зеркало из https://github.com/microsoft/clang-1.git
300 строки
10 KiB
C++
300 строки
10 KiB
C++
//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines SimpleConstraintManager, a class that holds code shared
|
|
// between BasicConstraintManager and RangeConstraintManager.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SimpleConstraintManager.h"
|
|
#include "clang/Checker/PathSensitive/GRExprEngine.h"
|
|
#include "clang/Checker/PathSensitive/GRState.h"
|
|
#include "clang/Checker/PathSensitive/Checker.h"
|
|
|
|
namespace clang {
|
|
|
|
SimpleConstraintManager::~SimpleConstraintManager() {}
|
|
|
|
bool SimpleConstraintManager::canReasonAbout(SVal X) const {
|
|
if (nonloc::SymExprVal *SymVal = dyn_cast<nonloc::SymExprVal>(&X)) {
|
|
const SymExpr *SE = SymVal->getSymbolicExpression();
|
|
|
|
if (isa<SymbolData>(SE))
|
|
return true;
|
|
|
|
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
|
|
switch (SIE->getOpcode()) {
|
|
// We don't reason yet about bitwise-constraints on symbolic values.
|
|
case BinaryOperator::And:
|
|
case BinaryOperator::Or:
|
|
case BinaryOperator::Xor:
|
|
return false;
|
|
// We don't reason yet about these arithmetic constraints on
|
|
// symbolic values.
|
|
case BinaryOperator::Mul:
|
|
case BinaryOperator::Div:
|
|
case BinaryOperator::Rem:
|
|
case BinaryOperator::Shl:
|
|
case BinaryOperator::Shr:
|
|
return false;
|
|
// All other cases.
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::Assume(const GRState *state,
|
|
DefinedSVal Cond,
|
|
bool Assumption) {
|
|
if (isa<NonLoc>(Cond))
|
|
return Assume(state, cast<NonLoc>(Cond), Assumption);
|
|
else
|
|
return Assume(state, cast<Loc>(Cond), Assumption);
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::Assume(const GRState *state, Loc cond,
|
|
bool assumption) {
|
|
state = AssumeAux(state, cond, assumption);
|
|
return SU.ProcessAssume(state, cond, assumption);
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
|
|
Loc Cond, bool Assumption) {
|
|
|
|
BasicValueFactory &BasicVals = state->getBasicVals();
|
|
|
|
switch (Cond.getSubKind()) {
|
|
default:
|
|
assert (false && "'Assume' not implemented for this Loc.");
|
|
return state;
|
|
|
|
case loc::MemRegionKind: {
|
|
// FIXME: Should this go into the storemanager?
|
|
|
|
const MemRegion *R = cast<loc::MemRegionVal>(Cond).getRegion();
|
|
const SubRegion *SubR = dyn_cast<SubRegion>(R);
|
|
|
|
while (SubR) {
|
|
// FIXME: now we only find the first symbolic region.
|
|
if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) {
|
|
const llvm::APSInt &zero = BasicVals.getZeroWithPtrWidth();
|
|
if (Assumption)
|
|
return AssumeSymNE(state, SymR->getSymbol(), zero, zero);
|
|
else
|
|
return AssumeSymEQ(state, SymR->getSymbol(), zero, zero);
|
|
}
|
|
SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
|
|
}
|
|
|
|
// FALL-THROUGH.
|
|
}
|
|
|
|
case loc::GotoLabelKind:
|
|
return Assumption ? state : NULL;
|
|
|
|
case loc::ConcreteIntKind: {
|
|
bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0;
|
|
bool isFeasible = b ? Assumption : !Assumption;
|
|
return isFeasible ? state : NULL;
|
|
}
|
|
} // end switch
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::Assume(const GRState *state,
|
|
NonLoc cond,
|
|
bool assumption) {
|
|
state = AssumeAux(state, cond, assumption);
|
|
return SU.ProcessAssume(state, cond, assumption);
|
|
}
|
|
|
|
static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
|
|
// FIXME: This should probably be part of BinaryOperator, since this isn't
|
|
// the only place it's used. (This code was copied from SimpleSValuator.cpp.)
|
|
switch (op) {
|
|
default:
|
|
assert(false && "Invalid opcode.");
|
|
case BinaryOperator::LT: return BinaryOperator::GE;
|
|
case BinaryOperator::GT: return BinaryOperator::LE;
|
|
case BinaryOperator::LE: return BinaryOperator::GT;
|
|
case BinaryOperator::GE: return BinaryOperator::LT;
|
|
case BinaryOperator::EQ: return BinaryOperator::NE;
|
|
case BinaryOperator::NE: return BinaryOperator::EQ;
|
|
}
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
|
|
NonLoc Cond,
|
|
bool Assumption) {
|
|
|
|
// We cannot reason about SymSymExprs,
|
|
// and can only reason about some SymIntExprs.
|
|
if (!canReasonAbout(Cond)) {
|
|
// Just return the current state indicating that the path is feasible.
|
|
// This may be an over-approximation of what is possible.
|
|
return state;
|
|
}
|
|
|
|
BasicValueFactory &BasicVals = state->getBasicVals();
|
|
SymbolManager &SymMgr = state->getSymbolManager();
|
|
|
|
switch (Cond.getSubKind()) {
|
|
default:
|
|
assert(false && "'Assume' not implemented for this NonLoc");
|
|
|
|
case nonloc::SymbolValKind: {
|
|
nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
|
|
SymbolRef sym = SV.getSymbol();
|
|
QualType T = SymMgr.getType(sym);
|
|
const llvm::APSInt &zero = BasicVals.getValue(0, T);
|
|
if (Assumption)
|
|
return AssumeSymNE(state, sym, zero, zero);
|
|
else
|
|
return AssumeSymEQ(state, sym, zero, zero);
|
|
}
|
|
|
|
case nonloc::SymExprValKind: {
|
|
nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
|
|
|
|
// For now, we only handle expressions whose RHS is an integer.
