зеркало из https://github.com/microsoft/clang-1.git
7921 строка
307 KiB
C++
7921 строка
307 KiB
C++
//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for C++ declarations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/CXXFieldCollector.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTMutationListener.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclVisitor.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/TypeOrdering.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/ParsedTemplate.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <map>
|
|
#include <set>
|
|
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CheckDefaultArgumentVisitor
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
|
|
/// the default argument of a parameter to determine whether it
|
|
/// contains any ill-formed subexpressions. For example, this will
|
|
/// diagnose the use of local variables or parameters within the
|
|
/// default argument expression.
|
|
class CheckDefaultArgumentVisitor
|
|
: public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
|
|
Expr *DefaultArg;
|
|
Sema *S;
|
|
|
|
public:
|
|
CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
|
|
: DefaultArg(defarg), S(s) {}
|
|
|
|
bool VisitExpr(Expr *Node);
|
|
bool VisitDeclRefExpr(DeclRefExpr *DRE);
|
|
bool VisitCXXThisExpr(CXXThisExpr *ThisE);
|
|
};
|
|
|
|
/// VisitExpr - Visit all of the children of this expression.
|
|
bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
|
|
bool IsInvalid = false;
|
|
for (Stmt::child_range I = Node->children(); I; ++I)
|
|
IsInvalid |= Visit(*I);
|
|
return IsInvalid;
|
|
}
|
|
|
|
/// VisitDeclRefExpr - Visit a reference to a declaration, to
|
|
/// determine whether this declaration can be used in the default
|
|
/// argument expression.
|
|
bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
|
|
NamedDecl *Decl = DRE->getDecl();
|
|
if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
|
|
// C++ [dcl.fct.default]p9
|
|
// Default arguments are evaluated each time the function is
|
|
// called. The order of evaluation of function arguments is
|
|
// unspecified. Consequently, parameters of a function shall not
|
|
// be used in default argument expressions, even if they are not
|
|
// evaluated. Parameters of a function declared before a default
|
|
// argument expression are in scope and can hide namespace and
|
|
// class member names.
|
|
return S->Diag(DRE->getSourceRange().getBegin(),
|
|
diag::err_param_default_argument_references_param)
|
|
<< Param->getDeclName() << DefaultArg->getSourceRange();
|
|
} else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
|
|
// C++ [dcl.fct.default]p7
|
|
// Local variables shall not be used in default argument
|
|
// expressions.
|
|
if (VDecl->isLocalVarDecl())
|
|
return S->Diag(DRE->getSourceRange().getBegin(),
|
|
diag::err_param_default_argument_references_local)
|
|
<< VDecl->getDeclName() << DefaultArg->getSourceRange();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// VisitCXXThisExpr - Visit a C++ "this" expression.
|
|
bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
|
|
// C++ [dcl.fct.default]p8:
|
|
// The keyword this shall not be used in a default argument of a
|
|
// member function.
|
|
return S->Diag(ThisE->getSourceRange().getBegin(),
|
|
diag::err_param_default_argument_references_this)
|
|
<< ThisE->getSourceRange();
|
|
}
|
|
}
|
|
|
|
bool
|
|
Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
|
|
SourceLocation EqualLoc) {
|
|
if (RequireCompleteType(Param->getLocation(), Param->getType(),
|
|
diag::err_typecheck_decl_incomplete_type)) {
|
|
Param->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
// C++ [dcl.fct.default]p5
|
|
// A default argument expression is implicitly converted (clause
|
|
// 4) to the parameter type. The default argument expression has
|
|
// the same semantic constraints as the initializer expression in
|
|
// a declaration of a variable of the parameter type, using the
|
|
// copy-initialization semantics (8.5).
|
|
InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
|
|
Param);
|
|
InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
|
|
EqualLoc);
|
|
InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
|
|
ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
|
|
MultiExprArg(*this, &Arg, 1));
|
|
if (Result.isInvalid())
|
|
return true;
|
|
Arg = Result.takeAs<Expr>();
|
|
|
|
CheckImplicitConversions(Arg, EqualLoc);
|
|
Arg = MaybeCreateExprWithCleanups(Arg);
|
|
|
|
// Okay: add the default argument to the parameter
|
|
Param->setDefaultArg(Arg);
|
|
|
|
// We have already instantiated this parameter; provide each of the
|
|
// instantiations with the uninstantiated default argument.
|
|
UnparsedDefaultArgInstantiationsMap::iterator InstPos
|
|
= UnparsedDefaultArgInstantiations.find(Param);
|
|
if (InstPos != UnparsedDefaultArgInstantiations.end()) {
|
|
for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
|
|
InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
|
|
|
|
// We're done tracking this parameter's instantiations.
|
|
UnparsedDefaultArgInstantiations.erase(InstPos);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ActOnParamDefaultArgument - Check whether the default argument
|
|
/// provided for a function parameter is well-formed. If so, attach it
|
|
/// to the parameter declaration.
|
|
void
|
|
Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
|
|
Expr *DefaultArg) {
|
|
if (!param || !DefaultArg)
|
|
return;
|
|
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(param);
|
|
UnparsedDefaultArgLocs.erase(Param);
|
|
|
|
// Default arguments are only permitted in C++
|
|
if (!getLangOptions().CPlusPlus) {
|
|
Diag(EqualLoc, diag::err_param_default_argument)
|
|
<< DefaultArg->getSourceRange();
|
|
Param->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Check for unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
|
|
Param->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Check that the default argument is well-formed
|
|
CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
|
|
if (DefaultArgChecker.Visit(DefaultArg)) {
|
|
Param->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
|
|
}
|
|
|
|
/// ActOnParamUnparsedDefaultArgument - We've seen a default
|
|
/// argument for a function parameter, but we can't parse it yet
|
|
/// because we're inside a class definition. Note that this default
|
|
/// argument will be parsed later.
|
|
void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
|
|
SourceLocation EqualLoc,
|
|
SourceLocation ArgLoc) {
|
|
if (!param)
|
|
return;
|
|
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(param);
|
|
if (Param)
|
|
Param->setUnparsedDefaultArg();
|
|
|
|
UnparsedDefaultArgLocs[Param] = ArgLoc;
|
|
}
|
|
|
|
/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
|
|
/// the default argument for the parameter param failed.
|
|
void Sema::ActOnParamDefaultArgumentError(Decl *param) {
|
|
if (!param)
|
|
return;
|
|
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(param);
|
|
|
|
Param->setInvalidDecl();
|
|
|
|
UnparsedDefaultArgLocs.erase(Param);
|
|
}
|
|
|
|
/// CheckExtraCXXDefaultArguments - Check for any extra default
|
|
/// arguments in the declarator, which is not a function declaration
|
|
/// or definition and therefore is not permitted to have default
|
|
/// arguments. This routine should be invoked for every declarator
|
|
/// that is not a function declaration or definition.
|
|
void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
|
|
// C++ [dcl.fct.default]p3
|
|
// A default argument expression shall be specified only in the
|
|
// parameter-declaration-clause of a function declaration or in a
|
|
// template-parameter (14.1). It shall not be specified for a
|
|
// parameter pack. If it is specified in a
|
|
// parameter-declaration-clause, it shall not occur within a
|
|
// declarator or abstract-declarator of a parameter-declaration.
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorChunk &chunk = D.getTypeObject(i);
|
|
if (chunk.Kind == DeclaratorChunk::Function) {
|
|
for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
|
|
ParmVarDecl *Param =
|
|
cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
|
|
if (Param->hasUnparsedDefaultArg()) {
|
|
CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
|
|
Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
|
|
<< SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
|
|
delete Toks;
|
|
chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
|
|
} else if (Param->getDefaultArg()) {
|
|
Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
|
|
<< Param->getDefaultArg()->getSourceRange();
|
|
Param->setDefaultArg(0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// MergeCXXFunctionDecl - Merge two declarations of the same C++
|
|
// function, once we already know that they have the same
|
|
// type. Subroutine of MergeFunctionDecl. Returns true if there was an
|
|
// error, false otherwise.
|
|
bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
|
|
bool Invalid = false;
|
|
|
|
// C++ [dcl.fct.default]p4:
|
|
// For non-template functions, default arguments can be added in
|
|
// later declarations of a function in the same
|
|
// scope. Declarations in different scopes have completely
|
|
// distinct sets of default arguments. That is, declarations in
|
|
// inner scopes do not acquire default arguments from
|
|
// declarations in outer scopes, and vice versa. In a given
|
|
// function declaration, all parameters subsequent to a
|
|
// parameter with a default argument shall have default
|
|
// arguments supplied in this or previous declarations. A
|
|
// default argument shall not be redefined by a later
|
|
// declaration (not even to the same value).
|
|
//
|
|
// C++ [dcl.fct.default]p6:
|
|
// Except for member functions of class templates, the default arguments
|
|
// in a member function definition that appears outside of the class
|
|
// definition are added to the set of default arguments provided by the
|
|
// member function declaration in the class definition.
|
|
for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
|
|
ParmVarDecl *OldParam = Old->getParamDecl(p);
|
|
ParmVarDecl *NewParam = New->getParamDecl(p);
|
|
|
|
if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
|
|
|
|
unsigned DiagDefaultParamID =
|
|
diag::err_param_default_argument_redefinition;
|
|
|
|
// MSVC accepts that default parameters be redefined for member functions
|
|
// of template class. The new default parameter's value is ignored.
|
|
Invalid = true;
|
|
if (getLangOptions().Microsoft) {
|
|
CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
|
|
if (MD && MD->getParent()->getDescribedClassTemplate()) {
|
|
// Merge the old default argument into the new parameter.
|
|
NewParam->setHasInheritedDefaultArg();
|
|
if (OldParam->hasUninstantiatedDefaultArg())
|
|
NewParam->setUninstantiatedDefaultArg(
|
|
OldParam->getUninstantiatedDefaultArg());
|
|
else
|
|
NewParam->setDefaultArg(OldParam->getInit());
|
|
DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
|
|
Invalid = false;
|
|
}
|
|
}
|
|
|
|
// FIXME: If we knew where the '=' was, we could easily provide a fix-it
|
|
// hint here. Alternatively, we could walk the type-source information
|
|
// for NewParam to find the last source location in the type... but it
|
|
// isn't worth the effort right now. This is the kind of test case that
|
|
// is hard to get right:
|
|
// int f(int);
|
|
// void g(int (*fp)(int) = f);
|
|
// void g(int (*fp)(int) = &f);
|
|
Diag(NewParam->getLocation(), DiagDefaultParamID)
|
|
<< NewParam->getDefaultArgRange();
|
|
|
|
// Look for the function declaration where the default argument was
|
|
// actually written, which may be a declaration prior to Old.
|
|
for (FunctionDecl *Older = Old->getPreviousDeclaration();
|
|
Older; Older = Older->getPreviousDeclaration()) {
|
|
if (!Older->getParamDecl(p)->hasDefaultArg())
|
|
break;
|
|
|
|
OldParam = Older->getParamDecl(p);
|
|
}
|
|
|
|
Diag(OldParam->getLocation(), diag::note_previous_definition)
|
|
<< OldParam->getDefaultArgRange();
|
|
} else if (OldParam->hasDefaultArg()) {
|
|
// Merge the old default argument into the new parameter.
|
|
// It's important to use getInit() here; getDefaultArg()
|
|
// strips off any top-level ExprWithCleanups.
|
|
NewParam->setHasInheritedDefaultArg();
|
|
if (OldParam->hasUninstantiatedDefaultArg())
|
|
NewParam->setUninstantiatedDefaultArg(
|
|
OldParam->getUninstantiatedDefaultArg());
|
|
else
|
|
NewParam->setDefaultArg(OldParam->getInit());
|
|
} else if (NewParam->hasDefaultArg()) {
|
|
if (New->getDescribedFunctionTemplate()) {
|
|
// Paragraph 4, quoted above, only applies to non-template functions.
|
|
Diag(NewParam->getLocation(),
|
|
diag::err_param_default_argument_template_redecl)
|
|
<< NewParam->getDefaultArgRange();
|
|
Diag(Old->getLocation(), diag::note_template_prev_declaration)
|
|
<< false;
|
|
} else if (New->getTemplateSpecializationKind()
|
|
!= TSK_ImplicitInstantiation &&
|
|
New->getTemplateSpecializationKind() != TSK_Undeclared) {
|
|
// C++ [temp.expr.spec]p21:
|
|
// Default function arguments shall not be specified in a declaration
|
|
// or a definition for one of the following explicit specializations:
|
|
// - the explicit specialization of a function template;
|
|
// - the explicit specialization of a member function template;
|
|
// - the explicit specialization of a member function of a class
|
|
// template where the class template specialization to which the
|
|
// member function specialization belongs is implicitly
|
|
// instantiated.
|
|
Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
|
|
<< (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
|
|
<< New->getDeclName()
|
|
<< NewParam->getDefaultArgRange();
|
|
} else if (New->getDeclContext()->isDependentContext()) {
|
|
// C++ [dcl.fct.default]p6 (DR217):
|
|
// Default arguments for a member function of a class template shall
|
|
// be specified on the initial declaration of the member function
|
|
// within the class template.
|
|
//
|
|
// Reading the tea leaves a bit in DR217 and its reference to DR205
|
|
// leads me to the conclusion that one cannot add default function
|
|
// arguments for an out-of-line definition of a member function of a
|
|
// dependent type.
|
|
int WhichKind = 2;
|
|
if (CXXRecordDecl *Record
|
|
= dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
|
|
if (Record->getDescribedClassTemplate())
|
|
WhichKind = 0;
|
|
else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
|
|
WhichKind = 1;
|
|
else
|
|
WhichKind = 2;
|
|
}
|
|
|
|
Diag(NewParam->getLocation(),
|
|
diag::err_param_default_argument_member_template_redecl)
|
|
<< WhichKind
|
|
<< NewParam->getDefaultArgRange();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CheckEquivalentExceptionSpec(Old, New))
|
|
Invalid = true;
|
|
|
|
return Invalid;
|
|
}
|
|
|
|
/// \brief Merge the exception specifications of two variable declarations.
|
|
///
|
|
/// This is called when there's a redeclaration of a VarDecl. The function
|
|
/// checks if the redeclaration might have an exception specification and
|
|
/// validates compatibility and merges the specs if necessary.
|
|
void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
|
|
// Shortcut if exceptions are disabled.
|
|
if (!getLangOptions().CXXExceptions)
|
|
return;
|
|
|
|
assert(Context.hasSameType(New->getType(), Old->getType()) &&
|
|
"Should only be called if types are otherwise the same.");
|
|
|
|
QualType NewType = New->getType();
|
|
QualType OldType = Old->getType();
|
|
|
|
// We're only interested in pointers and references to functions, as well
|
|
// as pointers to member functions.
|
|
if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
|
|
NewType = R->getPointeeType();
|
|
OldType = OldType->getAs<ReferenceType>()->getPointeeType();
|
|
} else if (const PointerType *P = NewType->getAs<PointerType>()) {
|
|
NewType = P->getPointeeType();
|
|
OldType = OldType->getAs<PointerType>()->getPointeeType();
|
|
} else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
|
|
NewType = M->getPointeeType();
|
|
OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
|
|
}
|
|
|
|
if (!NewType->isFunctionProtoType())
|
|
return;
|
|
|
|
// There's lots of special cases for functions. For function pointers, system
|
|
// libraries are hopefully not as broken so that we don't need these
|
|
// workarounds.
|
|
if (CheckEquivalentExceptionSpec(
|
|
OldType->getAs<FunctionProtoType>(), Old->getLocation(),
|
|
NewType->getAs<FunctionProtoType>(), New->getLocation())) {
|
|
New->setInvalidDecl();
|
|
}
|
|
}
|
|
|
|
/// CheckCXXDefaultArguments - Verify that the default arguments for a
|
|
/// function declaration are well-formed according to C++
|
|
/// [dcl.fct.default].
|
|
void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
|
|
unsigned NumParams = FD->getNumParams();
|
|
unsigned p;
|
|
|
|
// Find first parameter with a default argument
|
|
for (p = 0; p < NumParams; ++p) {
|
|
ParmVarDecl *Param = FD->getParamDecl(p);
|
|
if (Param->hasDefaultArg())
|
|
break;
|
|
}
|
|
|
|
// C++ [dcl.fct.default]p4:
|
|
// In a given function declaration, all parameters
|
|
// subsequent to a parameter with a default argument shall
|
|
// have default arguments supplied in this or previous
|
|
// declarations. A default argument shall not be redefined
|
|
// by a later declaration (not even to the same value).
|
|
unsigned LastMissingDefaultArg = 0;
|
|
for (; p < NumParams; ++p) {
|
|
ParmVarDecl *Param = FD->getParamDecl(p);
|
|
if (!Param->hasDefaultArg()) {
|
|
if (Param->isInvalidDecl())
|
|
/* We already complained about this parameter. */;
|
|
else if (Param->getIdentifier())
|
|
Diag(Param->getLocation(),
|
|
diag::err_param_default_argument_missing_name)
|
|
<< Param->getIdentifier();
|
|
else
|
|
Diag(Param->getLocation(),
|
|
diag::err_param_default_argument_missing);
|
|
|
|
LastMissingDefaultArg = p;
|
|
}
|
|
}
|
|
|
|
if (LastMissingDefaultArg > 0) {
|
|
// Some default arguments were missing. Clear out all of the
|
|
// default arguments up to (and including) the last missing
|
|
// default argument, so that we leave the function parameters
|
|
// in a semantically valid state.
|
|
for (p = 0; p <= LastMissingDefaultArg; ++p) {
|
|
ParmVarDecl *Param = FD->getParamDecl(p);
|
|
if (Param->hasDefaultArg()) {
|
|
Param->setDefaultArg(0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isCurrentClassName - Determine whether the identifier II is the
|
|
/// name of the class type currently being defined. In the case of
|
|
/// nested classes, this will only return true if II is the name of
|
|
/// the innermost class.
|
|
bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
|
|
const CXXScopeSpec *SS) {
|
|
assert(getLangOptions().CPlusPlus && "No class names in C!");
|
|
|
|
CXXRecordDecl *CurDecl;
|
|
if (SS && SS->isSet() && !SS->isInvalid()) {
|
|
DeclContext *DC = computeDeclContext(*SS, true);
|
|
CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
|
|
} else
|
|
CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
|
|
|
|
if (CurDecl && CurDecl->getIdentifier())
|
|
return &II == CurDecl->getIdentifier();
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check the validity of a C++ base class specifier.
|
|
///
|
|
/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
|
|
/// and returns NULL otherwise.
|
|
CXXBaseSpecifier *
|
|
Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
|
|
SourceRange SpecifierRange,
|
|
bool Virtual, AccessSpecifier Access,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation EllipsisLoc) {
|
|
QualType BaseType = TInfo->getType();
|
|
|
|
// C++ [class.union]p1:
|
|
// A union shall not have base classes.
|
|
if (Class->isUnion()) {
|
|
Diag(Class->getLocation(), diag::err_base_clause_on_union)
|
|
<< SpecifierRange;
|
|
return 0;
|
|
}
|
|
|
|
if (EllipsisLoc.isValid() &&
|
|
!TInfo->getType()->containsUnexpandedParameterPack()) {
|
|
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
|
|
<< TInfo->getTypeLoc().getSourceRange();
|
|
EllipsisLoc = SourceLocation();
|
|
}
|
|
|
|
if (BaseType->isDependentType())
|
|
return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
|
|
Class->getTagKind() == TTK_Class,
|
|
Access, TInfo, EllipsisLoc);
|
|
|
|
SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
|
|
|
|
// Base specifiers must be record types.
|
|
if (!BaseType->isRecordType()) {
|
|
Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
|
|
return 0;
|
|
}
|
|
|
|
// C++ [class.union]p1:
|
|
// A union shall not be used as a base class.
|
|
if (BaseType->isUnionType()) {
|
|
Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
|
|
return 0;
|
|
}
|
|
|
|
// C++ [class.derived]p2:
|
|
// The class-name in a base-specifier shall not be an incompletely
|
|
// defined class.
|
|
if (RequireCompleteType(BaseLoc, BaseType,
|
|
PDiag(diag::err_incomplete_base_class)
|
|
<< SpecifierRange)) {
|
|
Class->setInvalidDecl();
|
|
return 0;
|
|
}
|
|
|
|
// If the base class is polymorphic or isn't empty, the new one is/isn't, too.
|
|
RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
|
|
assert(BaseDecl && "Record type has no declaration");
|
|
BaseDecl = BaseDecl->getDefinition();
|
|
assert(BaseDecl && "Base type is not incomplete, but has no definition");
|
|
CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
|
|
assert(CXXBaseDecl && "Base type is not a C++ type");
|
|
|
|
// C++ [class]p3:
|
|
// If a class is marked final and it appears as a base-type-specifier in
|
|
// base-clause, the program is ill-formed.
|
|
if (CXXBaseDecl->hasAttr<FinalAttr>()) {
|
|
Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
|
|
<< CXXBaseDecl->getDeclName();
|
|
Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
|
|
<< CXXBaseDecl->getDeclName();
|
|
return 0;
|
|
}
|
|
|
|
if (BaseDecl->isInvalidDecl())
|
|
Class->setInvalidDecl();
|
|
|
|
// Create the base specifier.
|
|
return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
|
|
Class->getTagKind() == TTK_Class,
|
|
Access, TInfo, EllipsisLoc);
|
|
}
|
|
|
|
/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
|
|
/// one entry in the base class list of a class specifier, for
|
|
/// example:
|
|
/// class foo : public bar, virtual private baz {
|
|
/// 'public bar' and 'virtual private baz' are each base-specifiers.
|
|
BaseResult
|
|
Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
|
|
bool Virtual, AccessSpecifier Access,
|
|
ParsedType basetype, SourceLocation BaseLoc,
|
|
SourceLocation EllipsisLoc) {
|
|
if (!classdecl)
|
|
return true;
|
|
|
|
AdjustDeclIfTemplate(classdecl);
|
|
CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
|
|
if (!Class)
|
|
return true;
|
|
|
|
TypeSourceInfo *TInfo = 0;
|
|
GetTypeFromParser(basetype, &TInfo);
|
|
|
|
if (EllipsisLoc.isInvalid() &&
|
|
DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
|
|
UPPC_BaseType))
|
|
return true;
|
|
|
|
if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
|
|
Virtual, Access, TInfo,
|
|
EllipsisLoc))
|
|
return BaseSpec;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Performs the actual work of attaching the given base class
|
|
/// specifiers to a C++ class.
|
|
bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
|
|
unsigned NumBases) {
|
|
if (NumBases == 0)
|
|
return false;
|
|
|
|
// Used to keep track of which base types we have already seen, so
|
|
// that we can properly diagnose redundant direct base types. Note
|
|
// that the key is always the unqualified canonical type of the base
|
|
// class.
|
|
std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
|
|
|
|
// Copy non-redundant base specifiers into permanent storage.
|
|
unsigned NumGoodBases = 0;
|
|
bool Invalid = false;
|
|
for (unsigned idx = 0; idx < NumBases; ++idx) {
|
|
QualType NewBaseType
|
|
= Context.getCanonicalType(Bases[idx]->getType());
|
|
NewBaseType = NewBaseType.getLocalUnqualifiedType();
|
|
if (!Class->hasObjectMember()) {
|
|
if (const RecordType *FDTTy =
|
|
NewBaseType.getTypePtr()->getAs<RecordType>())
|
|
if (FDTTy->getDecl()->hasObjectMember())
|
|
Class->setHasObjectMember(true);
|
|
}
|
|
|
|
if (KnownBaseTypes[NewBaseType]) {
|
|
// C++ [class.mi]p3:
|
|
// A class shall not be specified as a direct base class of a
|
|
// derived class more than once.
|
|
Diag(Bases[idx]->getSourceRange().getBegin(),
|
|
diag::err_duplicate_base_class)
|
|
<< KnownBaseTypes[NewBaseType]->getType()
|
|
<< Bases[idx]->getSourceRange();
|
|
|
|
// Delete the duplicate base class specifier; we're going to
|
|
// overwrite its pointer later.
|
|
Context.Deallocate(Bases[idx]);
|
|
|
|
Invalid = true;
|
|
} else {
|
|
// Okay, add this new base class.
|
|
KnownBaseTypes[NewBaseType] = Bases[idx];
|
|
Bases[NumGoodBases++] = Bases[idx];
|
|
}
|
|
}
|
|
|
|
// Attach the remaining base class specifiers to the derived class.
|
|
Class->setBases(Bases, NumGoodBases);
|
|
|
|
// Delete the remaining (good) base class specifiers, since their
|
|
// data has been copied into the CXXRecordDecl.
|
|
for (unsigned idx = 0; idx < NumGoodBases; ++idx)
|
|
Context.Deallocate(Bases[idx]);
|
|
|
|
return Invalid;
|
|
}
|
|
|
|
/// ActOnBaseSpecifiers - Attach the given base specifiers to the
|
|
/// class, after checking whether there are any duplicate base
|
|
/// classes.
|
|
void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
|
|
unsigned NumBases) {
|
|
if (!ClassDecl || !Bases || !NumBases)
|
|
return;
|
|
|
|
AdjustDeclIfTemplate(ClassDecl);
|
|
AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
|
|
(CXXBaseSpecifier**)(Bases), NumBases);
|
|
}
|
|
|
|
static CXXRecordDecl *GetClassForType(QualType T) {
|
|
if (const RecordType *RT = T->getAs<RecordType>())
|
|
return cast<CXXRecordDecl>(RT->getDecl());
|
|
else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
|
|
return ICT->getDecl();
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Determine whether the type \p Derived is a C++ class that is
|
|
/// derived from the type \p Base.
|
|
bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
|
|
if (!getLangOptions().CPlusPlus)
|
|
return false;
|
|
|
|
CXXRecordDecl *DerivedRD = GetClassForType(Derived);
|
|
if (!DerivedRD)
|
|
return false;
|
|
|
|
CXXRecordDecl *BaseRD = GetClassForType(Base);
|
|
if (!BaseRD)
|
|
return false;
|
|
|
|
// FIXME: instantiate DerivedRD if necessary. We need a PoI for this.
|
|
return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
|
|
}
|
|
|
|
/// \brief Determine whether the type \p Derived is a C++ class that is
|
|
/// derived from the type \p Base.
|
|
bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
|
|
if (!getLangOptions().CPlusPlus)
|
|
return false;
|
|
|
|
CXXRecordDecl *DerivedRD = GetClassForType(Derived);
|
|
if (!DerivedRD)
|
|
return false;
|
|
|
|
CXXRecordDecl *BaseRD = GetClassForType(Base);
|
|
if (!BaseRD)
|
|
return false;
|
|
|
|
return DerivedRD->isDerivedFrom(BaseRD, Paths);
|
|
}
|
|
|
|
void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
|
|
CXXCastPath &BasePathArray) {
|
|
assert(BasePathArray.empty() && "Base path array must be empty!");
|
|
assert(Paths.isRecordingPaths() && "Must record paths!");
|
|
|
|
const CXXBasePath &Path = Paths.front();
|
|
|
|
// We first go backward and check if we have a virtual base.
|
|
// FIXME: It would be better if CXXBasePath had the base specifier for
|
|
// the nearest virtual base.
|
|
unsigned Start = 0;
|
|
for (unsigned I = Path.size(); I != 0; --I) {
|
|
if (Path[I - 1].Base->isVirtual()) {
|
|
Start = I - 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Now add all bases.
|
|
for (unsigned I = Start, E = Path.size(); I != E; ++I)
|
|
BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
|
|
}
|
|
|
|
/// \brief Determine whether the given base path includes a virtual
|
|
/// base class.
|
|
bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
|
|
for (CXXCastPath::const_iterator B = BasePath.begin(),
|
|
BEnd = BasePath.end();
|
|
B != BEnd; ++B)
|
|
if ((*B)->isVirtual())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
|
|
/// conversion (where Derived and Base are class types) is
|
|
/// well-formed, meaning that the conversion is unambiguous (and
|
|
/// that all of the base classes are accessible). Returns true
|
|
/// and emits a diagnostic if the code is ill-formed, returns false
|
|
/// otherwise. Loc is the location where this routine should point to
|
|
/// if there is an error, and Range is the source range to highlight
|
|
/// if there is an error.
|
|
bool
|
|
Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
|
|
unsigned InaccessibleBaseID,
|
|
unsigned AmbigiousBaseConvID,
|
|
SourceLocation Loc, SourceRange Range,
|
|
DeclarationName Name,
|
|
CXXCastPath *BasePath) {
|
|
// First, determine whether the path from Derived to Base is
|
|
// ambiguous. This is slightly more expensive than checking whether
|
|
// the Derived to Base conversion exists, because here we need to
|
|
// explore multiple paths to determine if there is an ambiguity.
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
|
/*DetectVirtual=*/false);
|
|
bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
|
|
assert(DerivationOkay &&
|
|
"Can only be used with a derived-to-base conversion");
|
|
(void)DerivationOkay;
|
|
|
|
if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
|
|
if (InaccessibleBaseID) {
|
|
// Check that the base class can be accessed.
|
|
switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
|
|
InaccessibleBaseID)) {
|
|
case AR_inaccessible:
|
|
return true;
|
|
case AR_accessible:
|
|
case AR_dependent:
|
|
case AR_delayed:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Build a base path if necessary.
|
|
if (BasePath)
|
|
BuildBasePathArray(Paths, *BasePath);
|
|
return false;
|
|
}
|
|
|
|
// We know that the derived-to-base conversion is ambiguous, and
|
|
// we're going to produce a diagnostic. Perform the derived-to-base
|
|
// search just one more time to compute all of the possible paths so
|
|
// that we can print them out. This is more expensive than any of
|
|
// the previous derived-to-base checks we've done, but at this point
|
|
// performance isn't as much of an issue.
|
|
Paths.clear();
|
|
Paths.setRecordingPaths(true);
|
|
bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
|
|
assert(StillOkay && "Can only be used with a derived-to-base conversion");
|
|
(void)StillOkay;
|
|
|
|
// Build up a textual representation of the ambiguous paths, e.g.,
|
|
// D -> B -> A, that will be used to illustrate the ambiguous
|
|
// conversions in the diagnostic. We only print one of the paths
|
|
// to each base class subobject.
|
|
std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
|
|
|
|
Diag(Loc, AmbigiousBaseConvID)
|
|
<< Derived << Base << PathDisplayStr << Range << Name;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
|
|
SourceLocation Loc, SourceRange Range,
|
|
CXXCastPath *BasePath,
|
|
bool IgnoreAccess) {
|
|
return CheckDerivedToBaseConversion(Derived, Base,
|
|
IgnoreAccess ? 0
|
|
: diag::err_upcast_to_inaccessible_base,
|
|
diag::err_ambiguous_derived_to_base_conv,
|
|
Loc, Range, DeclarationName(),
|
|
BasePath);
|
|
}
|
|
|
|
|
|
/// @brief Builds a string representing ambiguous paths from a
|
|
/// specific derived class to different subobjects of the same base
|
|
/// class.
|
|
///
|
|
/// This function builds a string that can be used in error messages
|
|
/// to show the different paths that one can take through the
|
|
/// inheritance hierarchy to go from the derived class to different
|
|
/// subobjects of a base class. The result looks something like this:
|
|
/// @code
|
|
/// struct D -> struct B -> struct A
|
|
/// struct D -> struct C -> struct A
|
|
/// @endcode
|
|
std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
|
|
std::string PathDisplayStr;
|
|
std::set<unsigned> DisplayedPaths;
|
|
for (CXXBasePaths::paths_iterator Path = Paths.begin();
|
|
Path != Paths.end(); ++Path) {
|
|
if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
|
|
// We haven't displayed a path to this particular base
|
|
// class subobject yet.
|
|
PathDisplayStr += "\n ";
|
|
PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
|
|
for (CXXBasePath::const_iterator Element = Path->begin();
|
|
Element != Path->end(); ++Element)
|
|
PathDisplayStr += " -> " + Element->Base->getType().getAsString();
|
|
}
|
|
}
|
|
|
|
return PathDisplayStr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// C++ class member Handling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
|
|
Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
|
|
SourceLocation ASLoc,
|
|
SourceLocation ColonLoc) {
|
|
assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
|
|
AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
|
|
ASLoc, ColonLoc);
|
|
CurContext->addHiddenDecl(ASDecl);
|
|
return ASDecl;
|
|
}
|
|
|
|
/// CheckOverrideControl - Check C++0x override control semantics.
|
|
void Sema::CheckOverrideControl(const Decl *D) {
|
|
const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
|
|
if (!MD || !MD->isVirtual())
|
|
return;
|
|
|
|
if (MD->isDependentContext())
|
|
return;
|
|
|
|
// C++0x [class.virtual]p3:
|
|
// If a virtual function is marked with the virt-specifier override and does
|
|
// not override a member function of a base class,
|
|
// the program is ill-formed.
|
|
bool HasOverriddenMethods =
|
|
MD->begin_overridden_methods() != MD->end_overridden_methods();
|
|
if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
|
|
Diag(MD->getLocation(),
|
|
diag::err_function_marked_override_not_overriding)
|
|
<< MD->getDeclName();
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
|
|
/// function overrides a virtual member function marked 'final', according to
|
|
/// C++0x [class.virtual]p3.
|
|
bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old) {
|
|
if (!Old->hasAttr<FinalAttr>())
|
|
return false;
|
|
|
|
Diag(New->getLocation(), diag::err_final_function_overridden)
|
|
<< New->getDeclName();
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
|
return true;
|
|
}
|
|
|
|
/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
|
|
/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
|
|
/// bitfield width if there is one and 'InitExpr' specifies the initializer if
|
|
/// any.
|
|
Decl *
|
|
Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
ExprTy *BW, const VirtSpecifiers &VS,
|
|
ExprTy *InitExpr, bool IsDefinition,
|
|
bool Deleted) {
|
|
const DeclSpec &DS = D.getDeclSpec();
|
|
DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
|
|
DeclarationName Name = NameInfo.getName();
|
|
SourceLocation Loc = NameInfo.getLoc();
|
|
|
|
// For anonymous bitfields, the location should point to the type.
|
|
if (Loc.isInvalid())
|
|
Loc = D.getSourceRange().getBegin();
|
|
|
|
Expr *BitWidth = static_cast<Expr*>(BW);
|
|
Expr *Init = static_cast<Expr*>(InitExpr);
|
|
|
|
assert(isa<CXXRecordDecl>(CurContext));
|
|
assert(!DS.isFriendSpecified());
|
|
|
|
bool isFunc = false;
|
|
if (D.isFunctionDeclarator())
|
|
isFunc = true;
|
|
else if (D.getNumTypeObjects() == 0 &&
|
|
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
|
|
QualType TDType = GetTypeFromParser(DS.getRepAsType());
|
|
isFunc = TDType->isFunctionType();
|
|
}
|
|
|
|
// C++ 9.2p6: A member shall not be declared to have automatic storage
|
|
// duration (auto, register) or with the extern storage-class-specifier.
|
|
// C++ 7.1.1p8: The mutable specifier can be applied only to names of class
|
|
// data members and cannot be applied to names declared const or static,
|
|
// and cannot be applied to reference members.
|
|
switch (DS.getStorageClassSpec()) {
|
|
case DeclSpec::SCS_unspecified:
|
|
case DeclSpec::SCS_typedef:
|
|
case DeclSpec::SCS_static:
|
|
// FALL THROUGH.
