зеркало из https://github.com/microsoft/clang-1.git
3366 строки
124 KiB
C++
3366 строки
124 KiB
C++
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements type-related semantic analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "clang/Basic/OpenCL.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/TypeLocVisitor.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
using namespace clang;
|
|
|
|
/// \brief Perform adjustment on the parameter type of a function.
|
|
///
|
|
/// This routine adjusts the given parameter type @p T to the actual
|
|
/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
|
|
/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
|
|
QualType Sema::adjustParameterType(QualType T) {
|
|
// C99 6.7.5.3p7:
|
|
// A declaration of a parameter as "array of type" shall be
|
|
// adjusted to "qualified pointer to type", where the type
|
|
// qualifiers (if any) are those specified within the [ and ] of
|
|
// the array type derivation.
|
|
if (T->isArrayType())
|
|
return Context.getArrayDecayedType(T);
|
|
|
|
// C99 6.7.5.3p8:
|
|
// A declaration of a parameter as "function returning type"
|
|
// shall be adjusted to "pointer to function returning type", as
|
|
// in 6.3.2.1.
|
|
if (T->isFunctionType())
|
|
return Context.getPointerType(T);
|
|
|
|
return T;
|
|
}
|
|
|
|
|
|
|
|
/// isOmittedBlockReturnType - Return true if this declarator is missing a
|
|
/// return type because this is a omitted return type on a block literal.
|
|
static bool isOmittedBlockReturnType(const Declarator &D) {
|
|
if (D.getContext() != Declarator::BlockLiteralContext ||
|
|
D.getDeclSpec().hasTypeSpecifier())
|
|
return false;
|
|
|
|
if (D.getNumTypeObjects() == 0)
|
|
return true; // ^{ ... }
|
|
|
|
if (D.getNumTypeObjects() == 1 &&
|
|
D.getTypeObject(0).Kind == DeclaratorChunk::Function)
|
|
return true; // ^(int X, float Y) { ... }
|
|
|
|
return false;
|
|
}
|
|
|
|
/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
|
|
/// doesn't apply to the given type.
|
|
static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
|
|
QualType type) {
|
|
bool useInstantiationLoc = false;
|
|
|
|
unsigned diagID = 0;
|
|
switch (attr.getKind()) {
|
|
case AttributeList::AT_objc_gc:
|
|
diagID = diag::warn_pointer_attribute_wrong_type;
|
|
useInstantiationLoc = true;
|
|
break;
|
|
|
|
default:
|
|
// Assume everything else was a function attribute.
|
|
diagID = diag::warn_function_attribute_wrong_type;
|
|
break;
|
|
}
|
|
|
|
SourceLocation loc = attr.getLoc();
|
|
llvm::StringRef name = attr.getName()->getName();
|
|
|
|
// The GC attributes are usually written with macros; special-case them.
|
|
if (useInstantiationLoc && loc.isMacroID() && attr.getParameterName()) {
|
|
if (attr.getParameterName()->isStr("strong")) {
|
|
if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
|
|
} else if (attr.getParameterName()->isStr("weak")) {
|
|
if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
|
|
}
|
|
}
|
|
|
|
S.Diag(loc, diagID) << name << type;
|
|
}
|
|
|
|
// objc_gc applies to Objective-C pointers or, otherwise, to the
|
|
// smallest available pointer type (i.e. 'void*' in 'void**').
|
|
#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
|
|
case AttributeList::AT_objc_gc
|
|
|
|
// Function type attributes.
|
|
#define FUNCTION_TYPE_ATTRS_CASELIST \
|
|
case AttributeList::AT_noreturn: \
|
|
case AttributeList::AT_cdecl: \
|
|
case AttributeList::AT_fastcall: \
|
|
case AttributeList::AT_stdcall: \
|
|
case AttributeList::AT_thiscall: \
|
|
case AttributeList::AT_pascal: \
|
|
case AttributeList::AT_regparm: \
|
|
case AttributeList::AT_pcs \
|
|
|
|
namespace {
|
|
/// An object which stores processing state for the entire
|
|
/// GetTypeForDeclarator process.
|
|
class TypeProcessingState {
|
|
Sema &sema;
|
|
|
|
/// The declarator being processed.
|
|
Declarator &declarator;
|
|
|
|
/// The index of the declarator chunk we're currently processing.
|
|
/// May be the total number of valid chunks, indicating the
|
|
/// DeclSpec.
|
|
unsigned chunkIndex;
|
|
|
|
/// Whether there are non-trivial modifications to the decl spec.
|
|
bool trivial;
|
|
|
|
/// Whether we saved the attributes in the decl spec.
|
|
bool hasSavedAttrs;
|
|
|
|
/// The original set of attributes on the DeclSpec.
|
|
llvm::SmallVector<AttributeList*, 2> savedAttrs;
|
|
|
|
/// A list of attributes to diagnose the uselessness of when the
|
|
/// processing is complete.
|
|
llvm::SmallVector<AttributeList*, 2> ignoredTypeAttrs;
|
|
|
|
public:
|
|
TypeProcessingState(Sema &sema, Declarator &declarator)
|
|
: sema(sema), declarator(declarator),
|
|
chunkIndex(declarator.getNumTypeObjects()),
|
|
trivial(true), hasSavedAttrs(false) {}
|
|
|
|
Sema &getSema() const {
|
|
return sema;
|
|
}
|
|
|
|
Declarator &getDeclarator() const {
|
|
return declarator;
|
|
}
|
|
|
|
unsigned getCurrentChunkIndex() const {
|
|
return chunkIndex;
|
|
}
|
|
|
|
void setCurrentChunkIndex(unsigned idx) {
|
|
assert(idx <= declarator.getNumTypeObjects());
|
|
chunkIndex = idx;
|
|
}
|
|
|
|
AttributeList *&getCurrentAttrListRef() const {
|
|
assert(chunkIndex <= declarator.getNumTypeObjects());
|
|
if (chunkIndex == declarator.getNumTypeObjects())
|
|
return getMutableDeclSpec().getAttributes().getListRef();
|
|
return declarator.getTypeObject(chunkIndex).getAttrListRef();
|
|
}
|
|
|
|
/// Save the current set of attributes on the DeclSpec.
|
|
void saveDeclSpecAttrs() {
|
|
// Don't try to save them multiple times.
|
|
if (hasSavedAttrs) return;
|
|
|
|
DeclSpec &spec = getMutableDeclSpec();
|
|
for (AttributeList *attr = spec.getAttributes().getList(); attr;
|
|
attr = attr->getNext())
|
|
savedAttrs.push_back(attr);
|
|
trivial &= savedAttrs.empty();
|
|
hasSavedAttrs = true;
|
|
}
|
|
|
|
/// Record that we had nowhere to put the given type attribute.
|
|
/// We will diagnose such attributes later.
|
|
void addIgnoredTypeAttr(AttributeList &attr) {
|
|
ignoredTypeAttrs.push_back(&attr);
|
|
}
|
|
|
|
/// Diagnose all the ignored type attributes, given that the
|
|
/// declarator worked out to the given type.
|
|
void diagnoseIgnoredTypeAttrs(QualType type) const {
|
|
for (llvm::SmallVectorImpl<AttributeList*>::const_iterator
|
|
i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
|
|
i != e; ++i)
|
|
diagnoseBadTypeAttribute(getSema(), **i, type);
|
|
}
|
|
|
|
~TypeProcessingState() {
|
|
if (trivial) return;
|
|
|
|
restoreDeclSpecAttrs();
|
|
}
|
|
|
|
private:
|
|
DeclSpec &getMutableDeclSpec() const {
|
|
return const_cast<DeclSpec&>(declarator.getDeclSpec());
|
|
}
|
|
|
|
void restoreDeclSpecAttrs() {
|
|
assert(hasSavedAttrs);
|
|
|
|
if (savedAttrs.empty()) {
|
|
getMutableDeclSpec().getAttributes().set(0);
|
|
return;
|
|
}
|
|
|
|
getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
|
|
for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
|
|
savedAttrs[i]->setNext(savedAttrs[i+1]);
|
|
savedAttrs.back()->setNext(0);
|
|
}
|
|
};
|
|
|
|
/// Basically std::pair except that we really want to avoid an
|
|
/// implicit operator= for safety concerns. It's also a minor
|
|
/// link-time optimization for this to be a private type.
|
|
struct AttrAndList {
|
|
/// The attribute.
|
|
AttributeList &first;
|
|
|
|
/// The head of the list the attribute is currently in.
|
|
AttributeList *&second;
|
|
|
|
AttrAndList(AttributeList &attr, AttributeList *&head)
|
|
: first(attr), second(head) {}
|
|
};
|
|
}
|
|
|
|
namespace llvm {
|
|
template <> struct isPodLike<AttrAndList> {
|
|
static const bool value = true;
|
|
};
|
|
}
|
|
|
|
static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
|
|
attr.setNext(head);
|
|
head = &attr;
|
|
}
|
|
|
|
static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
|
|
if (head == &attr) {
|
|
head = attr.getNext();
|
|
return;
|
|
}
|
|
|
|
AttributeList *cur = head;
|
|
while (true) {
|
|
assert(cur && cur->getNext() && "ran out of attrs?");
|
|
if (cur->getNext() == &attr) {
|
|
cur->setNext(attr.getNext());
|
|
return;
|
|
}
|
|
cur = cur->getNext();
|
|
}
|
|
}
|
|
|
|
static void moveAttrFromListToList(AttributeList &attr,
|
|
AttributeList *&fromList,
|
|
AttributeList *&toList) {
|
|
spliceAttrOutOfList(attr, fromList);
|
|
spliceAttrIntoList(attr, toList);
|
|
}
|
|
|
|
static void processTypeAttrs(TypeProcessingState &state,
|
|
QualType &type, bool isDeclSpec,
|
|
AttributeList *attrs);
|
|
|
|
static bool handleFunctionTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &type);
|
|
|
|
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr, QualType &type);
|
|
|
|
static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr, QualType &type) {
|
|
// Right now, we have exactly one of these attributes: objc_gc.
|
|
assert(attr.getKind() == AttributeList::AT_objc_gc);
|
|
return handleObjCGCTypeAttr(state, attr, type);
|
|
}
|
|
|
|
/// Given that an objc_gc attribute was written somewhere on a
|
|
/// declaration *other* than on the declarator itself (for which, use
|
|
/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
|
|
/// didn't apply in whatever position it was written in, try to move
|
|
/// it to a more appropriate position.
|
|
static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType type) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer:
|
|
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
|
|
chunk.getAttrListRef());
|
|
return;
|
|
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Array:
|
|
continue;
|
|
|
|
// Don't walk through these.
