TyBeginLoc, Exprs[0], RParenLoc); } // C++ 5.2.3p1: // If the expression list specifies more than a single value, the type shall // be a class with a suitably declared constructor. // if (NumExprs > 1) return Diag(CommaLocs[0], diag::err_builtin_func_cast_more_than_one_arg, FullRange); assert(NumExprs == 0 && "Expected 0 expressions"); // C++ 5.2.3p2: // The expression T(), where T is a simple-type-specifier for a non-array // complete object type or the (possibly cv-qualified) void type, creates an // rvalue of the specified type, which is value-initialized. // if (Ty->isArrayType()) return Diag(TyBeginLoc, diag::err_value_init_for_array_type, FullRange); if (Ty->isIncompleteType() && !Ty->isVoidType()) return Diag(TyBeginLoc, diag::err_invalid_incomplete_type_use, Ty.getAsString(), FullRange); return new CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc); } /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a /// C++ if/switch/while/for statement. /// e.g: "if (int x = f()) {...}" Action::ExprResult Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc, Declarator &D, SourceLocation EqualLoc, ExprTy *AssignExprVal) { assert(AssignExprVal && "Null assignment expression"); // C++ 6.4p2: // The declarator shall not specify a function or an array. // The type-specifier-seq shall not contain typedef and shall not declare a // new class or enumeration. assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."); QualType Ty = GetTypeForDeclarator(D, S); if (Ty->isFunctionType()) { // The declarator shall not specify a function... // We exit without creating a CXXConditionDeclExpr because a FunctionDecl // would be created and CXXConditionDeclExpr wants a VarDecl. return Diag(StartLoc, diag::err_invalid_use_of_function_type, SourceRange(StartLoc, EqualLoc)); } else if (Ty->isArrayType()) { // ...or an array. Diag(StartLoc, diag::err_invalid_use_of_array_type, SourceRange(StartLoc, EqualLoc)); } else if (const RecordType *RT = Ty->getAsRecordType()) { RecordDecl *RD = RT->getDecl(); // The type-specifier-seq shall not declare a new class... if (RD->isDefinition() && (RD->getIdentifier() == 0 || S->isDeclScope(RD))) Diag(RD->getLocation(), diag::err_type_defined_in_condition); } else if (const EnumType *ET = Ty->getAsEnumType()) { EnumDecl *ED = ET->getDecl(); // ...or enumeration. if (ED->isDefinition() && (ED->getIdentifier() == 0 || S->isDeclScope(ED))) Diag(ED->getLocation(), diag::err_type_defined_in_condition); } DeclTy *Dcl = ActOnDeclarator(S, D, 0); if (!Dcl) return true; AddInitializerToDecl(Dcl, AssignExprVal); return new CXXConditionDeclExpr(StartLoc, EqualLoc, cast(static_cast(Dcl))); } /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) { // C++ 6.4p4: // The value of a condition that is an initialized declaration in a statement // other than a switch statement is the value of the declared variable // implicitly converted to type bool. If that conversion is ill-formed, the // program is ill-formed. // The value of a condition that is an expression is the value of the // expression, implicitly converted to bool. // QualType Ty = CondExpr->getType(); // Save the type. AssignConvertType ConvTy = CheckSingleAssignmentConstraints(Context.BoolTy, CondExpr); if (ConvTy == Incompatible) return Diag(CondExpr->getLocStart(), diag::err_typecheck_bool_condition, Ty.getAsString(), CondExpr->getSourceRange()); return false; } /// Helper function to determine whether this is the (deprecated) C++ /// conversion from a string literal to a pointer to non-const char or /// non-const wchar_t (for narrow and wide string literals, /// respectively). bool Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { // Look inside the implicit cast, if it exists. if (ImplicitCastExpr *Cast = dyn_cast(From)) From = Cast->getSubExpr(); // A string literal (2.13.4) that is not a wide string literal can // be converted to an rvalue of type "pointer to char"; a wide // string literal can be converted to an rvalue of type "pointer // to wchar_t" (C++ 4.2p2). if (StringLiteral *StrLit = dyn_cast(From)) if (const PointerType *ToPtrType = ToType->getAsPointerType()) if (const BuiltinType *ToPointeeType = ToPtrType->getPointeeType()->getAsBuiltinType()) { // This conversion is considered only when there is an // explicit appropriate pointer target type (C++ 4.2p2). if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 && ((StrLit->isWide() && ToPointeeType->isWideCharType()) || (!StrLit->isWide() && (ToPointeeType->getKind() == BuiltinType::Char_U || ToPointeeType->getKind() == BuiltinType::Char_S)))) return true; } return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType. Returns true if there was an /// error, false otherwise. The expression From is replaced with the /// converted expression. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType) { ImplicitConversionSequence ICS = TryImplicitConversion(From, ToType); switch (ICS.ConversionKind) { case ImplicitConversionSequence::StandardConversion: if (PerformImplicitConversion(From, ToType, ICS.Standard)) return true; break; case ImplicitConversionSequence::UserDefinedConversion: // FIXME: This is, of course, wrong. We'll need to actually call // the constructor or conversion operator, and then cope with the // standard conversions. ImpCastExprToType(From, ToType); return false; case ImplicitConversionSequence::EllipsisConversion: assert(false && "Cannot perform an ellipsis conversion"); return false; case ImplicitConversionSequence::BadConversion: return true; } // Everything went well. return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType by following the standard /// conversion sequence SCS. Returns true if there was an error, false /// otherwise. The expression From is replaced with the converted /// expression. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, const StandardConversionSequence& SCS) { // Overall FIXME: we are recomputing too many types here and doing // far too much extra work. What this means is that we need to keep // track of more information that is computed when we try the // implicit conversion initially, so that we don't need to recompute // anything here. QualType FromType = From->getType(); if (SCS.CopyConstructor) { // FIXME: Create a temporary object by calling the copy // constructor. ImpCastExprToType(From, ToType); return false; } // Perform the first implicit conversion. switch (SCS.First) { case ICK_Identity: case ICK_Lvalue_To_Rvalue: // Nothing to do. break; case ICK_Array_To_Pointer: FromType = Context.getArrayDecayedType(FromType); ImpCastExprToType(From, FromType); break; case ICK_Function_To_Pointer: FromType = Context.getPointerType(FromType); ImpCastExprToType(From, FromType); break; default: assert(false && "Improper first standard conversion"); break; } // Perform the second implicit conversion switch (SCS.Second) { case ICK_Identity: // Nothing to do. break; case ICK_Integral_Promotion: case ICK_Floating_Promotion: case ICK_Integral_Conversion: case ICK_Floating_Conversion: case ICK_Floating_Integral: FromType = ToType.getUnqualifiedType(); ImpCastExprToType(From, FromType); break; case ICK_Pointer_Conversion: if (CheckPointerConversion(From, ToType)) return true; ImpCastExprToType(From, ToType); break; case ICK_Pointer_Member: // FIXME: Implement pointer-to-member conversions. assert(false && "Pointer-to-member conversions are unsupported"); break; case ICK_Boolean_Conversion: FromType = Context.BoolTy; ImpCastExprToType(From, FromType); break; default: assert(false && "Improper second standard conversion"); break; } switch (SCS.Third) { case ICK_Identity: // Nothing to do. break; case ICK_Qualification: ImpCastExprToType(From, ToType); break; default: assert(false && "Improper second standard conversion"); break; } return false; }