|
|
break;
|
|
case DeclSpec::SCS_mutable:
|
|
if (isFunc) {
|
|
if (DS.getStorageClassSpecLoc().isValid())
|
|
Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
|
|
else
|
|
Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
|
|
|
|
// FIXME: It would be nicer if the keyword was ignored only for this
|
|
// declarator. Otherwise we could get follow-up errors.
|
|
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
|
}
|
|
break;
|
|
default:
|
|
if (DS.getStorageClassSpecLoc().isValid())
|
|
Diag(DS.getStorageClassSpecLoc(),
|
|
diag::err_storageclass_invalid_for_member);
|
|
else
|
|
Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
|
|
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
|
}
|
|
|
|
bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
|
|
DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
|
|
!isFunc);
|
|
|
|
Decl *Member;
|
|
if (isInstField) {
|
|
CXXScopeSpec &SS = D.getCXXScopeSpec();
|
|
|
|
|
|
if (SS.isSet() && !SS.isInvalid()) {
|
|
// The user provided a superfluous scope specifier inside a class
|
|
// definition:
|
|
//
|
|
// class X {
|
|
// int X::member;
|
|
// };
|
|
DeclContext *DC = 0;
|
|
if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
|
|
Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
|
|
<< Name << FixItHint::CreateRemoval(SS.getRange());
|
|
else
|
|
Diag(D.getIdentifierLoc(), diag::err_member_qualification)
|
|
<< Name << SS.getRange();
|
|
|
|
SS.clear();
|
|
}
|
|
|
|
// FIXME: Check for template parameters!
|
|
// FIXME: Check that the name is an identifier!
|
|
Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
|
|
AS);
|
|
assert(Member && "HandleField never returns null");
|
|
} else {
|
|
Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
|
|
if (!Member) {
|
|
return 0;
|
|
}
|
|
|
|
// Non-instance-fields can't have a bitfield.
|
|
if (BitWidth) {
|
|
if (Member->isInvalidDecl()) {
|
|
// don't emit another diagnostic.
|
|
} else if (isa<VarDecl>(Member)) {
|
|
// C++ 9.6p3: A bit-field shall not be a static member.
|
|
// "static member 'A' cannot be a bit-field"
|
|
Diag(Loc, diag::err_static_not_bitfield)
|
|
<< Name << BitWidth->getSourceRange();
|
|
} else if (isa<TypedefDecl>(Member)) {
|
|
// "typedef member 'x' cannot be a bit-field"
|
|
Diag(Loc, diag::err_typedef_not_bitfield)
|
|
<< Name << BitWidth->getSourceRange();
|
|
} else {
|
|
// A function typedef ("typedef int f(); f a;").
|
|
// C++ 9.6p3: A bit-field shall have integral or enumeration type.
|
|
Diag(Loc, diag::err_not_integral_type_bitfield)
|
|
<< Name << cast<ValueDecl>(Member)->getType()
|
|
<< BitWidth->getSourceRange();
|
|
}
|
|
|
|
BitWidth = 0;
|
|
Member->setInvalidDecl();
|
|
}
|
|
|
|
Member->setAccess(AS);
|
|
|
|
// If we have declared a member function template, set the access of the
|
|
// templated declaration as well.
|
|
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
|
|
FunTmpl->getTemplatedDecl()->setAccess(AS);
|
|
}
|
|
|
|
if (VS.isOverrideSpecified()) {
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
|
|
if (!MD || !MD->isVirtual()) {
|
|
Diag(Member->getLocStart(),
|
|
diag::override_keyword_only_allowed_on_virtual_member_functions)
|
|
<< "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
|
|
} else
|
|
MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
|
|
}
|
|
if (VS.isFinalSpecified()) {
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
|
|
if (!MD || !MD->isVirtual()) {
|
|
Diag(Member->getLocStart(),
|
|
diag::override_keyword_only_allowed_on_virtual_member_functions)
|
|
<< "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
|
|
} else
|
|
MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
|
|
}
|
|
|
|
if (VS.getLastLocation().isValid()) {
|
|
// Update the end location of a method that has a virt-specifiers.
|
|
if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
|
|
MD->setRangeEnd(VS.getLastLocation());
|
|
}
|
|
|
|
CheckOverrideControl(Member);
|
|
|
|
assert((Name || isInstField) && "No identifier for non-field ?");
|
|
|
|
if (Init)
|
|
AddInitializerToDecl(Member, Init, false,
|
|
DS.getTypeSpecType() == DeclSpec::TST_auto);
|
|
if (Deleted) // FIXME: Source location is not very good.
|
|
SetDeclDeleted(Member, D.getSourceRange().getBegin());
|
|
|
|
FinalizeDeclaration(Member);
|
|
|
|
if (isInstField)
|
|
FieldCollector->Add(cast<FieldDecl>(Member));
|
|
return Member;
|
|
}
|
|
|
|
/// \brief Find the direct and/or virtual base specifiers that
|
|
/// correspond to the given base type, for use in base initialization
|
|
/// within a constructor.
|
|
static bool FindBaseInitializer(Sema &SemaRef,
|
|
CXXRecordDecl *ClassDecl,
|
|
QualType BaseType,
|
|
const CXXBaseSpecifier *&DirectBaseSpec,
|
|
const CXXBaseSpecifier *&VirtualBaseSpec) {
|
|
// First, check for a direct base class.
|
|
DirectBaseSpec = 0;
|
|
for (CXXRecordDecl::base_class_const_iterator Base
|
|
= ClassDecl->bases_begin();
|
|
Base != ClassDecl->bases_end(); ++Base) {
|
|
if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
|
|
// We found a direct base of this type. That's what we're
|
|
// initializing.
|
|
DirectBaseSpec = &*Base;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check for a virtual base class.
|
|
// FIXME: We might be able to short-circuit this if we know in advance that
|
|
// there are no virtual bases.
|
|
VirtualBaseSpec = 0;
|
|
if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
|
|
// We haven't found a base yet; search the class hierarchy for a
|
|
// virtual base class.
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
|
/*DetectVirtual=*/false);
|
|
if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
|
|
BaseType, Paths)) {
|
|
for (CXXBasePaths::paths_iterator Path = Paths.begin();
|
|
Path != Paths.end(); ++Path) {
|
|
if (Path->back().Base->isVirtual()) {
|
|
VirtualBaseSpec = Path->back().Base;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return DirectBaseSpec || VirtualBaseSpec;
|
|
}
|
|
|
|
/// ActOnMemInitializer - Handle a C++ member initializer.
|
|
MemInitResult
|
|
Sema::ActOnMemInitializer(Decl *ConstructorD,
|
|
Scope *S,
|
|
CXXScopeSpec &SS,
|
|
IdentifierInfo *MemberOrBase,
|
|
ParsedType TemplateTypeTy,
|
|
SourceLocation IdLoc,
|
|
SourceLocation LParenLoc,
|
|
ExprTy **Args, unsigned NumArgs,
|
|
SourceLocation RParenLoc,
|
|
SourceLocation EllipsisLoc) {
|
|
if (!ConstructorD)
|
|
return true;
|
|
|
|
AdjustDeclIfTemplate(ConstructorD);
|
|
|
|
CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(ConstructorD);
|
|
if (!Constructor) {
|
|
// The user wrote a constructor initializer on a function that is
|
|
// not a C++ constructor. Ignore the error for now, because we may
|
|
// have more member initializers coming; we'll diagnose it just
|
|
// once in ActOnMemInitializers.
|
|
return true;
|
|
}
|
|
|
|
CXXRecordDecl *ClassDecl = Constructor->getParent();
|
|
|
|
// C++ [class.base.init]p2:
|
|
// Names in a mem-initializer-id are looked up in the scope of the
|
|
// constructor's class and, if not found in that scope, are looked
|
|
// up in the scope containing the constructor's definition.
|
|
// [Note: if the constructor's class contains a member with the
|
|
// same name as a direct or virtual base class of the class, a
|
|
// mem-initializer-id naming the member or base class and composed
|
|
// of a single identifier refers to the class member. A
|
|
// mem-initializer-id for the hidden base class may be specified
|
|
// using a qualified name. ]
|
|
if (!SS.getScopeRep() && !TemplateTypeTy) {
|
|
// Look for a member, first.
|
|
FieldDecl *Member = 0;
|
|
DeclContext::lookup_result Result
|
|
= ClassDecl->lookup(MemberOrBase);
|
|
if (Result.first != Result.second) {
|
|
Member = dyn_cast<FieldDecl>(*Result.first);
|
|
|
|
if (Member) {
|
|
if (EllipsisLoc.isValid())
|
|
Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
|
|
<< MemberOrBase << SourceRange(IdLoc, RParenLoc);
|
|
|
|
return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
|
|
LParenLoc, RParenLoc);
|
|
}
|
|
|
|
// Handle anonymous union case.
|
|
if (IndirectFieldDecl* IndirectField
|
|
= dyn_cast<IndirectFieldDecl>(*Result.first)) {
|
|
if (EllipsisLoc.isValid())
|
|
Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
|
|
<< MemberOrBase << SourceRange(IdLoc, RParenLoc);
|
|
|
|
return BuildMemberInitializer(IndirectField, (Expr**)Args,
|
|
NumArgs, IdLoc,
|
|
LParenLoc, RParenLoc);
|
|
}
|
|
}
|
|
}
|
|
// It didn't name a member, so see if it names a class.
|
|
QualType BaseType;
|
|
TypeSourceInfo *TInfo = 0;
|
|
|
|
if (TemplateTypeTy) {
|
|
BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
|
|
} else {
|
|
LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
|
|
LookupParsedName(R, S, &SS);
|
|
|
|
TypeDecl *TyD = R.getAsSingle<TypeDecl>();
|
|
if (!TyD) {
|
|
if (R.isAmbiguous()) return true;
|
|
|
|
// We don't want access-control diagnostics here.
|
|
R.suppressDiagnostics();
|
|
|
|
if (SS.isSet() && isDependentScopeSpecifier(SS)) {
|
|
bool NotUnknownSpecialization = false;
|
|
DeclContext *DC = computeDeclContext(SS, false);
|
|
if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
|
|
NotUnknownSpecialization = !Record->hasAnyDependentBases();
|
|
|
|
if (!NotUnknownSpecialization) {
|
|
// When the scope specifier can refer to a member of an unknown
|
|
// specialization, we take it as a type name.
|
|
BaseType = CheckTypenameType(ETK_None, SourceLocation(),
|
|
SS.getWithLocInContext(Context),
|
|
*MemberOrBase, IdLoc);
|
|
if (BaseType.isNull())
|
|
return true;
|
|
|
|
R.clear();
|
|
R.setLookupName(MemberOrBase);
|
|
}
|
|
}
|
|
|
|
// If no results were found, try to correct typos.
|
|
if (R.empty() && BaseType.isNull() &&
|
|
CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
|
|
R.isSingleResult()) {
|
|
if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
|
|
if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
|
|
// We have found a non-static data member with a similar
|
|
// name to what was typed; complain and initialize that
|
|
// member.
|
|
Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
|
|
<< MemberOrBase << true << R.getLookupName()
|
|
<< FixItHint::CreateReplacement(R.getNameLoc(),
|
|
R.getLookupName().getAsString());
|
|
Diag(Member->getLocation(), diag::note_previous_decl)
|
|
<< Member->getDeclName();
|
|
|
|
return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
|
|
LParenLoc, RParenLoc);
|
|
}
|
|
} else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
|
|
const CXXBaseSpecifier *DirectBaseSpec;
|
|
const CXXBaseSpecifier *VirtualBaseSpec;
|
|
if (FindBaseInitializer(*this, ClassDecl,
|
|
Context.getTypeDeclType(Type),
|
|
DirectBaseSpec, VirtualBaseSpec)) {
|
|
// We have found a direct or virtual base class with a
|
|
// similar name to what was typed; complain and initialize
|
|
// that base class.
|
|
Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
|
|
<< MemberOrBase << false << R.getLookupName()
|
|
<< FixItHint::CreateReplacement(R.getNameLoc(),
|
|
R.getLookupName().getAsString());
|
|
|
|
const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
|
|
: VirtualBaseSpec;
|
|
Diag(BaseSpec->getSourceRange().getBegin(),
|
|
diag::note_base_class_specified_here)
|
|
<< BaseSpec->getType()
|
|
<< BaseSpec->getSourceRange();
|
|
|
|
TyD = Type;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!TyD && BaseType.isNull()) {
|
|
Diag(IdLoc, diag::err_mem_init_not_member_or_class)
|
|
<< MemberOrBase << SourceRange(IdLoc, RParenLoc);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (BaseType.isNull()) {
|
|
BaseType = Context.getTypeDeclType(TyD);
|
|
if (SS.isSet()) {
|
|
NestedNameSpecifier *Qualifier =
|
|
static_cast<NestedNameSpecifier*>(SS.getScopeRep());
|
|
|
|
// FIXME: preserve source range information
|
|
BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!TInfo)
|
|
TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
|
|
|
|
return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
|
|
LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
|
|
}
|
|
|
|
/// Checks an initializer expression for use of uninitialized fields, such as
|
|
/// containing the field that is being initialized. Returns true if there is an
|
|
/// uninitialized field was used an updates the SourceLocation parameter; false
|
|
/// otherwise.
|
|
static bool InitExprContainsUninitializedFields(const Stmt *S,
|
|
const ValueDecl *LhsField,
|
|
SourceLocation *L) {
|
|
assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
|
|
|
|
if (isa<CallExpr>(S)) {
|
|
// Do not descend into function calls or constructors, as the use
|
|
// of an uninitialized field may be valid. One would have to inspect
|
|
// the contents of the function/ctor to determine if it is safe or not.
|
|
// i.e. Pass-by-value is never safe, but pass-by-reference and pointers
|
|
// may be safe, depending on what the function/ctor does.
|
|
return false;
|
|
}
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
|
|
const NamedDecl *RhsField = ME->getMemberDecl();
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
|
|
// The member expression points to a static data member.
|
|
assert(VD->isStaticDataMember() &&
|
|
"Member points to non-static data member!");
|
|
(void)VD;
|
|
return false;
|
|
}
|
|
|
|
if (isa<EnumConstantDecl>(RhsField)) {
|
|
// The member expression points to an enum.
|
|
return false;
|
|
}
|
|
|
|
if (RhsField == LhsField) {
|
|
// Initializing a field with itself. Throw a warning.
|
|
// But wait; there are exceptions!
|
|
// Exception #1: The field may not belong to this record.
|
|
// e.g. Foo(const Foo& rhs) : A(rhs.A) {}
|
|
const Expr *base = ME->getBase();
|
|
if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
|
|
// Even though the field matches, it does not belong to this record.
|
|
return false;
|
|
}
|
|
// None of the exceptions triggered; return true to indicate an
|
|
// uninitialized field was used.
|
|
*L = ME->getMemberLoc();
|
|
return true;
|
|
}
|
|
} else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
|
|
// sizeof/alignof doesn't reference contents, do not warn.
|
|
return false;
|
|
} else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
|
|
// address-of doesn't reference contents (the pointer may be dereferenced
|
|
// in the same expression but it would be rare; and weird).
|
|
if (UOE->getOpcode() == UO_AddrOf)
|
|
return false;
|
|
}
|
|
for (Stmt::const_child_range it = S->children(); it; ++it) {
|
|
if (!*it) {
|
|
// An expression such as 'member(arg ?: "")' may trigger this.
|
|
continue;
|
|
}
|
|
if (InitExprContainsUninitializedFields(*it, LhsField, L))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
MemInitResult
|
|
Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
|
|
unsigned NumArgs, SourceLocation IdLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation RParenLoc) {
|
|
FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
|
|
IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
|
|
assert((DirectMember || IndirectMember) &&
|
|
"Member must be a FieldDecl or IndirectFieldDecl");
|
|
|
|
if (Member->isInvalidDecl())
|
|
return true;
|
|
|
|
// Diagnose value-uses of fields to initialize themselves, e.g.
|
|
// foo(foo)
|
|
// where foo is not also a parameter to the constructor.
|
|
// TODO: implement -Wuninitialized and fold this into that framework.
|
|
for (unsigned i = 0; i < NumArgs; ++i) {
|
|
SourceLocation L;
|
|
if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
|
|
// FIXME: Return true in the case when other fields are used before being
|
|
// uninitialized. For example, let this field be the i'th field. When
|
|
// initializing the i'th field, throw a warning if any of the >= i'th
|
|
// fields are used, as they are not yet initialized.
|
|
// Right now we are only handling the case where the i'th field uses
|
|
// itself in its initializer.
|
|
Diag(L, diag::warn_field_is_uninit);
|
|
}
|
|
}
|
|
|
|
bool HasDependentArg = false;
|
|
for (unsigned i = 0; i < NumArgs; i++)
|
|
HasDependentArg |= Args[i]->isTypeDependent();
|
|
|
|
Expr *Init;
|
|
if (Member->getType()->isDependentType() || HasDependentArg) {
|
|
// Can't check initialization for a member of dependent type or when
|
|
// any of the arguments are type-dependent expressions.
|
|
Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
|
|
RParenLoc);
|
|
|
|
// Erase any temporaries within this evaluation context; we're not
|
|
// going to track them in the AST, since we'll be rebuilding the
|
|
// ASTs during template instantiation.
|
|
ExprTemporaries.erase(
|
|
ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
|
|
ExprTemporaries.end());
|
|
} else {
|
|
// Initialize the member.
|
|
InitializedEntity MemberEntity =
|
|
DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
|
|
: InitializedEntity::InitializeMember(IndirectMember, 0);
|
|
InitializationKind Kind =
|
|
InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
|
|
|
|
InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
|
|
|
|
ExprResult MemberInit =
|
|
InitSeq.Perform(*this, MemberEntity, Kind,
|
|
MultiExprArg(*this, Args, NumArgs), 0);
|
|
if (MemberInit.isInvalid())
|
|
return true;
|
|
|
|
CheckImplicitConversions(MemberInit.get(), LParenLoc);
|
|
|
|
// C++0x [class.base.init]p7:
|
|
// The initialization of each base and member constitutes a
|
|
// full-expression.
|
|
MemberInit = MaybeCreateExprWithCleanups(MemberInit);
|
|
if (MemberInit.isInvalid())
|
|
return true;
|
|
|
|
// If we are in a dependent context, template instantiation will
|
|
// perform this type-checking again. Just save the arguments that we
|
|
// received in a ParenListExpr.
|
|
// FIXME: This isn't quite ideal, since our ASTs don't capture all
|
|
// of the information that we have about the member
|
|
// initializer. However, deconstructing the ASTs is a dicey process,
|
|
// and this approach is far more likely to get the corner cases right.
|
|
if (CurContext->isDependentContext())
|
|
Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
|
|
RParenLoc);
|
|
else
|
|
Init = MemberInit.get();
|
|
}
|
|
|
|
if (DirectMember) {
|
|
return new (Context) CXXCtorInitializer(Context, DirectMember,
|
|
IdLoc, LParenLoc, Init,
|
|
RParenLoc);
|
|
} else {
|
|
return new (Context) CXXCtorInitializer(Context, IndirectMember,
|
|
IdLoc, LParenLoc, Init,
|
|
RParenLoc);
|
|
}
|
|
}
|
|
|
|
MemInitResult
|
|
Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation NameLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation RParenLoc,
|
|
CXXRecordDecl *ClassDecl) {
|
|
SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
|
|
if (!LangOpts.CPlusPlus0x)
|
|
return Diag(Loc, diag::err_delegation_0x_only)
|
|
<< TInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
// Initialize the object.
|
|
InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
|
|
QualType(ClassDecl->getTypeForDecl(), 0));
|
|
InitializationKind Kind =
|
|
InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
|
|
|
|
InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
|
|
|
|
ExprResult DelegationInit =
|
|
InitSeq.Perform(*this, DelegationEntity, Kind,
|
|
MultiExprArg(*this, Args, NumArgs), 0);
|
|
if (DelegationInit.isInvalid())
|
|
return true;
|
|
|
|
CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
|
|
CXXConstructorDecl *Constructor = ConExpr->getConstructor();
|
|
assert(Constructor && "Delegating constructor with no target?");
|
|
|
|
CheckImplicitConversions(DelegationInit.get(), LParenLoc);
|
|
|
|
// C++0x [class.base.init]p7:
|
|
// The initialization of each base and member constitutes a
|
|
// full-expression.
|
|
DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
|
|
if (DelegationInit.isInvalid())
|
|
return true;
|
|
|
|
// If we are in a dependent context, template instantiation will
|
|
// perform this type-checking again. Just save the arguments that we
|
|
// received in a ParenListExpr.
|
|
// FIXME: This isn't quite ideal, since our ASTs don't capture all
|
|
// of the information that we have about the base
|
|
// initializer. However, deconstructing the ASTs is a dicey process,
|
|
// and this approach is far more likely to get the corner cases right.
|
|
if (CurContext->isDependentContext()) {
|
|
ExprResult Init
|
|
= Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
|
|
NumArgs, RParenLoc));
|
|
return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
|
|
Constructor, Init.takeAs<Expr>(),
|
|
RParenLoc);
|
|
}
|
|
|
|
return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
|
|
DelegationInit.takeAs<Expr>(),
|
|
RParenLoc);
|
|
}
|
|
|
|
MemInitResult
|
|
Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation LParenLoc, SourceLocation RParenLoc,
|
|
CXXRecordDecl *ClassDecl,
|
|
SourceLocation EllipsisLoc) {
|
|
bool HasDependentArg = false;
|
|
for (unsigned i = 0; i < NumArgs; i++)
|
|
HasDependentArg |= Args[i]->isTypeDependent();
|
|
|
|
SourceLocation BaseLoc
|
|
= BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
|
|
|
|
if (!BaseType->isDependentType() && !BaseType->isRecordType())
|
|
return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
|
|
<< BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
// C++ [class.base.init]p2:
|
|
// [...] Unless the mem-initializer-id names a nonstatic data
|
|
// member of the constructor's class or a direct or virtual base
|
|
// of that class, the mem-initializer is ill-formed. A
|
|
// mem-initializer-list can initialize a base class using any
|
|
// name that denotes that base class type.
|
|
bool Dependent = BaseType->isDependentType() || HasDependentArg;
|
|
|
|
if (EllipsisLoc.isValid()) {
|
|
// This is a pack expansion.
|
|
if (!BaseType->containsUnexpandedParameterPack()) {
|
|
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
|
|
<< SourceRange(BaseLoc, RParenLoc);
|
|
|
|
EllipsisLoc = SourceLocation();
|
|
}
|
|
} else {
|
|
// Check for any unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
|
|
return true;
|
|
|
|
for (unsigned I = 0; I != NumArgs; ++I)
|
|
if (DiagnoseUnexpandedParameterPack(Args[I]))
|
|
return true;
|
|
}
|
|
|
|
// Check for direct and virtual base classes.
|
|
const CXXBaseSpecifier *DirectBaseSpec = 0;
|
|
const CXXBaseSpecifier *VirtualBaseSpec = 0;
|
|
if (!Dependent) {
|
|
if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
|
|
BaseType))
|
|
return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
|
|
LParenLoc, RParenLoc, ClassDecl);
|
|
|
|
FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
|
|
VirtualBaseSpec);
|
|
|
|
// C++ [base.class.init]p2:
|
|
// Unless the mem-initializer-id names a nonstatic data member of the
|
|
// constructor's class or a direct or virtual base of that class, the
|
|
// mem-initializer is ill-formed.
|
|
if (!DirectBaseSpec && !VirtualBaseSpec) {
|
|
// If the class has any dependent bases, then it's possible that
|
|
// one of those types will resolve to the same type as
|
|
// BaseType. Therefore, just treat this as a dependent base
|
|
// class initialization. FIXME: Should we try to check the
|
|
// initialization anyway? It seems odd.
|
|
if (ClassDecl->hasAnyDependentBases())
|
|
Dependent = true;
|
|
else
|
|
return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
|
|
<< BaseType << Context.getTypeDeclType(ClassDecl)
|
|
<< BaseTInfo->getTypeLoc().getLocalSourceRange();
|
|
}
|
|
}
|
|
|
|
if (Dependent) {
|
|
// Can't check initialization for a base of dependent type or when
|
|
// any of the arguments are type-dependent expressions.
|
|
ExprResult BaseInit
|
|
= Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
|
|
RParenLoc));
|
|
|
|
// Erase any temporaries within this evaluation context; we're not
|
|
// going to track them in the AST, since we'll be rebuilding the
|
|
// ASTs during template instantiation.
|
|
ExprTemporaries.erase(
|
|
ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
|
|
ExprTemporaries.end());
|
|
|
|
return new (Context) CXXCtorInitializer(Context, BaseTInfo,
|
|
/*IsVirtual=*/false,
|
|
LParenLoc,
|
|
BaseInit.takeAs<Expr>(),
|
|
RParenLoc,
|
|
EllipsisLoc);
|
|
}
|
|
|
|
// C++ [base.class.init]p2:
|
|
// If a mem-initializer-id is ambiguous because it designates both
|
|
// a direct non-virtual base class and an inherited virtual base
|
|
// class, the mem-initializer is ill-formed.
|
|
if (DirectBaseSpec && VirtualBaseSpec)
|
|
return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
|
|
<< BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
CXXBaseSpecifier *BaseSpec
|
|
= const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
|
|
if (!BaseSpec)
|
|
BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
|
|
|
|
// Initialize the base.
|
|
InitializedEntity BaseEntity =
|
|
InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
|
|
InitializationKind Kind =
|
|
InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
|
|
|
|
InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
|
|
|
|
ExprResult BaseInit =
|
|
InitSeq.Perform(*this, BaseEntity, Kind,
|
|
MultiExprArg(*this, Args, NumArgs), 0);
|
|
if (BaseInit.isInvalid())
|
|
return true;
|
|
|
|
CheckImplicitConversions(BaseInit.get(), LParenLoc);
|
|
|
|
// C++0x [class.base.init]p7:
|
|
// The initialization of each base and member constitutes a
|
|
// full-expression.
|
|
BaseInit = MaybeCreateExprWithCleanups(BaseInit);
|
|
if (BaseInit.isInvalid())
|
|
return true;
|
|
|
|
// If we are in a dependent context, template instantiation will
|
|
// perform this type-checking again. Just save the arguments that we
|
|
// received in a ParenListExpr.
|
|
// FIXME: This isn't quite ideal, since our ASTs don't capture all
|
|
// of the information that we have about the base
|
|
// initializer. However, deconstructing the ASTs is a dicey process,
|
|
// and this approach is far more likely to get the corner cases right.
|
|
if (CurContext->isDependentContext()) {
|
|
ExprResult Init
|
|
= Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
|
|
RParenLoc));
|
|
return new (Context) CXXCtorInitializer(Context, BaseTInfo,
|
|
BaseSpec->isVirtual(),
|
|
LParenLoc,
|
|
Init.takeAs<Expr>(),
|
|
RParenLoc,
|
|
EllipsisLoc);
|
|
}
|
|
|
|
return new (Context) CXXCtorInitializer(Context, BaseTInfo,
|
|
BaseSpec->isVirtual(),
|
|
LParenLoc,
|
|
BaseInit.takeAs<Expr>(),
|
|
RParenLoc,
|
|
EllipsisLoc);
|
|
}
|
|
|
|
/// ImplicitInitializerKind - How an implicit base or member initializer should
|
|
/// initialize its base or member.
|
|
enum ImplicitInitializerKind {
|
|
IIK_Default,
|
|
IIK_Copy,
|
|
IIK_Move
|
|
};
|
|
|
|
static bool
|
|
BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
|
|
ImplicitInitializerKind ImplicitInitKind,
|
|
CXXBaseSpecifier *BaseSpec,
|
|
bool IsInheritedVirtualBase,
|
|
CXXCtorInitializer *&CXXBaseInit) {
|
|
InitializedEntity InitEntity
|
|
= InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
|
|
IsInheritedVirtualBase);
|
|
|
|
ExprResult BaseInit;
|
|
|
|
switch (ImplicitInitKind) {
|
|
case IIK_Default: {
|
|
InitializationKind InitKind
|
|
= InitializationKind::CreateDefault(Constructor->getLocation());
|
|
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
|
|
BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
|
|
MultiExprArg(SemaRef, 0, 0));
|
|
break;
|
|
}
|
|
|
|
case IIK_Copy: {
|
|
ParmVarDecl *Param = Constructor->getParamDecl(0);
|
|
QualType ParamType = Param->getType().getNonReferenceType();
|
|
|
|
Expr *CopyCtorArg =
|
|
DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
|
|
Constructor->getLocation(), ParamType,
|
|
VK_LValue, 0);
|
|
|
|
// Cast to the base class to avoid ambiguities.
|
|
QualType ArgTy =
|
|
SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
|
|
ParamType.getQualifiers());
|
|
|
|
CXXCastPath BasePath;
|
|
BasePath.push_back(BaseSpec);
|
|
CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
|
|
CK_UncheckedDerivedToBase,
|
|
VK_LValue, &BasePath).take();
|
|
|
|
InitializationKind InitKind
|
|
= InitializationKind::CreateDirect(Constructor->getLocation(),
|
|
SourceLocation(), SourceLocation());
|
|
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
|
|
&CopyCtorArg, 1);
|
|
BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
|
|
MultiExprArg(&CopyCtorArg, 1));
|
|
break;
|
|
}
|
|
|
|
case IIK_Move:
|
|
assert(false && "Unhandled initializer kind!");
|
|
}
|
|
|
|
BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
|
|
if (BaseInit.isInvalid())
|
|
return true;
|
|
|
|
CXXBaseInit =
|
|
new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
|
|
SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
|
|
SourceLocation()),
|
|
BaseSpec->isVirtual(),
|
|
SourceLocation(),
|
|
BaseInit.takeAs<Expr>(),
|
|
SourceLocation(),
|
|
SourceLocation());
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
|
|
ImplicitInitializerKind ImplicitInitKind,
|
|
FieldDecl *Field,
|
|
CXXCtorInitializer *&CXXMemberInit) {
|
|
if (Field->isInvalidDecl())
|
|
return true;
|
|
|
|
SourceLocation Loc = Constructor->getLocation();
|
|
|
|
if (ImplicitInitKind == IIK_Copy) {
|
|
ParmVarDecl *Param = Constructor->getParamDecl(0);
|
|
QualType ParamType = Param->getType().getNonReferenceType();
|
|
|
|
Expr *MemberExprBase =
|
|
DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
|
|
Loc, ParamType, VK_LValue, 0);
|
|
|
|
// Build a reference to this field within the parameter.
|
|
CXXScopeSpec SS;
|
|
LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
|
|
Sema::LookupMemberName);
|
|
MemberLookup.addDecl(Field, AS_public);
|
|
MemberLookup.resolveKind();
|
|
ExprResult CopyCtorArg
|
|
= SemaRef.BuildMemberReferenceExpr(MemberExprBase,
|
|
ParamType, Loc,
|
|
/*IsArrow=*/false,
|
|
SS,
|
|
/*FirstQualifierInScope=*/0,
|
|
MemberLookup,
|
|
/*TemplateArgs=*/0);
|
|
if (CopyCtorArg.isInvalid())
|
|
return true;
|
|
|
|
// When the field we are copying is an array, create index variables for
|
|
// each dimension of the array. We use these index variables to subscript
|
|
// the source array, and other clients (e.g., CodeGen) will perform the
|
|
// necessary iteration with these index variables.
|
|
llvm::SmallVector<VarDecl *, 4> IndexVariables;
|
|
QualType BaseType = Field->getType();
|
|
QualType SizeType = SemaRef.Context.getSizeType();
|
|
while (const ConstantArrayType *Array
|
|
= SemaRef.Context.getAsConstantArrayType(BaseType)) {
|
|
// Create the iteration variable for this array index.
|
|
IdentifierInfo *IterationVarName = 0;
|
|
{
|
|
llvm::SmallString<8> Str;
|
|
llvm::raw_svector_ostream OS(Str);
|
|
OS << "__i" << IndexVariables.size();
|
|
IterationVarName = &SemaRef.Context.Idents.get(OS.str());
|
|
}
|
|
VarDecl *IterationVar
|
|
= VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
|
|
IterationVarName, SizeType,
|
|
SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
|
|
SC_None, SC_None);
|
|
IndexVariables.push_back(IterationVar);
|
|
|
|
// Create a reference to the iteration variable.
|
|
ExprResult IterationVarRef
|
|
= SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
|
|
assert(!IterationVarRef.isInvalid() &&
|
|
"Reference to invented variable cannot fail!");
|
|
|
|
// Subscript the array with this iteration variable.
|
|
CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
|
|
Loc,
|
|
IterationVarRef.take(),
|
|
Loc);
|
|
if (CopyCtorArg.isInvalid())
|
|
return true;
|
|
|
|
BaseType = Array->getElementType();
|
|
}
|
|
|
|
// Construct the entity that we will be initializing. For an array, this
|
|
// will be first element in the array, which may require several levels
|
|
// of array-subscript entities.
|
|
llvm::SmallVector<InitializedEntity, 4> Entities;
|
|
Entities.reserve(1 + IndexVariables.size());
|
|
Entities.push_back(InitializedEntity::InitializeMember(Field));
|
|
for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
|
|
Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
|
|
0,
|
|
Entities.back()));
|
|
|
|
// Direct-initialize to use the copy constructor.
|
|
InitializationKind InitKind =
|
|
InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
|
|
|
|
Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
|
|
InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
|
|
&CopyCtorArgE, 1);
|
|
|
|
ExprResult MemberInit
|
|
= InitSeq.Perform(SemaRef, Entities.back(), InitKind,
|
|
MultiExprArg(&CopyCtorArgE, 1));
|
|
MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
|
|
if (MemberInit.isInvalid())
|
|
return true;
|
|
|
|
CXXMemberInit
|
|
= CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
|
|
MemberInit.takeAs<Expr>(), Loc,
|
|
IndexVariables.data(),
|
|
IndexVariables.size());
|
|
return false;
|
|
}
|
|
|
|
assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
|
|
|
|
QualType FieldBaseElementType =
|
|
SemaRef.Context.getBaseElementType(Field->getType());
|
|
|
|
if (FieldBaseElementType->isRecordType()) {
|
|
InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
|
|
InitializationKind InitKind =
|
|
InitializationKind::CreateDefault(Loc);
|
|
|
|
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
|
|
ExprResult MemberInit =
|
|
InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
|
|
|
|
MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
|
|
if (MemberInit.isInvalid())
|
|
return true;
|
|
|
|
CXXMemberInit =
|
|
new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
|
|
Field, Loc, Loc,
|
|
MemberInit.get(),
|
|
Loc);
|
|
return false;
|
|
}
|
|
|
|
if (FieldBaseElementType->isReferenceType()) {
|
|
SemaRef.Diag(Constructor->getLocation(),
|
|
diag::err_uninitialized_member_in_ctor)
|
|
<< (int)Constructor->isImplicit()
|
|
<< SemaRef.Context.getTagDeclType(Constructor->getParent())
|
|
<< 0 << Field->getDeclName();
|
|
SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
|
|
return true;
|
|
}
|
|
|
|
if (FieldBaseElementType.isConstQualified()) {
|
|
SemaRef.Diag(Constructor->getLocation(),
|
|
diag::err_uninitialized_member_in_ctor)
|
|
<< (int)Constructor->isImplicit()
|
|
<< SemaRef.Context.getTagDeclType(Constructor->getParent())
|
|
<< 1 << Field->getDeclName();
|
|
SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
|
|
return true;
|
|
}
|
|
|
|
// Nothing to initialize.