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::MemberPointer:
|
|
goto error;
|
|
}
|
|
}
|
|
error:
|
|
|
|
diagnoseBadTypeAttribute(state.getSema(), attr, type);
|
|
}
|
|
|
|
/// Distribute an objc_gc type attribute that was written on the
|
|
/// declarator.
|
|
static void
|
|
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &declSpecType) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// objc_gc goes on the innermost pointer to something that's not a
|
|
// pointer.
|
|
unsigned innermost = -1U;
|
|
bool considerDeclSpec = true;
|
|
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer:
|
|
innermost = i;
|
|
continue;
|
|
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Array:
|
|
continue;
|
|
|
|
case DeclaratorChunk::Function:
|
|
considerDeclSpec = false;
|
|
goto done;
|
|
}
|
|
}
|
|
done:
|
|
|
|
// That might actually be the decl spec if we weren't blocked by
|
|
// anything in the declarator.
|
|
if (considerDeclSpec) {
|
|
if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
|
|
// Splice the attribute into the decl spec. Prevents the
|
|
// attribute from being applied multiple times and gives
|
|
// the source-location-filler something to work with.
|
|
state.saveDeclSpecAttrs();
|
|
moveAttrFromListToList(attr, declarator.getAttrListRef(),
|
|
declarator.getMutableDeclSpec().getAttributes().getListRef());
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise, if we found an appropriate chunk, splice the attribute
|
|
// into it.
|
|
if (innermost != -1U) {
|
|
moveAttrFromListToList(attr, declarator.getAttrListRef(),
|
|
declarator.getTypeObject(innermost).getAttrListRef());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, diagnose when we're done building the type.
|
|
spliceAttrOutOfList(attr, declarator.getAttrListRef());
|
|
state.addIgnoredTypeAttr(attr);
|
|
}
|
|
|
|
/// A function type attribute was written somewhere in a declaration
|
|
/// *other* than on the declarator itself or in the decl spec. Given
|
|
/// that it didn't apply in whatever position it was written in, try
|
|
/// to move it to a more appropriate position.
|
|
static void distributeFunctionTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType type) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// Try to push the attribute from the return type of a function to
|
|
// the function itself.
|
|
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Function:
|
|
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
|
|
chunk.getAttrListRef());
|
|
return;
|
|
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
continue;
|
|
}
|
|
}
|
|
|
|
diagnoseBadTypeAttribute(state.getSema(), attr, type);
|
|
}
|
|
|
|
/// Try to distribute a function type attribute to the innermost
|
|
/// function chunk or type. Returns true if the attribute was
|
|
/// distributed, false if no location was found.
|
|
static bool
|
|
distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
AttributeList *&attrList,
|
|
QualType &declSpecType) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// Put it on the innermost function chunk, if there is one.
|
|
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i);
|
|
if (chunk.Kind != DeclaratorChunk::Function) continue;
|
|
|
|
moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
|
|
return true;
|
|
}
|
|
|
|
return handleFunctionTypeAttr(state, attr, declSpecType);
|
|
}
|
|
|
|
/// A function type attribute was written in the decl spec. Try to
|
|
/// apply it somewhere.
|
|
static void
|
|
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &declSpecType) {
|
|
state.saveDeclSpecAttrs();
|
|
|
|
// Try to distribute to the innermost.
|
|
if (distributeFunctionTypeAttrToInnermost(state, attr,
|
|
state.getCurrentAttrListRef(),
|
|
declSpecType))
|
|
return;
|
|
|
|
// If that failed, diagnose the bad attribute when the declarator is
|
|
// fully built.
|
|
state.addIgnoredTypeAttr(attr);
|
|
}
|
|
|
|
/// A function type attribute was written on the declarator. Try to
|
|
/// apply it somewhere.
|
|
static void
|
|
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &declSpecType) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// Try to distribute to the innermost.
|
|
if (distributeFunctionTypeAttrToInnermost(state, attr,
|
|
declarator.getAttrListRef(),
|
|
declSpecType))
|
|
return;
|
|
|
|
// If that failed, diagnose the bad attribute when the declarator is
|
|
// fully built.
|
|
spliceAttrOutOfList(attr, declarator.getAttrListRef());
|
|
state.addIgnoredTypeAttr(attr);
|
|
}
|
|
|
|
/// \brief Given that there are attributes written on the declarator
|
|
/// itself, try to distribute any type attributes to the appropriate
|
|
/// declarator chunk.
|
|
///
|
|
/// These are attributes like the following:
|
|
/// int f ATTR;
|
|
/// int (f ATTR)();
|
|
/// but not necessarily this:
|
|
/// int f() ATTR;
|
|
static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
|
|
QualType &declSpecType) {
|
|
// Collect all the type attributes from the declarator itself.
|
|
assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
|
|
AttributeList *attr = state.getDeclarator().getAttributes();
|
|
AttributeList *next;
|
|
do {
|
|
next = attr->getNext();
|
|
|
|
switch (attr->getKind()) {
|
|
OBJC_POINTER_TYPE_ATTRS_CASELIST:
|
|
distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
|
|
break;
|
|
|
|
FUNCTION_TYPE_ATTRS_CASELIST:
|
|
distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
} while ((attr = next));
|
|
}
|
|
|
|
/// Add a synthetic '()' to a block-literal declarator if it is
|
|
/// required, given the return type.
|
|
static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
|
|
QualType declSpecType) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// First, check whether the declarator would produce a function,
|
|
// i.e. whether the innermost semantic chunk is a function.
|
|
if (declarator.isFunctionDeclarator()) {
|
|
// If so, make that declarator a prototyped declarator.
|
|
declarator.getFunctionTypeInfo().hasPrototype = true;
|
|
return;
|
|
}
|
|
|
|
// If there are any type objects, the type as written won't name a
|
|
// function, regardless of the decl spec type. This is because a
|
|
// block signature declarator is always an abstract-declarator, and
|
|
// abstract-declarators can't just be parentheses chunks. Therefore
|
|
// we need to build a function chunk unless there are no type
|
|
// objects and the decl spec type is a function.
|
|
if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
|
|
return;
|
|
|
|
// Note that there *are* cases with invalid declarators where
|
|
// declarators consist solely of parentheses. In general, these
|
|
// occur only in failed efforts to make function declarators, so
|
|
// faking up the function chunk is still the right thing to do.
|
|
|
|
// Otherwise, we need to fake up a function declarator.
|
|
SourceLocation loc = declarator.getSourceRange().getBegin();
|
|
|
|
// ...and *prepend* it to the declarator.
|
|
declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
|
|
/*proto*/ true,
|
|
/*variadic*/ false, SourceLocation(),
|
|
/*args*/ 0, 0,
|
|
/*type quals*/ 0,
|
|
/*ref-qualifier*/true, SourceLocation(),
|
|
/*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
|
|
/*parens*/ loc, loc,
|
|
declarator));
|
|
|
|
// For consistency, make sure the state still has us as processing
|
|
// the decl spec.
|
|
assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
|
|
state.setCurrentChunkIndex(declarator.getNumTypeObjects());
|
|
}
|
|
|
|
/// \brief Convert the specified declspec to the appropriate type
|
|
/// object.
|
|
/// \param D the declarator containing the declaration specifier.
|
|
/// \returns The type described by the declaration specifiers. This function
|
|
/// never returns null.
|
|
static QualType ConvertDeclSpecToType(Sema &S, TypeProcessingState &state) {
|
|
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
|
|
// checking.
|
|
|
|
Declarator &declarator = state.getDeclarator();
|
|
const DeclSpec &DS = declarator.getDeclSpec();
|
|
SourceLocation DeclLoc = declarator.getIdentifierLoc();
|
|
if (DeclLoc.isInvalid())
|
|
DeclLoc = DS.getSourceRange().getBegin();
|
|
|
|
ASTContext &Context = S.Context;
|
|
|
|
QualType Result;
|
|
switch (DS.getTypeSpecType()) {
|
|
case DeclSpec::TST_void:
|
|
Result = Context.VoidTy;
|
|
break;
|
|
case DeclSpec::TST_char:
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
|
|
Result = Context.CharTy;
|
|
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
|
|
Result = Context.SignedCharTy;
|
|
else {
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
|
|
"Unknown TSS value");
|
|
Result = Context.UnsignedCharTy;
|
|
}
|
|
break;
|
|
case DeclSpec::TST_wchar:
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
|
|
Result = Context.WCharTy;
|
|
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
|
|
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
|
|
<< DS.getSpecifierName(DS.getTypeSpecType());
|
|
Result = Context.getSignedWCharType();
|
|
} else {
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
|
|
"Unknown TSS value");
|
|
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
|
|
<< DS.getSpecifierName(DS.getTypeSpecType());
|
|
Result = Context.getUnsignedWCharType();
|
|
}
|
|
break;
|
|
case DeclSpec::TST_char16:
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
|
|
"Unknown TSS value");
|
|
Result = Context.Char16Ty;
|
|
break;
|
|
case DeclSpec::TST_char32:
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
|
|
"Unknown TSS value");
|
|
Result = Context.Char32Ty;
|
|
break;
|
|
case DeclSpec::TST_unspecified:
|
|
// "<proto1,proto2>" is an objc qualified ID with a missing id.