|
|
// All other expressions are assumed to be feasible.
|
|
const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression());
|
|
if (!SE)
|
|
return state;
|
|
|
|
BinaryOperator::Opcode op = SE->getOpcode();
|
|
// Implicitly compare non-comparison expressions to 0.
|
|
if (!BinaryOperator::isComparisonOp(op)) {
|
|
QualType T = SymMgr.getType(SE);
|
|
const llvm::APSInt &zero = BasicVals.getValue(0, T);
|
|
op = (Assumption ? BinaryOperator::NE : BinaryOperator::EQ);
|
|
return AssumeSymRel(state, SE, op, zero);
|
|
}
|
|
|
|
// From here on out, op is the real comparison we'll be testing.
|
|
if (!Assumption)
|
|
op = NegateComparison(op);
|
|
|
|
return AssumeSymRel(state, SE->getLHS(), op, SE->getRHS());
|
|
}
|
|
|
|
case nonloc::ConcreteIntKind: {
|
|
bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
|
|
bool isFeasible = b ? Assumption : !Assumption;
|
|
return isFeasible ? state : NULL;
|
|
}
|
|
|
|
case nonloc::LocAsIntegerKind:
|
|
return AssumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
|
|
Assumption);
|
|
} // end switch
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::AssumeSymRel(const GRState *state,
|
|
const SymExpr *LHS,
|
|
BinaryOperator::Opcode op,
|
|
const llvm::APSInt& Int) {
|
|
assert(BinaryOperator::isComparisonOp(op) &&
|
|
"Non-comparison ops should be rewritten as comparisons to zero.");
|
|
|
|
// We only handle simple comparisons of the form "$sym == constant"
|
|
// or "($sym+constant1) == constant2".
|
|
// The adjustment is "constant1" in the above expression. It's used to
|
|
// "slide" the solution range around for modular arithmetic. For example,
|
|
// x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
|
|
// in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
|
|
// the subclasses of SimpleConstraintManager to handle the adjustment.
|
|
llvm::APSInt Adjustment;
|
|
|
|
// First check if the LHS is a simple symbol reference.
|
|
SymbolRef Sym = dyn_cast<SymbolData>(LHS);
|
|
if (Sym) {
|
|
Adjustment = 0;
|
|
} else {
|
|
// Next, see if it's a "($sym+constant1)" expression.
|
|
const SymIntExpr *SE = dyn_cast<SymIntExpr>(LHS);
|
|
|
|
// We don't handle "($sym1+$sym2)".
|
|
// Give up and assume the constraint is feasible.
|
|
if (!SE)
|
|
return state;
|
|
|
|
// We don't handle "(<expr>+constant1)".
|
|
// Give up and assume the constraint is feasible.
|
|
Sym = dyn_cast<SymbolData>(SE->getLHS());
|
|
if (!Sym)
|
|
return state;
|
|
|
|
// Get the constant out of the expression "($sym+constant1)".
|
|
switch (SE->getOpcode()) {
|
|
case BinaryOperator::Add:
|
|
Adjustment = SE->getRHS();
|
|
break;
|
|
case BinaryOperator::Sub:
|
|
Adjustment = -SE->getRHS();
|
|
break;
|
|
default:
|
|
// We don't handle non-additive operators.
|
|
// Give up and assume the constraint is feasible.
|
|
return state;
|
|
}
|
|
}
|
|
|
|
// FIXME: This next section is a hack. It silently converts the integers to
|
|
// be of the same type as the symbol, which is not always correct. Really the
|
|
// comparisons should be performed using the Int's type, then mapped back to
|
|
// the symbol's range of values.
|
|
GRStateManager &StateMgr = state->getStateManager();
|
|
ASTContext &Ctx = StateMgr.getContext();
|
|
|
|
QualType T = Sym->getType(Ctx);
|
|
assert(T->isIntegerType() || Loc::IsLocType(T));
|
|
unsigned bitwidth = Ctx.getTypeSize(T);
|
|
bool isSymUnsigned = T->isUnsignedIntegerType() || Loc::IsLocType(T);
|
|
|
|
// Convert the adjustment.
|
|
Adjustment.setIsUnsigned(isSymUnsigned);
|
|
Adjustment.extOrTrunc(bitwidth);
|
|
|
|
// Convert the right-hand side integer.
|
|
llvm::APSInt ConvertedInt(Int, isSymUnsigned);
|
|
ConvertedInt.extOrTrunc(bitwidth);
|
|
|
|
switch (op) {
|
|
default:
|
|
// No logic yet for other operators. Assume the constraint is feasible.
|
|
return state;
|
|
|
|
case BinaryOperator::EQ:
|
|
return AssumeSymEQ(state, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BinaryOperator::NE:
|
|
return AssumeSymNE(state, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BinaryOperator::GT:
|
|
return AssumeSymGT(state, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BinaryOperator::GE:
|
|
return AssumeSymGE(state, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BinaryOperator::LT:
|
|
return AssumeSymLT(state, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BinaryOperator::LE:
|
|
return AssumeSymLE(state, Sym, ConvertedInt, Adjustment);
|
|
} // end switch
|
|
}
|
|
|
|
} // end of namespace clang
|