|
|
CXXMemberInit = 0;
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
struct BaseAndFieldInfo {
|
|
Sema &S;
|
|
CXXConstructorDecl *Ctor;
|
|
bool AnyErrorsInInits;
|
|
ImplicitInitializerKind IIK;
|
|
llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
|
|
llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
|
|
|
|
BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
|
|
: S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
|
|
// FIXME: Handle implicit move constructors.
|
|
if (Ctor->isImplicit() && Ctor->isCopyConstructor())
|
|
IIK = IIK_Copy;
|
|
else
|
|
IIK = IIK_Default;
|
|
}
|
|
};
|
|
}
|
|
|
|
static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
|
|
FieldDecl *Top, FieldDecl *Field) {
|
|
|
|
// Overwhelmingly common case: we have a direct initializer for this field.
|
|
if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
|
|
Info.AllToInit.push_back(Init);
|
|
return false;
|
|
}
|
|
|
|
if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
|
|
const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
|
|
assert(FieldClassType && "anonymous struct/union without record type");
|
|
CXXRecordDecl *FieldClassDecl
|
|
= cast<CXXRecordDecl>(FieldClassType->getDecl());
|
|
|
|
// Even though union members never have non-trivial default
|
|
// constructions in C++03, we still build member initializers for aggregate
|
|
// record types which can be union members, and C++0x allows non-trivial
|
|
// default constructors for union members, so we ensure that only one
|
|
// member is initialized for these.
|
|
if (FieldClassDecl->isUnion()) {
|
|
// First check for an explicit initializer for one field.
|
|
for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
|
|
EA = FieldClassDecl->field_end(); FA != EA; FA++) {
|
|
if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
|
|
Info.AllToInit.push_back(Init);
|
|
|
|
// Once we've initialized a field of an anonymous union, the union
|
|
// field in the class is also initialized, so exit immediately.
|
|
return false;
|
|
} else if ((*FA)->isAnonymousStructOrUnion()) {
|
|
if (CollectFieldInitializer(Info, Top, *FA))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Fallthrough and construct a default initializer for the union as
|
|
// a whole, which can call its default constructor if such a thing exists
|
|
// (C++0x perhaps). FIXME: It's not clear that this is the correct
|
|
// behavior going forward with C++0x, when anonymous unions there are
|
|
// finalized, we should revisit this.
|
|
} else {
|
|
// For structs, we simply descend through to initialize all members where
|
|
// necessary.
|
|
for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
|
|
EA = FieldClassDecl->field_end(); FA != EA; FA++) {
|
|
if (CollectFieldInitializer(Info, Top, *FA))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Don't try to build an implicit initializer if there were semantic
|
|
// errors in any of the initializers (and therefore we might be
|
|
// missing some that the user actually wrote).
|
|
if (Info.AnyErrorsInInits)
|
|
return false;
|
|
|
|
CXXCtorInitializer *Init = 0;
|
|
if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
|
|
return true;
|
|
|
|
if (Init)
|
|
Info.AllToInit.push_back(Init);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
|
|
CXXCtorInitializer **Initializers,
|
|
unsigned NumInitializers,
|
|
bool AnyErrors) {
|
|
if (Constructor->getDeclContext()->isDependentContext()) {
|
|
// Just store the initializers as written, they will be checked during
|
|
// instantiation.
|
|
if (NumInitializers > 0) {
|
|
Constructor->setNumCtorInitializers(NumInitializers);
|
|
CXXCtorInitializer **baseOrMemberInitializers =
|
|
new (Context) CXXCtorInitializer*[NumInitializers];
|
|
memcpy(baseOrMemberInitializers, Initializers,
|
|
NumInitializers * sizeof(CXXCtorInitializer*));
|
|
Constructor->setCtorInitializers(baseOrMemberInitializers);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
|
|
|
|
// We need to build the initializer AST according to order of construction
|
|
// and not what user specified in the Initializers list.
|
|
CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
|
|
if (!ClassDecl)
|
|
return true;
|
|
|
|
bool HadError = false;
|
|
|
|
for (unsigned i = 0; i < NumInitializers; i++) {
|
|
CXXCtorInitializer *Member = Initializers[i];
|
|
|
|
if (Member->isBaseInitializer())
|
|
Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
|
|
else
|
|
Info.AllBaseFields[Member->getAnyMember()] = Member;
|
|
}
|
|
|
|
// Keep track of the direct virtual bases.
|
|
llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
|
|
for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
|
|
E = ClassDecl->bases_end(); I != E; ++I) {
|
|
if (I->isVirtual())
|
|
DirectVBases.insert(I);
|
|
}
|
|
|
|
// Push virtual bases before others.
|
|
for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
|
|
E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
|
|
|
|
if (CXXCtorInitializer *Value
|
|
= Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
|
|
Info.AllToInit.push_back(Value);
|
|
} else if (!AnyErrors) {
|
|
bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
|
|
CXXCtorInitializer *CXXBaseInit;
|
|
if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
|
|
VBase, IsInheritedVirtualBase,
|
|
CXXBaseInit)) {
|
|
HadError = true;
|
|
continue;
|
|
}
|
|
|
|
Info.AllToInit.push_back(CXXBaseInit);
|
|
}
|
|
}
|
|
|
|
// Non-virtual bases.
|
|
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
|
|
E = ClassDecl->bases_end(); Base != E; ++Base) {
|
|
// Virtuals are in the virtual base list and already constructed.
|
|
if (Base->isVirtual())
|
|
continue;
|
|
|
|
if (CXXCtorInitializer *Value
|
|
= Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
|
|
Info.AllToInit.push_back(Value);
|
|
} else if (!AnyErrors) {
|
|
CXXCtorInitializer *CXXBaseInit;
|
|
if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
|
|
Base, /*IsInheritedVirtualBase=*/false,
|
|
CXXBaseInit)) {
|
|
HadError = true;
|
|
continue;
|
|
}
|
|
|
|
Info.AllToInit.push_back(CXXBaseInit);
|
|
}
|
|
}
|
|
|
|
// Fields.
|
|
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
|
|
E = ClassDecl->field_end(); Field != E; ++Field) {
|
|
if ((*Field)->getType()->isIncompleteArrayType()) {
|
|
assert(ClassDecl->hasFlexibleArrayMember() &&
|
|
"Incomplete array type is not valid");
|
|
continue;
|
|
}
|
|
if (CollectFieldInitializer(Info, *Field, *Field))
|
|
HadError = true;
|
|
}
|
|
|
|
NumInitializers = Info.AllToInit.size();
|
|
if (NumInitializers > 0) {
|
|
Constructor->setNumCtorInitializers(NumInitializers);
|
|
CXXCtorInitializer **baseOrMemberInitializers =
|
|
new (Context) CXXCtorInitializer*[NumInitializers];
|
|
memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
|
|
NumInitializers * sizeof(CXXCtorInitializer*));
|
|
Constructor->setCtorInitializers(baseOrMemberInitializers);
|
|
|
|
// Constructors implicitly reference the base and member
|
|
// destructors.
|
|
MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
|
|
Constructor->getParent());
|
|
}
|
|
|
|
return HadError;
|
|
}
|
|
|
|
static void *GetKeyForTopLevelField(FieldDecl *Field) {
|
|
// For anonymous unions, use the class declaration as the key.
|
|
if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
|
|
if (RT->getDecl()->isAnonymousStructOrUnion())
|
|
return static_cast<void *>(RT->getDecl());
|
|
}
|
|
return static_cast<void *>(Field);
|
|
}
|
|
|
|
static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
|
|
return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
|
|
}
|
|
|
|
static void *GetKeyForMember(ASTContext &Context,
|
|
CXXCtorInitializer *Member) {
|
|
if (!Member->isAnyMemberInitializer())
|
|
return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
|
|
|
|
// For fields injected into the class via declaration of an anonymous union,
|
|
// use its anonymous union class declaration as the unique key.
|
|
FieldDecl *Field = Member->getAnyMember();
|
|
|
|
// If the field is a member of an anonymous struct or union, our key
|
|
// is the anonymous record decl that's a direct child of the class.
|
|
RecordDecl *RD = Field->getParent();
|
|
if (RD->isAnonymousStructOrUnion()) {
|
|
while (true) {
|
|
RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
|
|
if (Parent->isAnonymousStructOrUnion())
|
|
RD = Parent;
|
|
else
|
|
break;
|
|
}
|
|
|
|
return static_cast<void *>(RD);
|
|
}
|
|
|
|
return static_cast<void *>(Field);
|
|
}
|
|
|
|
static void
|
|
DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
|
|
const CXXConstructorDecl *Constructor,
|
|
CXXCtorInitializer **Inits,
|
|
unsigned NumInits) {
|
|
if (Constructor->getDeclContext()->isDependentContext())
|
|
return;
|
|
|
|
// Don't check initializers order unless the warning is enabled at the
|
|
// location of at least one initializer.
|
|
bool ShouldCheckOrder = false;
|
|
for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
|
|
CXXCtorInitializer *Init = Inits[InitIndex];
|
|
if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
|
|
Init->getSourceLocation())
|
|
!= Diagnostic::Ignored) {
|
|
ShouldCheckOrder = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!ShouldCheckOrder)
|
|
return;
|
|
|
|
// Build the list of bases and members in the order that they'll
|
|
// actually be initialized. The explicit initializers should be in
|
|
// this same order but may be missing things.
|
|
llvm::SmallVector<const void*, 32> IdealInitKeys;
|
|
|
|
const CXXRecordDecl *ClassDecl = Constructor->getParent();
|
|
|
|
// 1. Virtual bases.
|
|
for (CXXRecordDecl::base_class_const_iterator VBase =
|
|
ClassDecl->vbases_begin(),
|
|
E = ClassDecl->vbases_end(); VBase != E; ++VBase)
|
|
IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
|
|
|
|
// 2. Non-virtual bases.
|
|
for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
|
|
E = ClassDecl->bases_end(); Base != E; ++Base) {
|
|
if (Base->isVirtual())
|
|
continue;
|
|
IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
|
|
}
|
|
|
|
// 3. Direct fields.
|
|
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
|
|
E = ClassDecl->field_end(); Field != E; ++Field)
|
|
IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
|
|
|
|
unsigned NumIdealInits = IdealInitKeys.size();
|
|
unsigned IdealIndex = 0;
|
|
|
|
CXXCtorInitializer *PrevInit = 0;
|
|
for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
|
|
CXXCtorInitializer *Init = Inits[InitIndex];
|
|
void *InitKey = GetKeyForMember(SemaRef.Context, Init);
|
|
|
|
// Scan forward to try to find this initializer in the idealized
|
|
// initializers list.
|
|
for (; IdealIndex != NumIdealInits; ++IdealIndex)
|
|
if (InitKey == IdealInitKeys[IdealIndex])
|
|
break;
|
|
|
|
// If we didn't find this initializer, it must be because we
|
|
// scanned past it on a previous iteration. That can only
|
|
// happen if we're out of order; emit a warning.
|
|
if (IdealIndex == NumIdealInits && PrevInit) {
|
|
Sema::SemaDiagnosticBuilder D =
|
|
SemaRef.Diag(PrevInit->getSourceLocation(),
|
|
diag::warn_initializer_out_of_order);
|
|
|
|
if (PrevInit->isAnyMemberInitializer())
|
|
D << 0 << PrevInit->getAnyMember()->getDeclName();
|
|
else
|
|
D << 1 << PrevInit->getBaseClassInfo()->getType();
|
|
|
|
if (Init->isAnyMemberInitializer())
|
|
D << 0 << Init->getAnyMember()->getDeclName();
|
|
else
|
|
D << 1 << Init->getBaseClassInfo()->getType();
|
|
|
|
// Move back to the initializer's location in the ideal list.
|
|
for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
|
|
if (InitKey == IdealInitKeys[IdealIndex])
|
|
break;
|
|
|
|
assert(IdealIndex != NumIdealInits &&
|
|
"initializer not found in initializer list");
|
|
}
|
|
|
|
PrevInit = Init;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
bool CheckRedundantInit(Sema &S,
|
|
CXXCtorInitializer *Init,
|
|
CXXCtorInitializer *&PrevInit) {
|
|
if (!PrevInit) {
|
|
PrevInit = Init;
|
|
return false;
|
|
}
|
|
|
|
if (FieldDecl *Field = Init->getMember())
|
|
S.Diag(Init->getSourceLocation(),
|
|
diag::err_multiple_mem_initialization)
|
|
<< Field->getDeclName()
|
|
<< Init->getSourceRange();
|
|
else {
|
|
const Type *BaseClass = Init->getBaseClass();
|
|
assert(BaseClass && "neither field nor base");
|
|
S.Diag(Init->getSourceLocation(),
|
|
diag::err_multiple_base_initialization)
|
|
<< QualType(BaseClass, 0)
|
|
<< Init->getSourceRange();
|
|
}
|
|
S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
|
|
<< 0 << PrevInit->getSourceRange();
|
|
|
|
return true;
|
|
}
|
|
|
|
typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
|
|
typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
|
|
|
|
bool CheckRedundantUnionInit(Sema &S,
|
|
CXXCtorInitializer *Init,
|
|
RedundantUnionMap &Unions) {
|
|
FieldDecl *Field = Init->getAnyMember();
|
|
RecordDecl *Parent = Field->getParent();
|
|
if (!Parent->isAnonymousStructOrUnion())
|
|
return false;
|
|
|
|
NamedDecl *Child = Field;
|
|
do {
|
|
if (Parent->isUnion()) {
|
|
UnionEntry &En = Unions[Parent];
|
|
if (En.first && En.first != Child) {
|
|
S.Diag(Init->getSourceLocation(),
|
|
diag::err_multiple_mem_union_initialization)
|
|
<< Field->getDeclName()
|
|
<< Init->getSourceRange();
|
|
S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
|
|
<< 0 << En.second->getSourceRange();
|
|
return true;
|
|
} else if (!En.first) {
|
|
En.first = Child;
|
|
En.second = Init;
|
|
}
|
|
}
|
|
|
|
Child = Parent;
|
|
Parent = cast<RecordDecl>(Parent->getDeclContext());
|
|
} while (Parent->isAnonymousStructOrUnion());
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// ActOnMemInitializers - Handle the member initializers for a constructor.
|
|
void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
|
|
SourceLocation ColonLoc,
|
|
MemInitTy **meminits, unsigned NumMemInits,
|
|
bool AnyErrors) {
|
|
if (!ConstructorDecl)
|
|
return;
|
|
|
|
AdjustDeclIfTemplate(ConstructorDecl);
|
|
|
|
CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(ConstructorDecl);
|
|
|
|
if (!Constructor) {
|
|
Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
|
|
return;
|
|
}
|
|
|
|
CXXCtorInitializer **MemInits =
|
|
reinterpret_cast<CXXCtorInitializer **>(meminits);
|
|
|
|
// Mapping for the duplicate initializers check.
|
|
// For member initializers, this is keyed with a FieldDecl*.
|
|
// For base initializers, this is keyed with a Type*.
|
|
llvm::DenseMap<void*, CXXCtorInitializer *> Members;
|
|
|
|
// Mapping for the inconsistent anonymous-union initializers check.
|
|
RedundantUnionMap MemberUnions;
|
|
|
|
bool HadError = false;
|
|
for (unsigned i = 0; i < NumMemInits; i++) {
|
|
CXXCtorInitializer *Init = MemInits[i];
|
|
|
|
// Set the source order index.
|
|
Init->setSourceOrder(i);
|
|
|
|
if (Init->isAnyMemberInitializer()) {
|
|
FieldDecl *Field = Init->getAnyMember();
|
|
if (CheckRedundantInit(*this, Init, Members[Field]) ||
|
|
CheckRedundantUnionInit(*this, Init, MemberUnions))
|
|
HadError = true;
|
|
} else if (Init->isBaseInitializer()) {
|
|
void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
|
|
if (CheckRedundantInit(*this, Init, Members[Key]))
|
|
HadError = true;
|
|
} else {
|
|
assert(Init->isDelegatingInitializer());
|
|
// This must be the only initializer
|
|
if (i != 0 || NumMemInits > 1) {
|
|
Diag(MemInits[0]->getSourceLocation(),
|
|
diag::err_delegating_initializer_alone)
|
|
<< MemInits[0]->getSourceRange();
|
|
HadError = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (HadError)
|
|
return;
|
|
|
|
DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
|
|
|
|
SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
|
|
}
|
|
|
|
void
|
|
Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
|
|
CXXRecordDecl *ClassDecl) {
|
|
// Ignore dependent contexts.
|
|
if (ClassDecl->isDependentContext())
|
|
return;
|
|
|
|
// FIXME: all the access-control diagnostics are positioned on the
|
|
// field/base declaration. That's probably good; that said, the
|
|
// user might reasonably want to know why the destructor is being
|
|
// emitted, and we currently don't say.
|
|
|
|
// Non-static data members.
|
|
for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
|
|
E = ClassDecl->field_end(); I != E; ++I) {
|
|
FieldDecl *Field = *I;
|
|
if (Field->isInvalidDecl())
|
|
continue;
|
|
QualType FieldType = Context.getBaseElementType(Field->getType());
|
|
|
|
const RecordType* RT = FieldType->getAs<RecordType>();
|
|
if (!RT)
|
|
continue;
|
|
|
|
CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
if (FieldClassDecl->isInvalidDecl())
|
|
continue;
|
|
if (FieldClassDecl->hasTrivialDestructor())
|
|
continue;
|
|
|
|
CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
|
|
assert(Dtor && "No dtor found for FieldClassDecl!");
|
|
CheckDestructorAccess(Field->getLocation(), Dtor,
|
|
PDiag(diag::err_access_dtor_field)
|
|
<< Field->getDeclName()
|
|
<< FieldType);
|
|
|
|
MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
|
|
}
|
|
|
|
llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
|
|
|
|
// Bases.
|
|
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
|
|
E = ClassDecl->bases_end(); Base != E; ++Base) {
|
|
// Bases are always records in a well-formed non-dependent class.
|
|
const RecordType *RT = Base->getType()->getAs<RecordType>();
|
|
|
|
// Remember direct virtual bases.
|
|
if (Base->isVirtual())
|
|
DirectVirtualBases.insert(RT);
|
|
|
|
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
// If our base class is invalid, we probably can't get its dtor anyway.
|
|
if (BaseClassDecl->isInvalidDecl())
|
|
continue;
|
|
// Ignore trivial destructors.
|
|
if (BaseClassDecl->hasTrivialDestructor())
|
|
continue;
|
|
|
|
CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
|
|
assert(Dtor && "No dtor found for BaseClassDecl!");
|
|
|
|
// FIXME: caret should be on the start of the class name
|
|
CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
|
|
PDiag(diag::err_access_dtor_base)
|
|
<< Base->getType()
|
|
<< Base->getSourceRange());
|
|
|
|
MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
|
|
}
|
|
|
|
// Virtual bases.
|
|
for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
|
|
E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
|
|
|
|
// Bases are always records in a well-formed non-dependent class.
|
|
const RecordType *RT = VBase->getType()->getAs<RecordType>();
|
|
|
|
// Ignore direct virtual bases.
|
|
if (DirectVirtualBases.count(RT))
|
|
continue;
|
|
|
|
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
// If our base class is invalid, we probably can't get its dtor anyway.
|
|
if (BaseClassDecl->isInvalidDecl())
|
|
continue;
|
|
// Ignore trivial destructors.
|
|
if (BaseClassDecl->hasTrivialDestructor())
|
|
continue;
|
|
|
|
CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
|
|
assert(Dtor && "No dtor found for BaseClassDecl!");
|
|
CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
|
|
PDiag(diag::err_access_dtor_vbase)
|
|
<< VBase->getType());
|
|
|
|
MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
|
|
if (!CDtorDecl)
|
|
return;
|
|
|
|
if (CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(CDtorDecl))
|
|
SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
|
|
}
|
|
|
|
bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
|
|
unsigned DiagID, AbstractDiagSelID SelID) {
|
|
if (SelID == -1)
|
|
return RequireNonAbstractType(Loc, T, PDiag(DiagID));
|
|
else
|
|
return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
|
|
}
|
|
|
|
bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
|
|
const PartialDiagnostic &PD) {
|
|
if (!getLangOptions().CPlusPlus)
|
|
return false;
|
|
|
|
if (const ArrayType *AT = Context.getAsArrayType(T))
|
|
return RequireNonAbstractType(Loc, AT->getElementType(), PD);
|
|
|
|
if (const PointerType *PT = T->getAs<PointerType>()) {
|
|
// Find the innermost pointer type.
|
|
while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
|
|
PT = T;
|
|
|
|
if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
|
|
return RequireNonAbstractType(Loc, AT->getElementType(), PD);
|
|
}
|
|
|
|
const RecordType *RT = T->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
|
|
// We can't answer whether something is abstract until it has a
|
|
// definition. If it's currently being defined, we'll walk back
|
|
// over all the declarations when we have a full definition.
|
|
const CXXRecordDecl *Def = RD->getDefinition();
|
|
if (!Def || Def->isBeingDefined())
|
|
return false;
|
|
|
|
if (!RD->isAbstract())
|
|
return false;
|
|
|
|
Diag(Loc, PD) << RD->getDeclName();
|
|
DiagnoseAbstractType(RD);
|
|
|
|
return true;
|
|
}
|
|
|
|
void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
|
|
// Check if we've already emitted the list of pure virtual functions
|
|
// for this class.
|
|
if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
|
|
return;
|
|
|
|
CXXFinalOverriderMap FinalOverriders;
|
|
RD->getFinalOverriders(FinalOverriders);
|
|
|
|
// Keep a set of seen pure methods so we won't diagnose the same method
|
|
// more than once.
|
|
llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
|
|
|
|
for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
|
|
MEnd = FinalOverriders.end();
|
|
M != MEnd;
|
|
++M) {
|
|
for (OverridingMethods::iterator SO = M->second.begin(),
|
|
SOEnd = M->second.end();
|
|
SO != SOEnd; ++SO) {
|
|
// C++ [class.abstract]p4:
|
|
// A class is abstract if it contains or inherits at least one
|
|
// pure virtual function for which the final overrider is pure
|
|
// virtual.
|
|
|
|
//
|
|
if (SO->second.size() != 1)
|
|
continue;
|
|
|
|
if (!SO->second.front().Method->isPure())
|
|
continue;
|
|
|
|
if (!SeenPureMethods.insert(SO->second.front().Method))
|
|
continue;
|
|
|
|
Diag(SO->second.front().Method->getLocation(),
|
|
diag::note_pure_virtual_function)
|
|
<< SO->second.front().Method->getDeclName() << RD->getDeclName();
|
|
}
|
|
}
|
|
|
|
if (!PureVirtualClassDiagSet)
|
|
PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
|
|
PureVirtualClassDiagSet->insert(RD);
|
|
}
|
|
|
|
namespace {
|
|
struct AbstractUsageInfo {
|
|
Sema &S;
|
|
CXXRecordDecl *Record;
|
|
CanQualType AbstractType;
|
|
bool Invalid;
|
|
|
|
AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
|
|
: S(S), Record(Record),
|
|
AbstractType(S.Context.getCanonicalType(
|
|
S.Context.getTypeDeclType(Record))),
|
|
Invalid(false) {}
|
|
|
|
void DiagnoseAbstractType() {
|
|
if (Invalid) return;
|
|
S.DiagnoseAbstractType(Record);
|
|
Invalid = true;
|
|
}
|
|
|
|
void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
|
|
};
|
|
|
|
struct CheckAbstractUsage {
|
|
AbstractUsageInfo &Info;
|
|
const NamedDecl *Ctx;
|
|
|
|
CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
|
|
: Info(Info), Ctx(Ctx) {}
|
|
|
|
void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
|
|
switch (TL.getTypeLocClass()) {
|
|
#define ABSTRACT_TYPELOC(CLASS, PARENT)
|
|
#define TYPELOC(CLASS, PARENT) \
|
|
case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
|
|
#include "clang/AST/TypeLocNodes.def"
|
|
}
|
|
}
|
|
|
|
void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
|
|
Visit(TL.getResultLoc(), Sema::AbstractReturnType);
|
|
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
|
|
if (!TL.getArg(I))
|
|
continue;
|
|
|
|
TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
|
|
if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
|
|
}
|
|
}
|
|
|
|
void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
|
|
Visit(TL.getElementLoc(), Sema::AbstractArrayType);
|
|
}
|
|
|
|
void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
|
|
// Visit the type parameters from a permissive context.
|
|
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
|
|
TemplateArgumentLoc TAL = TL.getArgLoc(I);
|
|
if (TAL.getArgument().getKind() == TemplateArgument::Type)
|
|
if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
|
|
Visit(TSI->getTypeLoc(), Sema::AbstractNone);
|
|
// TODO: other template argument types?
|
|
}
|
|
}
|
|
|
|
// Visit pointee types from a permissive context.
|
|
#define CheckPolymorphic(Type) \
|
|
void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
|
|
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
|
|
}
|
|
CheckPolymorphic(PointerTypeLoc)
|
|
CheckPolymorphic(ReferenceTypeLoc)
|
|
CheckPolymorphic(MemberPointerTypeLoc)
|
|
CheckPolymorphic(BlockPointerTypeLoc)
|
|
|
|
/// Handle all the types we haven't given a more specific
|
|
/// implementation for above.
|
|
void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
|
|
// Every other kind of type that we haven't called out already
|
|
// that has an inner type is either (1) sugar or (2) contains that
|
|
// inner type in some way as a subobject.
|
|
if (TypeLoc Next = TL.getNextTypeLoc())
|
|
return Visit(Next, Sel);
|
|
|
|
// If there's no inner type and we're in a permissive context,
|
|
// don't diagnose.
|
|
if (Sel == Sema::AbstractNone) return;
|
|
|
|
// Check whether the type matches the abstract type.
|
|
QualType T = TL.getType();
|
|
if (T->isArrayType()) {
|
|
Sel = Sema::AbstractArrayType;
|
|
T = Info.S.Context.getBaseElementType(T);
|
|
}
|
|
CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
|
|
if (CT != Info.AbstractType) return;
|
|
|
|
// It matched; do some magic.
|
|
if (Sel == Sema::AbstractArrayType) {
|
|
Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
|
|
<< T << TL.getSourceRange();
|
|
} else {
|
|
Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
|
|
<< Sel << T << TL.getSourceRange();
|
|
}
|
|
Info.DiagnoseAbstractType();
|
|
}
|
|
};
|
|
|
|
void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
|
|
Sema::AbstractDiagSelID Sel) {
|
|
CheckAbstractUsage(*this, D).Visit(TL, Sel);
|
|
}
|
|
|
|
}
|
|
|
|
/// Check for invalid uses of an abstract type in a method declaration.
|
|
static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
|
|
CXXMethodDecl *MD) {
|
|
// No need to do the check on definitions, which require that
|
|
// the return/param types be complete.
|
|
if (MD->isThisDeclarationADefinition())
|
|
return;
|
|
|
|
// For safety's sake, just ignore it if we don't have type source
|
|
// information. This should never happen for non-implicit methods,
|
|
// but...
|
|
if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
|
|
Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
|
|
}
|
|
|
|
/// Check for invalid uses of an abstract type within a class definition.
|
|
static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
|
|
CXXRecordDecl *RD) {
|
|
for (CXXRecordDecl::decl_iterator
|
|
I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
|
|
Decl *D = *I;
|
|
if (D->isImplicit()) continue;
|
|
|
|
// Methods and method templates.
|
|
if (isa<CXXMethodDecl>(D)) {
|
|
CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
|
|
} else if (isa<FunctionTemplateDecl>(D)) {
|
|
FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
|
|
CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
|
|
|
|
// Fields and static variables.
|
|
} else if (isa<FieldDecl>(D)) {
|
|
FieldDecl *FD = cast<FieldDecl>(D);
|
|
if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
|
|
Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
|
|
} else if (isa<VarDecl>(D)) {
|
|
VarDecl *VD = cast<VarDecl>(D);
|
|
if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
|
|
Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
|
|
|
|
// Nested classes and class templates.
|
|
} else if (isa<CXXRecordDecl>(D)) {
|
|
CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
|
|
} else if (isa<ClassTemplateDecl>(D)) {
|
|
CheckAbstractClassUsage(Info,
|
|
cast<ClassTemplateDecl>(D)->getTemplatedDecl());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Perform semantic checks on a class definition that has been
|
|
/// completing, introducing implicitly-declared members, checking for
|
|
/// abstract types, etc.
|
|
void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
|
|
if (!Record)
|
|
return;
|
|
|
|
if (Record->isAbstract() && !Record->isInvalidDecl()) {
|
|
AbstractUsageInfo Info(*this, Record);
|
|
CheckAbstractClassUsage(Info, Record);
|
|
}
|
|
|
|
// If this is not an aggregate type and has no user-declared constructor,
|
|
// complain about any non-static data members of reference or const scalar
|
|
// type, since they will never get initializers.
|
|
if (!Record->isInvalidDecl() && !Record->isDependentType() &&
|
|
!Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
|
|
bool Complained = false;
|
|
for (RecordDecl::field_iterator F = Record->field_begin(),
|
|
FEnd = Record->field_end();
|
|
F != FEnd; ++F) {
|
|
if (F->getType()->isReferenceType() ||
|
|
(F->getType().isConstQualified() && F->getType()->isScalarType())) {
|
|
if (!Complained) {
|
|
Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
|
|
<< Record->getTagKind() << Record;
|
|
Complained = true;
|
|
}
|
|
|
|
Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
|
|
<< F->getType()->isReferenceType()
|
|
<< F->getDeclName();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Record->isDynamicClass() && !Record->isDependentType())
|
|
DynamicClasses.push_back(Record);
|
|
|
|
if (Record->getIdentifier()) {
|
|
// C++ [class.mem]p13:
|
|
// If T is the name of a class, then each of the following shall have a
|
|
// name different from T:
|
|
// - every member of every anonymous union that is a member of class T.
|
|
//
|
|
// C++ [class.mem]p14:
|
|
// In addition, if class T has a user-declared constructor (12.1), every
|
|
// non-static data member of class T shall have a name different from T.
|
|
for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
|
|
R.first != R.second; ++R.first) {
|
|
NamedDecl *D = *R.first;
|
|
if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
|
|
isa<IndirectFieldDecl>(D)) {
|
|
Diag(D->getLocation(), diag::err_member_name_of_class)
|
|
<< D->getDeclName();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Warn if the class has virtual methods but non-virtual public destructor.
|
|
if (Record->isPolymorphic() && !Record->isDependentType()) {
|
|
CXXDestructorDecl *dtor = Record->getDestructor();
|
|
if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
|
|
Diag(dtor ? dtor->getLocation() : Record->getLocation(),
|
|
diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
|
|
}
|
|
|
|
// See if a method overloads virtual methods in a base
|
|
/// class without overriding any.
|
|
if (!Record->isDependentType()) {
|
|
for (CXXRecordDecl::method_iterator M = Record->method_begin(),
|
|
MEnd = Record->method_end();
|
|
M != MEnd; ++M) {
|
|
if (!(*M)->isStatic())
|
|
DiagnoseHiddenVirtualMethods(Record, *M);
|
|
}
|
|
}
|
|
|
|
// Declare inherited constructors. We do this eagerly here because:
|
|
// - The standard requires an eager diagnostic for conflicting inherited
|
|
// constructors from different classes.
|
|
// - The lazy declaration of the other implicit constructors is so as to not
|
|
// waste space and performance on classes that are not meant to be
|
|
// instantiated (e.g. meta-functions). This doesn't apply to classes that
|
|
// have inherited constructors.
|
|
DeclareInheritedConstructors(Record);
|
|
}
|
|
|
|
/// \brief Data used with FindHiddenVirtualMethod
|
|
namespace {
|
|
struct FindHiddenVirtualMethodData {
|
|
Sema *S;
|
|
CXXMethodDecl *Method;
|
|
llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
|
|
llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
|
|
};
|
|
}
|
|
|
|
/// \brief Member lookup function that determines whether a given C++
|
|
/// method overloads virtual methods in a base class without overriding any,
|
|
/// to be used with CXXRecordDecl::lookupInBases().
|
|
static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path,
|
|
void *UserData) {
|
|
RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
|
|
|
|
FindHiddenVirtualMethodData &Data
|
|
= *static_cast<FindHiddenVirtualMethodData*>(UserData);
|
|
|
|
DeclarationName Name = Data.Method->getDeclName();
|
|
assert(Name.getNameKind() == DeclarationName::Identifier);
|
|
|
|
bool foundSameNameMethod = false;
|
|
llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
|
|
for (Path.Decls = BaseRecord->lookup(Name);
|
|
Path.Decls.first != Path.Decls.second;
|
|
++Path.Decls.first) {
|
|
NamedDecl *D = *Path.Decls.first;
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
|
|
MD = MD->getCanonicalDecl();
|
|
foundSameNameMethod = true;
|
|
// Interested only in hidden virtual methods.
|
|
if (!MD->isVirtual())
|
|
continue;
|
|
// If the method we are checking overrides a method from its base
|
|
// don't warn about the other overloaded methods.
|
|
if (!Data.S->IsOverload(Data.Method, MD, false))
|
|
return true;
|
|
// Collect the overload only if its hidden.
|
|
if (!Data.OverridenAndUsingBaseMethods.count(MD))
|
|
overloadedMethods.push_back(MD);
|
|
}
|
|
}
|
|
|
|
if (foundSameNameMethod)
|
|
Data.OverloadedMethods.append(overloadedMethods.begin(),
|
|
overloadedMethods.end());
|
|
return foundSameNameMethod;
|
|
}
|
|
|
|
/// \brief See if a method overloads virtual methods in a base class without
|
|
/// overriding any.
|
|
void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
|
|
if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
|
|
MD->getLocation()) == Diagnostic::Ignored)
|
|
return;
|
|
if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
|
|
return;
|
|
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
|
|
/*bool RecordPaths=*/false,
|
|
/*bool DetectVirtual=*/false);
|
|
FindHiddenVirtualMethodData Data;
|
|
Data.Method = MD;
|
|
Data.S = this;
|
|
|
|
// Keep the base methods that were overriden or introduced in the subclass
|
|
// by 'using' in a set. A base method not in this set is hidden.
|
|
for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
|
|
res.first != res.second; ++res.first) {
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
|
|
for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
|
|
E = MD->end_overridden_methods();
|
|
I != E; ++I)
|
|
Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
|
|
if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
|
|
Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
|
|
}
|
|
|
|
if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
|
|
!Data.OverloadedMethods.empty()) {
|
|
Diag(MD->getLocation(), diag::warn_overloaded_virtual)
|
|
<< MD << (Data.OverloadedMethods.size() > 1);
|
|
|
|
for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
|
|
CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
|
|
Diag(overloadedMD->getLocation(),
|
|
diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
|
|
Decl *TagDecl,
|
|
SourceLocation LBrac,
|
|
SourceLocation RBrac,
|
|
AttributeList *AttrList) {
|
|
if (!TagDecl)
|
|
return;
|
|
|
|
AdjustDeclIfTemplate(TagDecl);
|
|
|
|
ActOnFields(S, RLoc, TagDecl,
|
|
// strict aliasing violation!