|
|
if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
|
|
Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
|
|
(ObjCProtocolDecl**)PQ,
|
|
DS.getNumProtocolQualifiers());
|
|
Result = Context.getObjCObjectPointerType(Result);
|
|
break;
|
|
}
|
|
|
|
// If this is a missing declspec in a block literal return context, then it
|
|
// is inferred from the return statements inside the block.
|
|
if (isOmittedBlockReturnType(declarator)) {
|
|
Result = Context.DependentTy;
|
|
break;
|
|
}
|
|
|
|
// Unspecified typespec defaults to int in C90. However, the C90 grammar
|
|
// [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
|
|
// type-qualifier, or storage-class-specifier. If not, emit an extwarn.
|
|
// Note that the one exception to this is function definitions, which are
|
|
// allowed to be completely missing a declspec. This is handled in the
|
|
// parser already though by it pretending to have seen an 'int' in this
|
|
// case.
|
|
if (S.getLangOptions().ImplicitInt) {
|
|
// In C89 mode, we only warn if there is a completely missing declspec
|
|
// when one is not allowed.
|
|
if (DS.isEmpty()) {
|
|
S.Diag(DeclLoc, diag::ext_missing_declspec)
|
|
<< DS.getSourceRange()
|
|
<< FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
|
|
}
|
|
} else if (!DS.hasTypeSpecifier()) {
|
|
// C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
|
|
// "At least one type specifier shall be given in the declaration
|
|
// specifiers in each declaration, and in the specifier-qualifier list in
|
|
// each struct declaration and type name."
|
|
// FIXME: Does Microsoft really have the implicit int extension in C++?
|
|
if (S.getLangOptions().CPlusPlus &&
|
|
!S.getLangOptions().Microsoft) {
|
|
S.Diag(DeclLoc, diag::err_missing_type_specifier)
|
|
<< DS.getSourceRange();
|
|
|
|
// When this occurs in C++ code, often something is very broken with the
|
|
// value being declared, poison it as invalid so we don't get chains of
|
|
// errors.
|
|
declarator.setInvalidType(true);
|
|
} else {
|
|
S.Diag(DeclLoc, diag::ext_missing_type_specifier)
|
|
<< DS.getSourceRange();
|
|
}
|
|
}
|
|
|
|
// FALL THROUGH.
|
|
case DeclSpec::TST_int: {
|
|
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
|
|
case DeclSpec::TSW_short: Result = Context.ShortTy; break;
|
|
case DeclSpec::TSW_long: Result = Context.LongTy; break;
|
|
case DeclSpec::TSW_longlong:
|
|
Result = Context.LongLongTy;
|
|
|
|
// long long is a C99 feature.
|
|
if (!S.getLangOptions().C99 &&
|
|
!S.getLangOptions().CPlusPlus0x)
|
|
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
|
|
case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
|
|
case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
|
|
case DeclSpec::TSW_longlong:
|
|
Result = Context.UnsignedLongLongTy;
|
|
|
|
// long long is a C99 feature.
|
|
if (!S.getLangOptions().C99 &&
|
|
!S.getLangOptions().CPlusPlus0x)
|
|
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DeclSpec::TST_float: Result = Context.FloatTy; break;
|
|
case DeclSpec::TST_double:
|
|
if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
|
|
Result = Context.LongDoubleTy;
|
|
else
|
|
Result = Context.DoubleTy;
|
|
|
|
if (S.getLangOptions().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
|
|
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
|
|
declarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
|
|
case DeclSpec::TST_decimal32: // _Decimal32
|
|
case DeclSpec::TST_decimal64: // _Decimal64
|
|
case DeclSpec::TST_decimal128: // _Decimal128
|
|
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
break;
|
|
case DeclSpec::TST_class:
|
|
case DeclSpec::TST_enum:
|
|
case DeclSpec::TST_union:
|
|
case DeclSpec::TST_struct: {
|
|
TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
|
|
if (!D) {
|
|
// This can happen in C++ with ambiguous lookups.
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
break;
|
|
}
|
|
|
|
// If the type is deprecated or unavailable, diagnose it.
|
|
S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
|
|
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
|
|
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTypeDeclType(D);
|
|
|
|
// In both C and C++, make an ElaboratedType.
|
|
ElaboratedTypeKeyword Keyword
|
|
= ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
|
|
Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
|
|
|
|
if (D->isInvalidDecl())
|
|
declarator.setInvalidType(true);
|
|
break;
|
|
}
|
|
case DeclSpec::TST_typename: {
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 &&
|
|
"Can't handle qualifiers on typedef names yet!");
|
|
Result = S.GetTypeFromParser(DS.getRepAsType());
|
|
if (Result.isNull())
|
|
declarator.setInvalidType(true);
|
|
else if (DeclSpec::ProtocolQualifierListTy PQ
|
|
= DS.getProtocolQualifiers()) {
|
|
if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
|
|
// Silently drop any existing protocol qualifiers.
|
|
// TODO: determine whether that's the right thing to do.
|
|
if (ObjT->getNumProtocols())
|
|
Result = ObjT->getBaseType();
|
|
|
|
if (DS.getNumProtocolQualifiers())
|
|
Result = Context.getObjCObjectType(Result,
|
|
(ObjCProtocolDecl**) PQ,
|
|
DS.getNumProtocolQualifiers());
|
|
} else if (Result->isObjCIdType()) {
|
|
// id<protocol-list>
|
|
Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
|
|
(ObjCProtocolDecl**) PQ,
|
|
DS.getNumProtocolQualifiers());
|
|
Result = Context.getObjCObjectPointerType(Result);
|
|
} else if (Result->isObjCClassType()) {
|
|
// Class<protocol-list>
|
|
Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
|
|
(ObjCProtocolDecl**) PQ,
|
|
DS.getNumProtocolQualifiers());
|
|
Result = Context.getObjCObjectPointerType(Result);
|
|
} else {
|
|
S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
|
|
<< DS.getSourceRange();
|
|
declarator.setInvalidType(true);
|
|
}
|
|
}
|
|
|
|
// TypeQuals handled by caller.
|
|
break;
|
|
}
|
|
case DeclSpec::TST_typeofType:
|
|
// FIXME: Preserve type source info.
|
|
Result = S.GetTypeFromParser(DS.getRepAsType());
|
|
assert(!Result.isNull() && "Didn't get a type for typeof?");
|
|
if (!Result->isDependentType())
|
|
if (const TagType *TT = Result->getAs<TagType>())
|
|
S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTypeOfType(Result);
|
|
break;
|
|
case DeclSpec::TST_typeofExpr: {
|
|
Expr *E = DS.getRepAsExpr();
|
|
assert(E && "Didn't get an expression for typeof?");
|
|
// TypeQuals handled by caller.
|
|
Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
|
|
if (Result.isNull()) {
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
}
|
|
case DeclSpec::TST_decltype: {
|
|
Expr *E = DS.getRepAsExpr();
|
|
assert(E && "Didn't get an expression for decltype?");
|
|
// TypeQuals handled by caller.
|
|
Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
|
|
if (Result.isNull()) {
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
}
|
|
case DeclSpec::TST_auto: {
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getAutoType(QualType());
|
|
break;
|
|
}
|
|
|
|
case DeclSpec::TST_unknown_anytype:
|
|
Result = Context.UnknownAnyTy;
|
|
break;
|
|
|
|
case DeclSpec::TST_error:
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
break;
|
|
}
|
|
|
|
// Handle complex types.
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
|
|
if (S.getLangOptions().Freestanding)
|
|
S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
|
|
Result = Context.getComplexType(Result);
|
|
} else if (DS.isTypeAltiVecVector()) {
|
|
unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
|
|
assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
|
|
VectorType::VectorKind VecKind = VectorType::AltiVecVector;
|
|
if (DS.isTypeAltiVecPixel())
|
|
VecKind = VectorType::AltiVecPixel;
|
|
else if (DS.isTypeAltiVecBool())
|
|
VecKind = VectorType::AltiVecBool;
|
|
Result = Context.getVectorType(Result, 128/typeSize, VecKind);
|
|
}
|
|
|
|
// FIXME: Imaginary.
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
|
|
S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
|
|
|
|
// Before we process any type attributes, synthesize a block literal
|
|
// function declarator if necessary.
|
|
if (declarator.getContext() == Declarator::BlockLiteralContext)
|
|
maybeSynthesizeBlockSignature(state, Result);
|
|
|
|
// Apply any type attributes from the decl spec. This may cause the
|
|
// list of type attributes to be temporarily saved while the type
|
|
// attributes are pushed around.
|
|
if (AttributeList *attrs = DS.getAttributes().getList())
|
|
processTypeAttrs(state, Result, true, attrs);
|
|
|
|
// Apply const/volatile/restrict qualifiers to T.
|
|
if (unsigned TypeQuals = DS.getTypeQualifiers()) {
|
|
|
|
// Enforce C99 6.7.3p2: "Types other than pointer types derived from object
|
|
// or incomplete types shall not be restrict-qualified." C++ also allows
|
|
// restrict-qualified references.
|
|
if (TypeQuals & DeclSpec::TQ_restrict) {
|
|
if (Result->isAnyPointerType() || Result->isReferenceType()) {
|
|
QualType EltTy;
|
|
if (Result->isObjCObjectPointerType())
|
|
EltTy = Result;
|
|
else
|
|
EltTy = Result->isPointerType() ?
|
|
Result->getAs<PointerType>()->getPointeeType() :
|
|
Result->getAs<ReferenceType>()->getPointeeType();
|
|
|
|
// If we have a pointer or reference, the pointee must have an object
|
|
// incomplete type.
|
|
if (!EltTy->isIncompleteOrObjectType()) {
|
|
S.Diag(DS.getRestrictSpecLoc(),
|
|
diag::err_typecheck_invalid_restrict_invalid_pointee)
|
|
<< EltTy << DS.getSourceRange();
|
|
TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
|
|
}
|
|
} else {
|
|
S.Diag(DS.getRestrictSpecLoc(),
|
|
diag::err_typecheck_invalid_restrict_not_pointer)
|
|
<< Result << DS.getSourceRange();
|
|
TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
|
|
}
|
|
}
|
|
|
|
// Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
|
|
// of a function type includes any type qualifiers, the behavior is
|
|
// undefined."
|
|
if (Result->isFunctionType() && TypeQuals) {
|
|
// Get some location to point at, either the C or V location.
|
|
SourceLocation Loc;
|
|
if (TypeQuals & DeclSpec::TQ_const)
|
|
Loc = DS.getConstSpecLoc();
|
|
else if (TypeQuals & DeclSpec::TQ_volatile)
|
|
Loc = DS.getVolatileSpecLoc();
|
|
else {
|
|
assert((TypeQuals & DeclSpec::TQ_restrict) &&
|
|
"Has CVR quals but not C, V, or R?");
|
|
Loc = DS.getRestrictSpecLoc();
|
|
}
|
|
S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
|
|
<< Result << DS.getSourceRange();
|
|
}
|
|
|
|
// C++ [dcl.ref]p1:
|
|
// Cv-qualified references are ill-formed except when the
|
|
// cv-qualifiers are introduced through the use of a typedef
|
|
// (7.1.3) or of a template type argument (14.3), in which
|
|
// case the cv-qualifiers are ignored.
|
|
// FIXME: Shouldn't we be checking SCS_typedef here?