|
|
reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
|
|
FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
|
|
|
|
CheckCompletedCXXClass(
|
|
dyn_cast_or_null<CXXRecordDecl>(TagDecl));
|
|
}
|
|
|
|
namespace {
|
|
/// \brief Helper class that collects exception specifications for
|
|
/// implicitly-declared special member functions.
|
|
class ImplicitExceptionSpecification {
|
|
ASTContext &Context;
|
|
// We order exception specifications thus:
|
|
// noexcept is the most restrictive, but is only used in C++0x.
|
|
// throw() comes next.
|
|
// Then a throw(collected exceptions)
|
|
// Finally no specification.
|
|
// throw(...) is used instead if any called function uses it.
|
|
ExceptionSpecificationType ComputedEST;
|
|
llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
|
|
llvm::SmallVector<QualType, 4> Exceptions;
|
|
|
|
void ClearExceptions() {
|
|
ExceptionsSeen.clear();
|
|
Exceptions.clear();
|
|
}
|
|
|
|
public:
|
|
explicit ImplicitExceptionSpecification(ASTContext &Context)
|
|
: Context(Context), ComputedEST(EST_BasicNoexcept) {
|
|
if (!Context.getLangOptions().CPlusPlus0x)
|
|
ComputedEST = EST_DynamicNone;
|
|
}
|
|
|
|
/// \brief Get the computed exception specification type.
|
|
ExceptionSpecificationType getExceptionSpecType() const {
|
|
assert(ComputedEST != EST_ComputedNoexcept &&
|
|
"noexcept(expr) should not be a possible result");
|
|
return ComputedEST;
|
|
}
|
|
|
|
/// \brief The number of exceptions in the exception specification.
|
|
unsigned size() const { return Exceptions.size(); }
|
|
|
|
/// \brief The set of exceptions in the exception specification.
|
|
const QualType *data() const { return Exceptions.data(); }
|
|
|
|
/// \brief Integrate another called method into the collected data.
|
|
void CalledDecl(CXXMethodDecl *Method) {
|
|
// If we have an MSAny spec already, don't bother.
|
|
if (!Method || ComputedEST == EST_MSAny)
|
|
return;
|
|
|
|
const FunctionProtoType *Proto
|
|
= Method->getType()->getAs<FunctionProtoType>();
|
|
|
|
ExceptionSpecificationType EST = Proto->getExceptionSpecType();
|
|
|
|
// If this function can throw any exceptions, make a note of that.
|
|
if (EST == EST_MSAny || EST == EST_None) {
|
|
ClearExceptions();
|
|
ComputedEST = EST;
|
|
return;
|
|
}
|
|
|
|
// If this function has a basic noexcept, it doesn't affect the outcome.
|
|
if (EST == EST_BasicNoexcept)
|
|
return;
|
|
|
|
// If we have a throw-all spec at this point, ignore the function.
|
|
if (ComputedEST == EST_None)
|
|
return;
|
|
|
|
// If we're still at noexcept(true) and there's a nothrow() callee,
|
|
// change to that specification.
|
|
if (EST == EST_DynamicNone) {
|
|
if (ComputedEST == EST_BasicNoexcept)
|
|
ComputedEST = EST_DynamicNone;
|
|
return;
|
|
}
|
|
|
|
// Check out noexcept specs.
|
|
if (EST == EST_ComputedNoexcept) {
|
|
FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(Context);
|
|
assert(NR != FunctionProtoType::NR_NoNoexcept &&
|
|
"Must have noexcept result for EST_ComputedNoexcept.");
|
|
assert(NR != FunctionProtoType::NR_Dependent &&
|
|
"Should not generate implicit declarations for dependent cases, "
|
|
"and don't know how to handle them anyway.");
|
|
|
|
// noexcept(false) -> no spec on the new function
|
|
if (NR == FunctionProtoType::NR_Throw) {
|
|
ClearExceptions();
|
|
ComputedEST = EST_None;
|
|
}
|
|
// noexcept(true) won't change anything either.
|
|
return;
|
|
}
|
|
|
|
assert(EST == EST_Dynamic && "EST case not considered earlier.");
|
|
assert(ComputedEST != EST_None &&
|
|
"Shouldn't collect exceptions when throw-all is guaranteed.");
|
|
ComputedEST = EST_Dynamic;
|
|
// Record the exceptions in this function's exception specification.
|
|
for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
|
|
EEnd = Proto->exception_end();
|
|
E != EEnd; ++E)
|
|
if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
|
|
Exceptions.push_back(*E);
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
|
|
/// special functions, such as the default constructor, copy
|
|
/// constructor, or destructor, to the given C++ class (C++
|
|
/// [special]p1). This routine can only be executed just before the
|
|
/// definition of the class is complete.
|
|
void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
|
|
if (!ClassDecl->hasUserDeclaredConstructor())
|
|
++ASTContext::NumImplicitDefaultConstructors;
|
|
|
|
if (!ClassDecl->hasUserDeclaredCopyConstructor())
|
|
++ASTContext::NumImplicitCopyConstructors;
|
|
|
|
if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
|
|
++ASTContext::NumImplicitCopyAssignmentOperators;
|
|
|
|
// If we have a dynamic class, then the copy assignment operator may be
|
|
// virtual, so we have to declare it immediately. This ensures that, e.g.,
|
|
// it shows up in the right place in the vtable and that we diagnose
|
|
// problems with the implicit exception specification.
|
|
if (ClassDecl->isDynamicClass())
|
|
DeclareImplicitCopyAssignment(ClassDecl);
|
|
}
|
|
|
|
if (!ClassDecl->hasUserDeclaredDestructor()) {
|
|
++ASTContext::NumImplicitDestructors;
|
|
|
|
// If we have a dynamic class, then the destructor may be virtual, so we
|
|
// have to declare the destructor immediately. This ensures that, e.g., it
|
|
// shows up in the right place in the vtable and that we diagnose problems
|
|
// with the implicit exception specification.
|
|
if (ClassDecl->isDynamicClass())
|
|
DeclareImplicitDestructor(ClassDecl);
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
|
|
if (!D)
|
|
return;
|
|
|
|
int NumParamList = D->getNumTemplateParameterLists();
|
|
for (int i = 0; i < NumParamList; i++) {
|
|
TemplateParameterList* Params = D->getTemplateParameterList(i);
|
|
for (TemplateParameterList::iterator Param = Params->begin(),
|
|
ParamEnd = Params->end();
|
|
Param != ParamEnd; ++Param) {
|
|
NamedDecl *Named = cast<NamedDecl>(*Param);
|
|
if (Named->getDeclName()) {
|
|
S->AddDecl(Named);
|
|
IdResolver.AddDecl(Named);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
|
|
if (!D)
|
|
return;
|
|
|
|
TemplateParameterList *Params = 0;
|
|
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
|
|
Params = Template->getTemplateParameters();
|
|
else if (ClassTemplatePartialSpecializationDecl *PartialSpec
|
|
= dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
|
|
Params = PartialSpec->getTemplateParameters();
|
|
else
|
|
return;
|
|
|
|
for (TemplateParameterList::iterator Param = Params->begin(),
|
|
ParamEnd = Params->end();
|
|
Param != ParamEnd; ++Param) {
|
|
NamedDecl *Named = cast<NamedDecl>(*Param);
|
|
if (Named->getDeclName()) {
|
|
S->AddDecl(Named);
|
|
IdResolver.AddDecl(Named);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
|
|
if (!RecordD) return;
|
|
AdjustDeclIfTemplate(RecordD);
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
|
|
PushDeclContext(S, Record);
|
|
}
|
|
|
|
void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
|
|
if (!RecordD) return;
|
|
PopDeclContext();
|
|
}
|
|
|
|
/// ActOnStartDelayedCXXMethodDeclaration - We have completed
|
|
/// parsing a top-level (non-nested) C++ class, and we are now
|
|
/// parsing those parts of the given Method declaration that could
|
|
/// not be parsed earlier (C++ [class.mem]p2), such as default
|
|
/// arguments. This action should enter the scope of the given
|
|
/// Method declaration as if we had just parsed the qualified method
|
|
/// name. However, it should not bring the parameters into scope;
|
|
/// that will be performed by ActOnDelayedCXXMethodParameter.
|
|
void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
|
|
}
|
|
|
|
/// ActOnDelayedCXXMethodParameter - We've already started a delayed
|
|
/// C++ method declaration. We're (re-)introducing the given
|
|
/// function parameter into scope for use in parsing later parts of
|
|
/// the method declaration. For example, we could see an
|
|
/// ActOnParamDefaultArgument event for this parameter.
|
|
void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
|
|
if (!ParamD)
|
|
return;
|
|
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
|
|
|
|
// If this parameter has an unparsed default argument, clear it out
|
|
// to make way for the parsed default argument.
|
|
if (Param->hasUnparsedDefaultArg())
|
|
Param->setDefaultArg(0);
|
|
|
|
S->AddDecl(Param);
|
|
if (Param->getDeclName())
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
|
|
/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
|
|
/// processing the delayed method declaration for Method. The method
|
|
/// declaration is now considered finished. There may be a separate
|
|
/// ActOnStartOfFunctionDef action later (not necessarily
|
|
/// immediately!) for this method, if it was also defined inside the
|
|
/// class body.
|
|
void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
|
|
if (!MethodD)
|
|
return;
|
|
|
|
AdjustDeclIfTemplate(MethodD);
|
|
|
|
FunctionDecl *Method = cast<FunctionDecl>(MethodD);
|
|
|
|
// Now that we have our default arguments, check the constructor
|
|
// again. It could produce additional diagnostics or affect whether
|
|
// the class has implicitly-declared destructors, among other
|
|
// things.
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
|
|
CheckConstructor(Constructor);
|
|
|
|
// Check the default arguments, which we may have added.
|
|
if (!Method->isInvalidDecl())
|
|
CheckCXXDefaultArguments(Method);
|
|
}
|
|
|
|
/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
|
|
/// the well-formedness of the constructor declarator @p D with type @p
|
|
/// R. If there are any errors in the declarator, this routine will
|
|
/// emit diagnostics and set the invalid bit to true. In any case, the type
|
|
/// will be updated to reflect a well-formed type for the constructor and
|
|
/// returned.
|
|
QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
|
|
StorageClass &SC) {
|
|
bool isVirtual = D.getDeclSpec().isVirtualSpecified();
|
|
|
|
// C++ [class.ctor]p3:
|
|
// A constructor shall not be virtual (10.3) or static (9.4). A
|
|
// constructor can be invoked for a const, volatile or const
|
|
// volatile object. A constructor shall not be declared const,
|
|
// volatile, or const volatile (9.3.2).
|
|
if (isVirtual) {
|
|
if (!D.isInvalidType())
|
|
Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
|
|
<< "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
|
|
<< SourceRange(D.getIdentifierLoc());
|
|
D.setInvalidType();
|
|
}
|
|
if (SC == SC_Static) {
|
|
if (!D.isInvalidType())
|
|
Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
|
|
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
|
|
<< SourceRange(D.getIdentifierLoc());
|
|
D.setInvalidType();
|
|
SC = SC_None;
|
|
}
|
|
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
|
|
if (FTI.TypeQuals != 0) {
|
|
if (FTI.TypeQuals & Qualifiers::Const)
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
|
|
<< "const" << SourceRange(D.getIdentifierLoc());
|
|
if (FTI.TypeQuals & Qualifiers::Volatile)
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
|
|
<< "volatile" << SourceRange(D.getIdentifierLoc());
|
|
if (FTI.TypeQuals & Qualifiers::Restrict)
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
|
|
<< "restrict" << SourceRange(D.getIdentifierLoc());
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// C++0x [class.ctor]p4:
|
|
// A constructor shall not be declared with a ref-qualifier.
|
|
if (FTI.hasRefQualifier()) {
|
|
Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
|
|
<< FTI.RefQualifierIsLValueRef
|
|
<< FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Rebuild the function type "R" without any type qualifiers (in
|
|
// case any of the errors above fired) and with "void" as the
|
|
// return type, since constructors don't have return types.
|
|
const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
|
|
if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
|
|
return R;
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
|
|
EPI.TypeQuals = 0;
|
|
EPI.RefQualifier = RQ_None;
|
|
|
|
return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
|
|
Proto->getNumArgs(), EPI);
|
|
}
|
|
|
|
/// CheckConstructor - Checks a fully-formed constructor for
|
|
/// well-formedness, issuing any diagnostics required. Returns true if
|
|
/// the constructor declarator is invalid.
|
|
void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
|
|
CXXRecordDecl *ClassDecl
|
|
= dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
|
|
if (!ClassDecl)
|
|
return Constructor->setInvalidDecl();
|
|
|
|
// C++ [class.copy]p3:
|
|
// A declaration of a constructor for a class X is ill-formed if
|
|
// its first parameter is of type (optionally cv-qualified) X and
|
|
// either there are no other parameters or else all other
|
|
// parameters have default arguments.
|
|
if (!Constructor->isInvalidDecl() &&
|
|
((Constructor->getNumParams() == 1) ||
|
|
(Constructor->getNumParams() > 1 &&
|
|
Constructor->getParamDecl(1)->hasDefaultArg())) &&
|
|
Constructor->getTemplateSpecializationKind()
|
|
!= TSK_ImplicitInstantiation) {
|
|
QualType ParamType = Constructor->getParamDecl(0)->getType();
|
|
QualType ClassTy = Context.getTagDeclType(ClassDecl);
|
|
if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
|
|
SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
|
|
const char *ConstRef
|
|
= Constructor->getParamDecl(0)->getIdentifier() ? "const &"
|
|
: " const &";
|
|
Diag(ParamLoc, diag::err_constructor_byvalue_arg)
|
|
<< FixItHint::CreateInsertion(ParamLoc, ConstRef);
|
|
|
|
// FIXME: Rather that making the constructor invalid, we should endeavor
|
|
// to fix the type.
|
|
Constructor->setInvalidDecl();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CheckDestructor - Checks a fully-formed destructor definition for
|
|
/// well-formedness, issuing any diagnostics required. Returns true
|
|
/// on error.
|
|
bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
|
|
CXXRecordDecl *RD = Destructor->getParent();
|
|
|
|
if (Destructor->isVirtual()) {
|
|
SourceLocation Loc;
|
|
|
|
if (!Destructor->isImplicit())
|
|
Loc = Destructor->getLocation();
|
|
else
|
|
Loc = RD->getLocation();
|
|
|
|
// If we have a virtual destructor, look up the deallocation function
|
|
FunctionDecl *OperatorDelete = 0;
|
|
DeclarationName Name =
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Delete);
|
|
if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
|
|
return true;
|
|
|
|
MarkDeclarationReferenced(Loc, OperatorDelete);
|
|
|
|
Destructor->setOperatorDelete(OperatorDelete);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool
|
|
FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
|
|
return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
|
|
FTI.ArgInfo[0].Param &&
|
|
cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
|
|
}
|
|
|
|
/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
|
|
/// the well-formednes of the destructor declarator @p D with type @p
|
|
/// R. If there are any errors in the declarator, this routine will
|
|
/// emit diagnostics and set the declarator to invalid. Even if this happens,
|
|
/// will be updated to reflect a well-formed type for the destructor and
|
|
/// returned.
|
|
QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
|
|
StorageClass& SC) {
|
|
// C++ [class.dtor]p1:
|
|
// [...] A typedef-name that names a class is a class-name
|
|
// (7.1.3); however, a typedef-name that names a class shall not
|
|
// be used as the identifier in the declarator for a destructor
|
|
// declaration.
|
|
QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
|
|
if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
|
|
Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
|
|
<< DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
|
|
|
|
// C++ [class.dtor]p2:
|
|
// A destructor is used to destroy objects of its class type. A
|
|
// destructor takes no parameters, and no return type can be
|
|
// specified for it (not even void). The address of a destructor
|
|
// shall not be taken. A destructor shall not be static. A
|
|
// destructor can be invoked for a const, volatile or const
|
|
// volatile object. A destructor shall not be declared const,
|
|
// volatile or const volatile (9.3.2).
|
|
if (SC == SC_Static) {
|
|
if (!D.isInvalidType())
|
|
Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
|
|
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
|
|
<< SourceRange(D.getIdentifierLoc())
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
|
|
|
|
SC = SC_None;
|
|
}
|
|
if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
|
|
// Destructors don't have return types, but the parser will
|
|
// happily parse something like:
|
|
//
|
|
// class X {
|
|
// float ~X();
|
|
// };
|
|
//
|
|
// The return type will be eliminated later.
|
|
Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
|
|
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
|
|
<< SourceRange(D.getIdentifierLoc());
|
|
}
|
|
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
|
|
if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
|
|
if (FTI.TypeQuals & Qualifiers::Const)
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
|
|
<< "const" << SourceRange(D.getIdentifierLoc());
|
|
if (FTI.TypeQuals & Qualifiers::Volatile)
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
|
|
<< "volatile" << SourceRange(D.getIdentifierLoc());
|
|
if (FTI.TypeQuals & Qualifiers::Restrict)
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
|
|
<< "restrict" << SourceRange(D.getIdentifierLoc());
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// C++0x [class.dtor]p2:
|
|
// A destructor shall not be declared with a ref-qualifier.
|
|
if (FTI.hasRefQualifier()) {
|
|
Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
|
|
<< FTI.RefQualifierIsLValueRef
|
|
<< FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Make sure we don't have any parameters.
|
|
if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
|
|
|
|
// Delete the parameters.
|
|
FTI.freeArgs();
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Make sure the destructor isn't variadic.
|
|
if (FTI.isVariadic) {
|
|
Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Rebuild the function type "R" without any type qualifiers or
|
|
// parameters (in case any of the errors above fired) and with
|
|
// "void" as the return type, since destructors don't have return
|
|
// types.
|
|
if (!D.isInvalidType())
|
|
return R;
|
|
|
|
const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
|
|
FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
|
|
EPI.Variadic = false;
|
|
EPI.TypeQuals = 0;
|
|
EPI.RefQualifier = RQ_None;
|
|
return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
|
|
}
|
|
|
|
/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
|
|
/// well-formednes of the conversion function declarator @p D with
|
|
/// type @p R. If there are any errors in the declarator, this routine
|
|
/// will emit diagnostics and return true. Otherwise, it will return
|
|
/// false. Either way, the type @p R will be updated to reflect a
|
|
/// well-formed type for the conversion operator.
|
|
void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
|
|
StorageClass& SC) {
|
|
// C++ [class.conv.fct]p1:
|
|
// Neither parameter types nor return type can be specified. The
|
|
// type of a conversion function (8.3.5) is "function taking no
|
|
// parameter returning conversion-type-id."
|
|
if (SC == SC_Static) {
|
|
if (!D.isInvalidType())
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
|
|
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
|
|
<< SourceRange(D.getIdentifierLoc());
|
|
D.setInvalidType();
|
|
SC = SC_None;
|
|
}
|
|
|
|
QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
|
|
|
|
if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
|
|
// Conversion functions don't have return types, but the parser will
|
|
// happily parse something like:
|
|
//
|
|
// class X {
|
|
// float operator bool();
|
|
// };
|
|
//
|
|
// The return type will be changed later anyway.
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
|
|
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
|
|
<< SourceRange(D.getIdentifierLoc());
|
|
D.setInvalidType();
|
|
}
|
|
|
|
const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
|
|
|
|
// Make sure we don't have any parameters.
|
|
if (Proto->getNumArgs() > 0) {
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
|
|
|
|
// Delete the parameters.
|
|
D.getFunctionTypeInfo().freeArgs();
|
|
D.setInvalidType();
|
|
} else if (Proto->isVariadic()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Diagnose "&operator bool()" and other such nonsense. This
|
|
// is actually a gcc extension which we don't support.
|
|
if (Proto->getResultType() != ConvType) {
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
|
|
<< Proto->getResultType();
|
|
D.setInvalidType();
|
|
ConvType = Proto->getResultType();
|
|
}
|
|
|
|
// C++ [class.conv.fct]p4:
|
|
// The conversion-type-id shall not represent a function type nor
|
|
// an array type.
|
|
if (ConvType->isArrayType()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
|
|
ConvType = Context.getPointerType(ConvType);
|
|
D.setInvalidType();
|
|
} else if (ConvType->isFunctionType()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
|
|
ConvType = Context.getPointerType(ConvType);
|
|
D.setInvalidType();
|
|
}
|
|
|
|
// Rebuild the function type "R" without any parameters (in case any
|
|
// of the errors above fired) and with the conversion type as the
|
|
// return type.
|
|
if (D.isInvalidType())
|
|
R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
|
|
|
|
// C++0x explicit conversion operators.
|
|
if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
|
|
Diag(D.getDeclSpec().getExplicitSpecLoc(),
|
|
diag::warn_explicit_conversion_functions)
|
|
<< SourceRange(D.getDeclSpec().getExplicitSpecLoc());
|
|
}
|
|
|
|
/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
|
|
/// the declaration of the given C++ conversion function. This routine
|
|
/// is responsible for recording the conversion function in the C++
|
|
/// class, if possible.
|
|
Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
|
|
assert(Conversion && "Expected to receive a conversion function declaration");
|
|
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
|
|
|
|
// Make sure we aren't redeclaring the conversion function.
|
|
QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
|
|
|
|
// C++ [class.conv.fct]p1:
|
|
// [...] A conversion function is never used to convert a
|
|
// (possibly cv-qualified) object to the (possibly cv-qualified)
|
|
// same object type (or a reference to it), to a (possibly
|
|
// cv-qualified) base class of that type (or a reference to it),
|
|
// or to (possibly cv-qualified) void.
|
|
// FIXME: Suppress this warning if the conversion function ends up being a
|
|
// virtual function that overrides a virtual function in a base class.
|
|
QualType ClassType
|
|
= Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
|
|
if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
|
|
ConvType = ConvTypeRef->getPointeeType();
|
|
if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
|
|
Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
|
|
/* Suppress diagnostics for instantiations. */;
|
|
else if (ConvType->isRecordType()) {
|
|
ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
|
|
if (ConvType == ClassType)
|
|
Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
|
|
<< ClassType;
|
|
else if (IsDerivedFrom(ClassType, ConvType))
|
|
Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
|
|
<< ClassType << ConvType;
|
|
} else if (ConvType->isVoidType()) {
|
|
Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
|
|
<< ClassType << ConvType;
|
|
}
|
|
|
|
if (FunctionTemplateDecl *ConversionTemplate
|
|
= Conversion->getDescribedFunctionTemplate())
|
|
return ConversionTemplate;
|
|
|
|
return Conversion;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Namespace Handling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
/// ActOnStartNamespaceDef - This is called at the start of a namespace
|
|
/// definition.
|
|
Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
|
|
SourceLocation InlineLoc,
|
|
SourceLocation NamespaceLoc,
|
|
SourceLocation IdentLoc,
|
|
IdentifierInfo *II,
|
|
SourceLocation LBrace,
|
|
AttributeList *AttrList) {
|
|
SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
|
|
// For anonymous namespace, take the location of the left brace.
|
|
SourceLocation Loc = II ? IdentLoc : LBrace;
|
|
NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
|
|
StartLoc, Loc, II);
|
|
Namespc->setInline(InlineLoc.isValid());
|
|
|
|
Scope *DeclRegionScope = NamespcScope->getParent();
|
|
|
|
ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
|
|
|
|
if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
|
|
PushNamespaceVisibilityAttr(Attr);
|
|
|
|
if (II) {
|
|
// C++ [namespace.def]p2:
|
|
// The identifier in an original-namespace-definition shall not
|
|
// have been previously defined in the declarative region in
|
|
// which the original-namespace-definition appears. The
|
|
// identifier in an original-namespace-definition is the name of
|
|
// the namespace. Subsequently in that declarative region, it is
|
|
// treated as an original-namespace-name.
|
|
//
|
|
// Since namespace names are unique in their scope, and we don't
|
|
// look through using directives, just
|
|
DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
|
|
NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
|
|
|
|
if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
|
|
// This is an extended namespace definition.
|
|
if (Namespc->isInline() != OrigNS->isInline()) {
|
|
// inline-ness must match
|
|
Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
|
|
<< Namespc->isInline();
|
|
Diag(OrigNS->getLocation(), diag::note_previous_definition);
|
|
Namespc->setInvalidDecl();
|
|
// Recover by ignoring the new namespace's inline status.
|
|
Namespc->setInline(OrigNS->isInline());
|
|
}
|
|
|
|
// Attach this namespace decl to the chain of extended namespace
|
|
// definitions.
|
|
OrigNS->setNextNamespace(Namespc);
|
|
Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
|
|
|
|
// Remove the previous declaration from the scope.
|
|
if (DeclRegionScope->isDeclScope(OrigNS)) {
|
|
IdResolver.RemoveDecl(OrigNS);
|
|
DeclRegionScope->RemoveDecl(OrigNS);
|
|
}
|
|
} else if (PrevDecl) {
|
|
// This is an invalid name redefinition.
|
|
Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
|
|
<< Namespc->getDeclName();
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
Namespc->setInvalidDecl();
|
|
// Continue on to push Namespc as current DeclContext and return it.
|
|
} else if (II->isStr("std") &&
|
|
CurContext->getRedeclContext()->isTranslationUnit()) {
|
|
// This is the first "real" definition of the namespace "std", so update
|
|
// our cache of the "std" namespace to point at this definition.
|
|
if (NamespaceDecl *StdNS = getStdNamespace()) {
|
|
// We had already defined a dummy namespace "std". Link this new
|
|
// namespace definition to the dummy namespace "std".
|
|
StdNS->setNextNamespace(Namespc);
|
|
StdNS->setLocation(IdentLoc);
|
|
Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
|
|
}
|
|
|
|
// Make our StdNamespace cache point at the first real definition of the
|
|
// "std" namespace.
|
|
StdNamespace = Namespc;
|
|
}
|
|
|
|
PushOnScopeChains(Namespc, DeclRegionScope);
|
|
} else {
|
|
// Anonymous namespaces.
|
|
assert(Namespc->isAnonymousNamespace());
|
|
|
|
// Link the anonymous namespace into its parent.
|
|
NamespaceDecl *PrevDecl;
|
|
DeclContext *Parent = CurContext->getRedeclContext();
|
|
if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
|
|
PrevDecl = TU->getAnonymousNamespace();
|
|
TU->setAnonymousNamespace(Namespc);
|
|
} else {
|
|
NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
|
|
PrevDecl = ND->getAnonymousNamespace();
|
|
ND->setAnonymousNamespace(Namespc);
|
|
}
|
|
|
|
// Link the anonymous namespace with its previous declaration.
|
|
if (PrevDecl) {
|
|
assert(PrevDecl->isAnonymousNamespace());
|
|
assert(!PrevDecl->getNextNamespace());
|
|
Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
|
|
PrevDecl->setNextNamespace(Namespc);
|
|
|
|
if (Namespc->isInline() != PrevDecl->isInline()) {
|
|
// inline-ness must match
|
|
Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
|
|
<< Namespc->isInline();
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
Namespc->setInvalidDecl();
|
|
// Recover by ignoring the new namespace's inline status.
|
|
Namespc->setInline(PrevDecl->isInline());
|
|
}
|
|
}
|
|
|
|
CurContext->addDecl(Namespc);
|
|
|
|
// C++ [namespace.unnamed]p1. An unnamed-namespace-definition
|
|
// behaves as if it were replaced by
|
|
// namespace unique { /* empty body */ }
|
|
// using namespace unique;
|
|
// namespace unique { namespace-body }
|
|
// where all occurrences of 'unique' in a translation unit are
|
|
// replaced by the same identifier and this identifier differs
|
|
// from all other identifiers in the entire program.
|
|
|
|
// We just create the namespace with an empty name and then add an
|
|
// implicit using declaration, just like the standard suggests.
|
|
//
|
|
// CodeGen enforces the "universally unique" aspect by giving all
|
|
// declarations semantically contained within an anonymous
|
|
// namespace internal linkage.
|
|
|
|
if (!PrevDecl) {
|
|
UsingDirectiveDecl* UD
|
|
= UsingDirectiveDecl::Create(Context, CurContext,
|
|
/* 'using' */ LBrace,
|
|
/* 'namespace' */ SourceLocation(),
|
|
/* qualifier */ NestedNameSpecifierLoc(),
|
|
/* identifier */ SourceLocation(),
|
|
Namespc,
|
|
/* Ancestor */ CurContext);
|
|
UD->setImplicit();
|
|
CurContext->addDecl(UD);
|
|
}
|
|
}
|
|
|
|
// Although we could have an invalid decl (i.e. the namespace name is a
|
|
// redefinition), push it as current DeclContext and try to continue parsing.
|
|
// FIXME: We should be able to push Namespc here, so that the each DeclContext
|
|
// for the namespace has the declarations that showed up in that particular
|
|
// namespace definition.
|
|
PushDeclContext(NamespcScope, Namespc);
|
|
return Namespc;
|
|
}
|
|
|
|
/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
|
|
/// is a namespace alias, returns the namespace it points to.
|
|
static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
|
|
if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
|
|
return AD->getNamespace();
|
|
return dyn_cast_or_null<NamespaceDecl>(D);
|
|
}
|
|
|
|
/// ActOnFinishNamespaceDef - This callback is called after a namespace is
|
|
/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
|
|
void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
|
|
NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
|
|
assert(Namespc && "Invalid parameter, expected NamespaceDecl");
|
|
Namespc->setRBraceLoc(RBrace);
|
|
PopDeclContext();
|
|
if (Namespc->hasAttr<VisibilityAttr>())
|
|
PopPragmaVisibility();
|
|
}
|
|
|
|
CXXRecordDecl *Sema::getStdBadAlloc() const {
|
|
return cast_or_null<CXXRecordDecl>(
|
|
StdBadAlloc.get(Context.getExternalSource()));
|
|
}
|
|
|
|
NamespaceDecl *Sema::getStdNamespace() const {
|
|
return cast_or_null<NamespaceDecl>(
|
|
StdNamespace.get(Context.getExternalSource()));
|
|
}
|
|
|
|
/// \brief Retrieve the special "std" namespace, which may require us to
|
|
/// implicitly define the namespace.
|
|
NamespaceDecl *Sema::getOrCreateStdNamespace() {
|
|
if (!StdNamespace) {
|
|
// The "std" namespace has not yet been defined, so build one implicitly.
|
|
StdNamespace = NamespaceDecl::Create(Context,
|
|
Context.getTranslationUnitDecl(),
|
|
SourceLocation(), SourceLocation(),
|
|
&PP.getIdentifierTable().get("std"));
|
|
getStdNamespace()->setImplicit(true);
|
|
}
|
|
|
|
return getStdNamespace();
|
|
}
|
|
|
|
/// \brief Determine whether a using statement is in a context where it will be
|
|
/// apply in all contexts.
|
|
static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
|
|
switch (CurContext->getDeclKind()) {
|
|
case Decl::TranslationUnit:
|
|
return true;
|
|
case Decl::LinkageSpec:
|
|
return IsUsingDirectiveInToplevelContext(CurContext->getParent());
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Decl *Sema::ActOnUsingDirective(Scope *S,
|
|
SourceLocation UsingLoc,
|
|
SourceLocation NamespcLoc,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation IdentLoc,
|
|
IdentifierInfo *NamespcName,
|
|
AttributeList *AttrList) {
|
|
assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
|
|
assert(NamespcName && "Invalid NamespcName.");
|
|
assert(IdentLoc.isValid() && "Invalid NamespceName location.");
|
|
|
|
// This can only happen along a recovery path.
|
|
while (S->getFlags() & Scope::TemplateParamScope)
|
|
S = S->getParent();
|
|
assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
|
|
|
|
UsingDirectiveDecl *UDir = 0;
|
|
NestedNameSpecifier *Qualifier = 0;
|
|
if (SS.isSet())
|
|
Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
|
|
// Lookup namespace name.
|
|
LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
|
|
LookupParsedName(R, S, &SS);
|
|
if (R.isAmbiguous())
|
|
return 0;
|
|
|
|
if (R.empty()) {
|
|
// Allow "using namespace std;" or "using namespace ::std;" even if
|
|
// "std" hasn't been defined yet, for GCC compatibility.
|
|
if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
|
|
NamespcName->isStr("std")) {
|
|
Diag(IdentLoc, diag::ext_using_undefined_std);
|
|
R.addDecl(getOrCreateStdNamespace());
|
|
R.resolveKind();
|
|
}
|
|
// Otherwise, attempt typo correction.
|
|
else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
|
|
CTC_NoKeywords, 0)) {
|
|
if (R.getAsSingle<NamespaceDecl>() ||
|
|
R.getAsSingle<NamespaceAliasDecl>()) {
|
|
if (DeclContext *DC = computeDeclContext(SS, false))
|
|
Diag(IdentLoc, diag::err_using_directive_member_suggest)
|
|
<< NamespcName << DC << Corrected << SS.getRange()
|
|
<< FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
|
|
else
|
|
Diag(IdentLoc, diag::err_using_directive_suggest)
|
|
<< NamespcName << Corrected
|
|
<< FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
|
|
Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
|
|
<< Corrected;
|
|
|
|
NamespcName = Corrected.getAsIdentifierInfo();
|
|
} else {
|
|
R.clear();
|
|
R.setLookupName(NamespcName);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!R.empty()) {
|
|
NamedDecl *Named = R.getFoundDecl();
|
|
assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
|
|
&& "expected namespace decl");
|
|
// C++ [namespace.udir]p1:
|
|
// A using-directive specifies that the names in the nominated
|
|
// namespace can be used in the scope in which the
|
|
// using-directive appears after the using-directive. During
|
|
// unqualified name lookup (3.4.1), the names appear as if they
|
|
// were declared in the nearest enclosing namespace which
|
|
// contains both the using-directive and the nominated
|
|
// namespace. [Note: in this context, "contains" means "contains
|
|
// directly or indirectly". ]
|
|
|
|
// Find enclosing context containing both using-directive and
|
|
// nominated namespace.
|
|
NamespaceDecl *NS = getNamespaceDecl(Named);
|
|
DeclContext *CommonAncestor = cast<DeclContext>(NS);
|
|
while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
|
|
CommonAncestor = CommonAncestor->getParent();
|
|
|
|
UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
|
|
SS.getWithLocInContext(Context),
|
|
IdentLoc, Named, CommonAncestor);
|
|
|
|
if (IsUsingDirectiveInToplevelContext(CurContext) &&
|
|
!SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
|
|
Diag(IdentLoc, diag::warn_using_directive_in_header);
|
|
}
|
|
|
|
PushUsingDirective(S, UDir);
|
|
} else {
|
|
Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
|
|
}
|
|
|
|
// FIXME: We ignore attributes for now.
|
|
return UDir;
|
|
}
|
|
|
|
void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
|
|
// If scope has associated entity, then using directive is at namespace
|
|
// or translation unit scope. We add UsingDirectiveDecls, into
|
|
// it's lookup structure.
|
|
if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
|
|
Ctx->addDecl(UDir);
|
|
else
|
|
// Otherwise it is block-sope. using-directives will affect lookup
|
|
// only to the end of scope.
|
|
S->PushUsingDirective(UDir);
|
|
}
|
|
|
|
|
|
Decl *Sema::ActOnUsingDeclaration(Scope *S,
|
|
AccessSpecifier AS,
|
|
bool HasUsingKeyword,
|
|
SourceLocation UsingLoc,
|
|
CXXScopeSpec &SS,
|
|
UnqualifiedId &Name,
|
|
AttributeList *AttrList,
|
|
bool IsTypeName,
|
|
SourceLocation TypenameLoc) {
|
|
assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
|
|
|
|
switch (Name.getKind()) {
|
|
case UnqualifiedId::IK_Identifier:
|
|
case UnqualifiedId::IK_OperatorFunctionId:
|
|
case UnqualifiedId::IK_LiteralOperatorId:
|
|
case UnqualifiedId::IK_ConversionFunctionId:
|
|
break;
|
|
|
|
case UnqualifiedId::IK_ConstructorName:
|
|
case UnqualifiedId::IK_ConstructorTemplateId:
|
|
// C++0x inherited constructors.
|
|
if (getLangOptions().CPlusPlus0x) break;
|
|
|
|
Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
|
|
<< SS.getRange();
|
|
return 0;
|
|
|
|
case UnqualifiedId::IK_DestructorName:
|
|
Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
|
|
<< SS.getRange();
|
|
return 0;
|
|
|
|
case UnqualifiedId::IK_TemplateId:
|
|
Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
|
|
<< SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
|
|
return 0;
|
|
}
|
|
|
|
DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
|
|
DeclarationName TargetName = TargetNameInfo.getName();
|
|
if (!TargetName)
|
|
return 0;
|
|
|
|
// Warn about using declarations.
|
|
// TODO: store that the declaration was written without 'using' and
|
|
// talk about access decls instead of using decls in the
|
|
// diagnostics.
|
|
if (!HasUsingKeyword) {
|
|
UsingLoc = Name.getSourceRange().getBegin();
|
|
|
|
Diag(UsingLoc, diag::warn_access_decl_deprecated)
|
|
<< FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
|
|
}
|
|
|
|
if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
|
|
DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
|
|
return 0;
|
|
|
|
NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
|
|
TargetNameInfo, AttrList,
|
|
/* IsInstantiation */ false,
|
|
IsTypeName, TypenameLoc);
|
|
if (UD)
|
|
PushOnScopeChains(UD, S, /*AddToContext*/ false);
|
|
|
|
return UD;
|
|
}
|
|
|
|
/// \brief Determine whether a using declaration considers the given
|
|
/// declarations as "equivalent", e.g., if they are redeclarations of
|
|
/// the same entity or are both typedefs of the same type.
|
|
static bool
|
|
IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
|
|
bool &SuppressRedeclaration) {
|
|
if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
|
|
SuppressRedeclaration = false;
|
|
return true;
|
|
}
|
|
|
|
if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
|
|
if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
|
|
SuppressRedeclaration = true;
|
|
return Context.hasSameType(TD1->getUnderlyingType(),
|
|
TD2->getUnderlyingType());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Determines whether to create a using shadow decl for a particular
|
|
/// decl, given the set of decls existing prior to this using lookup.
|
|
bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
|
|
const LookupResult &Previous) {
|
|
// Diagnose finding a decl which is not from a base class of the
|
|
// current class. We do this now because there are cases where this
|
|
// function will silently decide not to build a shadow decl, which
|
|
// will pre-empt further diagnostics.
|
|
//
|
|
// We don't need to do this in C++0x because we do the check once on
|
|
// the qualifier.
|
|
//
|
|
// FIXME: diagnose the following if we care enough:
|
|
// struct A { int foo; };
|
|
// struct B : A { using A::foo; };
|
|
// template <class T> struct C : A {};
|
|
// template <class T> struct D : C<T> { using B::foo; } // <---
|
|
// This is invalid (during instantiation) in C++03 because B::foo
|
|
// resolves to the using decl in B, which is not a base class of D<T>.
|
|
// We can't diagnose it immediately because C<T> is an unknown
|
|
// specialization. The UsingShadowDecl in D<T> then points directly
|
|
// to A::foo, which will look well-formed when we instantiate.
|
|
// The right solution is to not collapse the shadow-decl chain.
|
|
if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
|
|
DeclContext *OrigDC = Orig->getDeclContext();
|
|
|
|
// Handle enums and anonymous structs.
|
|
if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
|
|
CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
|
|
while (OrigRec->isAnonymousStructOrUnion())
|
|
OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
|
|
|
|
if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
|
|
if (OrigDC == CurContext) {
|
|
Diag(Using->getLocation(),
|
|
diag::err_using_decl_nested_name_specifier_is_current_class)
|
|
<< Using->getQualifierLoc().getSourceRange();
|
|
Diag(Orig->getLocation(), diag::note_using_decl_target);
|
|
return true;
|
|
}
|
|
|
|
Diag(Using->getQualifierLoc().getBeginLoc(),
|
|
diag::err_using_decl_nested_name_specifier_is_not_base_class)
|
|
<< Using->getQualifier()
|
|
<< cast<CXXRecordDecl>(CurContext)
|
|
<< Using->getQualifierLoc().getSourceRange();
|
|
Diag(Orig->getLocation(), diag::note_using_decl_target);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (Previous.empty()) return false;
|
|
|
|
NamedDecl *Target = Orig;
|
|
if (isa<UsingShadowDecl>(Target))
|
|
Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
|
|
|
|
// If the target happens to be one of the previous declarations, we
|
|
// don't have a conflict.
|
|
//
|
|
// FIXME: but we might be increasing its access, in which case we
|
|
// should redeclare it.
|
|
NamedDecl *NonTag = 0, *Tag = 0;
|
|
for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
|
|
I != E; ++I) {
|
|
NamedDecl *D = (*I)->getUnderlyingDecl();
|
|
bool Result;
|
|
if (IsEquivalentForUsingDecl(Context, D, Target, Result))
|
|
return Result;
|
|
|
|
(isa<TagDecl>(D) ? Tag : NonTag) = D;
|
|
}
|
|
|
|
if (Target->isFunctionOrFunctionTemplate()) {
|
|
FunctionDecl *FD;
|
|
if (isa<FunctionTemplateDecl>(Target))
|
|
FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
|
|
else
|
|
FD = cast<FunctionDecl>(Target);
|
|
|
|
NamedDecl *OldDecl = 0;
|
|
switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
|
|
case Ovl_Overload:
|
|
return false;
|
|
|
|
case Ovl_NonFunction:
|
|
Diag(Using->getLocation(), diag::err_using_decl_conflict);
|
|
break;
|
|
|
|
// We found a decl with the exact signature.
|
|
case Ovl_Match:
|
|
// If we're in a record, we want to hide the target, so we
|
|
// return true (without a diagnostic) to tell the caller not to
|
|
// build a shadow decl.
|
|
if (CurContext->isRecord())
|
|
return true;
|
|
|
|
// If we're not in a record, this is an error.
|
|
Diag(Using->getLocation(), diag::err_using_decl_conflict);
|
|
break;
|
|
}
|
|
|
|
Diag(Target->getLocation(), diag::note_using_decl_target);
|
|
Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
|
|
return true;
|
|
}
|
|
|
|
// Target is not a function.
|
|
|
|
if (isa<TagDecl>(Target)) {
|
|
// No conflict between a tag and a non-tag.
|
|
if (!Tag) return false;
|
|
|
|
Diag(Using->getLocation(), diag::err_using_decl_conflict);
|
|
Diag(Target->getLocation(), diag::note_using_decl_target);
|
|
Diag(Tag->getLocation(), diag::note_using_decl_conflict);
|
|
return true;
|
|
}
|
|
|
|
// No conflict between a tag and a non-tag.
|
|
if (!NonTag) return false;
|
|
|
|
Diag(Using->getLocation(), diag::err_using_decl_conflict);
|
|
Diag(Target->getLocation(), diag::note_using_decl_target);
|
|
Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
|
|
return true;
|
|
}
|
|
|
|
/// Builds a shadow declaration corresponding to a 'using' declaration.
|
|
UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
|
|
UsingDecl *UD,
|
|
NamedDecl *Orig) {
|
|
|
|
// If we resolved to another shadow declaration, just coalesce them.
|
|
NamedDecl *Target = Orig;
|
|
if (isa<UsingShadowDecl>(Target)) {
|
|
Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
|
|
assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
|
|
}
|
|
|
|
UsingShadowDecl *Shadow
|
|
= UsingShadowDecl::Create(Context, CurContext,
|
|
UD->getLocation(), UD, Target);
|
|
UD->addShadowDecl(Shadow);
|
|
|
|
Shadow->setAccess(UD->getAccess());
|
|
if (Orig->isInvalidDecl() || UD->isInvalidDecl())
|
|
Shadow->setInvalidDecl();
|
|
|
|
if (S)
|
|
PushOnScopeChains(Shadow, S);
|
|
else
|
|
CurContext->addDecl(Shadow);
|
|
|
|
|
|
return Shadow;
|
|
}
|
|
|
|
/// Hides a using shadow declaration. This is required by the current
|
|
/// using-decl implementation when a resolvable using declaration in a
|
|
/// class is followed by a declaration which would hide or override
|
|
/// one or more of the using decl's targets; for example:
|
|
///
|
|
/// struct Base { void foo(int); };
|
|
/// struct Derived : Base {
|
|
/// using Base::foo;
|
|
/// void foo(int);
|
|
/// };
|
|
///
|
|
/// The governing language is C++03 [namespace.udecl]p12:
|
|
///
|
|
/// When a using-declaration brings names from a base class into a
|
|
/// derived class scope, member functions in the derived class
|
|
/// override and/or hide member functions with the same name and
|
|
/// parameter types in a base class (rather than conflicting).
|
|
///
|
|
/// There are two ways to implement this:
|
|
/// (1) optimistically create shadow decls when they're not hidden
|
|
/// by existing declarations, or
|
|
/// (2) don't create any shadow decls (or at least don't make them
|
|
/// visible) until we've fully parsed/instantiated the class.
|
|
/// The problem with (1) is that we might have to retroactively remove
|
|
/// a shadow decl, which requires several O(n) operations because the
|
|
/// decl structures are (very reasonably) not designed for removal.
|
|
/// (2) avoids this but is very fiddly and phase-dependent.
|
|
void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
|
|
if (Shadow->getDeclName().getNameKind() ==
|
|
DeclarationName::CXXConversionFunctionName)
|
|
cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
|
|
|
|
// Remove it from the DeclContext...
|
|
Shadow->getDeclContext()->removeDecl(Shadow);
|
|
|
|
// ...and the scope, if applicable...
|
|
if (S) {
|
|
S->RemoveDecl(Shadow);
|
|
IdResolver.RemoveDecl(Shadow);
|
|
}
|
|
|
|
// ...and the using decl.
|
|
Shadow->getUsingDecl()->removeShadowDecl(Shadow);
|
|
|
|
// TODO: complain somehow if Shadow was used. It shouldn't
|
|
// be possible for this to happen, because...?
|
|
}
|
|
|
|
/// Builds a using declaration.
|
|
///
|
|
/// \param IsInstantiation - Whether this call arises from an
|
|
/// instantiation of an unresolved using declaration. We treat
|
|
/// the lookup differently for these declarations.
|
|
NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
|
|
SourceLocation UsingLoc,
|
|
CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &NameInfo,
|
|
AttributeList *AttrList,
|
|
bool IsInstantiation,
|
|
bool IsTypeName,
|
|
SourceLocation TypenameLoc) {
|
|
assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
|
|
SourceLocation IdentLoc = NameInfo.getLoc();
|
|
assert(IdentLoc.isValid() && "Invalid TargetName location.");
|
|
|
|
// FIXME: We ignore attributes for now.
|
|
|
|
if (SS.isEmpty()) {
|
|
Diag(IdentLoc, diag::err_using_requires_qualname);
|
|
return 0;
|
|
}
|
|
|
|
// Do the redeclaration lookup in the current scope.
|
|
LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
|
|
ForRedeclaration);
|
|
Previous.setHideTags(false);
|
|
if (S) {
|
|
LookupName(Previous, S);
|
|
|
|
// It is really dumb that we have to do this.
|
|
LookupResult::Filter F = Previous.makeFilter();
|
|
while (F.hasNext()) {
|
|
NamedDecl *D = F.next();
|
|
if (!isDeclInScope(D, CurContext, S))
|
|
F.erase();
|
|
}
|
|
F.done();
|
|
} else {
|
|
assert(IsInstantiation && "no scope in non-instantiation");
|
|
assert(CurContext->isRecord() && "scope not record in instantiation");
|
|
LookupQualifiedName(Previous, CurContext);
|
|
}
|
|
|
|
// Check for invalid redeclarations.
|
|
if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
|
|
return 0;
|
|
|
|
// Check for bad qualifiers.
|
|
if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
|
|
return 0;
|
|
|
|
DeclContext *LookupContext = computeDeclContext(SS);
|
|
NamedDecl *D;
|
|
NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
|
|
if (!LookupContext) {
|
|
if (IsTypeName) {
|
|
// FIXME: not all declaration name kinds are legal here
|
|
D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
|
|
UsingLoc, TypenameLoc,
|
|
QualifierLoc,
|
|
IdentLoc, NameInfo.getName());
|
|
} else {
|
|
D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
|
|
QualifierLoc, NameInfo);
|
|
}
|
|
} else {
|
|
D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
|
|
NameInfo, IsTypeName);
|
|
}
|
|
D->setAccess(AS);
|
|
CurContext->addDecl(D);
|
|
|
|
if (!LookupContext) return D;
|
|
UsingDecl *UD = cast<UsingDecl>(D);
|
|
|
|
if (RequireCompleteDeclContext(SS, LookupContext)) {
|
|
UD->setInvalidDecl();
|
|
return UD;
|
|
}
|
|
|
|
// Constructor inheriting using decls get special treatment.
|
|
if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
|
|
if (CheckInheritedConstructorUsingDecl(UD))
|
|
UD->setInvalidDecl();
|
|
return UD;
|
|
}
|
|
|
|
// Otherwise, look up the target name.
|
|
|
|
LookupResult R(*this, NameInfo, LookupOrdinaryName);
|
|
|
|
// Unlike most lookups, we don't always want to hide tag
|
|
// declarations: tag names are visible through the using declaration
|
|
// even if hidden by ordinary names, *except* in a dependent context
|
|
// where it's important for the sanity of two-phase lookup.
|
|
if (!IsInstantiation)
|
|
R.setHideTags(false);
|
|
|
|
LookupQualifiedName(R, LookupContext);
|
|
|
|
if (R.empty()) {
|
|
Diag(IdentLoc, diag::err_no_member)
|
|
<< NameInfo.getName() << LookupContext << SS.getRange();
|
|
UD->setInvalidDecl();
|
|
return UD;
|
|
}
|
|
|
|
if (R.isAmbiguous()) {
|
|
UD->setInvalidDecl();
|
|
return UD;
|
|
}
|
|
|
|
if (IsTypeName) {
|
|
// If we asked for a typename and got a non-type decl, error out.
|
|
if (!R.getAsSingle<TypeDecl>()) {
|
|
Diag(IdentLoc, diag::err_using_typename_non_type);
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
|
Diag((*I)->getUnderlyingDecl()->getLocation(),
|
|
diag::note_using_decl_target);
|
|
UD->setInvalidDecl();
|
|
return UD;
|
|
}
|
|
} else {
|
|
// If we asked for a non-typename and we got a type, error out,
|
|
// but only if this is an instantiation of an unresolved using
|
|
// decl. Otherwise just silently find the type name.
|
|
if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
|
|
Diag(IdentLoc, diag::err_using_dependent_value_is_type);
|
|
Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
|
|
UD->setInvalidDecl();
|
|
return UD;
|
|
}
|
|
}
|
|
|
|
// C++0x N2914 [namespace.udecl]p6:
|
|
// A using-declaration shall not name a namespace.
|
|
if (R.getAsSingle<NamespaceDecl>()) {
|
|
Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
|
|
<< SS.getRange();
|
|
UD->setInvalidDecl();
|
|
return UD;
|
|
}
|
|
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
if (!CheckUsingShadowDecl(UD, *I, Previous))
|
|
BuildUsingShadowDecl(S, UD, *I);
|
|
}
|
|
|
|
return UD;
|
|
}
|
|
|
|
/// Additional checks for a using declaration referring to a constructor name.
|
|
bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
|
|
if (UD->isTypeName()) {
|
|
// FIXME: Cannot specify typename when specifying constructor
|
|
return true;
|
|
}
|
|
|
|
const Type *SourceType = UD->getQualifier()->getAsType();
|
|
assert(SourceType &&
|
|
"Using decl naming constructor doesn't have type in scope spec.");
|
|
CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
|
|
|
|
// Check whether the named type is a direct base class.
|
|
CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
|
|
CXXRecordDecl::base_class_iterator BaseIt, BaseE;
|
|
for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
|
|
BaseIt != BaseE; ++BaseIt) {
|
|
CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
|
|
if (CanonicalSourceType == BaseType)
|
|
break;
|
|
}
|
|
|
|
if (BaseIt == BaseE) {
|
|
// Did not find SourceType in the bases.
|
|
Diag(UD->getUsingLocation(),
|
|
diag::err_using_decl_constructor_not_in_direct_base)
|
|
<< UD->getNameInfo().getSourceRange()
|
|
<< QualType(SourceType, 0) << TargetClass;
|
|
return true;
|
|
}
|
|
|
|
BaseIt->setInheritConstructors();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Checks that the given using declaration is not an invalid
|
|
/// redeclaration. Note that this is checking only for the using decl
|
|
/// itself, not for any ill-formedness among the UsingShadowDecls.
|
|
bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
|
|
bool isTypeName,
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation NameLoc,
|
|
const LookupResult &Prev) {
|
|
// C++03 [namespace.udecl]p8:
|
|
// C++0x [namespace.udecl]p10:
|
|
// A using-declaration is a declaration and can therefore be used
|
|
// repeatedly where (and only where) multiple declarations are
|
|
// allowed.
|
|
//
|
|
// That's in non-member contexts.
|
|
if (!CurContext->getRedeclContext()->isRecord())
|
|
return false;
|
|
|
|
NestedNameSpecifier *Qual
|
|
= static_cast<NestedNameSpecifier*>(SS.getScopeRep());
|
|
|
|
for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
|
|
bool DTypename;
|
|
NestedNameSpecifier *DQual;
|
|
if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
|
|
DTypename = UD->isTypeName();
|
|
DQual = UD->getQualifier();
|
|
} else if (UnresolvedUsingValueDecl *UD
|
|
= dyn_cast<UnresolvedUsingValueDecl>(D)) {
|
|
DTypename = false;
|
|
DQual = UD->getQualifier();
|
|
} else if (UnresolvedUsingTypenameDecl *UD
|
|
= dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
|
|
DTypename = true;
|
|
DQual = UD->getQualifier();
|
|
} else continue;
|
|
|
|
// using decls differ if one says 'typename' and the other doesn't.
|
|
// FIXME: non-dependent using decls?
|
|
if (isTypeName != DTypename) continue;
|
|
|
|
// using decls differ if they name different scopes (but note that
|
|
// template instantiation can cause this check to trigger when it
|
|
// didn't before instantiation).
|
|
if (Context.getCanonicalNestedNameSpecifier(Qual) !=
|
|
Context.getCanonicalNestedNameSpecifier(DQual))
|
|
continue;
|
|
|
|
Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
|
|
Diag(D->getLocation(), diag::note_using_decl) << 1;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Checks that the given nested-name qualifier used in a using decl
|
|
/// in the current context is appropriately related to the current
|
|
/// scope. If an error is found, diagnoses it and returns true.
|
|
bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation NameLoc) {
|
|
DeclContext *NamedContext = computeDeclContext(SS);
|
|
|
|
if (!CurContext->isRecord()) {
|
|
// C++03 [namespace.udecl]p3:
|
|
// C++0x [namespace.udecl]p8:
|
|
// A using-declaration for a class member shall be a member-declaration.
|
|
|
|
// If we weren't able to compute a valid scope, it must be a
|
|
// dependent class scope.
|
|
if (!NamedContext || NamedContext->isRecord()) {
|
|
Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
|
|
<< SS.getRange();
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, everything is known to be fine.
|
|
return false;
|
|
}
|
|
|
|
// The current scope is a record.
|
|
|
|
// If the named context is dependent, we can't decide much.
|
|
if (!NamedContext) {
|
|
// FIXME: in C++0x, we can diagnose if we can prove that the
|
|
// nested-name-specifier does not refer to a base class, which is
|
|
// still possible in some cases.
|
|
|
|
// Otherwise we have to conservatively report that things might be
|
|
// okay.
|
|
return false;
|
|
}
|
|
|
|
if (!NamedContext->isRecord()) {
|
|
// Ideally this would point at the last name in the specifier,
|
|
// but we don't have that level of source info.
|
|
Diag(SS.getRange().getBegin(),
|
|
diag::err_using_decl_nested_name_specifier_is_not_class)
|
|
<< (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
|
|
return true;
|
|
}
|
|
|
|
if (!NamedContext->isDependentContext() &&
|
|
RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
|
|
return true;
|
|
|
|
if (getLangOptions().CPlusPlus0x) {
|
|
// C++0x [namespace.udecl]p3:
|
|
// In a using-declaration used as a member-declaration, the
|
|
// nested-name-specifier shall name a base class of the class
|
|
// being defined.
|
|
|
|
if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
|
|
cast<CXXRecordDecl>(NamedContext))) {
|
|
if (CurContext == NamedContext) {
|
|
Diag(NameLoc,
|
|
diag::err_using_decl_nested_name_specifier_is_current_class)
|
|
<< SS.getRange();
|
|
return true;
|
|
}
|
|
|
|
Diag(SS.getRange().getBegin(),
|
|
diag::err_using_decl_nested_name_specifier_is_not_base_class)
|
|
<< (NestedNameSpecifier*) SS.getScopeRep()
|
|
<< cast<CXXRecordDecl>(CurContext)
|
|
<< SS.getRange();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// C++03 [namespace.udecl]p4:
|
|
// A using-declaration used as a member-declaration shall refer
|
|
// to a member of a base class of the class being defined [etc.].
|
|
|
|
// Salient point: SS doesn't have to name a base class as long as
|
|
// lookup only finds members from base classes. Therefore we can
|
|
// diagnose here only if we can prove that that can't happen,
|
|
// i.e. if the class hierarchies provably don't intersect.
|
|
|
|
// TODO: it would be nice if "definitely valid" results were cached
|
|
// in the UsingDecl and UsingShadowDecl so that these checks didn't
|
|
// need to be repeated.
|
|
|
|
struct UserData {
|
|
llvm::DenseSet<const CXXRecordDecl*> Bases;
|
|
|
|
static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
|
|
UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
|
|
Data->Bases.insert(Base);
|
|
return true;
|
|
}
|
|
|
|
bool hasDependentBases(const CXXRecordDecl *Class) {
|
|
return !Class->forallBases(collect, this);
|
|
}
|
|
|
|
/// Returns true if the base is dependent or is one of the
|
|
/// accumulated base classes.
|
|
static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
|
|
UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
|
|
return !Data->Bases.count(Base);
|
|
}
|
|
|
|
bool mightShareBases(const CXXRecordDecl *Class) {
|
|
return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
|
|
}
|
|
};
|
|
|
|
UserData Data;
|
|
|
|
// Returns false if we find a dependent base.
|
|
if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
|
|
return false;
|
|
|
|
// Returns false if the class has a dependent base or if it or one
|
|
// of its bases is present in the base set of the current context.
|
|
if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
|
|
return false;
|
|
|
|
Diag(SS.getRange().getBegin(),
|
|
diag::err_using_decl_nested_name_specifier_is_not_base_class)
|
|
<< (NestedNameSpecifier*) SS.getScopeRep()
|
|
<< cast<CXXRecordDecl>(CurContext)
|
|
<< SS.getRange();
|
|
|
|
return true;
|
|
}
|
|
|
|
Decl *Sema::ActOnAliasDeclaration(Scope *S,
|
|
AccessSpecifier AS,
|
|
SourceLocation UsingLoc,
|
|
UnqualifiedId &Name,
|
|
TypeResult Type) {
|
|
assert((S->getFlags() & Scope::DeclScope) &&
|
|
"got alias-declaration outside of declaration scope");
|
|
|
|
if (Type.isInvalid())
|
|
return 0;
|
|
|
|
bool Invalid = false;
|
|
DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
|
|
TypeSourceInfo *TInfo = 0;
|
|
QualType T = GetTypeFromParser(Type.get(), &TInfo);
|
|
|
|
if (DiagnoseClassNameShadow(CurContext, NameInfo))
|
|
return 0;
|
|
|
|
if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
|
|
UPPC_DeclarationType))
|
|
Invalid = true;
|
|
|
|
LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
|
|
LookupName(Previous, S);
|
|
|
|
// Warn about shadowing the name of a template parameter.
|
|
if (Previous.isSingleResult() &&
|
|
Previous.getFoundDecl()->isTemplateParameter()) {
|
|
if (DiagnoseTemplateParameterShadow(Name.StartLocation,
|
|
Previous.getFoundDecl()))
|
|
Invalid = true;
|
|
Previous.clear();
|
|
}
|
|
|
|
assert(Name.Kind == UnqualifiedId::IK_Identifier &&
|
|
"name in alias declaration must be an identifier");
|
|
TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
|
|
Name.StartLocation,
|
|
Name.Identifier, TInfo);
|
|
|
|
NewTD->setAccess(AS);
|
|
|
|
if (Invalid)
|
|
NewTD->setInvalidDecl();
|
|
|
|
bool Redeclaration = false;
|
|
ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
|
|
|
|
if (!Redeclaration)
|
|
PushOnScopeChains(NewTD, S);
|
|
|
|
return NewTD;
|
|
}
|
|
|
|
Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
|
|
SourceLocation NamespaceLoc,
|
|
SourceLocation AliasLoc,
|
|
IdentifierInfo *Alias,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation IdentLoc,
|
|
IdentifierInfo *Ident) {
|
|
|
|
// Lookup the namespace name.
|
|
LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
|
|
LookupParsedName(R, S, &SS);
|
|
|
|
// Check if we have a previous declaration with the same name.
|
|
NamedDecl *PrevDecl
|
|
= LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
|
|
ForRedeclaration);
|
|
if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
|
|
PrevDecl = 0;
|
|
|
|
if (PrevDecl) {
|
|
if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
|
|
// We already have an alias with the same name that points to the same
|
|
// namespace, so don't create a new one.
|
|
// FIXME: At some point, we'll want to create the (redundant)
|
|
// declaration to maintain better source information.
|
|
if (!R.isAmbiguous() && !R.empty() &&
|
|
AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
|
|
return 0;
|
|
}
|
|
|
|
unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
|
|
diag::err_redefinition_different_kind;
|
|
Diag(AliasLoc, DiagID) << Alias;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
return 0;
|
|
}
|
|
|
|
if (R.isAmbiguous())
|
|
return 0;
|
|
|
|
if (R.empty()) {
|
|
if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
|
|
CTC_NoKeywords, 0)) {
|
|
if (R.getAsSingle<NamespaceDecl>() ||
|
|
R.getAsSingle<NamespaceAliasDecl>()) {
|
|
if (DeclContext *DC = computeDeclContext(SS, false))
|
|
Diag(IdentLoc, diag::err_using_directive_member_suggest)
|
|
<< Ident << DC << Corrected << SS.getRange()
|
|
<< FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
|
|
else
|
|
Diag(IdentLoc, diag::err_using_directive_suggest)
|
|
<< Ident << Corrected
|
|
<< FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
|
|
|
|
Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
|
|
<< Corrected;
|
|
|
|
Ident = Corrected.getAsIdentifierInfo();
|
|
} else {
|
|
R.clear();
|
|
R.setLookupName(Ident);
|
|
}
|
|
}
|
|
|
|
if (R.empty()) {
|
|
Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
NamespaceAliasDecl *AliasDecl =
|
|
NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
|
|
Alias, SS.getWithLocInContext(Context),
|
|
IdentLoc, R.getFoundDecl());
|
|
|
|
PushOnScopeChains(AliasDecl, S);
|
|
return AliasDecl;
|
|
}
|
|
|
|
namespace {
|
|
/// \brief Scoped object used to handle the state changes required in Sema
|
|
/// to implicitly define the body of a C++ member function;
|
|
class ImplicitlyDefinedFunctionScope {
|
|
Sema &S;
|
|
Sema::ContextRAII SavedContext;
|
|
|
|
public:
|
|
ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
|
|
: S(S), SavedContext(S, Method)
|
|
{
|
|
S.PushFunctionScope();
|
|
S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
|
|
}
|
|
|
|
~ImplicitlyDefinedFunctionScope() {
|
|
S.PopExpressionEvaluationContext();
|
|
S.PopFunctionOrBlockScope();
|
|
}
|
|
};
|
|
}
|
|
|
|
static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
|
|
CXXRecordDecl *D) {
|
|
ASTContext &Context = Self.Context;
|
|
QualType ClassType = Context.getTypeDeclType(D);
|
|
DeclarationName ConstructorName
|
|
= Context.DeclarationNames.getCXXConstructorName(
|
|
Context.getCanonicalType(ClassType.getUnqualifiedType()));
|
|
|
|
DeclContext::lookup_const_iterator Con, ConEnd;
|
|
for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
|
|
Con != ConEnd; ++Con) {
|
|
// FIXME: In C++0x, a constructor template can be a default constructor.
|
|
if (isa<FunctionTemplateDecl>(*Con))
|
|
continue;
|
|
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
|
|
if (Constructor->isDefaultConstructor())
|
|
return Constructor;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
|
|
CXXRecordDecl *ClassDecl) {
|
|
// C++ [class.ctor]p5:
|
|
// A default constructor for a class X is a constructor of class X
|
|
// that can be called without an argument. If there is no
|
|
// user-declared constructor for class X, a default constructor is
|
|
// implicitly declared. An implicitly-declared default constructor
|
|
// is an inline public member of its class.
|
|
assert(!ClassDecl->hasUserDeclaredConstructor() &&
|
|
"Should not build implicit default constructor!");
|
|
|
|
// C++ [except.spec]p14:
|
|
// An implicitly declared special member function (Clause 12) shall have an
|
|
// exception-specification. [...]
|
|
ImplicitExceptionSpecification ExceptSpec(Context);
|
|
|
|
// Direct base-class constructors.
|
|
for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
|
|
BEnd = ClassDecl->bases_end();
|
|
B != BEnd; ++B) {
|
|
if (B->isVirtual()) // Handled below.
|
|
continue;
|
|
|
|
if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
|
|
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
|
|
if (!BaseClassDecl->hasDeclaredDefaultConstructor())
|
|
ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
|
|
else if (CXXConstructorDecl *Constructor
|
|
= getDefaultConstructorUnsafe(*this, BaseClassDecl))
|
|
ExceptSpec.CalledDecl(Constructor);
|
|
}
|
|
}
|
|
|
|
// Virtual base-class constructors.
|
|
for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
|
|
BEnd = ClassDecl->vbases_end();
|
|
B != BEnd; ++B) {
|
|
if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
|
|
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
|
|
if (!BaseClassDecl->hasDeclaredDefaultConstructor())
|
|
ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
|
|
else if (CXXConstructorDecl *Constructor
|
|
= getDefaultConstructorUnsafe(*this, BaseClassDecl))
|
|
ExceptSpec.CalledDecl(Constructor);
|
|
}
|
|
}
|
|
|
|
// Field constructors.
|
|
for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
|
|
FEnd = ClassDecl->field_end();
|
|
F != FEnd; ++F) {
|
|
if (const RecordType *RecordTy
|
|
= Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
|
|
CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
|
|
if (!FieldClassDecl->hasDeclaredDefaultConstructor())
|
|
ExceptSpec.CalledDecl(
|
|
DeclareImplicitDefaultConstructor(FieldClassDecl));
|
|
else if (CXXConstructorDecl *Constructor
|
|
= getDefaultConstructorUnsafe(*this, FieldClassDecl))
|
|
ExceptSpec.CalledDecl(Constructor);
|
|
}
|
|
}
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
|
|
EPI.NumExceptions = ExceptSpec.size();
|
|
EPI.Exceptions = ExceptSpec.data();
|
|
|
|
// Create the actual constructor declaration.
|
|
CanQualType ClassType
|
|
= Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
|
|
SourceLocation ClassLoc = ClassDecl->getLocation();
|
|
DeclarationName Name
|
|
= Context.DeclarationNames.getCXXConstructorName(ClassType);
|
|
DeclarationNameInfo NameInfo(Name, ClassLoc);
|
|
CXXConstructorDecl *DefaultCon
|
|
= CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
|
|
Context.getFunctionType(Context.VoidTy,
|
|
0, 0, EPI),
|
|
/*TInfo=*/0,
|
|
/*isExplicit=*/false,
|
|
/*isInline=*/true,
|
|
/*isImplicitlyDeclared=*/true);
|
|
DefaultCon->setAccess(AS_public);
|
|
DefaultCon->setImplicit();
|
|
DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
|
|
|
|
// Note that we have declared this constructor.
|
|
++ASTContext::NumImplicitDefaultConstructorsDeclared;
|
|
|
|
if (Scope *S = getScopeForContext(ClassDecl))
|
|
PushOnScopeChains(DefaultCon, S, false);
|
|
ClassDecl->addDecl(DefaultCon);
|
|
|
|
return DefaultCon;
|
|
}
|
|
|
|
void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
|
|
CXXConstructorDecl *Constructor) {
|
|
assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
|
|
!Constructor->isUsed(false)) &&
|
|
"DefineImplicitDefaultConstructor - call it for implicit default ctor");
|
|
|
|
CXXRecordDecl *ClassDecl = Constructor->getParent();
|
|
assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
|
|
|
|
ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
|
|
DiagnosticErrorTrap Trap(Diags);
|
|
if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
|
|
Trap.hasErrorOccurred()) {
|
|
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
|
<< CXXConstructor << Context.getTagDeclType(ClassDecl);
|
|
Constructor->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
SourceLocation Loc = Constructor->getLocation();
|
|
Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
|
|
|
|
Constructor->setUsed();
|
|
MarkVTableUsed(CurrentLocation, ClassDecl);
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(Constructor);
|
|
}
|
|
}
|
|
|
|
void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
|
|
// We start with an initial pass over the base classes to collect those that
|
|
// inherit constructors from. If there are none, we can forgo all further
|
|
// processing.
|
|
typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
|
|
BasesVector BasesToInheritFrom;
|
|
for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
|
|
BaseE = ClassDecl->bases_end();
|
|
BaseIt != BaseE; ++BaseIt) {
|
|
if (BaseIt->getInheritConstructors()) {
|
|
QualType Base = BaseIt->getType();
|
|
if (Base->isDependentType()) {
|
|
// If we inherit constructors from anything that is dependent, just
|
|
// abort processing altogether. We'll get another chance for the
|
|
// instantiations.
|
|
return;
|
|
}
|
|
BasesToInheritFrom.push_back(Base->castAs<RecordType>());
|
|
}
|
|
}
|
|
if (BasesToInheritFrom.empty())
|
|
return;
|
|
|
|
// Now collect the constructors that we already have in the current class.
|
|
// Those take precedence over inherited constructors.