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
|
|
TypeQuals && Result->isReferenceType()) {
|
|
TypeQuals &= ~DeclSpec::TQ_const;
|
|
TypeQuals &= ~DeclSpec::TQ_volatile;
|
|
}
|
|
|
|
Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
|
|
Result = Context.getQualifiedType(Result, Quals);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
static std::string getPrintableNameForEntity(DeclarationName Entity) {
|
|
if (Entity)
|
|
return Entity.getAsString();
|
|
|
|
return "type name";
|
|
}
|
|
|
|
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
|
|
Qualifiers Qs) {
|
|
// Enforce C99 6.7.3p2: "Types other than pointer types derived from
|
|
// object or incomplete types shall not be restrict-qualified."
|
|
if (Qs.hasRestrict()) {
|
|
unsigned DiagID = 0;
|
|
QualType ProblemTy;
|
|
|
|
const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
|
|
if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
|
|
if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
|
|
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
|
|
ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
|
|
}
|
|
} else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
|
|
if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
|
|
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
|
|
ProblemTy = T->getAs<PointerType>()->getPointeeType();
|
|
}
|
|
} else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
|
|
if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
|
|
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
|
|
ProblemTy = T->getAs<PointerType>()->getPointeeType();
|
|
}
|
|
} else if (!Ty->isDependentType()) {
|
|
// FIXME: this deserves a proper diagnostic
|
|
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
|
|
ProblemTy = T;
|
|
}
|
|
|
|
if (DiagID) {
|
|
Diag(Loc, DiagID) << ProblemTy;
|
|
Qs.removeRestrict();
|
|
}
|
|
}
|
|
|
|
return Context.getQualifiedType(T, Qs);
|
|
}
|
|
|
|
/// \brief Build a paren type including \p T.
|
|
QualType Sema::BuildParenType(QualType T) {
|
|
return Context.getParenType(T);
|
|
}
|
|
|
|
/// \brief Build a pointer type.
|
|
///
|
|
/// \param T The type to which we'll be building a pointer.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// pointer type or, if there is no such entity, the location of the
|
|
/// type that will have pointer type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the pointer
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable pointer type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildPointerType(QualType T,
|
|
SourceLocation Loc, DeclarationName Entity) {
|
|
if (T->isReferenceType()) {
|
|
// C++ 8.3.2p4: There shall be no ... pointers to references ...
|
|
Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
|
|
|
|
// Build the pointer type.
|
|
return Context.getPointerType(T);
|
|
}
|
|
|
|
/// \brief Build a reference type.
|
|
///
|
|
/// \param T The type to which we'll be building a reference.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// reference type or, if there is no such entity, the location of the
|
|
/// type that will have reference type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the reference
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable reference type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity) {
|
|
// C++0x [dcl.ref]p6:
|
|
// If a typedef (7.1.3), a type template-parameter (14.3.1), or a
|
|
// decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
|
|
// type T, an attempt to create the type "lvalue reference to cv TR" creates
|
|
// the type "lvalue reference to T", while an attempt to create the type
|
|
// "rvalue reference to cv TR" creates the type TR.
|
|
bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
|
|
|
|
// C++ [dcl.ref]p4: There shall be no references to references.
|
|
//
|
|
// According to C++ DR 106, references to references are only
|
|
// diagnosed when they are written directly (e.g., "int & &"),
|
|
// but not when they happen via a typedef:
|
|
//
|
|
// typedef int& intref;
|
|
// typedef intref& intref2;
|
|
//
|
|
// Parser::ParseDeclaratorInternal diagnoses the case where
|
|
// references are written directly; here, we handle the
|
|
// collapsing of references-to-references as described in C++0x.
|
|
// DR 106 and 540 introduce reference-collapsing into C++98/03.
|
|
|
|
// C++ [dcl.ref]p1:
|
|
// A declarator that specifies the type "reference to cv void"
|
|
// is ill-formed.
|
|
if (T->isVoidType()) {
|
|
Diag(Loc, diag::err_reference_to_void);
|
|
return QualType();
|
|
}
|
|
|
|
// Handle restrict on references.
|
|
if (LValueRef)
|
|
return Context.getLValueReferenceType(T, SpelledAsLValue);
|
|
return Context.getRValueReferenceType(T);
|
|
}
|
|
|
|
/// \brief Build an array type.
|
|
///
|
|
/// \param T The type of each element in the array.
|
|
///
|
|
/// \param ASM C99 array size modifier (e.g., '*', 'static').
|
|
///
|
|
/// \param ArraySize Expression describing the size of the array.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// array type or, if there is no such entity, the location of the
|
|
/// type that will have array type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the array
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable array type, if there are no errors. Otherwise,
|
|
/// returns a NULL type.
|
|
QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
|
|
Expr *ArraySize, unsigned Quals,
|
|
SourceRange Brackets, DeclarationName Entity) {
|
|
|
|
SourceLocation Loc = Brackets.getBegin();
|
|
if (getLangOptions().CPlusPlus) {
|
|
// C++ [dcl.array]p1:
|
|
// T is called the array element type; this type shall not be a reference
|
|
// type, the (possibly cv-qualified) type void, a function type or an
|
|
// abstract class type.
|
|
//
|
|
// Note: function types are handled in the common path with C.
|
|
if (T->isReferenceType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_of_references)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (T->isVoidType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (RequireNonAbstractType(Brackets.getBegin(), T,
|
|
diag::err_array_of_abstract_type))
|
|
return QualType();
|
|
|
|
} else {
|
|
// C99 6.7.5.2p1: If the element type is an incomplete or function type,
|
|
// reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
|
|
if (RequireCompleteType(Loc, T,
|
|
diag::err_illegal_decl_array_incomplete_type))
|
|
return QualType();
|
|
}
|
|
|
|
if (T->isFunctionType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_of_functions)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (T->getContainedAutoType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_of_auto)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (const RecordType *EltTy = T->getAs<RecordType>()) {
|
|
// If the element type is a struct or union that contains a variadic
|
|
// array, accept it as a GNU extension: C99 6.7.2.1p2.
|
|
if (EltTy->getDecl()->hasFlexibleArrayMember())
|
|
Diag(Loc, diag::ext_flexible_array_in_array) << T;
|
|
} else if (T->isObjCObjectType()) {
|
|
Diag(Loc, diag::err_objc_array_of_interfaces) << T;
|
|
return QualType();
|
|
}
|
|
|
|
// Do lvalue-to-rvalue conversions on the array size expression.
|
|
if (ArraySize && !ArraySize->isRValue()) {
|
|
ExprResult Result = DefaultLvalueConversion(ArraySize);
|
|
if (Result.isInvalid())
|
|
return QualType();
|
|
|
|
ArraySize = Result.take();
|
|
}
|
|
|
|
// C99 6.7.5.2p1: The size expression shall have integer type.
|
|
// TODO: in theory, if we were insane, we could allow contextual
|
|
// conversions to integer type here.
|
|
if (ArraySize && !ArraySize->isTypeDependent() &&
|
|
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
|
|
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
|
|
<< ArraySize->getType() << ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
|
|
if (!ArraySize) {
|
|
if (ASM == ArrayType::Star)
|
|
T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
|
|
else
|
|
T = Context.getIncompleteArrayType(T, ASM, Quals);
|
|
} else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
|
|
T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
|
|
} else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
|
|
(!T->isDependentType() && !T->isIncompleteType() &&
|
|
!T->isConstantSizeType())) {
|
|
// Per C99, a variable array is an array with either a non-constant
|
|
// size or an element type that has a non-constant-size
|
|
T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
|
|
} else {
|
|
// C99 6.7.5.2p1: If the expression is a constant expression, it shall
|
|
// have a value greater than zero.
|
|
if (ConstVal.isSigned() && ConstVal.isNegative()) {
|
|
if (Entity)
|
|
Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
|
|
<< getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
|
|
else
|
|
Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
|
|
<< ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
if (ConstVal == 0) {
|
|
// GCC accepts zero sized static arrays. We allow them when
|
|
// we're not in a SFINAE context.
|
|
Diag(ArraySize->getLocStart(),
|
|
isSFINAEContext()? diag::err_typecheck_zero_array_size
|
|
: diag::ext_typecheck_zero_array_size)
|
|
<< ArraySize->getSourceRange();
|
|
} else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
|
|
!T->isIncompleteType()) {
|
|
// Is the array too large?