|
|
// C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
|
|
// unless there is a user-declared constructor with the same signature in
|
|
// the class where the using-declaration appears.
|
|
llvm::SmallSet<const Type *, 8> ExistingConstructors;
|
|
for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
|
|
CtorE = ClassDecl->ctor_end();
|
|
CtorIt != CtorE; ++CtorIt) {
|
|
ExistingConstructors.insert(
|
|
Context.getCanonicalType(CtorIt->getType()).getTypePtr());
|
|
}
|
|
|
|
Scope *S = getScopeForContext(ClassDecl);
|
|
DeclarationName CreatedCtorName =
|
|
Context.DeclarationNames.getCXXConstructorName(
|
|
ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
|
|
|
|
// Now comes the true work.
|
|
// First, we keep a map from constructor types to the base that introduced
|
|
// them. Needed for finding conflicting constructors. We also keep the
|
|
// actually inserted declarations in there, for pretty diagnostics.
|
|
typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
|
|
typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
|
|
ConstructorToSourceMap InheritedConstructors;
|
|
for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
|
|
BaseE = BasesToInheritFrom.end();
|
|
BaseIt != BaseE; ++BaseIt) {
|
|
const RecordType *Base = *BaseIt;
|
|
CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
|
|
CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
|
|
for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
|
|
CtorE = BaseDecl->ctor_end();
|
|
CtorIt != CtorE; ++CtorIt) {
|
|
// Find the using declaration for inheriting this base's constructors.
|
|
DeclarationName Name =
|
|
Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
|
|
UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
|
|
LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
|
|
SourceLocation UsingLoc = UD ? UD->getLocation() :
|
|
ClassDecl->getLocation();
|
|
|
|
// C++0x [class.inhctor]p1: The candidate set of inherited constructors
|
|
// from the class X named in the using-declaration consists of actual
|
|
// constructors and notional constructors that result from the
|
|
// transformation of defaulted parameters as follows:
|
|
// - all non-template default constructors of X, and
|
|
// - for each non-template constructor of X that has at least one
|
|
// parameter with a default argument, the set of constructors that
|
|
// results from omitting any ellipsis parameter specification and
|
|
// successively omitting parameters with a default argument from the
|
|
// end of the parameter-type-list.
|
|
CXXConstructorDecl *BaseCtor = *CtorIt;
|
|
bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
|
|
const FunctionProtoType *BaseCtorType =
|
|
BaseCtor->getType()->getAs<FunctionProtoType>();
|
|
|
|
for (unsigned params = BaseCtor->getMinRequiredArguments(),
|
|
maxParams = BaseCtor->getNumParams();
|
|
params <= maxParams; ++params) {
|
|
// Skip default constructors. They're never inherited.
|
|
if (params == 0)
|
|
continue;
|
|
// Skip copy and move constructors for the same reason.
|
|
if (CanBeCopyOrMove && params == 1)
|
|
continue;
|
|
|
|
// Build up a function type for this particular constructor.
|
|
// FIXME: The working paper does not consider that the exception spec
|
|
// for the inheriting constructor might be larger than that of the
|
|
// source. This code doesn't yet, either.
|
|
const Type *NewCtorType;
|
|
if (params == maxParams)
|
|
NewCtorType = BaseCtorType;
|
|
else {
|
|
llvm::SmallVector<QualType, 16> Args;
|
|
for (unsigned i = 0; i < params; ++i) {
|
|
Args.push_back(BaseCtorType->getArgType(i));
|
|
}
|
|
FunctionProtoType::ExtProtoInfo ExtInfo =
|
|
BaseCtorType->getExtProtoInfo();
|
|
ExtInfo.Variadic = false;
|
|
NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
|
|
Args.data(), params, ExtInfo)
|
|
.getTypePtr();
|
|
}
|
|
const Type *CanonicalNewCtorType =
|
|
Context.getCanonicalType(NewCtorType);
|
|
|
|
// Now that we have the type, first check if the class already has a
|
|
// constructor with this signature.
|
|
if (ExistingConstructors.count(CanonicalNewCtorType))
|
|
continue;
|
|
|
|
// Then we check if we have already declared an inherited constructor
|
|
// with this signature.
|
|
std::pair<ConstructorToSourceMap::iterator, bool> result =
|
|
InheritedConstructors.insert(std::make_pair(
|
|
CanonicalNewCtorType,
|
|
std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
|
|
if (!result.second) {
|
|
// Already in the map. If it came from a different class, that's an
|
|
// error. Not if it's from the same.
|
|
CanQualType PreviousBase = result.first->second.first;
|
|
if (CanonicalBase != PreviousBase) {
|
|
const CXXConstructorDecl *PrevCtor = result.first->second.second;
|
|
const CXXConstructorDecl *PrevBaseCtor =
|
|
PrevCtor->getInheritedConstructor();
|
|
assert(PrevBaseCtor && "Conflicting constructor was not inherited");
|
|
|
|
Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
|
|
Diag(BaseCtor->getLocation(),
|
|
diag::note_using_decl_constructor_conflict_current_ctor);
|
|
Diag(PrevBaseCtor->getLocation(),
|
|
diag::note_using_decl_constructor_conflict_previous_ctor);
|
|
Diag(PrevCtor->getLocation(),
|
|
diag::note_using_decl_constructor_conflict_previous_using);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// OK, we're there, now add the constructor.
|
|
// C++0x [class.inhctor]p8: [...] that would be performed by a
|
|
// user-writtern inline constructor [...]
|
|
DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
|
|
CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
|
|
Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
|
|
/*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
|
|
/*ImplicitlyDeclared=*/true);
|
|
NewCtor->setAccess(BaseCtor->getAccess());
|
|
|
|
// Build up the parameter decls and add them.
|
|
llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
|
|
for (unsigned i = 0; i < params; ++i) {
|
|
ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
|
|
UsingLoc, UsingLoc,
|
|
/*IdentifierInfo=*/0,
|
|
BaseCtorType->getArgType(i),
|
|
/*TInfo=*/0, SC_None,
|
|
SC_None, /*DefaultArg=*/0));
|
|
}
|
|
NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
|
|
NewCtor->setInheritedConstructor(BaseCtor);
|
|
|
|
PushOnScopeChains(NewCtor, S, false);
|
|
ClassDecl->addDecl(NewCtor);
|
|
result.first->second.second = NewCtor;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
|
|
// C++ [class.dtor]p2:
|
|
// If a class has no user-declared destructor, a destructor is
|
|
// declared implicitly. An implicitly-declared destructor is an
|
|
// inline public member of its class.
|
|
|
|
// C++ [except.spec]p14:
|
|
// An implicitly declared special member function (Clause 12) shall have
|
|
// an exception-specification.
|
|
ImplicitExceptionSpecification ExceptSpec(Context);
|
|
|
|
// Direct base-class destructors.
|
|
for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
|
|
BEnd = ClassDecl->bases_end();
|
|
B != BEnd; ++B) {
|
|
if (B->isVirtual()) // Handled below.
|
|
continue;
|
|
|
|
if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
|
|
ExceptSpec.CalledDecl(
|
|
LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
|
|
}
|
|
|
|
// Virtual base-class destructors.
|
|
for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
|
|
BEnd = ClassDecl->vbases_end();
|
|
B != BEnd; ++B) {
|
|
if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
|
|
ExceptSpec.CalledDecl(
|
|
LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
|
|
}
|
|
|
|
// Field destructors.
|
|
for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
|
|
FEnd = ClassDecl->field_end();
|
|
F != FEnd; ++F) {
|
|
if (const RecordType *RecordTy
|
|
= Context.getBaseElementType(F->getType())->getAs<RecordType>())
|
|
ExceptSpec.CalledDecl(
|
|
LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
|
|
}
|
|
|
|
// Create the actual destructor declaration.
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
|
|
EPI.NumExceptions = ExceptSpec.size();
|
|
EPI.Exceptions = ExceptSpec.data();
|
|
QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
|
|
|
|
CanQualType ClassType
|
|
= Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
|
|
SourceLocation ClassLoc = ClassDecl->getLocation();
|
|
DeclarationName Name
|
|
= Context.DeclarationNames.getCXXDestructorName(ClassType);
|
|
DeclarationNameInfo NameInfo(Name, ClassLoc);
|
|
CXXDestructorDecl *Destructor
|
|
= CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
|
|
/*isInline=*/true,
|
|
/*isImplicitlyDeclared=*/true);
|
|
Destructor->setAccess(AS_public);
|
|
Destructor->setImplicit();
|
|
Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
|
|
|
|
// Note that we have declared this destructor.
|
|
++ASTContext::NumImplicitDestructorsDeclared;
|
|
|
|
// Introduce this destructor into its scope.
|
|
if (Scope *S = getScopeForContext(ClassDecl))
|
|
PushOnScopeChains(Destructor, S, false);
|
|
ClassDecl->addDecl(Destructor);
|
|
|
|
// This could be uniqued if it ever proves significant.
|
|
Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
|
|
|
|
AddOverriddenMethods(ClassDecl, Destructor);
|
|
|
|
return Destructor;
|
|
}
|
|
|
|
void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
|
|
CXXDestructorDecl *Destructor) {
|
|
assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
|
|
"DefineImplicitDestructor - call it for implicit default dtor");
|
|
CXXRecordDecl *ClassDecl = Destructor->getParent();
|
|
assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
|
|
|
|
if (Destructor->isInvalidDecl())
|
|
return;
|
|
|
|
ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
|
|
|
|
DiagnosticErrorTrap Trap(Diags);
|
|
MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
|
|
Destructor->getParent());
|
|
|
|
if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
|
|
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
|
<< CXXDestructor << Context.getTagDeclType(ClassDecl);
|
|
|
|
Destructor->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
SourceLocation Loc = Destructor->getLocation();
|
|
Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
|
|
|
|
Destructor->setUsed();
|
|
MarkVTableUsed(CurrentLocation, ClassDecl);
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(Destructor);
|
|
}
|
|
}
|
|
|
|
/// \brief Builds a statement that copies the given entity from \p From to
|
|
/// \c To.
|
|
///
|
|
/// This routine is used to copy the members of a class with an
|
|
/// implicitly-declared copy assignment operator. When the entities being
|
|
/// copied are arrays, this routine builds for loops to copy them.
|
|
///
|
|
/// \param S The Sema object used for type-checking.
|
|
///
|
|
/// \param Loc The location where the implicit copy is being generated.
|
|
///
|
|
/// \param T The type of the expressions being copied. Both expressions must
|
|
/// have this type.
|
|
///
|
|
/// \param To The expression we are copying to.
|
|
///
|
|
/// \param From The expression we are copying from.
|
|
///
|
|
/// \param CopyingBaseSubobject Whether we're copying a base subobject.
|
|
/// Otherwise, it's a non-static member subobject.
|
|
///
|
|
/// \param Depth Internal parameter recording the depth of the recursion.
|
|
///
|
|
/// \returns A statement or a loop that copies the expressions.
|
|
static StmtResult
|
|
BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
|
|
Expr *To, Expr *From,
|
|
bool CopyingBaseSubobject, unsigned Depth = 0) {
|
|
// C++0x [class.copy]p30:
|
|
// Each subobject is assigned in the manner appropriate to its type:
|
|
//
|
|
// - if the subobject is of class type, the copy assignment operator
|
|
// for the class is used (as if by explicit qualification; that is,
|
|
// ignoring any possible virtual overriding functions in more derived
|
|
// classes);
|
|
if (const RecordType *RecordTy = T->getAs<RecordType>()) {
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
|
|
|
|
// Look for operator=.
|
|
DeclarationName Name
|
|
= S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
|
|
LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
|
|
S.LookupQualifiedName(OpLookup, ClassDecl, false);
|
|
|
|
// Filter out any result that isn't a copy-assignment operator.
|
|
LookupResult::Filter F = OpLookup.makeFilter();
|
|
while (F.hasNext()) {
|
|
NamedDecl *D = F.next();
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
|
|
if (Method->isCopyAssignmentOperator())
|
|
continue;
|
|
|
|
F.erase();
|
|
}
|
|
F.done();
|
|
|
|
// Suppress the protected check (C++ [class.protected]) for each of the
|
|
// assignment operators we found. This strange dance is required when
|
|
// we're assigning via a base classes's copy-assignment operator. To
|
|
// ensure that we're getting the right base class subobject (without
|
|
// ambiguities), we need to cast "this" to that subobject type; to
|
|
// ensure that we don't go through the virtual call mechanism, we need
|
|
// to qualify the operator= name with the base class (see below). However,
|
|
// this means that if the base class has a protected copy assignment
|
|
// operator, the protected member access check will fail. So, we
|
|
// rewrite "protected" access to "public" access in this case, since we
|
|
// know by construction that we're calling from a derived class.
|
|
if (CopyingBaseSubobject) {
|
|
for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
|
|
L != LEnd; ++L) {
|
|
if (L.getAccess() == AS_protected)
|
|
L.setAccess(AS_public);
|
|
}
|
|
}
|
|
|
|
// Create the nested-name-specifier that will be used to qualify the
|
|
// reference to operator=; this is required to suppress the virtual
|
|
// call mechanism.
|
|
CXXScopeSpec SS;
|
|
SS.MakeTrivial(S.Context,
|
|
NestedNameSpecifier::Create(S.Context, 0, false,
|
|
T.getTypePtr()),
|
|
Loc);
|
|
|
|
// Create the reference to operator=.
|
|
ExprResult OpEqualRef
|
|
= S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
|
|
/*FirstQualifierInScope=*/0, OpLookup,
|
|
/*TemplateArgs=*/0,
|
|
/*SuppressQualifierCheck=*/true);
|
|
if (OpEqualRef.isInvalid())
|
|
return StmtError();
|
|
|
|
// Build the call to the assignment operator.
|
|
|
|
ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
|
|
OpEqualRef.takeAs<Expr>(),
|
|
Loc, &From, 1, Loc);
|
|
if (Call.isInvalid())
|
|
return StmtError();
|
|
|
|
return S.Owned(Call.takeAs<Stmt>());
|
|
}
|
|
|
|
// - if the subobject is of scalar type, the built-in assignment
|
|
// operator is used.
|
|
const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
|
|
if (!ArrayTy) {
|
|
ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
|
|
if (Assignment.isInvalid())
|
|
return StmtError();
|
|
|
|
return S.Owned(Assignment.takeAs<Stmt>());
|
|
}
|
|
|
|
// - if the subobject is an array, each element is assigned, in the
|
|
// manner appropriate to the element type;
|
|
|
|
// Construct a loop over the array bounds, e.g.,
|
|
//
|
|
// for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
|
|
//
|
|
// that will copy each of the array elements.
|
|
QualType SizeType = S.Context.getSizeType();
|
|
|
|
// Create the iteration variable.
|
|
IdentifierInfo *IterationVarName = 0;
|
|
{
|
|
llvm::SmallString<8> Str;
|
|
llvm::raw_svector_ostream OS(Str);
|
|
OS << "__i" << Depth;
|
|
IterationVarName = &S.Context.Idents.get(OS.str());
|
|
}
|
|
VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
|
|
IterationVarName, SizeType,
|
|
S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
|
|
SC_None, SC_None);
|
|
|
|
// Initialize the iteration variable to zero.
|
|
llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
|
|
IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
|
|
|
|
// Create a reference to the iteration variable; we'll use this several
|
|
// times throughout.
|
|
Expr *IterationVarRef
|
|
= S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
|
|
assert(IterationVarRef && "Reference to invented variable cannot fail!");
|
|
|
|
// Create the DeclStmt that holds the iteration variable.
|
|
Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
|
|
|
|
// Create the comparison against the array bound.
|
|
llvm::APInt Upper
|
|
= ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
|
|
Expr *Comparison
|
|
= new (S.Context) BinaryOperator(IterationVarRef,
|
|
IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
|
|
BO_NE, S.Context.BoolTy,
|
|
VK_RValue, OK_Ordinary, Loc);
|
|
|
|
// Create the pre-increment of the iteration variable.
|
|
Expr *Increment
|
|
= new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
|
|
VK_LValue, OK_Ordinary, Loc);
|
|
|
|
// Subscript the "from" and "to" expressions with the iteration variable.
|
|
From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
|
|
IterationVarRef, Loc));
|
|
To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
|
|
IterationVarRef, Loc));
|
|
|
|
// Build the copy for an individual element of the array.
|
|
StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
|
|
To, From, CopyingBaseSubobject,
|
|
Depth + 1);
|
|
if (Copy.isInvalid())
|
|
return StmtError();
|
|
|
|
// Construct the loop that copies all elements of this array.
|
|
return S.ActOnForStmt(Loc, Loc, InitStmt,
|
|
S.MakeFullExpr(Comparison),
|
|
0, S.MakeFullExpr(Increment),
|
|
Loc, Copy.take());
|
|
}
|
|
|
|
/// \brief Determine whether the given class has a copy assignment operator
|
|
/// that accepts a const-qualified argument.
|
|
static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
|
|
CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
|
|
|
|
if (!Class->hasDeclaredCopyAssignment())
|
|
S.DeclareImplicitCopyAssignment(Class);
|
|
|
|
QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
|
|
DeclarationName OpName
|
|
= S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
|
|
|
|
DeclContext::lookup_const_iterator Op, OpEnd;
|
|
for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
|
|
// C++ [class.copy]p9:
|
|
// A user-declared copy assignment operator is a non-static non-template
|
|
// member function of class X with exactly one parameter of type X, X&,
|
|
// const X&, volatile X& or const volatile X&.
|
|
const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
|
|
if (!Method)
|
|
continue;
|
|
|
|
if (Method->isStatic())
|
|
continue;
|
|
if (Method->getPrimaryTemplate())
|
|
continue;
|
|
const FunctionProtoType *FnType =
|
|
Method->getType()->getAs<FunctionProtoType>();
|
|
assert(FnType && "Overloaded operator has no prototype.");
|
|
// Don't assert on this; an invalid decl might have been left in the AST.
|
|
if (FnType->getNumArgs() != 1 || FnType->isVariadic())
|
|
continue;
|
|
bool AcceptsConst = true;
|
|
QualType ArgType = FnType->getArgType(0);
|
|
if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
|
|
ArgType = Ref->getPointeeType();
|
|
// Is it a non-const lvalue reference?
|
|
if (!ArgType.isConstQualified())
|
|
AcceptsConst = false;
|
|
}
|
|
if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
|
|
continue;
|
|
|
|
// We have a single argument of type cv X or cv X&, i.e. we've found the
|
|
// copy assignment operator. Return whether it accepts const arguments.
|
|
return AcceptsConst;
|
|
}
|
|
assert(Class->isInvalidDecl() &&
|
|
"No copy assignment operator declared in valid code.");
|
|
return false;
|
|
}
|
|
|
|
CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
|
|
// Note: The following rules are largely analoguous to the copy
|
|
// constructor rules. Note that virtual bases are not taken into account
|
|
// for determining the argument type of the operator. Note also that
|
|
// operators taking an object instead of a reference are allowed.
|
|
|
|
|
|
// C++ [class.copy]p10:
|
|
// If the class definition does not explicitly declare a copy
|
|
// assignment operator, one is declared implicitly.
|
|
// The implicitly-defined copy assignment operator for a class X
|
|
// will have the form
|
|
//
|
|
// X& X::operator=(const X&)
|
|
//
|
|
// if
|
|
bool HasConstCopyAssignment = true;
|
|
|
|
// -- each direct base class B of X has a copy assignment operator
|
|
// whose parameter is of type const B&, const volatile B& or B,
|
|
// and
|
|
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
|
|
BaseEnd = ClassDecl->bases_end();
|
|
HasConstCopyAssignment && Base != BaseEnd; ++Base) {
|
|
assert(!Base->getType()->isDependentType() &&
|
|
"Cannot generate implicit members for class with dependent bases.");
|
|
const CXXRecordDecl *BaseClassDecl
|
|
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
|
|
HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
|
|
}
|
|
|
|
// -- for all the nonstatic data members of X that are of a class
|
|
// type M (or array thereof), each such class type has a copy
|
|
// assignment operator whose parameter is of type const M&,
|
|
// const volatile M& or M.
|
|
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
|
|
FieldEnd = ClassDecl->field_end();
|
|
HasConstCopyAssignment && Field != FieldEnd;
|
|
++Field) {
|
|
QualType FieldType = Context.getBaseElementType((*Field)->getType());
|
|
if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
|
|
const CXXRecordDecl *FieldClassDecl
|
|
= cast<CXXRecordDecl>(FieldClassType->getDecl());
|
|
HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
|
|
}
|
|
}
|
|
|
|
// Otherwise, the implicitly declared copy assignment operator will
|
|
// have the form
|
|
//
|
|
// X& X::operator=(X&)
|
|
QualType ArgType = Context.getTypeDeclType(ClassDecl);
|
|
QualType RetType = Context.getLValueReferenceType(ArgType);
|
|
if (HasConstCopyAssignment)
|
|
ArgType = ArgType.withConst();
|
|
ArgType = Context.getLValueReferenceType(ArgType);
|
|
|
|
// C++ [except.spec]p14:
|
|
// An implicitly declared special member function (Clause 12) shall have an
|
|
// exception-specification. [...]
|
|
ImplicitExceptionSpecification ExceptSpec(Context);
|
|
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
|
|
BaseEnd = ClassDecl->bases_end();
|
|
Base != BaseEnd; ++Base) {
|
|
CXXRecordDecl *BaseClassDecl
|
|
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
if (!BaseClassDecl->hasDeclaredCopyAssignment())
|
|
DeclareImplicitCopyAssignment(BaseClassDecl);
|
|
|
|
if (CXXMethodDecl *CopyAssign
|
|
= BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
|
|
ExceptSpec.CalledDecl(CopyAssign);
|
|
}
|
|
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
|
|
FieldEnd = ClassDecl->field_end();
|
|
Field != FieldEnd;
|
|
++Field) {
|
|
QualType FieldType = Context.getBaseElementType((*Field)->getType());
|
|
if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
|
|
CXXRecordDecl *FieldClassDecl
|
|
= cast<CXXRecordDecl>(FieldClassType->getDecl());
|
|
|
|
if (!FieldClassDecl->hasDeclaredCopyAssignment())
|
|
DeclareImplicitCopyAssignment(FieldClassDecl);
|
|
|
|
if (CXXMethodDecl *CopyAssign
|
|
= FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
|
|
ExceptSpec.CalledDecl(CopyAssign);
|
|
}
|
|
}
|
|
|
|
// An implicitly-declared copy assignment operator is an inline public
|
|
// member of its class.
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
|
|
EPI.NumExceptions = ExceptSpec.size();
|
|
EPI.Exceptions = ExceptSpec.data();
|
|
DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
|
|
SourceLocation ClassLoc = ClassDecl->getLocation();
|
|
DeclarationNameInfo NameInfo(Name, ClassLoc);
|
|
CXXMethodDecl *CopyAssignment
|
|
= CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
|
|
Context.getFunctionType(RetType, &ArgType, 1, EPI),
|
|
/*TInfo=*/0, /*isStatic=*/false,
|
|
/*StorageClassAsWritten=*/SC_None,
|
|
/*isInline=*/true,
|
|
SourceLocation());
|
|
CopyAssignment->setAccess(AS_public);
|
|
CopyAssignment->setImplicit();
|
|
CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
|
|
|
|
// Add the parameter to the operator.
|
|
ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
|
|
ClassLoc, ClassLoc, /*Id=*/0,
|
|
ArgType, /*TInfo=*/0,
|
|
SC_None,
|
|
SC_None, 0);
|
|
CopyAssignment->setParams(&FromParam, 1);
|
|
|
|
// Note that we have added this copy-assignment operator.
|
|
++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
|
|
|
|
if (Scope *S = getScopeForContext(ClassDecl))
|
|
PushOnScopeChains(CopyAssignment, S, false);
|
|
ClassDecl->addDecl(CopyAssignment);
|
|
|
|
AddOverriddenMethods(ClassDecl, CopyAssignment);
|
|
return CopyAssignment;
|
|
}
|
|
|
|
void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
|
|
CXXMethodDecl *CopyAssignOperator) {
|
|
assert((CopyAssignOperator->isImplicit() &&
|
|
CopyAssignOperator->isOverloadedOperator() &&
|
|
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
|
|
!CopyAssignOperator->isUsed(false)) &&
|
|
"DefineImplicitCopyAssignment called for wrong function");
|
|
|
|
CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
|
|
|
|
if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
|
|
CopyAssignOperator->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
CopyAssignOperator->setUsed();
|
|
|
|
ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
|
|
DiagnosticErrorTrap Trap(Diags);
|
|
|
|
// C++0x [class.copy]p30:
|
|
// The implicitly-defined or explicitly-defaulted copy assignment operator
|
|
// for a non-union class X performs memberwise copy assignment of its
|
|
// subobjects. The direct base classes of X are assigned first, in the
|
|
// order of their declaration in the base-specifier-list, and then the
|
|
// immediate non-static data members of X are assigned, in the order in
|
|
// which they were declared in the class definition.
|
|
|
|
// The statements that form the synthesized function body.
|
|
ASTOwningVector<Stmt*> Statements(*this);
|
|
|
|
// The parameter for the "other" object, which we are copying from.
|
|
ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
|
|
Qualifiers OtherQuals = Other->getType().getQualifiers();
|
|
QualType OtherRefType = Other->getType();
|
|
if (const LValueReferenceType *OtherRef
|
|
= OtherRefType->getAs<LValueReferenceType>()) {
|
|
OtherRefType = OtherRef->getPointeeType();
|
|
OtherQuals = OtherRefType.getQualifiers();
|
|
}
|
|
|
|
// Our location for everything implicitly-generated.
|
|
SourceLocation Loc = CopyAssignOperator->getLocation();
|
|
|
|
// Construct a reference to the "other" object. We'll be using this
|
|
// throughout the generated ASTs.
|
|
Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
|
|
assert(OtherRef && "Reference to parameter cannot fail!");
|
|
|
|
// Construct the "this" pointer. We'll be using this throughout the generated
|
|
// ASTs.
|
|
Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
|
|
assert(This && "Reference to this cannot fail!");
|
|
|
|
// Assign base classes.
|
|
bool Invalid = false;
|
|
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
|
|
E = ClassDecl->bases_end(); Base != E; ++Base) {
|
|
// Form the assignment:
|
|
// static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
|
|
QualType BaseType = Base->getType().getUnqualifiedType();
|
|
if (!BaseType->isRecordType()) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
CXXCastPath BasePath;
|
|
BasePath.push_back(Base);
|
|
|
|
// Construct the "from" expression, which is an implicit cast to the
|
|
// appropriately-qualified base type.
|
|
Expr *From = OtherRef;
|
|
From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
|
|
CK_UncheckedDerivedToBase,
|
|
VK_LValue, &BasePath).take();
|
|
|
|
// Dereference "this".
|
|
ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
|
|
|
|
// Implicitly cast "this" to the appropriately-qualified base type.
|
|
To = ImpCastExprToType(To.take(),
|
|
Context.getCVRQualifiedType(BaseType,
|
|
CopyAssignOperator->getTypeQualifiers()),
|
|
CK_UncheckedDerivedToBase,
|
|
VK_LValue, &BasePath);
|
|
|
|
// Build the copy.
|
|
StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
|
|
To.get(), From,
|
|
/*CopyingBaseSubobject=*/true);
|
|
if (Copy.isInvalid()) {
|
|
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
|
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
|
|
CopyAssignOperator->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Success! Record the copy.
|
|
Statements.push_back(Copy.takeAs<Expr>());
|
|
}
|
|
|
|
// \brief Reference to the __builtin_memcpy function.
|
|
Expr *BuiltinMemCpyRef = 0;
|
|
// \brief Reference to the __builtin_objc_memmove_collectable function.
|
|
Expr *CollectableMemCpyRef = 0;
|
|
|
|
// Assign non-static members.
|
|
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
|
|
FieldEnd = ClassDecl->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
// Check for members of reference type; we can't copy those.
|
|
if (Field->getType()->isReferenceType()) {
|
|
Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
|
|
<< Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
|
|
Diag(Field->getLocation(), diag::note_declared_at);
|
|
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
|
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Check for members of const-qualified, non-class type.
|
|
QualType BaseType = Context.getBaseElementType(Field->getType());
|
|
if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
|
|
Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
|
|
<< Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
|
|
Diag(Field->getLocation(), diag::note_declared_at);
|
|
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
|
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
QualType FieldType = Field->getType().getNonReferenceType();
|
|
if (FieldType->isIncompleteArrayType()) {
|
|
assert(ClassDecl->hasFlexibleArrayMember() &&
|
|
"Incomplete array type is not valid");
|
|
continue;
|
|
}
|
|
|
|
// Build references to the field in the object we're copying from and to.
|
|
CXXScopeSpec SS; // Intentionally empty
|
|
LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
|
|
LookupMemberName);
|
|
MemberLookup.addDecl(*Field);
|
|
MemberLookup.resolveKind();
|
|
ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
|
|
Loc, /*IsArrow=*/false,
|
|
SS, 0, MemberLookup, 0);
|
|
ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
|
|
Loc, /*IsArrow=*/true,
|
|
SS, 0, MemberLookup, 0);
|
|
assert(!From.isInvalid() && "Implicit field reference cannot fail");
|
|
assert(!To.isInvalid() && "Implicit field reference cannot fail");
|
|
|
|
// If the field should be copied with __builtin_memcpy rather than via
|
|
// explicit assignments, do so. This optimization only applies for arrays
|
|
// of scalars and arrays of class type with trivial copy-assignment
|
|
// operators.
|
|
if (FieldType->isArrayType() &&
|
|
(!BaseType->isRecordType() ||
|
|
cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
|
|
->hasTrivialCopyAssignment())) {
|
|
// Compute the size of the memory buffer to be copied.
|
|
QualType SizeType = Context.getSizeType();
|
|
llvm::APInt Size(Context.getTypeSize(SizeType),
|
|
Context.getTypeSizeInChars(BaseType).getQuantity());
|
|
for (const ConstantArrayType *Array
|
|
= Context.getAsConstantArrayType(FieldType);
|
|
Array;
|
|
Array = Context.getAsConstantArrayType(Array->getElementType())) {
|
|
llvm::APInt ArraySize
|
|
= Array->getSize().zextOrTrunc(Size.getBitWidth());
|
|
Size *= ArraySize;
|
|
}
|
|
|
|
// Take the address of the field references for "from" and "to".
|
|
From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
|
|
To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
|
|
|
|
bool NeedsCollectableMemCpy =
|
|
(BaseType->isRecordType() &&
|
|
BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
|
|
|
|
if (NeedsCollectableMemCpy) {
|
|
if (!CollectableMemCpyRef) {
|
|
// Create a reference to the __builtin_objc_memmove_collectable function.
|
|
LookupResult R(*this,
|
|
&Context.Idents.get("__builtin_objc_memmove_collectable"),
|
|
Loc, LookupOrdinaryName);
|
|
LookupName(R, TUScope, true);
|
|
|
|
FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
|
|
if (!CollectableMemCpy) {
|
|
// Something went horribly wrong earlier, and we will have
|
|
// complained about it.
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
|
|
CollectableMemCpy->getType(),
|
|
VK_LValue, Loc, 0).take();
|
|
assert(CollectableMemCpyRef && "Builtin reference cannot fail");
|
|
}
|
|
}
|
|
// Create a reference to the __builtin_memcpy builtin function.
|
|
else if (!BuiltinMemCpyRef) {
|
|
LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
|
|
LookupOrdinaryName);
|
|
LookupName(R, TUScope, true);
|
|
|
|
FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
|
|
if (!BuiltinMemCpy) {
|
|
// Something went horribly wrong earlier, and we will have complained
|
|
// about it.