|
|
unsigned ActiveSizeBits
|
|
= ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
|
|
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
|
|
Diag(ArraySize->getLocStart(), diag::err_array_too_large)
|
|
<< ConstVal.toString(10)
|
|
<< ArraySize->getSourceRange();
|
|
}
|
|
|
|
T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
|
|
}
|
|
// If this is not C99, extwarn about VLA's and C99 array size modifiers.
|
|
if (!getLangOptions().C99) {
|
|
if (T->isVariableArrayType()) {
|
|
// Prohibit the use of non-POD types in VLAs.
|
|
if (!T->isDependentType() &&
|
|
!Context.getBaseElementType(T)->isPODType()) {
|
|
Diag(Loc, diag::err_vla_non_pod)
|
|
<< Context.getBaseElementType(T);
|
|
return QualType();
|
|
}
|
|
// Prohibit the use of VLAs during template argument deduction.
|
|
else if (isSFINAEContext()) {
|
|
Diag(Loc, diag::err_vla_in_sfinae);
|
|
return QualType();
|
|
}
|
|
// Just extwarn about VLAs.
|
|
else
|
|
Diag(Loc, diag::ext_vla);
|
|
} else if (ASM != ArrayType::Normal || Quals != 0)
|
|
Diag(Loc,
|
|
getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
|
|
: diag::ext_c99_array_usage);
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
/// \brief Build an ext-vector type.
|
|
///
|
|
/// Run the required checks for the extended vector type.
|
|
QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
|
|
SourceLocation AttrLoc) {
|
|
// unlike gcc's vector_size attribute, we do not allow vectors to be defined
|
|
// in conjunction with complex types (pointers, arrays, functions, etc.).
|
|
if (!T->isDependentType() &&
|
|
!T->isIntegerType() && !T->isRealFloatingType()) {
|
|
Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
|
|
llvm::APSInt vecSize(32);
|
|
if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
|
|
Diag(AttrLoc, diag::err_attribute_argument_not_int)
|
|
<< "ext_vector_type" << ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// unlike gcc's vector_size attribute, the size is specified as the
|
|
// number of elements, not the number of bytes.
|
|
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
|
|
|
|
if (vectorSize == 0) {
|
|
Diag(AttrLoc, diag::err_attribute_zero_size)
|
|
<< ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
if (!T->isDependentType())
|
|
return Context.getExtVectorType(T, vectorSize);
|
|
}
|
|
|
|
return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
|
|
}
|
|
|
|
/// \brief Build a function type.
|
|
///
|
|
/// This routine checks the function type according to C++ rules and
|
|
/// under the assumption that the result type and parameter types have
|
|
/// just been instantiated from a template. It therefore duplicates
|
|
/// some of the behavior of GetTypeForDeclarator, but in a much
|
|
/// simpler form that is only suitable for this narrow use case.
|
|
///
|
|
/// \param T The return type of the function.
|
|
///
|
|
/// \param ParamTypes The parameter types of the function. This array
|
|
/// will be modified to account for adjustments to the types of the
|
|
/// function parameters.
|
|
///
|
|
/// \param NumParamTypes The number of parameter types in ParamTypes.
|
|
///
|
|
/// \param Variadic Whether this is a variadic function type.
|
|
///
|
|
/// \param Quals The cvr-qualifiers to be applied to the function type.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// function type or, if there is no such entity, the location of the
|
|
/// type that will have function type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the function
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable function type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildFunctionType(QualType T,
|
|
QualType *ParamTypes,
|
|
unsigned NumParamTypes,
|
|
bool Variadic, unsigned Quals,
|
|
RefQualifierKind RefQualifier,
|
|
SourceLocation Loc, DeclarationName Entity,
|
|
FunctionType::ExtInfo Info) {
|
|
if (T->isArrayType() || T->isFunctionType()) {
|
|
Diag(Loc, diag::err_func_returning_array_function)
|
|
<< T->isFunctionType() << T;
|
|
return QualType();
|
|
}
|
|
|
|
bool Invalid = false;
|
|
for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
|
|
QualType ParamType = adjustParameterType(ParamTypes[Idx]);
|
|
if (ParamType->isVoidType()) {
|
|
Diag(Loc, diag::err_param_with_void_type);
|
|
Invalid = true;
|
|
}
|
|
|
|
ParamTypes[Idx] = ParamType;
|
|
}
|
|
|
|
if (Invalid)
|
|
return QualType();
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.Variadic = Variadic;
|
|
EPI.TypeQuals = Quals;
|
|
EPI.RefQualifier = RefQualifier;
|
|
EPI.ExtInfo = Info;
|
|
|
|
return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
|
|
}
|
|
|
|
/// \brief Build a member pointer type \c T Class::*.
|
|
///
|
|
/// \param T the type to which the member pointer refers.
|
|
/// \param Class the class type into which the member pointer points.
|
|
/// \param CVR Qualifiers applied to the member pointer type
|
|
/// \param Loc the location where this type begins
|
|
/// \param Entity the name of the entity that will have this member pointer type
|
|
///
|
|
/// \returns a member pointer type, if successful, or a NULL type if there was
|
|
/// an error.
|
|
QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity) {
|
|
// Verify that we're not building a pointer to pointer to function with
|
|
// exception specification.
|
|
if (CheckDistantExceptionSpec(T)) {
|
|
Diag(Loc, diag::err_distant_exception_spec);
|
|
|
|
// FIXME: If we're doing this as part of template instantiation,
|
|
// we should return immediately.
|
|
|
|
// Build the type anyway, but use the canonical type so that the
|
|
// exception specifiers are stripped off.
|
|
T = Context.getCanonicalType(T);
|
|
}
|
|
|
|
// C++ 8.3.3p3: A pointer to member shall not point to ... a member
|
|
// with reference type, or "cv void."
|
|
if (T->isReferenceType()) {
|
|
Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
|
|
<< (Entity? Entity.getAsString() : "type name") << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (T->isVoidType()) {
|
|
Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
|
|
<< (Entity? Entity.getAsString() : "type name");
|
|
return QualType();
|
|
}
|
|
|
|
if (!Class->isDependentType() && !Class->isRecordType()) {
|
|
Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
|
|
return QualType();
|
|
}
|
|
|
|
// In the Microsoft ABI, the class is allowed to be an incomplete
|
|
// type. In such cases, the compiler makes a worst-case assumption.
|
|
// We make no such assumption right now, so emit an error if the
|
|
// class isn't a complete type.
|
|
if (Context.Target.getCXXABI() == CXXABI_Microsoft &&
|
|
RequireCompleteType(Loc, Class, diag::err_incomplete_type))
|
|
return QualType();
|
|
|
|
return Context.getMemberPointerType(T, Class.getTypePtr());
|
|
}
|
|
|
|
/// \brief Build a block pointer type.
|
|
///
|
|
/// \param T The type to which we'll be building a block pointer.
|
|
///
|
|
/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// block pointer type or, if there is no such entity, the location of the
|
|
/// type that will have block pointer type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the block pointer
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable block pointer type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildBlockPointerType(QualType T,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity) {
|
|
if (!T->isFunctionType()) {
|
|
Diag(Loc, diag::err_nonfunction_block_type);
|
|
return QualType();
|
|
}
|
|
|
|
return Context.getBlockPointerType(T);
|
|
}
|
|
|
|
QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
|
|
QualType QT = Ty.get();
|
|
if (QT.isNull()) {
|
|
if (TInfo) *TInfo = 0;
|
|
return QualType();
|
|
}
|
|
|
|
TypeSourceInfo *DI = 0;
|
|
if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
|
|
QT = LIT->getType();
|
|
DI = LIT->getTypeSourceInfo();
|
|
}
|
|
|
|
if (TInfo) *TInfo = DI;
|
|
return QT;
|
|
}
|
|
|
|
static void DiagnoseIgnoredQualifiers(unsigned Quals,
|
|
SourceLocation ConstQualLoc,
|
|
SourceLocation VolatileQualLoc,
|
|
SourceLocation RestrictQualLoc,
|
|
Sema& S) {
|
|
std::string QualStr;
|
|
unsigned NumQuals = 0;
|
|
SourceLocation Loc;
|
|
|
|
FixItHint ConstFixIt;
|
|
FixItHint VolatileFixIt;
|
|
FixItHint RestrictFixIt;
|
|
|
|
// FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
|
|
// find a range and grow it to encompass all the qualifiers, regardless of
|
|
// the order in which they textually appear.
|
|
if (Quals & Qualifiers::Const) {
|
|
ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
|
|
Loc = ConstQualLoc;
|
|
++NumQuals;
|
|
QualStr = "const";
|
|
}
|
|
if (Quals & Qualifiers::Volatile) {
|
|
VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
|
|
if (NumQuals == 0) {
|
|
Loc = VolatileQualLoc;
|
|
QualStr = "volatile";
|
|
} else {
|
|
QualStr += " volatile";
|
|
}
|
|
++NumQuals;
|
|
}
|
|
if (Quals & Qualifiers::Restrict) {
|
|
RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
|
|
if (NumQuals == 0) {
|
|
Loc = RestrictQualLoc;
|
|
QualStr = "restrict";
|
|
} else {
|
|
QualStr += " restrict";
|
|
}
|
|
++NumQuals;
|
|
}
|
|
|
|
assert(NumQuals > 0 && "No known qualifiers?");
|
|
|
|
S.Diag(Loc, diag::warn_qual_return_type)
|
|
<< QualStr << NumQuals
|
|
<< ConstFixIt << VolatileFixIt << RestrictFixIt;
|
|
}
|
|
|
|
/// GetTypeForDeclarator - Convert the type for the specified
|
|
/// declarator to Type instances.
|
|
///
|
|
/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
|
|
/// owns the declaration of a type (e.g., the definition of a struct
|
|
/// type), then *OwnedDecl will receive the owned declaration.
|
|
///
|
|
/// The result of this call will never be null, but the associated
|
|
/// type may be a null type if there's an unrecoverable error.
|
|
TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
|
|
TagDecl **OwnedDecl,
|
|
bool AutoAllowedInTypeName) {
|
|
// Determine the type of the declarator. Not all forms of declarator
|
|
// have a type.