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
|
|
BuiltinMemCpy->getType(),
|
|
VK_LValue, Loc, 0).take();
|
|
assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
|
|
}
|
|
|
|
ASTOwningVector<Expr*> CallArgs(*this);
|
|
CallArgs.push_back(To.takeAs<Expr>());
|
|
CallArgs.push_back(From.takeAs<Expr>());
|
|
CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
|
|
ExprResult Call = ExprError();
|
|
if (NeedsCollectableMemCpy)
|
|
Call = ActOnCallExpr(/*Scope=*/0,
|
|
CollectableMemCpyRef,
|
|
Loc, move_arg(CallArgs),
|
|
Loc);
|
|
else
|
|
Call = ActOnCallExpr(/*Scope=*/0,
|
|
BuiltinMemCpyRef,
|
|
Loc, move_arg(CallArgs),
|
|
Loc);
|
|
|
|
assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
|
|
Statements.push_back(Call.takeAs<Expr>());
|
|
continue;
|
|
}
|
|
|
|
// Build the copy of this field.
|
|
StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
|
|
To.get(), From.get(),
|
|
/*CopyingBaseSubobject=*/false);
|
|
if (Copy.isInvalid()) {
|
|
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
|
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
|
|
CopyAssignOperator->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// Success! Record the copy.
|
|
Statements.push_back(Copy.takeAs<Stmt>());
|
|
}
|
|
|
|
if (!Invalid) {
|
|
// Add a "return *this;"
|
|
ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
|
|
|
|
StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
|
|
if (Return.isInvalid())
|
|
Invalid = true;
|
|
else {
|
|
Statements.push_back(Return.takeAs<Stmt>());
|
|
|
|
if (Trap.hasErrorOccurred()) {
|
|
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
|
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
|
|
Invalid = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Invalid) {
|
|
CopyAssignOperator->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
|
|
/*isStmtExpr=*/false);
|
|
assert(!Body.isInvalid() && "Compound statement creation cannot fail");
|
|
CopyAssignOperator->setBody(Body.takeAs<Stmt>());
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(CopyAssignOperator);
|
|
}
|
|
}
|
|
|
|
CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
|
|
CXXRecordDecl *ClassDecl) {
|
|
// C++ [class.copy]p4:
|
|
// If the class definition does not explicitly declare a copy
|
|
// constructor, one is declared implicitly.
|
|
|
|
// C++ [class.copy]p5:
|
|
// The implicitly-declared copy constructor for a class X will
|
|
// have the form
|
|
//
|
|
// X::X(const X&)
|
|
//
|
|
// if
|
|
bool HasConstCopyConstructor = true;
|
|
|
|
// -- each direct or virtual base class B of X has a copy
|
|
// constructor whose first parameter is of type const B& or
|
|
// const volatile B&, and
|
|
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
|
|
BaseEnd = ClassDecl->bases_end();
|
|
HasConstCopyConstructor && Base != BaseEnd;
|
|
++Base) {
|
|
// Virtual bases are handled below.
|
|
if (Base->isVirtual())
|
|
continue;
|
|
|
|
CXXRecordDecl *BaseClassDecl
|
|
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
|
|
if (!BaseClassDecl->hasDeclaredCopyConstructor())
|
|
DeclareImplicitCopyConstructor(BaseClassDecl);
|
|
|
|
HasConstCopyConstructor
|
|
= BaseClassDecl->hasConstCopyConstructor(Context);
|
|
}
|
|
|
|
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
|
|
BaseEnd = ClassDecl->vbases_end();
|
|
HasConstCopyConstructor && Base != BaseEnd;
|
|
++Base) {
|
|
CXXRecordDecl *BaseClassDecl
|
|
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
|
|
if (!BaseClassDecl->hasDeclaredCopyConstructor())
|
|
DeclareImplicitCopyConstructor(BaseClassDecl);
|
|
|
|
HasConstCopyConstructor
|
|
= BaseClassDecl->hasConstCopyConstructor(Context);
|
|
}
|
|
|
|
// -- for all the nonstatic data members of X that are of a
|
|
// class type M (or array thereof), each such class type
|
|
// has a copy constructor whose first parameter is of type
|
|
// const M& or const volatile M&.
|
|
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
|
|
FieldEnd = ClassDecl->field_end();
|
|
HasConstCopyConstructor && Field != FieldEnd;
|
|
++Field) {
|
|
QualType FieldType = Context.getBaseElementType((*Field)->getType());
|
|
if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
|
|
CXXRecordDecl *FieldClassDecl
|
|
= cast<CXXRecordDecl>(FieldClassType->getDecl());
|
|
if (!FieldClassDecl->hasDeclaredCopyConstructor())
|
|
DeclareImplicitCopyConstructor(FieldClassDecl);
|
|
|
|
HasConstCopyConstructor
|
|
= FieldClassDecl->hasConstCopyConstructor(Context);
|
|
}
|
|
}
|
|
|
|
// Otherwise, the implicitly declared copy constructor will have
|
|
// the form
|
|
//
|
|
// X::X(X&)
|
|
QualType ClassType = Context.getTypeDeclType(ClassDecl);
|
|
QualType ArgType = ClassType;
|
|
if (HasConstCopyConstructor)
|
|
ArgType = ArgType.withConst();
|
|
ArgType = Context.getLValueReferenceType(ArgType);
|
|
|
|
// C++ [except.spec]p14:
|
|
// An implicitly declared special member function (Clause 12) shall have an
|
|
// exception-specification. [...]
|
|
ImplicitExceptionSpecification ExceptSpec(Context);
|
|
unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
|
|
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
|
|
BaseEnd = ClassDecl->bases_end();
|
|
Base != BaseEnd;
|
|
++Base) {
|
|
// Virtual bases are handled below.
|
|
if (Base->isVirtual())
|
|
continue;
|
|
|
|
CXXRecordDecl *BaseClassDecl
|
|
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
|
|
if (!BaseClassDecl->hasDeclaredCopyConstructor())
|
|
DeclareImplicitCopyConstructor(BaseClassDecl);
|
|
|
|
if (CXXConstructorDecl *CopyConstructor
|
|
= BaseClassDecl->getCopyConstructor(Context, Quals))
|
|
ExceptSpec.CalledDecl(CopyConstructor);
|
|
}
|
|
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
|
|
BaseEnd = ClassDecl->vbases_end();
|
|
Base != BaseEnd;
|
|
++Base) {
|
|
CXXRecordDecl *BaseClassDecl
|
|
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
|
|
if (!BaseClassDecl->hasDeclaredCopyConstructor())
|
|
DeclareImplicitCopyConstructor(BaseClassDecl);
|
|
|
|
if (CXXConstructorDecl *CopyConstructor
|
|
= BaseClassDecl->getCopyConstructor(Context, Quals))
|
|
ExceptSpec.CalledDecl(CopyConstructor);
|
|
}
|
|
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
|
|
FieldEnd = ClassDecl->field_end();
|
|
Field != FieldEnd;
|
|
++Field) {
|
|
QualType FieldType = Context.getBaseElementType((*Field)->getType());
|
|
if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
|
|
CXXRecordDecl *FieldClassDecl
|
|
= cast<CXXRecordDecl>(FieldClassType->getDecl());
|
|
if (!FieldClassDecl->hasDeclaredCopyConstructor())
|
|
DeclareImplicitCopyConstructor(FieldClassDecl);
|
|
|
|
if (CXXConstructorDecl *CopyConstructor
|
|
= FieldClassDecl->getCopyConstructor(Context, Quals))
|
|
ExceptSpec.CalledDecl(CopyConstructor);
|
|
}
|
|
}
|
|
|
|
// An implicitly-declared copy constructor is an inline public
|
|
// member of its class.
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
|
|
EPI.NumExceptions = ExceptSpec.size();
|
|
EPI.Exceptions = ExceptSpec.data();
|
|
DeclarationName Name
|
|
= Context.DeclarationNames.getCXXConstructorName(
|
|
Context.getCanonicalType(ClassType));
|
|
SourceLocation ClassLoc = ClassDecl->getLocation();
|
|
DeclarationNameInfo NameInfo(Name, ClassLoc);
|
|
CXXConstructorDecl *CopyConstructor
|
|
= CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
|
|
Context.getFunctionType(Context.VoidTy,
|
|
&ArgType, 1, EPI),
|
|
/*TInfo=*/0,
|
|
/*isExplicit=*/false,
|
|
/*isInline=*/true,
|
|
/*isImplicitlyDeclared=*/true);
|
|
CopyConstructor->setAccess(AS_public);
|
|
CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
|
|
|
|
// Note that we have declared this constructor.
|
|
++ASTContext::NumImplicitCopyConstructorsDeclared;
|
|
|
|
// Add the parameter to the constructor.
|
|
ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
|
|
ClassLoc, ClassLoc,
|
|
/*IdentifierInfo=*/0,
|
|
ArgType, /*TInfo=*/0,
|
|
SC_None,
|
|
SC_None, 0);
|
|
CopyConstructor->setParams(&FromParam, 1);
|
|
if (Scope *S = getScopeForContext(ClassDecl))
|
|
PushOnScopeChains(CopyConstructor, S, false);
|
|
ClassDecl->addDecl(CopyConstructor);
|
|
|
|
return CopyConstructor;
|
|
}
|
|
|
|
void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
|
|
CXXConstructorDecl *CopyConstructor,
|
|
unsigned TypeQuals) {
|
|
assert((CopyConstructor->isImplicit() &&
|
|
CopyConstructor->isCopyConstructor(TypeQuals) &&
|
|
!CopyConstructor->isUsed(false)) &&
|
|
"DefineImplicitCopyConstructor - call it for implicit copy ctor");
|
|
|
|
CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
|
|
assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
|
|
|
|
ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
|
|
DiagnosticErrorTrap Trap(Diags);
|
|
|
|
if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
|
|
Trap.hasErrorOccurred()) {
|
|
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
|
<< CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
|
|
CopyConstructor->setInvalidDecl();
|
|
} else {
|
|
CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
|
|
CopyConstructor->getLocation(),
|
|
MultiStmtArg(*this, 0, 0),
|
|
/*isStmtExpr=*/false)
|
|
.takeAs<Stmt>());
|
|
}
|
|
|
|
CopyConstructor->setUsed();
|
|
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->CompletedImplicitDefinition(CopyConstructor);
|
|
}
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
|
|
CXXConstructorDecl *Constructor,
|
|
MultiExprArg ExprArgs,
|
|
bool RequiresZeroInit,
|
|
unsigned ConstructKind,
|
|
SourceRange ParenRange) {
|
|
bool Elidable = false;
|
|
|
|
// C++0x [class.copy]p34:
|
|
// When certain criteria are met, an implementation is allowed to
|
|
// omit the copy/move construction of a class object, even if the
|
|
// copy/move constructor and/or destructor for the object have
|
|
// side effects. [...]
|
|
// - when a temporary class object that has not been bound to a
|
|
// reference (12.2) would be copied/moved to a class object
|
|
// with the same cv-unqualified type, the copy/move operation
|
|
// can be omitted by constructing the temporary object
|
|
// directly into the target of the omitted copy/move
|
|
if (ConstructKind == CXXConstructExpr::CK_Complete &&
|
|
Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
|
|
Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
|
|
Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
|
|
}
|
|
|
|
return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
|
|
Elidable, move(ExprArgs), RequiresZeroInit,
|
|
ConstructKind, ParenRange);
|
|
}
|
|
|
|
/// BuildCXXConstructExpr - Creates a complete call to a constructor,
|
|
/// including handling of its default argument expressions.
|
|
ExprResult
|
|
Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
|
|
CXXConstructorDecl *Constructor, bool Elidable,
|
|
MultiExprArg ExprArgs,
|
|
bool RequiresZeroInit,
|
|
unsigned ConstructKind,
|
|
SourceRange ParenRange) {
|
|
unsigned NumExprs = ExprArgs.size();
|
|
Expr **Exprs = (Expr **)ExprArgs.release();
|
|
|
|
for (specific_attr_iterator<NonNullAttr>
|
|
i = Constructor->specific_attr_begin<NonNullAttr>(),
|
|
e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
|
|
const NonNullAttr *NonNull = *i;
|
|
CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
|
|
}
|
|
|
|
MarkDeclarationReferenced(ConstructLoc, Constructor);
|
|
return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
|
|
Constructor, Elidable, Exprs, NumExprs,
|
|
RequiresZeroInit,
|
|
static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
|
|
ParenRange));
|
|
}
|
|
|
|
bool Sema::InitializeVarWithConstructor(VarDecl *VD,
|
|
CXXConstructorDecl *Constructor,
|
|
MultiExprArg Exprs) {
|
|
// FIXME: Provide the correct paren SourceRange when available.
|
|
ExprResult TempResult =
|
|
BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
|
|
move(Exprs), false, CXXConstructExpr::CK_Complete,
|
|
SourceRange());
|
|
if (TempResult.isInvalid())
|
|
return true;
|
|
|
|
Expr *Temp = TempResult.takeAs<Expr>();
|
|
CheckImplicitConversions(Temp, VD->getLocation());
|
|
MarkDeclarationReferenced(VD->getLocation(), Constructor);
|
|
Temp = MaybeCreateExprWithCleanups(Temp);
|
|
VD->setInit(Temp);
|
|
|
|
return false;
|
|
}
|
|
|
|
void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
|
|
if (VD->isInvalidDecl()) return;
|
|
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
|
|
if (ClassDecl->isInvalidDecl()) return;
|
|
if (ClassDecl->hasTrivialDestructor()) return;
|
|
if (ClassDecl->isDependentContext()) return;
|
|
|
|
CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
|
|
MarkDeclarationReferenced(VD->getLocation(), Destructor);
|
|
CheckDestructorAccess(VD->getLocation(), Destructor,
|
|
PDiag(diag::err_access_dtor_var)
|
|
<< VD->getDeclName()
|
|
<< VD->getType());
|
|
|
|
if (!VD->hasGlobalStorage()) return;
|
|
|
|
// Emit warning for non-trivial dtor in global scope (a real global,
|
|
// class-static, function-static).
|
|
Diag(VD->getLocation(), diag::warn_exit_time_destructor);
|
|
|
|
// TODO: this should be re-enabled for static locals by !CXAAtExit
|
|
if (!VD->isStaticLocal())
|
|
Diag(VD->getLocation(), diag::warn_global_destructor);
|
|
}
|
|
|
|
/// AddCXXDirectInitializerToDecl - This action is called immediately after
|
|
/// ActOnDeclarator, when a C++ direct initializer is present.
|
|
/// e.g: "int x(1);"
|
|
void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Exprs,
|
|
SourceLocation RParenLoc,
|
|
bool TypeMayContainAuto) {
|
|
assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
|
|
|
|
// If there is no declaration, there was an error parsing it. Just ignore
|
|
// the initializer.
|
|
if (RealDecl == 0)
|
|
return;
|
|
|
|
VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
|
|
if (!VDecl) {
|
|
Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
|
|
RealDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
|
|
if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
|
|
// FIXME: n3225 doesn't actually seem to indicate this is ill-formed
|
|
if (Exprs.size() > 1) {
|
|
Diag(Exprs.get()[1]->getSourceRange().getBegin(),
|
|
diag::err_auto_var_init_multiple_expressions)
|
|
<< VDecl->getDeclName() << VDecl->getType()
|
|
<< VDecl->getSourceRange();
|
|
RealDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
Expr *Init = Exprs.get()[0];
|
|
TypeSourceInfo *DeducedType = 0;
|
|
if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
|
|
Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
|
|
<< VDecl->getDeclName() << VDecl->getType() << Init->getType()
|
|
<< Init->getSourceRange();
|
|
if (!DeducedType) {
|
|
RealDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
VDecl->setTypeSourceInfo(DeducedType);
|
|
VDecl->setType(DeducedType->getType());
|
|
|
|
// If this is a redeclaration, check that the type we just deduced matches
|
|
// the previously declared type.
|
|
if (VarDecl *Old = VDecl->getPreviousDeclaration())
|
|
MergeVarDeclTypes(VDecl, Old);
|
|
}
|
|
|
|
// We will represent direct-initialization similarly to copy-initialization:
|
|
// int x(1); -as-> int x = 1;
|
|
// ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
|
|
//
|
|
// Clients that want to distinguish between the two forms, can check for
|
|
// direct initializer using VarDecl::hasCXXDirectInitializer().
|
|
// A major benefit is that clients that don't particularly care about which
|
|
// exactly form was it (like the CodeGen) can handle both cases without
|
|
// special case code.
|
|
|
|
// C++ 8.5p11:
|
|
// The form of initialization (using parentheses or '=') is generally
|
|
// insignificant, but does matter when the entity being initialized has a
|
|
// class type.
|
|
|
|
if (!VDecl->getType()->isDependentType() &&
|
|
RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
|
|
diag::err_typecheck_decl_incomplete_type)) {
|
|
VDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// The variable can not have an abstract class type.
|
|
if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
|
|
diag::err_abstract_type_in_decl,
|
|
AbstractVariableType))
|
|
VDecl->setInvalidDecl();
|
|
|
|
const VarDecl *Def;
|
|
if ((Def = VDecl->getDefinition()) && Def != VDecl) {
|
|
Diag(VDecl->getLocation(), diag::err_redefinition)
|
|
<< VDecl->getDeclName();
|
|
Diag(Def->getLocation(), diag::note_previous_definition);
|
|
VDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
// C++ [class.static.data]p4
|
|
// If a static data member is of const integral or const
|
|
// enumeration type, its declaration in the class definition can
|
|
// specify a constant-initializer which shall be an integral
|
|
// constant expression (5.19). In that case, the member can appear
|
|
// in integral constant expressions. The member shall still be
|
|
// defined in a namespace scope if it is used in the program and the
|
|
// namespace scope definition shall not contain an initializer.
|
|
//
|
|
// We already performed a redefinition check above, but for static
|
|
// data members we also need to check whether there was an in-class
|
|
// declaration with an initializer.
|
|
const VarDecl* PrevInit = 0;
|
|
if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
|
|
Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
|
|
Diag(PrevInit->getLocation(), diag::note_previous_definition);
|
|
return;
|
|
}
|
|
|
|
bool IsDependent = false;
|
|
for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
|
|
if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
|
|
VDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
if (Exprs.get()[I]->isTypeDependent())
|
|
IsDependent = true;
|
|
}
|
|
|
|
// If either the declaration has a dependent type or if any of the
|
|
// expressions is type-dependent, we represent the initialization
|
|
// via a ParenListExpr for later use during template instantiation.
|
|
if (VDecl->getType()->isDependentType() || IsDependent) {
|
|
// Let clients know that initialization was done with a direct initializer.
|
|
VDecl->setCXXDirectInitializer(true);
|
|
|
|
// Store the initialization expressions as a ParenListExpr.
|
|
unsigned NumExprs = Exprs.size();
|
|
VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
|
|
(Expr **)Exprs.release(),
|
|
NumExprs, RParenLoc));
|
|
return;
|
|
}
|
|
|
|
// Capture the variable that is being initialized and the style of
|
|
// initialization.
|
|
InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
|
|
|
|
// FIXME: Poor source location information.
|
|
InitializationKind Kind
|
|
= InitializationKind::CreateDirect(VDecl->getLocation(),
|
|
LParenLoc, RParenLoc);
|
|
|
|
InitializationSequence InitSeq(*this, Entity, Kind,
|
|
Exprs.get(), Exprs.size());
|
|
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
|
|
if (Result.isInvalid()) {
|
|
VDecl->setInvalidDecl();
|
|
return;
|
|
}
|
|
|
|
CheckImplicitConversions(Result.get(), LParenLoc);
|
|
|
|
Result = MaybeCreateExprWithCleanups(Result);
|
|
VDecl->setInit(Result.takeAs<Expr>());
|
|
VDecl->setCXXDirectInitializer(true);
|
|
|
|
CheckCompleteVariableDeclaration(VDecl);
|
|
}
|
|
|
|
/// \brief Given a constructor and the set of arguments provided for the
|
|
/// constructor, convert the arguments and add any required default arguments
|
|
/// to form a proper call to this constructor.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool
|
|
Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
|
|
MultiExprArg ArgsPtr,
|
|
SourceLocation Loc,
|
|
ASTOwningVector<Expr*> &ConvertedArgs) {
|
|
// FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
|
|
unsigned NumArgs = ArgsPtr.size();
|
|
Expr **Args = (Expr **)ArgsPtr.get();
|
|
|
|
const FunctionProtoType *Proto
|
|
= Constructor->getType()->getAs<FunctionProtoType>();
|
|
assert(Proto && "Constructor without a prototype?");
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
|
|
// If too few arguments are available, we'll fill in the rest with defaults.
|
|
if (NumArgs < NumArgsInProto)
|
|
ConvertedArgs.reserve(NumArgsInProto);
|
|
else
|
|
ConvertedArgs.reserve(NumArgs);
|
|
|
|
VariadicCallType CallType =
|
|
Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
|
|
llvm::SmallVector<Expr *, 8> AllArgs;
|
|
bool Invalid = GatherArgumentsForCall(Loc, Constructor,
|
|
Proto, 0, Args, NumArgs, AllArgs,
|
|
CallType);
|
|
for (unsigned i =0, size = AllArgs.size(); i < size; i++)
|
|
ConvertedArgs.push_back(AllArgs[i]);
|
|
return Invalid;
|
|
}
|
|
|
|
static inline bool
|
|
CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
|
|
const FunctionDecl *FnDecl) {
|
|
const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
|
|
if (isa<NamespaceDecl>(DC)) {
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_delete_declared_in_namespace)
|
|
<< FnDecl->getDeclName();
|
|
}
|
|
|
|
if (isa<TranslationUnitDecl>(DC) &&
|
|
FnDecl->getStorageClass() == SC_Static) {
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_delete_declared_static)
|
|
<< FnDecl->getDeclName();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool
|
|
CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
|
|
CanQualType ExpectedResultType,
|
|
CanQualType ExpectedFirstParamType,
|
|
unsigned DependentParamTypeDiag,
|
|
unsigned InvalidParamTypeDiag) {
|
|
QualType ResultType =
|
|
FnDecl->getType()->getAs<FunctionType>()->getResultType();
|
|
|
|
// Check that the result type is not dependent.
|
|
if (ResultType->isDependentType())
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_delete_dependent_result_type)
|
|
<< FnDecl->getDeclName() << ExpectedResultType;
|
|
|
|
// Check that the result type is what we expect.
|
|
if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_delete_invalid_result_type)
|
|
<< FnDecl->getDeclName() << ExpectedResultType;
|
|
|
|
// A function template must have at least 2 parameters.
|
|
if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_delete_template_too_few_parameters)
|
|
<< FnDecl->getDeclName();
|
|
|
|
// The function decl must have at least 1 parameter.
|
|
if (FnDecl->getNumParams() == 0)
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_delete_too_few_parameters)
|
|
<< FnDecl->getDeclName();
|
|
|
|
// Check the the first parameter type is not dependent.
|
|
QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
|
|
if (FirstParamType->isDependentType())
|
|
return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
|
|
<< FnDecl->getDeclName() << ExpectedFirstParamType;
|
|
|
|
// Check that the first parameter type is what we expect.
|
|
if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
|
|
ExpectedFirstParamType)
|
|
return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
|
|
<< FnDecl->getDeclName() << ExpectedFirstParamType;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
|
|
// C++ [basic.stc.dynamic.allocation]p1:
|
|
// A program is ill-formed if an allocation function is declared in a
|
|
// namespace scope other than global scope or declared static in global
|
|
// scope.
|
|
if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
|
|
return true;
|
|
|
|
CanQualType SizeTy =
|
|
SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
|
|
|
|
// C++ [basic.stc.dynamic.allocation]p1:
|
|
// The return type shall be void*. The first parameter shall have type
|
|
// std::size_t.
|
|
if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
|
|
SizeTy,
|
|
diag::err_operator_new_dependent_param_type,
|
|
diag::err_operator_new_param_type))
|
|
return true;
|
|
|
|
// C++ [basic.stc.dynamic.allocation]p1:
|
|
// The first parameter shall not have an associated default argument.
|
|
if (FnDecl->getParamDecl(0)->hasDefaultArg())
|
|
return SemaRef.Diag(FnDecl->getLocation(),
|
|
diag::err_operator_new_default_arg)
|
|
<< FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
|
|
// C++ [basic.stc.dynamic.deallocation]p1:
|
|
// A program is ill-formed if deallocation functions are declared in a
|
|
// namespace scope other than global scope or declared static in global
|
|
// scope.
|
|
if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
|
|
return true;
|
|
|
|
// C++ [basic.stc.dynamic.deallocation]p2:
|
|
// Each deallocation function shall return void and its first parameter
|
|
// shall be void*.
|
|
if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
|
|
SemaRef.Context.VoidPtrTy,
|
|
diag::err_operator_delete_dependent_param_type,
|
|
diag::err_operator_delete_param_type))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckOverloadedOperatorDeclaration - Check whether the declaration
|
|
/// of this overloaded operator is well-formed. If so, returns false;
|
|
/// otherwise, emits appropriate diagnostics and returns true.
|
|
bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
|
|
assert(FnDecl && FnDecl->isOverloadedOperator() &&
|
|
"Expected an overloaded operator declaration");
|
|
|
|
OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
|
|
|
|
// C++ [over.oper]p5:
|
|
// The allocation and deallocation functions, operator new,
|
|
// operator new[], operator delete and operator delete[], are
|
|
// described completely in 3.7.3. The attributes and restrictions
|
|
// found in the rest of this subclause do not apply to them unless
|
|
// explicitly stated in 3.7.3.
|
|
if (Op == OO_Delete || Op == OO_Array_Delete)
|
|
return CheckOperatorDeleteDeclaration(*this, FnDecl);
|
|
|
|
if (Op == OO_New || Op == OO_Array_New)
|
|
return CheckOperatorNewDeclaration(*this, FnDecl);
|
|
|
|
// C++ [over.oper]p6:
|
|
// An operator function shall either be a non-static member
|
|
// function or be a non-member function and have at least one
|
|
// parameter whose type is a class, a reference to a class, an
|
|
// enumeration, or a reference to an enumeration.
|
|
if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
if (MethodDecl->isStatic())
|
|
return Diag(FnDecl->getLocation(),
|
|
diag::err_operator_overload_static) << FnDecl->getDeclName();
|
|
} else {
|
|
bool ClassOrEnumParam = false;
|
|
for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
|
|
ParamEnd = FnDecl->param_end();
|
|
Param != ParamEnd; ++Param) {
|
|
QualType ParamType = (*Param)->getType().getNonReferenceType();
|
|
if (ParamType->isDependentType() || ParamType->isRecordType() ||
|
|
ParamType->isEnumeralType()) {
|
|
ClassOrEnumParam = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!ClassOrEnumParam)
|
|
return Diag(FnDecl->getLocation(),
|
|
diag::err_operator_overload_needs_class_or_enum)
|
|
<< FnDecl->getDeclName();
|
|
}
|
|
|
|
// C++ [over.oper]p8:
|
|
// An operator function cannot have default arguments (8.3.6),
|
|
// except where explicitly stated below.
|
|
//
|
|
// Only the function-call operator allows default arguments
|
|
// (C++ [over.call]p1).
|
|
if (Op != OO_Call) {
|
|
for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
|
|
Param != FnDecl->param_end(); ++Param) {
|
|
if ((*Param)->hasDefaultArg())
|
|
return Diag((*Param)->getLocation(),
|
|
diag::err_operator_overload_default_arg)
|
|
<< FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
|
|
}
|
|
}
|
|
|
|
static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
|
|
{ false, false, false }
|
|
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
|
|
, { Unary, Binary, MemberOnly }
|
|
#include "clang/Basic/OperatorKinds.def"
|
|
};
|
|
|
|
bool CanBeUnaryOperator = OperatorUses[Op][0];
|
|
bool CanBeBinaryOperator = OperatorUses[Op][1];
|
|
bool MustBeMemberOperator = OperatorUses[Op][2];
|
|
|
|
// C++ [over.oper]p8:
|
|
// [...] Operator functions cannot have more or fewer parameters
|
|
// than the number required for the corresponding operator, as
|
|
// described in the rest of this subclause.
|
|
unsigned NumParams = FnDecl->getNumParams()
|
|
+ (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
|
|
if (Op != OO_Call &&
|
|
((NumParams == 1 && !CanBeUnaryOperator) ||
|
|
(NumParams == 2 && !CanBeBinaryOperator) ||
|
|
(NumParams < 1) || (NumParams > 2))) {
|
|
// We have the wrong number of parameters.
|
|
unsigned ErrorKind;
|
|
if (CanBeUnaryOperator && CanBeBinaryOperator) {
|
|
ErrorKind = 2; // 2 -> unary or binary.
|
|
} else if (CanBeUnaryOperator) {
|
|
ErrorKind = 0; // 0 -> unary
|
|
} else {
|
|
assert(CanBeBinaryOperator &&
|
|
"All non-call overloaded operators are unary or binary!");
|
|
ErrorKind = 1; // 1 -> binary
|
|
}
|
|
|
|
return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
|
|
<< FnDecl->getDeclName() << NumParams << ErrorKind;
|
|
}
|
|
|
|
// Overloaded operators other than operator() cannot be variadic.
|
|
if (Op != OO_Call &&
|
|
FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
|
|
return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
|
|
<< FnDecl->getDeclName();
|
|
}
|
|
|
|
// Some operators must be non-static member functions.
|
|
if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
|
|
return Diag(FnDecl->getLocation(),
|
|
diag::err_operator_overload_must_be_member)
|
|
<< FnDecl->getDeclName();
|
|
}
|
|
|
|
// C++ [over.inc]p1:
|
|
// The user-defined function called operator++ implements the
|
|
// prefix and postfix ++ operator. If this function is a member
|
|
// function with no parameters, or a non-member function with one
|
|
// parameter of class or enumeration type, it defines the prefix
|
|
// increment operator ++ for objects of that type. If the function
|
|
// is a member function with one parameter (which shall be of type
|
|
// int) or a non-member function with two parameters (the second
|
|
// of which shall be of type int), it defines the postfix
|
|
// increment operator ++ for objects of that type.
|
|
if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
|
|
ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
|
|
bool ParamIsInt = false;
|
|
if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
|
|
ParamIsInt = BT->getKind() == BuiltinType::Int;
|
|
|
|
if (!ParamIsInt)
|
|
return Diag(LastParam->getLocation(),
|
|
diag::err_operator_overload_post_incdec_must_be_int)
|
|
<< LastParam->getType() << (Op == OO_MinusMinus);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckLiteralOperatorDeclaration - Check whether the declaration
|
|
/// of this literal operator function is well-formed. If so, returns
|
|
/// false; otherwise, emits appropriate diagnostics and returns true.
|
|
bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
|
|
DeclContext *DC = FnDecl->getDeclContext();
|
|
Decl::Kind Kind = DC->getDeclKind();
|
|
if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
|
|
Kind != Decl::LinkageSpec) {
|
|
Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
|
|
<< FnDecl->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
bool Valid = false;
|
|
|
|
// template <char...> type operator "" name() is the only valid template
|
|
// signature, and the only valid signature with no parameters.
|
|
if (FnDecl->param_size() == 0) {
|
|
if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
|
|
// Must have only one template parameter
|
|
TemplateParameterList *Params = TpDecl->getTemplateParameters();
|
|
if (Params->size() == 1) {
|
|
NonTypeTemplateParmDecl *PmDecl =
|
|
cast<NonTypeTemplateParmDecl>(Params->getParam(0));
|
|
|
|
// The template parameter must be a char parameter pack.
|
|
if (PmDecl && PmDecl->isTemplateParameterPack() &&
|
|
Context.hasSameType(PmDecl->getType(), Context.CharTy))
|
|
Valid = true;
|
|
}
|
|
}
|
|
} else {
|
|
// Check the first parameter
|
|
FunctionDecl::param_iterator Param = FnDecl->param_begin();
|
|
|
|
QualType T = (*Param)->getType();
|
|
|
|
// unsigned long long int, long double, and any character type are allowed
|
|
// as the only parameters.
|
|
if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
|
|
Context.hasSameType(T, Context.LongDoubleTy) ||
|
|
Context.hasSameType(T, Context.CharTy) ||
|
|
Context.hasSameType(T, Context.WCharTy) ||
|
|
Context.hasSameType(T, Context.Char16Ty) ||
|
|
Context.hasSameType(T, Context.Char32Ty)) {
|
|
if (++Param == FnDecl->param_end())
|
|
Valid = true;
|
|
goto FinishedParams;
|
|
}
|
|
|
|
// Otherwise it must be a pointer to const; let's strip those qualifiers.
|
|
const PointerType *PT = T->getAs<PointerType>();
|
|
if (!PT)
|
|
goto FinishedParams;
|
|
T = PT->getPointeeType();
|
|
if (!T.isConstQualified())
|
|
goto FinishedParams;
|
|
T = T.getUnqualifiedType();
|
|
|
|
// Move on to the second parameter;
|
|
++Param;
|
|
|
|
// If there is no second parameter, the first must be a const char *
|
|
if (Param == FnDecl->param_end()) {
|
|
if (Context.hasSameType(T, Context.CharTy))
|
|
Valid = true;
|
|
goto FinishedParams;
|
|
}
|
|
|
|
// const char *, const wchar_t*, const char16_t*, and const char32_t*
|
|
// are allowed as the first parameter to a two-parameter function
|
|
if (!(Context.hasSameType(T, Context.CharTy) ||
|
|
Context.hasSameType(T, Context.WCharTy) ||
|
|
Context.hasSameType(T, Context.Char16Ty) ||
|
|
Context.hasSameType(T, Context.Char32Ty)))
|
|
goto FinishedParams;
|
|
|
|
// The second and final parameter must be an std::size_t
|
|
T = (*Param)->getType().getUnqualifiedType();
|
|
if (Context.hasSameType(T, Context.getSizeType()) &&
|
|
++Param == FnDecl->param_end())
|
|
Valid = true;
|
|
}
|
|
|
|
// FIXME: This diagnostic is absolutely terrible.
|
|
FinishedParams:
|
|
if (!Valid) {
|
|
Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
|
|
<< FnDecl->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
|
|
/// linkage specification, including the language and (if present)
|
|
/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
|
|
/// the location of the language string literal, which is provided
|
|
/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
|
|
/// the '{' brace. Otherwise, this linkage specification does not
|
|
/// have any braces.
|
|
Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
|
|
SourceLocation LangLoc,
|
|
llvm::StringRef Lang,
|
|
SourceLocation LBraceLoc) {
|
|
LinkageSpecDecl::LanguageIDs Language;
|
|
if (Lang == "\"C\"")
|
|
Language = LinkageSpecDecl::lang_c;
|
|
else if (Lang == "\"C++\"")
|
|
Language = LinkageSpecDecl::lang_cxx;
|
|
else {
|
|
Diag(LangLoc, diag::err_bad_language);
|
|
return 0;
|
|
}
|
|
|
|
// FIXME: Add all the various semantics of linkage specifications
|
|
|
|
LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
|
|
ExternLoc, LangLoc, Language);
|
|
CurContext->addDecl(D);
|
|
PushDeclContext(S, D);
|
|
return D;
|
|
}
|
|
|
|
/// ActOnFinishLinkageSpecification - Complete the definition of
|
|
/// the C++ linkage specification LinkageSpec. If RBraceLoc is
|
|
/// valid, it's the position of the closing '}' brace in a linkage
|
|
/// specification that uses braces.
|
|
Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
|
|
Decl *LinkageSpec,
|
|
SourceLocation RBraceLoc) {
|
|
if (LinkageSpec) {
|
|
if (RBraceLoc.isValid()) {
|
|
LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
|
|
LSDecl->setRBraceLoc(RBraceLoc);
|
|
}
|
|
PopDeclContext();
|
|
}
|
|
return LinkageSpec;
|
|
}
|
|
|
|
/// \brief Perform semantic analysis for the variable declaration that
|
|
/// occurs within a C++ catch clause, returning the newly-created
|
|
/// variable.
|
|
VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation StartLoc,
|
|
SourceLocation Loc,
|
|
IdentifierInfo *Name) {
|
|
bool Invalid = false;
|
|
QualType ExDeclType = TInfo->getType();
|
|
|
|
// Arrays and functions decay.
|
|
if (ExDeclType->isArrayType())
|
|
ExDeclType = Context.getArrayDecayedType(ExDeclType);
|
|
else if (ExDeclType->isFunctionType())
|
|
ExDeclType = Context.getPointerType(ExDeclType);
|
|
|
|
// C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
|
|
// The exception-declaration shall not denote a pointer or reference to an
|
|
// incomplete type, other than [cv] void*.
|
|
// N2844 forbids rvalue references.
|
|
if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
|
|
Diag(Loc, diag::err_catch_rvalue_ref);
|
|
Invalid = true;
|
|
}
|
|
|
|
// GCC allows catching pointers and references to incomplete types
|
|
// as an extension; so do we, but we warn by default.
|
|
|
|
QualType BaseType = ExDeclType;
|
|
int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
|
|
unsigned DK = diag::err_catch_incomplete;
|
|
bool IncompleteCatchIsInvalid = true;
|
|
if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
|
|
BaseType = Ptr->getPointeeType();
|
|
Mode = 1;
|
|
DK = diag::ext_catch_incomplete_ptr;
|
|
IncompleteCatchIsInvalid = false;
|
|
} else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
|
|
// For the purpose of error recovery, we treat rvalue refs like lvalue refs.
|
|
BaseType = Ref->getPointeeType();
|
|
Mode = 2;
|
|
DK = diag::ext_catch_incomplete_ref;
|
|
IncompleteCatchIsInvalid = false;
|
|
}
|
|
if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
|
|
!BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
|
|
IncompleteCatchIsInvalid)
|
|
Invalid = true;
|
|
|
|
if (!Invalid && !ExDeclType->isDependentType() &&
|
|
RequireNonAbstractType(Loc, ExDeclType,
|
|
diag::err_abstract_type_in_decl,
|
|
AbstractVariableType))
|
|
Invalid = true;
|
|
|
|
// Only the non-fragile NeXT runtime currently supports C++ catches
|
|
// of ObjC types, and no runtime supports catching ObjC types by value.
|
|
if (!Invalid && getLangOptions().ObjC1) {
|
|
QualType T = ExDeclType;
|
|
if (const ReferenceType *RT = T->getAs<ReferenceType>())
|
|
T = RT->getPointeeType();
|
|
|
|
if (T->isObjCObjectType()) {
|
|
Diag(Loc, diag::err_objc_object_catch);
|
|
Invalid = true;
|
|
} else if (T->isObjCObjectPointerType()) {
|
|
if (!getLangOptions().ObjCNonFragileABI) {
|
|
Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
|
|
Invalid = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
|
|
ExDeclType, TInfo, SC_None, SC_None);
|
|
ExDecl->setExceptionVariable(true);
|
|
|
|
if (!Invalid) {
|
|
if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
|
|
// C++ [except.handle]p16:
|
|
// The object declared in an exception-declaration or, if the
|
|
// exception-declaration does not specify a name, a temporary (12.2) is
|
|
// copy-initialized (8.5) from the exception object. [...]