|
|
QualType T;
|
|
TypeSourceInfo *ReturnTypeInfo = 0;
|
|
|
|
TypeProcessingState state(*this, D);
|
|
|
|
// In C++0x, deallocation functions (normal and array operator delete)
|
|
// are implicitly noexcept.
|
|
bool ImplicitlyNoexcept = false;
|
|
|
|
switch (D.getName().getKind()) {
|
|
case UnqualifiedId::IK_OperatorFunctionId:
|
|
if (getLangOptions().CPlusPlus0x) {
|
|
OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
|
|
if (OO == OO_Delete || OO == OO_Array_Delete)
|
|
ImplicitlyNoexcept = true;
|
|
}
|
|
// Intentional fall-through.
|
|
case UnqualifiedId::IK_Identifier:
|
|
case UnqualifiedId::IK_LiteralOperatorId:
|
|
case UnqualifiedId::IK_TemplateId:
|
|
T = ConvertDeclSpecToType(*this, state);
|
|
|
|
if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
|
|
TagDecl* Owned = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
|
|
// Owned declaration is embedded in declarator.
|
|
Owned->setEmbeddedInDeclarator(true);
|
|
if (OwnedDecl) *OwnedDecl = Owned;
|
|
}
|
|
break;
|
|
|
|
case UnqualifiedId::IK_ConstructorName:
|
|
case UnqualifiedId::IK_ConstructorTemplateId:
|
|
case UnqualifiedId::IK_DestructorName:
|
|
// Constructors and destructors don't have return types. Use
|
|
// "void" instead.
|
|
T = Context.VoidTy;
|
|
break;
|
|
|
|
case UnqualifiedId::IK_ConversionFunctionId:
|
|
// The result type of a conversion function is the type that it
|
|
// converts to.
|
|
T = GetTypeFromParser(D.getName().ConversionFunctionId,
|
|
&ReturnTypeInfo);
|
|
break;
|
|
}
|
|
|
|
if (D.getAttributes())
|
|
distributeTypeAttrsFromDeclarator(state, T);
|
|
|
|
// C++0x [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
|
|
// In C++0x, a function declarator using 'auto' must have a trailing return
|
|
// type (this is checked later) and we can skip this. In other languages
|
|
// using auto, we need to check regardless.
|
|
if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
|
|
(!getLangOptions().CPlusPlus0x || !D.isFunctionDeclarator())) {
|
|
int Error = -1;
|
|
|
|
switch (D.getContext()) {
|
|
case Declarator::KNRTypeListContext:
|
|
assert(0 && "K&R type lists aren't allowed in C++");
|
|
break;
|
|
case Declarator::ObjCPrototypeContext:
|
|
case Declarator::PrototypeContext:
|
|
Error = 0; // Function prototype
|
|
break;
|
|
case Declarator::MemberContext:
|
|
switch (cast<TagDecl>(CurContext)->getTagKind()) {
|
|
case TTK_Enum: assert(0 && "unhandled tag kind"); break;
|
|
case TTK_Struct: Error = 1; /* Struct member */ break;
|
|
case TTK_Union: Error = 2; /* Union member */ break;
|
|
case TTK_Class: Error = 3; /* Class member */ break;
|
|
}
|
|
break;
|
|
case Declarator::CXXCatchContext:
|
|
Error = 4; // Exception declaration
|
|
break;
|
|
case Declarator::TemplateParamContext:
|
|
Error = 5; // Template parameter
|
|
break;
|
|
case Declarator::BlockLiteralContext:
|
|
Error = 6; // Block literal
|
|
break;
|
|
case Declarator::TemplateTypeArgContext:
|
|
Error = 7; // Template type argument
|
|
break;
|
|
case Declarator::AliasDeclContext:
|
|
Error = 9; // Type alias
|
|
break;
|
|
case Declarator::TypeNameContext:
|
|
if (!AutoAllowedInTypeName)
|
|
Error = 11; // Generic
|
|
break;
|
|
case Declarator::FileContext:
|
|
case Declarator::BlockContext:
|
|
case Declarator::ForContext:
|
|
case Declarator::ConditionContext:
|
|
break;
|
|
}
|
|
|
|
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
|
|
Error = 8;
|
|
|
|
// In Objective-C it is an error to use 'auto' on a function declarator.
|
|
if (D.isFunctionDeclarator())
|
|
Error = 10;
|
|
|
|
// C++0x [dcl.spec.auto]p2: 'auto' is always fine if the declarator
|
|
// contains a trailing return type. That is only legal at the outermost
|
|
// level. Check all declarator chunks (outermost first) anyway, to give
|
|
// better diagnostics.
|
|
if (getLangOptions().CPlusPlus0x && Error != -1) {
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
unsigned chunkIndex = e - i - 1;
|
|
state.setCurrentChunkIndex(chunkIndex);
|
|
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
|
|
if (DeclType.Kind == DeclaratorChunk::Function) {
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
|
|
if (FTI.TrailingReturnType) {
|
|
Error = -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Error != -1) {
|
|
Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
|
|
<< Error;
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
|
|
if (T.isNull())
|
|
return Context.getNullTypeSourceInfo();
|
|
|
|
// The name we're declaring, if any.
|
|
DeclarationName Name;
|
|
if (D.getIdentifier())
|
|
Name = D.getIdentifier();
|
|
|
|
// Does this declaration declare a typedef-name?
|
|
bool IsTypedefName =
|
|
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
|
|
D.getContext() == Declarator::AliasDeclContext;
|
|
|
|
// Walk the DeclTypeInfo, building the recursive type as we go.
|
|
// DeclTypeInfos are ordered from the identifier out, which is
|
|
// opposite of what we want :).
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
unsigned chunkIndex = e - i - 1;
|
|
state.setCurrentChunkIndex(chunkIndex);
|
|
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
|
|
switch (DeclType.Kind) {
|
|
default: assert(0 && "Unknown decltype!");
|
|
case DeclaratorChunk::Paren:
|
|
T = BuildParenType(T);
|
|
break;
|
|
case DeclaratorChunk::BlockPointer:
|
|
// If blocks are disabled, emit an error.
|
|
if (!LangOpts.Blocks)
|
|
Diag(DeclType.Loc, diag::err_blocks_disable);
|
|
|
|
T = BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
|
|
if (DeclType.Cls.TypeQuals)
|
|
T = BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
|
|
break;
|
|
case DeclaratorChunk::Pointer:
|
|
// Verify that we're not building a pointer to pointer to function with
|
|
// exception specification.
|
|
if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
if (getLangOptions().ObjC1 && T->getAs<ObjCObjectType>()) {
|
|
T = Context.getObjCObjectPointerType(T);
|
|
if (DeclType.Ptr.TypeQuals)
|
|
T = BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
|
|
break;
|
|
}
|
|
T = BuildPointerType(T, DeclType.Loc, Name);
|
|
if (DeclType.Ptr.TypeQuals)
|
|
T = BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
|
|
|
|
break;
|
|
case DeclaratorChunk::Reference: {
|
|
// Verify that we're not building a reference to pointer to function with
|
|
// exception specification.
|
|
if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
T = BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
|
|
|
|
Qualifiers Quals;
|
|
if (DeclType.Ref.HasRestrict)
|
|
T = BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
|
|
break;
|
|
}
|
|
case DeclaratorChunk::Array: {
|
|
// Verify that we're not building an array of pointers to function with
|
|
// exception specification.
|
|
if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
|
|
Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
|
|
Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
|
|
ArrayType::ArraySizeModifier ASM;
|
|
if (ATI.isStar)
|
|
ASM = ArrayType::Star;
|
|
else if (ATI.hasStatic)
|
|
ASM = ArrayType::Static;
|
|
else
|
|
ASM = ArrayType::Normal;
|
|
if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
|
|
// FIXME: This check isn't quite right: it allows star in prototypes
|
|
// for function definitions, and disallows some edge cases detailed
|
|
// in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
|
|
Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
|
|
ASM = ArrayType::Normal;
|
|
D.setInvalidType(true);
|
|
}
|
|
T = BuildArrayType(T, ASM, ArraySize,
|
|
Qualifiers::fromCVRMask(ATI.TypeQuals),
|
|
SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
|
|
break;
|
|
}
|
|
case DeclaratorChunk::Function: {
|
|
// If the function declarator has a prototype (i.e. it is not () and
|
|
// does not have a K&R-style identifier list), then the arguments are part
|
|
// of the type, otherwise the argument list is ().
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
|
|
|
|
// Check for auto functions and trailing return type and adjust the
|
|
// return type accordingly.
|
|
if (!D.isInvalidType()) {
|
|
// trailing-return-type is only required if we're declaring a function,
|
|
// and not, for instance, a pointer to a function.
|
|
if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
|
|
!FTI.TrailingReturnType && chunkIndex == 0) {
|
|
Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
|
|
diag::err_auto_missing_trailing_return);
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
} else if (FTI.TrailingReturnType) {
|
|
// T must be exactly 'auto' at this point. See CWG issue 681.
|
|
if (isa<ParenType>(T)) {
|
|
Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
|
|
diag::err_trailing_return_in_parens)
|
|
<< T << D.getDeclSpec().getSourceRange();
|
|
D.setInvalidType(true);
|
|
} else if (T.hasQualifiers() || !isa<AutoType>(T)) {
|
|
Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
|
|
diag::err_trailing_return_without_auto)
|
|
<< T << D.getDeclSpec().getSourceRange();
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
T = GetTypeFromParser(
|
|
ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
|
|
&ReturnTypeInfo);
|
|
}
|
|
}
|
|
|
|
// C99 6.7.5.3p1: The return type may not be a function or array type.
|
|
// For conversion functions, we'll diagnose this particular error later.
|
|
if ((T->isArrayType() || T->isFunctionType()) &&
|
|
(D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
|
|
unsigned diagID = diag::err_func_returning_array_function;
|
|
// Last processing chunk in block context means this function chunk
|
|
// represents the block.
|
|
if (chunkIndex == 0 &&
|
|
D.getContext() == Declarator::BlockLiteralContext)
|
|
diagID = diag::err_block_returning_array_function;
|
|
Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
// cv-qualifiers on return types are pointless except when the type is a
|
|
// class type in C++.
|
|
if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
|
|
(D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
|
|
(!getLangOptions().CPlusPlus || !T->isDependentType())) {
|
|
assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
|
|
DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
|
|
assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
|
|
|
|
DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
|
|
|
|
DiagnoseIgnoredQualifiers(PTI.TypeQuals,
|
|
SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
|
|
SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
|
|
SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
|
|
*this);
|
|
|
|
} else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
|
|
(!getLangOptions().CPlusPlus ||
|
|
(!T->isDependentType() && !T->isRecordType()))) {
|
|
|
|
DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
|
|
D.getDeclSpec().getConstSpecLoc(),
|
|
D.getDeclSpec().getVolatileSpecLoc(),
|
|
D.getDeclSpec().getRestrictSpecLoc(),
|
|
*this);
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
|
|
// C++ [dcl.fct]p6:
|
|
// Types shall not be defined in return or parameter types.
|
|
TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
|
|
if (Tag->isDefinition())
|
|
Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
|
|
<< Context.getTypeDeclType(Tag);
|
|
}
|
|
|
|
// Exception specs are not allowed in typedefs. Complain, but add it
|
|
// anyway.
|
|
if (IsTypedefName && FTI.getExceptionSpecType())
|
|
Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
|
|
<< (D.getContext() == Declarator::AliasDeclContext);
|
|
|
|
if (!FTI.NumArgs && !FTI.isVariadic && !getLangOptions().CPlusPlus) {
|
|
// Simple void foo(), where the incoming T is the result type.
|
|
T = Context.getFunctionNoProtoType(T);
|
|
} else {
|
|
// We allow a zero-parameter variadic function in C if the
|
|
// function is marked with the "overloadable" attribute. Scan
|
|
// for this attribute now.
|
|
if (!FTI.NumArgs && FTI.isVariadic && !getLangOptions().CPlusPlus) {
|
|
bool Overloadable = false;
|
|
for (const AttributeList *Attrs = D.getAttributes();
|
|
Attrs; Attrs = Attrs->getNext()) {
|
|
if (Attrs->getKind() == AttributeList::AT_overloadable) {
|
|
Overloadable = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Overloadable)
|
|
Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
|
|
}
|
|
|
|
if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
|
|
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
|
|
// definition.
|
|
Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
|
|
D.setInvalidType(true);
|
|
break;
|
|
}
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.Variadic = FTI.isVariadic;
|
|
EPI.TypeQuals = FTI.TypeQuals;
|
|
EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
|
|
: FTI.RefQualifierIsLValueRef? RQ_LValue
|
|
: RQ_RValue;
|
|
|
|
// Otherwise, we have a function with an argument list that is
|
|
// potentially variadic.
|
|
llvm::SmallVector<QualType, 16> ArgTys;
|
|
ArgTys.reserve(FTI.NumArgs);
|
|
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
|
|
QualType ArgTy = Param->getType();
|
|
assert(!ArgTy.isNull() && "Couldn't parse type?");
|
|
|
|
// Adjust the parameter type.
|
|
assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
|
|
|
|
// Look for 'void'. void is allowed only as a single argument to a
|
|
// function with no other parameters (C99 6.7.5.3p10). We record
|
|
// int(void) as a FunctionProtoType with an empty argument list.
|
|
if (ArgTy->isVoidType()) {
|
|
// If this is something like 'float(int, void)', reject it. 'void'
|
|
// is an incomplete type (C99 6.2.5p19) and function decls cannot
|
|
// have arguments of incomplete type.
|
|
if (FTI.NumArgs != 1 || FTI.isVariadic) {
|
|
Diag(DeclType.Loc, diag::err_void_only_param);
|
|
ArgTy = Context.IntTy;
|
|
Param->setType(ArgTy);
|
|
} else if (FTI.ArgInfo[i].Ident) {
|
|
// Reject, but continue to parse 'int(void abc)'.
|
|
Diag(FTI.ArgInfo[i].IdentLoc,
|
|
diag::err_param_with_void_type);
|
|
ArgTy = Context.IntTy;
|
|
Param->setType(ArgTy);
|
|
} else {
|
|
// Reject, but continue to parse 'float(const void)'.
|
|
if (ArgTy.hasQualifiers())
|
|
Diag(DeclType.Loc, diag::err_void_param_qualified);
|
|
|
|
// Do not add 'void' to the ArgTys list.
|
|
break;
|
|
}
|
|
} else if (!FTI.hasPrototype) {
|
|
if (ArgTy->isPromotableIntegerType()) {
|
|
ArgTy = Context.getPromotedIntegerType(ArgTy);
|
|
Param->setKNRPromoted(true);
|
|
} else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
|
|
if (BTy->getKind() == BuiltinType::Float) {
|
|
ArgTy = Context.DoubleTy;
|
|
Param->setKNRPromoted(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
ArgTys.push_back(ArgTy);
|
|
}
|
|
|
|
llvm::SmallVector<QualType, 4> Exceptions;
|
|
EPI.ExceptionSpecType = FTI.getExceptionSpecType();
|
|
if (FTI.getExceptionSpecType() == EST_Dynamic) {
|
|
Exceptions.reserve(FTI.NumExceptions);
|
|
for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
|
|
// FIXME: Preserve type source info.
|
|
QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
|
|
// Check that the type is valid for an exception spec, and
|
|
// drop it if not.
|
|
if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
|
|
Exceptions.push_back(ET);
|
|
}
|
|
EPI.NumExceptions = Exceptions.size();
|
|
EPI.Exceptions = Exceptions.data();
|
|
} else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
|
|
// If an error occurred, there's no expression here.
|
|
if (Expr *NoexceptExpr = FTI.NoexceptExpr) {
|
|
assert((NoexceptExpr->isTypeDependent() ||
|
|
NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
|
|
Context.BoolTy) &&
|
|
"Parser should have made sure that the expression is boolean");
|
|
SourceLocation ErrLoc;
|
|
llvm::APSInt Dummy;
|
|
if (!NoexceptExpr->isValueDependent() &&
|
|
!NoexceptExpr->isIntegerConstantExpr(Dummy, Context, &ErrLoc,
|
|
/*evaluated*/false))
|
|
Diag(ErrLoc, diag::err_noexcept_needs_constant_expression)
|
|
<< NoexceptExpr->getSourceRange();
|
|
else
|
|
EPI.NoexceptExpr = NoexceptExpr;
|
|
}
|
|
} else if (FTI.getExceptionSpecType() == EST_None &&
|
|
ImplicitlyNoexcept && chunkIndex == 0) {
|
|
// Only the outermost chunk is marked noexcept, of course.
|
|
EPI.ExceptionSpecType = EST_BasicNoexcept;
|
|
}
|
|
|
|
T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case DeclaratorChunk::MemberPointer:
|
|
// The scope spec must refer to a class, or be dependent.
|
|
CXXScopeSpec &SS = DeclType.Mem.Scope();
|
|
QualType ClsType;
|
|
if (SS.isInvalid()) {
|
|
// Avoid emitting extra errors if we already errored on the scope.
|
|
D.setInvalidType(true);
|
|
} else if (isDependentScopeSpecifier(SS) ||
|
|
dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS))) {
|
|
NestedNameSpecifier *NNS
|
|
= static_cast<NestedNameSpecifier*>(SS.getScopeRep());
|
|
NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
|
|
NNS->getAsIdentifier());
|
|
break;
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Global:
|
|
llvm_unreachable("Nested-name-specifier must name a type");
|
|
break;
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
ClsType = QualType(NNS->getAsType(), 0);
|
|
// Note: if the NNS has a prefix and ClsType is a nondependent
|
|
// TemplateSpecializationType, then the NNS prefix is NOT included
|
|
// in ClsType; hence we wrap ClsType into an ElaboratedType.
|
|
// NOTE: in particular, no wrap occurs if ClsType already is an
|
|
// Elaborated, DependentName, or DependentTemplateSpecialization.
|
|
if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
|
|
ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
|
|
break;
|
|
}
|
|
} else {
|
|
Diag(DeclType.Mem.Scope().getBeginLoc(),
|
|
diag::err_illegal_decl_mempointer_in_nonclass)
|
|
<< (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
|
|
<< DeclType.Mem.Scope().getRange();
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
if (!ClsType.isNull())
|
|
T = BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
|
|
if (T.isNull()) {
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
} else if (DeclType.Mem.TypeQuals) {
|
|
T = BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (T.isNull()) {
|
|
D.setInvalidType(true);
|
|
T = Context.IntTy;
|
|
}
|
|
|
|
// See if there are any attributes on this declarator chunk.
|
|
if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
|
|
processTypeAttrs(state, T, false, attrs);
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus && T->isFunctionType()) {
|
|
const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
|
|
assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
|
|
|
|
// C++ 8.3.5p4:
|
|
// A cv-qualifier-seq shall only be part of the function type
|
|
// for a nonstatic member function, the function type to which a pointer
|
|
// to member refers, or the top-level function type of a function typedef
|
|
// declaration.
|
|
//
|
|
// Core issue 547 also allows cv-qualifiers on function types that are
|
|
// top-level template type arguments.
|
|
bool FreeFunction;
|
|
if (!D.getCXXScopeSpec().isSet()) {
|
|
FreeFunction = (D.getContext() != Declarator::MemberContext ||
|
|
D.getDeclSpec().isFriendSpecified());
|
|
} else {
|
|
DeclContext *DC = computeDeclContext(D.getCXXScopeSpec());
|
|
FreeFunction = (DC && !DC->isRecord());
|
|
}
|
|
|
|
// C++0x [dcl.fct]p6:
|
|
// A ref-qualifier shall only be part of the function type for a
|
|
// non-static member function, the function type to which a pointer to
|
|
// member refers, or the top-level function type of a function typedef
|
|
// declaration.