|
|
// The object is destroyed when the handler exits, after the destruction
|
|
// of any automatic objects initialized within the handler.
|
|
//
|
|
// We just pretend to initialize the object with itself, then make sure
|
|
// it can be destroyed later.
|
|
QualType initType = ExDeclType;
|
|
|
|
InitializedEntity entity =
|
|
InitializedEntity::InitializeVariable(ExDecl);
|
|
InitializationKind initKind =
|
|
InitializationKind::CreateCopy(Loc, SourceLocation());
|
|
|
|
Expr *opaqueValue =
|
|
new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
|
|
InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
|
|
ExprResult result = sequence.Perform(*this, entity, initKind,
|
|
MultiExprArg(&opaqueValue, 1));
|
|
if (result.isInvalid())
|
|
Invalid = true;
|
|
else {
|
|
// If the constructor used was non-trivial, set this as the
|
|
// "initializer".
|
|
CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
|
|
if (!construct->getConstructor()->isTrivial()) {
|
|
Expr *init = MaybeCreateExprWithCleanups(construct);
|
|
ExDecl->setInit(init);
|
|
}
|
|
|
|
// And make sure it's destructable.
|
|
FinalizeVarWithDestructor(ExDecl, recordType);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Invalid)
|
|
ExDecl->setInvalidDecl();
|
|
|
|
return ExDecl;
|
|
}
|
|
|
|
/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
|
|
/// handler.
|
|
Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
bool Invalid = D.isInvalidType();
|
|
|
|
// Check for unexpanded parameter packs.
|
|
if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
|
|
UPPC_ExceptionType)) {
|
|
TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
|
|
D.getIdentifierLoc());
|
|
Invalid = true;
|
|
}
|
|
|
|
IdentifierInfo *II = D.getIdentifier();
|
|
if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
|
|
LookupOrdinaryName,
|
|
ForRedeclaration)) {
|
|
// The scope should be freshly made just for us. There is just no way
|
|
// it contains any previous declaration.
|
|
assert(!S->isDeclScope(PrevDecl));
|
|
if (PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
|
|
}
|
|
}
|
|
|
|
if (D.getCXXScopeSpec().isSet() && !Invalid) {
|
|
Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
|
|
<< D.getCXXScopeSpec().getRange();
|
|
Invalid = true;
|
|
}
|
|
|
|
VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
|
|
D.getSourceRange().getBegin(),
|
|
D.getIdentifierLoc(),
|
|
D.getIdentifier());
|
|
if (Invalid)
|
|
ExDecl->setInvalidDecl();
|
|
|
|
// Add the exception declaration into this scope.
|
|
if (II)
|
|
PushOnScopeChains(ExDecl, S);
|
|
else
|
|
CurContext->addDecl(ExDecl);
|
|
|
|
ProcessDeclAttributes(S, ExDecl, D);
|
|
return ExDecl;
|
|
}
|
|
|
|
Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
|
|
Expr *AssertExpr,
|
|
Expr *AssertMessageExpr_,
|
|
SourceLocation RParenLoc) {
|
|
StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
|
|
|
|
if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
|
|
llvm::APSInt Value(32);
|
|
if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
|
|
Diag(StaticAssertLoc,
|
|
diag::err_static_assert_expression_is_not_constant) <<
|
|
AssertExpr->getSourceRange();
|
|
return 0;
|
|
}
|
|
|
|
if (Value == 0) {
|
|
Diag(StaticAssertLoc, diag::err_static_assert_failed)
|
|
<< AssertMessage->getString() << AssertExpr->getSourceRange();
|
|
}
|
|
}
|
|
|
|
if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
|
|
return 0;
|
|
|
|
Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
|
|
AssertExpr, AssertMessage, RParenLoc);
|
|
|
|
CurContext->addDecl(Decl);
|
|
return Decl;
|
|
}
|
|
|
|
/// \brief Perform semantic analysis of the given friend type declaration.
|
|
///
|
|
/// \returns A friend declaration that.
|
|
FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
|
|
TypeSourceInfo *TSInfo) {
|
|
assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
|
|
|
|
QualType T = TSInfo->getType();
|
|
SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
if (!getLangOptions().CPlusPlus0x) {
|
|
// C++03 [class.friend]p2:
|
|
// An elaborated-type-specifier shall be used in a friend declaration
|
|
// for a class.*
|
|
//
|
|
// * The class-key of the elaborated-type-specifier is required.
|
|
if (!ActiveTemplateInstantiations.empty()) {
|
|
// Do not complain about the form of friend template types during
|
|
// template instantiation; we will already have complained when the
|
|
// template was declared.
|
|
} else if (!T->isElaboratedTypeSpecifier()) {
|
|
// If we evaluated the type to a record type, suggest putting
|
|
// a tag in front.
|
|
if (const RecordType *RT = T->getAs<RecordType>()) {
|
|
RecordDecl *RD = RT->getDecl();
|
|
|
|
std::string InsertionText = std::string(" ") + RD->getKindName();
|
|
|
|
Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
|
|
<< (unsigned) RD->getTagKind()
|
|
<< T
|
|
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
|
|
InsertionText);
|
|
} else {
|
|
Diag(FriendLoc, diag::ext_nonclass_type_friend)
|
|
<< T
|
|
<< SourceRange(FriendLoc, TypeRange.getEnd());
|
|
}
|
|
} else if (T->getAs<EnumType>()) {
|
|
Diag(FriendLoc, diag::ext_enum_friend)
|
|
<< T
|
|
<< SourceRange(FriendLoc, TypeRange.getEnd());
|
|
}
|
|
}
|
|
|
|
// C++0x [class.friend]p3:
|
|
// If the type specifier in a friend declaration designates a (possibly
|
|
// cv-qualified) class type, that class is declared as a friend; otherwise,
|
|
// the friend declaration is ignored.
|
|
|
|
// FIXME: C++0x has some syntactic restrictions on friend type declarations
|
|
// in [class.friend]p3 that we do not implement.
|
|
|
|
return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
|
|
}
|
|
|
|
/// Handle a friend tag declaration where the scope specifier was
|
|
/// templated.
|
|
Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
|
|
unsigned TagSpec, SourceLocation TagLoc,
|
|
CXXScopeSpec &SS,
|
|
IdentifierInfo *Name, SourceLocation NameLoc,
|
|
AttributeList *Attr,
|
|
MultiTemplateParamsArg TempParamLists) {
|
|
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
|
|
bool isExplicitSpecialization = false;
|
|
bool Invalid = false;
|
|
|
|
if (TemplateParameterList *TemplateParams
|
|
= MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
|
|
TempParamLists.get(),
|
|
TempParamLists.size(),
|
|
/*friend*/ true,
|
|
isExplicitSpecialization,
|
|
Invalid)) {
|
|
if (TemplateParams->size() > 0) {
|
|
// This is a declaration of a class template.
|
|
if (Invalid)
|
|
return 0;
|
|
|
|
return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
|
|
SS, Name, NameLoc, Attr,
|
|
TemplateParams, AS_public,
|
|
TempParamLists.size() - 1,
|
|
(TemplateParameterList**) TempParamLists.release()).take();
|
|
} else {
|
|
// The "template<>" header is extraneous.
|
|
Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
|
|
<< TypeWithKeyword::getTagTypeKindName(Kind) << Name;
|
|
isExplicitSpecialization = true;
|
|
}
|
|
}
|
|
|
|
if (Invalid) return 0;
|
|
|
|
assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
|
|
|
|
bool isAllExplicitSpecializations = true;
|
|
for (unsigned I = TempParamLists.size(); I-- > 0; ) {
|
|
if (TempParamLists.get()[I]->size()) {
|
|
isAllExplicitSpecializations = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// FIXME: don't ignore attributes.
|
|
|
|
// If it's explicit specializations all the way down, just forget
|
|
// about the template header and build an appropriate non-templated
|
|
// friend. TODO: for source fidelity, remember the headers.
|
|
if (isAllExplicitSpecializations) {
|
|
NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
|
|
ElaboratedTypeKeyword Keyword
|
|
= TypeWithKeyword::getKeywordForTagTypeKind(Kind);
|
|
QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
|
|
*Name, NameLoc);
|
|
if (T.isNull())
|
|
return 0;
|
|
|
|
TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
|
|
if (isa<DependentNameType>(T)) {
|
|
DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
|
|
TL.setKeywordLoc(TagLoc);
|
|
TL.setQualifierLoc(QualifierLoc);
|
|
TL.setNameLoc(NameLoc);
|
|
} else {
|
|
ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
|
|
TL.setKeywordLoc(TagLoc);
|
|
TL.setQualifierLoc(QualifierLoc);
|
|
cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
|
|
}
|
|
|
|
FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
|
|
TSI, FriendLoc);
|
|
Friend->setAccess(AS_public);
|
|
CurContext->addDecl(Friend);
|
|
return Friend;
|
|
}
|
|
|
|
// Handle the case of a templated-scope friend class. e.g.
|
|
// template <class T> class A<T>::B;
|
|
// FIXME: we don't support these right now.
|
|
ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
|
|
QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
|
|
TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
|
|
DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
|
|
TL.setKeywordLoc(TagLoc);
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
TL.setNameLoc(NameLoc);
|
|
|
|
FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
|
|
TSI, FriendLoc);
|
|
Friend->setAccess(AS_public);
|
|
Friend->setUnsupportedFriend(true);
|
|
CurContext->addDecl(Friend);
|
|
return Friend;
|
|
}
|
|
|
|
|
|
/// Handle a friend type declaration. This works in tandem with
|
|
/// ActOnTag.
|
|
///
|
|
/// Notes on friend class templates:
|
|
///
|
|
/// We generally treat friend class declarations as if they were
|
|
/// declaring a class. So, for example, the elaborated type specifier
|
|
/// in a friend declaration is required to obey the restrictions of a
|
|
/// class-head (i.e. no typedefs in the scope chain), template
|
|
/// parameters are required to match up with simple template-ids, &c.
|
|
/// However, unlike when declaring a template specialization, it's
|
|
/// okay to refer to a template specialization without an empty
|
|
/// template parameter declaration, e.g.
|
|
/// friend class A<T>::B<unsigned>;
|
|
/// We permit this as a special case; if there are any template
|
|
/// parameters present at all, require proper matching, i.e.
|
|
/// template <> template <class T> friend class A<int>::B;
|
|
Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
|
|
MultiTemplateParamsArg TempParams) {
|
|
SourceLocation Loc = DS.getSourceRange().getBegin();
|
|
|
|
assert(DS.isFriendSpecified());
|
|
assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
|
|
|
|
// Try to convert the decl specifier to a type. This works for
|
|
// friend templates because ActOnTag never produces a ClassTemplateDecl
|
|
// for a TUK_Friend.
|
|
Declarator TheDeclarator(DS, Declarator::MemberContext);
|
|
TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
|
|
QualType T = TSI->getType();
|
|
if (TheDeclarator.isInvalidType())
|
|
return 0;
|
|
|
|
if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
|
|
return 0;
|
|
|
|
// This is definitely an error in C++98. It's probably meant to
|
|
// be forbidden in C++0x, too, but the specification is just
|
|
// poorly written.
|
|
//
|
|
// The problem is with declarations like the following:
|
|
// template <T> friend A<T>::foo;
|
|
// where deciding whether a class C is a friend or not now hinges
|
|
// on whether there exists an instantiation of A that causes
|
|
// 'foo' to equal C. There are restrictions on class-heads
|
|
// (which we declare (by fiat) elaborated friend declarations to
|
|
// be) that makes this tractable.
|
|
//
|
|
// FIXME: handle "template <> friend class A<T>;", which
|
|
// is possibly well-formed? Who even knows?
|
|
if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
|
|
Diag(Loc, diag::err_tagless_friend_type_template)
|
|
<< DS.getSourceRange();
|
|
return 0;
|
|
}
|
|
|
|
// C++98 [class.friend]p1: A friend of a class is a function
|
|
// or class that is not a member of the class . . .
|
|
// This is fixed in DR77, which just barely didn't make the C++03
|
|
// deadline. It's also a very silly restriction that seriously
|
|
// affects inner classes and which nobody else seems to implement;
|
|
// thus we never diagnose it, not even in -pedantic.
|
|
//
|
|
// But note that we could warn about it: it's always useless to
|
|
// friend one of your own members (it's not, however, worthless to
|
|
// friend a member of an arbitrary specialization of your template).
|
|
|
|
Decl *D;
|
|
if (unsigned NumTempParamLists = TempParams.size())
|
|
D = FriendTemplateDecl::Create(Context, CurContext, Loc,
|
|
NumTempParamLists,
|
|
TempParams.release(),
|
|
TSI,
|
|
DS.getFriendSpecLoc());
|
|
else
|
|
D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
|
|
|
|
if (!D)
|
|
return 0;
|
|
|
|
D->setAccess(AS_public);
|
|
CurContext->addDecl(D);
|
|
|
|
return D;
|
|
}
|
|
|
|
Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
|
|
MultiTemplateParamsArg TemplateParams) {
|
|
const DeclSpec &DS = D.getDeclSpec();
|
|
|
|
assert(DS.isFriendSpecified());
|
|
assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
|
|
|
|
SourceLocation Loc = D.getIdentifierLoc();
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
QualType T = TInfo->getType();
|
|
|
|
// C++ [class.friend]p1
|
|
// A friend of a class is a function or class....
|
|
// Note that this sees through typedefs, which is intended.
|
|
// It *doesn't* see through dependent types, which is correct
|
|
// according to [temp.arg.type]p3:
|
|
// If a declaration acquires a function type through a
|
|
// type dependent on a template-parameter and this causes
|
|
// a declaration that does not use the syntactic form of a
|
|
// function declarator to have a function type, the program
|
|
// is ill-formed.
|
|
if (!T->isFunctionType()) {
|
|
Diag(Loc, diag::err_unexpected_friend);
|
|
|
|
// It might be worthwhile to try to recover by creating an
|
|
// appropriate declaration.
|
|
return 0;
|
|
}
|
|
|
|
// C++ [namespace.memdef]p3
|
|
// - If a friend declaration in a non-local class first declares a
|
|
// class or function, the friend class or function is a member
|
|
// of the innermost enclosing namespace.
|
|
// - The name of the friend is not found by simple name lookup
|
|
// until a matching declaration is provided in that namespace
|
|
// scope (either before or after the class declaration granting
|
|
// friendship).
|
|
// - If a friend function is called, its name may be found by the
|
|
// name lookup that considers functions from namespaces and
|
|
// classes associated with the types of the function arguments.
|
|
// - When looking for a prior declaration of a class or a function
|
|
// declared as a friend, scopes outside the innermost enclosing
|
|
// namespace scope are not considered.
|
|
|
|
CXXScopeSpec &SS = D.getCXXScopeSpec();
|
|
DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
|
|
DeclarationName Name = NameInfo.getName();
|
|
assert(Name);
|
|
|
|
// Check for unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
|
|
DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
|
|
DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
|
|
return 0;
|
|
|
|
// The context we found the declaration in, or in which we should
|
|
// create the declaration.
|
|
DeclContext *DC;
|
|
Scope *DCScope = S;
|
|
LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
|
|
ForRedeclaration);
|
|
|
|
// FIXME: there are different rules in local classes
|
|
|
|
// There are four cases here.
|
|
// - There's no scope specifier, in which case we just go to the
|
|
// appropriate scope and look for a function or function template
|
|
// there as appropriate.
|
|
// Recover from invalid scope qualifiers as if they just weren't there.
|
|
if (SS.isInvalid() || !SS.isSet()) {
|
|
// C++0x [namespace.memdef]p3:
|
|
// If the name in a friend declaration is neither qualified nor
|
|
// a template-id and the declaration is a function or an
|
|
// elaborated-type-specifier, the lookup to determine whether
|
|
// the entity has been previously declared shall not consider
|
|
// any scopes outside the innermost enclosing namespace.
|
|
// C++0x [class.friend]p11:
|
|
// If a friend declaration appears in a local class and the name
|
|
// specified is an unqualified name, a prior declaration is
|
|
// looked up without considering scopes that are outside the
|
|
// innermost enclosing non-class scope. For a friend function
|
|
// declaration, if there is no prior declaration, the program is
|
|
// ill-formed.
|
|
bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
|
|
bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
|
|
|
|
// Find the appropriate context according to the above.
|
|
DC = CurContext;
|
|
while (true) {
|
|
// Skip class contexts. If someone can cite chapter and verse
|
|
// for this behavior, that would be nice --- it's what GCC and
|
|
// EDG do, and it seems like a reasonable intent, but the spec
|
|
// really only says that checks for unqualified existing
|
|
// declarations should stop at the nearest enclosing namespace,
|
|
// not that they should only consider the nearest enclosing
|
|
// namespace.
|
|
while (DC->isRecord())
|
|
DC = DC->getParent();
|
|
|
|
LookupQualifiedName(Previous, DC);
|
|
|
|
// TODO: decide what we think about using declarations.
|
|
if (isLocal || !Previous.empty())
|
|
break;
|
|
|
|
if (isTemplateId) {
|
|
if (isa<TranslationUnitDecl>(DC)) break;
|
|
} else {
|
|
if (DC->isFileContext()) break;
|
|
}
|
|
DC = DC->getParent();
|
|
}
|
|
|
|
// C++ [class.friend]p1: A friend of a class is a function or
|
|
// class that is not a member of the class . . .
|
|
// C++0x changes this for both friend types and functions.
|
|
// Most C++ 98 compilers do seem to give an error here, so
|
|
// we do, too.
|
|
if (!Previous.empty() && DC->Equals(CurContext)
|
|
&& !getLangOptions().CPlusPlus0x)
|
|
Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
|
|
|
|
DCScope = getScopeForDeclContext(S, DC);
|
|
|
|
// - There's a non-dependent scope specifier, in which case we
|
|
// compute it and do a previous lookup there for a function
|
|
// or function template.
|
|
} else if (!SS.getScopeRep()->isDependent()) {
|
|
DC = computeDeclContext(SS);
|
|
if (!DC) return 0;
|
|
|
|
if (RequireCompleteDeclContext(SS, DC)) return 0;
|
|
|
|
LookupQualifiedName(Previous, DC);
|
|
|
|
// Ignore things found implicitly in the wrong scope.
|
|
// TODO: better diagnostics for this case. Suggesting the right
|
|
// qualified scope would be nice...
|
|
LookupResult::Filter F = Previous.makeFilter();
|
|
while (F.hasNext()) {
|
|
NamedDecl *D = F.next();
|
|
if (!DC->InEnclosingNamespaceSetOf(
|
|
D->getDeclContext()->getRedeclContext()))
|
|
F.erase();
|
|
}
|
|
F.done();
|
|
|
|
if (Previous.empty()) {
|
|
D.setInvalidType();
|
|
Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
|
|
return 0;
|
|
}
|
|
|
|
// C++ [class.friend]p1: A friend of a class is a function or
|
|
// class that is not a member of the class . . .
|
|
if (DC->Equals(CurContext))
|
|
Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
|
|
|
|
// - There's a scope specifier that does not match any template
|
|
// parameter lists, in which case we use some arbitrary context,
|
|
// create a method or method template, and wait for instantiation.
|
|
// - There's a scope specifier that does match some template
|
|
// parameter lists, which we don't handle right now.
|
|
} else {
|
|
DC = CurContext;
|
|
assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
|
|
}
|
|
|
|
if (!DC->isRecord()) {
|
|
// This implies that it has to be an operator or function.
|
|
if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
|
|
D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
|
|
D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
|
|
Diag(Loc, diag::err_introducing_special_friend) <<
|
|
(D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
|
|
D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
bool Redeclaration = false;
|
|
NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
|
|
move(TemplateParams),
|
|
IsDefinition,
|
|
Redeclaration);
|
|
if (!ND) return 0;
|
|
|
|
assert(ND->getDeclContext() == DC);
|
|
assert(ND->getLexicalDeclContext() == CurContext);
|
|
|
|
// Add the function declaration to the appropriate lookup tables,
|
|
// adjusting the redeclarations list as necessary. We don't
|
|
// want to do this yet if the friending class is dependent.
|
|
//
|
|
// Also update the scope-based lookup if the target context's
|
|
// lookup context is in lexical scope.
|
|
if (!CurContext->isDependentContext()) {
|
|
DC = DC->getRedeclContext();
|
|
DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
|
|
if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
|
|
PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
|
|
}
|
|
|
|
FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
|
|
D.getIdentifierLoc(), ND,
|
|
DS.getFriendSpecLoc());
|
|
FrD->setAccess(AS_public);
|
|
CurContext->addDecl(FrD);
|
|
|
|
if (ND->isInvalidDecl())
|
|
FrD->setInvalidDecl();
|
|
else {
|
|
FunctionDecl *FD;
|
|
if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
|
|
FD = FTD->getTemplatedDecl();
|
|
else
|
|
FD = cast<FunctionDecl>(ND);
|
|
|
|
// Mark templated-scope function declarations as unsupported.
|
|
if (FD->getNumTemplateParameterLists())
|
|
FrD->setUnsupportedFriend(true);
|
|
}
|
|
|
|
return ND;
|
|
}
|
|
|
|
void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
|
|
AdjustDeclIfTemplate(Dcl);
|
|
|
|
FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
|
|
if (!Fn) {
|
|
Diag(DelLoc, diag::err_deleted_non_function);
|
|
return;
|
|
}
|
|
if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
|
|
Diag(DelLoc, diag::err_deleted_decl_not_first);
|
|
Diag(Prev->getLocation(), diag::note_previous_declaration);
|
|
// If the declaration wasn't the first, we delete the function anyway for
|
|
// recovery.
|
|
}
|
|
Fn->setDeleted();
|
|
}
|
|
|
|
static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
|
|
for (Stmt::child_range CI = S->children(); CI; ++CI) {
|
|
Stmt *SubStmt = *CI;
|
|
if (!SubStmt)
|
|
continue;
|
|
if (isa<ReturnStmt>(SubStmt))
|
|
Self.Diag(SubStmt->getSourceRange().getBegin(),
|
|
diag::err_return_in_constructor_handler);
|
|
if (!isa<Expr>(SubStmt))
|
|
SearchForReturnInStmt(Self, SubStmt);
|
|
}
|
|
}
|
|
|
|
void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
|
|
for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
|
|
CXXCatchStmt *Handler = TryBlock->getHandler(I);
|
|
SearchForReturnInStmt(*this, Handler);
|
|
}
|
|
}
|
|
|
|
bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old) {
|
|
QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
|
|
QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
|
|
|
|
if (Context.hasSameType(NewTy, OldTy) ||
|
|
NewTy->isDependentType() || OldTy->isDependentType())
|
|
return false;
|
|
|
|
// Check if the return types are covariant
|
|
QualType NewClassTy, OldClassTy;
|
|
|
|
/// Both types must be pointers or references to classes.
|
|
if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
|
|
if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
|
|
NewClassTy = NewPT->getPointeeType();
|
|
OldClassTy = OldPT->getPointeeType();
|
|
}
|
|
} else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
|
|
if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
|
|
if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
|
|
NewClassTy = NewRT->getPointeeType();
|
|
OldClassTy = OldRT->getPointeeType();
|
|
}
|
|
}
|
|
}
|
|
|
|
// The return types aren't either both pointers or references to a class type.
|
|
if (NewClassTy.isNull()) {
|
|
Diag(New->getLocation(),
|
|
diag::err_different_return_type_for_overriding_virtual_function)
|
|
<< New->getDeclName() << NewTy << OldTy;
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
|
|
|
return true;
|
|
}
|
|
|
|
// C++ [class.virtual]p6:
|
|
// If the return type of D::f differs from the return type of B::f, the
|
|
// class type in the return type of D::f shall be complete at the point of
|
|
// declaration of D::f or shall be the class type D.
|
|
if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
|
|
if (!RT->isBeingDefined() &&
|
|
RequireCompleteType(New->getLocation(), NewClassTy,
|
|
PDiag(diag::err_covariant_return_incomplete)
|
|
<< New->getDeclName()))
|
|
return true;
|
|
}
|
|
|
|
if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
|
|
// Check if the new class derives from the old class.
|
|
if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
|
|
Diag(New->getLocation(),
|
|
diag::err_covariant_return_not_derived)
|
|
<< New->getDeclName() << NewTy << OldTy;
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
|
return true;
|
|
}
|
|
|
|
// Check if we the conversion from derived to base is valid.
|
|
if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
|
|
diag::err_covariant_return_inaccessible_base,
|
|
diag::err_covariant_return_ambiguous_derived_to_base_conv,
|
|
// FIXME: Should this point to the return type?
|
|
New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
|
|
// FIXME: this note won't trigger for delayed access control
|
|
// diagnostics, and it's impossible to get an undelayed error
|
|
// here from access control during the original parse because
|
|
// the ParsingDeclSpec/ParsingDeclarator are still in scope.
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// The qualifiers of the return types must be the same.
|
|
if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
|
|
Diag(New->getLocation(),
|
|
diag::err_covariant_return_type_different_qualifications)
|
|
<< New->getDeclName() << NewTy << OldTy;
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
|
return true;
|
|
};
|
|
|
|
|
|
// The new class type must have the same or less qualifiers as the old type.
|
|
if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
|
|
Diag(New->getLocation(),
|
|
diag::err_covariant_return_type_class_type_more_qualified)
|
|
<< New->getDeclName() << NewTy << OldTy;
|
|
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
|
return true;
|
|
};
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Mark the given method pure.
|
|
///
|
|
/// \param Method the method to be marked pure.
|
|
///
|
|
/// \param InitRange the source range that covers the "0" initializer.
|
|
bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
|
|
SourceLocation EndLoc = InitRange.getEnd();
|
|
if (EndLoc.isValid())
|
|
Method->setRangeEnd(EndLoc);
|
|
|
|
if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
|
|
Method->setPure();
|
|
return false;
|
|
}
|
|
|
|
if (!Method->isInvalidDecl())
|
|
Diag(Method->getLocation(), diag::err_non_virtual_pure)
|
|
<< Method->getDeclName() << InitRange;
|
|
return true;
|
|
}
|
|
|
|
/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
|
|
/// an initializer for the out-of-line declaration 'Dcl'. The scope
|
|
/// is a fresh scope pushed for just this purpose.
|
|
///
|
|
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
|
|
/// static data member of class X, names should be looked up in the scope of
|
|
/// class X.
|
|
void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
|
|
// If there is no declaration, there was an error parsing it.
|
|
if (D == 0 || D->isInvalidDecl()) return;
|
|
|
|
// We should only get called for declarations with scope specifiers, like:
|
|
// int foo::bar;
|
|
assert(D->isOutOfLine());
|
|
EnterDeclaratorContext(S, D->getDeclContext());
|
|
}
|
|
|
|
/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
|
|
/// initializer for the out-of-line declaration 'D'.
|
|
void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
|
|
// If there is no declaration, there was an error parsing it.
|
|
if (D == 0 || D->isInvalidDecl()) return;
|
|
|
|
assert(D->isOutOfLine());
|
|
ExitDeclaratorContext(S);
|
|
}
|
|
|
|
/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
|
|
/// C++ if/switch/while/for statement.
|
|
/// e.g: "if (int x = f()) {...}"
|
|
DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
|
|
// C++ 6.4p2:
|
|
// The declarator shall not specify a function or an array.
|
|
// The type-specifier-seq shall not contain typedef and shall not declare a
|
|
// new class or enumeration.
|
|
assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
|
|
"Parser allowed 'typedef' as storage class of condition decl.");
|
|
|
|
TagDecl *OwnedTag = 0;
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
|
|
QualType Ty = TInfo->getType();
|
|
|
|
if (Ty->isFunctionType()) { // The declarator shall not specify a function...
|
|
// We exit without creating a CXXConditionDeclExpr because a FunctionDecl
|
|
// would be created and CXXConditionDeclExpr wants a VarDecl.
|
|
Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
|
|
<< D.getSourceRange();
|
|
return DeclResult();
|
|
} else if (OwnedTag && OwnedTag->isDefinition()) {
|
|
// The type-specifier-seq shall not declare a new class or enumeration.
|
|
Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
|
|
}
|
|
|
|
Decl *Dcl = ActOnDeclarator(S, D);
|
|
if (!Dcl)
|
|
return DeclResult();
|
|
|
|
return Dcl;
|
|
}
|
|
|
|
void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
|
|
bool DefinitionRequired) {
|
|
// Ignore any vtable uses in unevaluated operands or for classes that do
|
|
// not have a vtable.
|
|
if (!Class->isDynamicClass() || Class->isDependentContext() ||
|
|
CurContext->isDependentContext() ||
|
|
ExprEvalContexts.back().Context == Unevaluated)
|
|
return;
|
|
|
|
// Try to insert this class into the map.
|
|
Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
|
|
std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
|
|
Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
|
|
if (!Pos.second) {
|
|
// If we already had an entry, check to see if we are promoting this vtable
|
|
// to required a definition. If so, we need to reappend to the VTableUses
|
|
// list, since we may have already processed the first entry.
|
|
if (DefinitionRequired && !Pos.first->second) {
|
|
Pos.first->second = true;
|
|
} else {
|
|
// Otherwise, we can early exit.
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Local classes need to have their virtual members marked
|
|
// immediately. For all other classes, we mark their virtual members
|
|
// at the end of the translation unit.
|
|
if (Class->isLocalClass())
|
|
MarkVirtualMembersReferenced(Loc, Class);
|
|
else
|
|
VTableUses.push_back(std::make_pair(Class, Loc));
|
|
}
|
|
|
|
bool Sema::DefineUsedVTables() {
|
|
if (VTableUses.empty())
|
|
return false;
|
|
|
|
// Note: The VTableUses vector could grow as a result of marking
|
|
// the members of a class as "used", so we check the size each
|
|
// time through the loop and prefer indices (with are stable) to
|
|
// iterators (which are not).
|
|
bool DefinedAnything = false;
|
|
for (unsigned I = 0; I != VTableUses.size(); ++I) {
|
|
CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
|
|
if (!Class)
|
|
continue;
|
|
|
|
SourceLocation Loc = VTableUses[I].second;
|
|
|
|
// If this class has a key function, but that key function is
|
|
// defined in another translation unit, we don't need to emit the
|
|
// vtable even though we're using it.
|
|
const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
|
|
if (KeyFunction && !KeyFunction->hasBody()) {
|
|
switch (KeyFunction->getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
// The key function is in another translation unit.
|
|
continue;
|
|
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
case TSK_ImplicitInstantiation:
|
|
// We will be instantiating the key function.
|
|
break;
|
|
}
|
|
} else if (!KeyFunction) {
|
|
// If we have a class with no key function that is the subject
|
|
// of an explicit instantiation declaration, suppress the
|
|
// vtable; it will live with the explicit instantiation
|
|
// definition.
|
|
bool IsExplicitInstantiationDeclaration
|
|
= Class->getTemplateSpecializationKind()
|
|
== TSK_ExplicitInstantiationDeclaration;
|
|
for (TagDecl::redecl_iterator R = Class->redecls_begin(),
|
|
REnd = Class->redecls_end();
|
|
R != REnd; ++R) {
|
|
TemplateSpecializationKind TSK
|
|
= cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
|
|
if (TSK == TSK_ExplicitInstantiationDeclaration)
|
|
IsExplicitInstantiationDeclaration = true;
|
|
else if (TSK == TSK_ExplicitInstantiationDefinition) {
|
|
IsExplicitInstantiationDeclaration = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IsExplicitInstantiationDeclaration)
|
|
continue;
|
|
}
|
|
|
|
// Mark all of the virtual members of this class as referenced, so
|
|
// that we can build a vtable. Then, tell the AST consumer that a
|
|
// vtable for this class is required.
|
|
DefinedAnything = true;
|
|
MarkVirtualMembersReferenced(Loc, Class);
|
|
CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
|
|
Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
|
|
|
|
// Optionally warn if we're emitting a weak vtable.
|
|
if (Class->getLinkage() == ExternalLinkage &&
|
|
Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
|
|
if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
|
|
Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
|
|
}
|
|
}
|
|
VTableUses.clear();
|
|
|
|
return DefinedAnything;
|
|
}
|
|
|
|
void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
|
|
const CXXRecordDecl *RD) {
|
|
for (CXXRecordDecl::method_iterator i = RD->method_begin(),
|
|
e = RD->method_end(); i != e; ++i) {
|
|
CXXMethodDecl *MD = *i;
|
|
|
|
// C++ [basic.def.odr]p2:
|
|
// [...] A virtual member function is used if it is not pure. [...]
|
|
if (MD->isVirtual() && !MD->isPure())
|
|
MarkDeclarationReferenced(Loc, MD);
|
|
}
|
|
|
|
// Only classes that have virtual bases need a VTT.
|
|
if (RD->getNumVBases() == 0)
|
|
return;
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
|
|
e = RD->bases_end(); i != e; ++i) {
|
|
const CXXRecordDecl *Base =
|
|
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
|
|
if (Base->getNumVBases() == 0)
|
|
continue;
|
|
MarkVirtualMembersReferenced(Loc, Base);
|
|
}
|
|
}
|
|
|
|
/// SetIvarInitializers - This routine builds initialization ASTs for the
|
|
/// Objective-C implementation whose ivars need be initialized.
|
|
void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
|
|
if (!getLangOptions().CPlusPlus)
|
|
return;
|
|
if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
|
|
llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
|
|
CollectIvarsToConstructOrDestruct(OID, ivars);
|
|
if (ivars.empty())
|
|
return;
|
|
llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
|
|
for (unsigned i = 0; i < ivars.size(); i++) {
|
|
FieldDecl *Field = ivars[i];
|
|
if (Field->isInvalidDecl())
|
|
continue;
|
|
|
|
CXXCtorInitializer *Member;
|
|
InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
|
|
InitializationKind InitKind =
|
|
InitializationKind::CreateDefault(ObjCImplementation->getLocation());
|
|
|
|
InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
|
|
ExprResult MemberInit =
|
|
InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
|
|
MemberInit = MaybeCreateExprWithCleanups(MemberInit);
|
|
// Note, MemberInit could actually come back empty if no initialization
|
|
// is required (e.g., because it would call a trivial default constructor)
|
|
if (!MemberInit.get() || MemberInit.isInvalid())
|
|
continue;
|
|
|
|
Member =
|
|
new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
|
|
SourceLocation(),
|
|
MemberInit.takeAs<Expr>(),
|
|
SourceLocation());
|
|
AllToInit.push_back(Member);
|
|
|
|
// Be sure that the destructor is accessible and is marked as referenced.
|
|
if (const RecordType *RecordTy
|
|
= Context.getBaseElementType(Field->getType())
|
|
->getAs<RecordType>()) {
|
|
CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
|
|
if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
|
|
MarkDeclarationReferenced(Field->getLocation(), Destructor);
|
|
CheckDestructorAccess(Field->getLocation(), Destructor,
|
|
PDiag(diag::err_access_dtor_ivar)
|
|
<< Context.getBaseElementType(Field->getType()));
|
|
}
|
|
}
|
|
}
|
|
ObjCImplementation->setIvarInitializers(Context,
|
|
AllToInit.data(), AllToInit.size());
|
|
}
|
|
}
|