|
|
if ((FnTy->getTypeQuals() != 0 || FnTy->getRefQualifier()) &&
|
|
!(D.getContext() == Declarator::TemplateTypeArgContext &&
|
|
!D.isFunctionDeclarator()) && !IsTypedefName &&
|
|
(FreeFunction ||
|
|
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
|
|
if (D.getContext() == Declarator::TemplateTypeArgContext) {
|
|
// Accept qualified function types as template type arguments as a GNU
|
|
// extension. This is also the subject of C++ core issue 547.
|
|
std::string Quals;
|
|
if (FnTy->getTypeQuals() != 0)
|
|
Quals = Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
|
|
|
|
switch (FnTy->getRefQualifier()) {
|
|
case RQ_None:
|
|
break;
|
|
|
|
case RQ_LValue:
|
|
if (!Quals.empty())
|
|
Quals += ' ';
|
|
Quals += '&';
|
|
break;
|
|
|
|
case RQ_RValue:
|
|
if (!Quals.empty())
|
|
Quals += ' ';
|
|
Quals += "&&";
|
|
break;
|
|
}
|
|
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::ext_qualified_function_type_template_arg)
|
|
<< Quals;
|
|
} else {
|
|
if (FnTy->getTypeQuals() != 0) {
|
|
if (D.isFunctionDeclarator())
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_invalid_qualified_function_type);
|
|
else
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_invalid_qualified_typedef_function_type_use)
|
|
<< FreeFunction;
|
|
}
|
|
|
|
if (FnTy->getRefQualifier()) {
|
|
if (D.isFunctionDeclarator()) {
|
|
SourceLocation Loc = D.getIdentifierLoc();
|
|
for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
|
|
const DeclaratorChunk &Chunk = D.getTypeObject(N-I-1);
|
|
if (Chunk.Kind == DeclaratorChunk::Function &&
|
|
Chunk.Fun.hasRefQualifier()) {
|
|
Loc = Chunk.Fun.getRefQualifierLoc();
|
|
break;
|
|
}
|
|
}
|
|
|
|
Diag(Loc, diag::err_invalid_ref_qualifier_function_type)
|
|
<< (FnTy->getRefQualifier() == RQ_LValue)
|
|
<< FixItHint::CreateRemoval(Loc);
|
|
} else {
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_invalid_ref_qualifier_typedef_function_type_use)
|
|
<< FreeFunction
|
|
<< (FnTy->getRefQualifier() == RQ_LValue);
|
|
}
|
|
}
|
|
|
|
// Strip the cv-qualifiers and ref-qualifiers from the type.
|
|
FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
|
|
EPI.TypeQuals = 0;
|
|
EPI.RefQualifier = RQ_None;
|
|
|
|
T = Context.getFunctionType(FnTy->getResultType(),
|
|
FnTy->arg_type_begin(),
|
|
FnTy->getNumArgs(), EPI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Apply any undistributed attributes from the declarator.
|
|
if (!T.isNull())
|
|
if (AttributeList *attrs = D.getAttributes())
|
|
processTypeAttrs(state, T, false, attrs);
|
|
|
|
// Diagnose any ignored type attributes.
|
|
if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
|
|
|
|
// C++0x [dcl.constexpr]p9:
|
|
// A constexpr specifier used in an object declaration declares the object
|
|
// as const.
|
|
if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
|
|
T.addConst();
|
|
}
|
|
|
|
// If there was an ellipsis in the declarator, the declaration declares a
|
|
// parameter pack whose type may be a pack expansion type.
|
|
if (D.hasEllipsis() && !T.isNull()) {
|
|
// C++0x [dcl.fct]p13:
|
|
// A declarator-id or abstract-declarator containing an ellipsis shall
|
|
// only be used in a parameter-declaration. Such a parameter-declaration
|
|
// is a parameter pack (14.5.3). [...]
|
|
switch (D.getContext()) {
|
|
case Declarator::PrototypeContext:
|
|
// C++0x [dcl.fct]p13:
|
|
// [...] When it is part of a parameter-declaration-clause, the
|
|
// parameter pack is a function parameter pack (14.5.3). The type T
|
|
// of the declarator-id of the function parameter pack shall contain
|
|
// a template parameter pack; each template parameter pack in T is
|
|
// expanded by the function parameter pack.
|
|
//
|
|
// We represent function parameter packs as function parameters whose
|
|
// type is a pack expansion.
|
|
if (!T->containsUnexpandedParameterPack()) {
|
|
Diag(D.getEllipsisLoc(),
|
|
diag::err_function_parameter_pack_without_parameter_packs)
|
|
<< T << D.getSourceRange();
|
|
D.setEllipsisLoc(SourceLocation());
|
|
} else {
|
|
T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
|
|
}
|
|
break;
|
|
|
|
case Declarator::TemplateParamContext:
|
|
// C++0x [temp.param]p15:
|
|
// If a template-parameter is a [...] is a parameter-declaration that
|
|
// declares a parameter pack (8.3.5), then the template-parameter is a
|
|
// template parameter pack (14.5.3).
|
|
//
|
|
// Note: core issue 778 clarifies that, if there are any unexpanded
|
|
// parameter packs in the type of the non-type template parameter, then
|
|
// it expands those parameter packs.
|
|
if (T->containsUnexpandedParameterPack())
|
|
T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
|
|
else if (!getLangOptions().CPlusPlus0x)
|
|
Diag(D.getEllipsisLoc(), diag::ext_variadic_templates);
|
|
break;
|
|
|
|
case Declarator::FileContext:
|
|
case Declarator::KNRTypeListContext:
|
|
case Declarator::ObjCPrototypeContext: // FIXME: special diagnostic here?
|
|
case Declarator::TypeNameContext:
|
|
case Declarator::AliasDeclContext:
|
|
case Declarator::MemberContext:
|
|
case Declarator::BlockContext:
|
|
case Declarator::ForContext:
|
|
case Declarator::ConditionContext:
|
|
case Declarator::CXXCatchContext:
|
|
case Declarator::BlockLiteralContext:
|
|
case Declarator::TemplateTypeArgContext:
|
|
// FIXME: We may want to allow parameter packs in block-literal contexts
|
|
// in the future.
|
|
Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
|
|
D.setEllipsisLoc(SourceLocation());
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (T.isNull())
|
|
return Context.getNullTypeSourceInfo();
|
|
else if (D.isInvalidType())
|
|
return Context.getTrivialTypeSourceInfo(T);
|
|
return GetTypeSourceInfoForDeclarator(D, T, ReturnTypeInfo);
|
|
}
|
|
|
|
/// Map an AttributedType::Kind to an AttributeList::Kind.
|
|
static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
|
|
switch (kind) {
|
|
case AttributedType::attr_address_space:
|
|
return AttributeList::AT_address_space;
|
|
case AttributedType::attr_regparm:
|
|
return AttributeList::AT_regparm;
|
|
case AttributedType::attr_vector_size:
|
|
return AttributeList::AT_vector_size;
|
|
case AttributedType::attr_neon_vector_type:
|
|
return AttributeList::AT_neon_vector_type;
|
|
case AttributedType::attr_neon_polyvector_type:
|
|
return AttributeList::AT_neon_polyvector_type;
|
|
case AttributedType::attr_objc_gc:
|
|
return AttributeList::AT_objc_gc;
|
|
case AttributedType::attr_noreturn:
|
|
return AttributeList::AT_noreturn;
|
|
case AttributedType::attr_cdecl:
|
|
return AttributeList::AT_cdecl;
|
|
case AttributedType::attr_fastcall:
|
|
return AttributeList::AT_fastcall;
|
|
case AttributedType::attr_stdcall:
|
|
return AttributeList::AT_stdcall;
|
|
case AttributedType::attr_thiscall:
|
|
return AttributeList::AT_thiscall;
|
|
case AttributedType::attr_pascal:
|
|
return AttributeList::AT_pascal;
|
|
case AttributedType::attr_pcs:
|
|
return AttributeList::AT_pcs;
|
|
}
|
|
llvm_unreachable("unexpected attribute kind!");
|
|
return AttributeList::Kind();
|
|
}
|
|
|
|
static void fillAttributedTypeLoc(AttributedTypeLoc TL,
|
|
const AttributeList *attrs) {
|
|
AttributedType::Kind kind = TL.getAttrKind();
|
|
|
|
assert(attrs && "no type attributes in the expected location!");
|
|
AttributeList::Kind parsedKind = getAttrListKind(kind);
|
|
while (attrs->getKind() != parsedKind) {
|
|
attrs = attrs->getNext();
|
|
assert(attrs && "no matching attribute in expected location!");
|
|
}
|
|
|
|
TL.setAttrNameLoc(attrs->getLoc());
|
|
if (TL.hasAttrExprOperand())
|
|
TL.setAttrExprOperand(attrs->getArg(0));
|
|
else if (TL.hasAttrEnumOperand())
|
|
TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
|
|
|
|
// FIXME: preserve this information to here.
|
|
if (TL.hasAttrOperand())
|
|
TL.setAttrOperandParensRange(SourceRange());
|
|
}
|
|
|
|
namespace {
|
|
class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
|
|
ASTContext &Context;
|
|
const DeclSpec &DS;
|
|
|
|
public:
|
|
TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
|
|
: Context(Context), DS(DS) {}
|
|
|
|
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
|
|
fillAttributedTypeLoc(TL, DS.getAttributes().getList());
|
|
Visit(TL.getModifiedLoc());
|
|
}
|
|
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
|
|
Visit(TL.getUnqualifiedLoc());
|
|
}
|
|
void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
|
|
TL.setNameLoc(DS.getTypeSpecTypeLoc());
|
|
}
|
|
void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
|
|
TL.setNameLoc(DS.getTypeSpecTypeLoc());
|
|
}
|
|
void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
|
|
// Handle the base type, which might not have been written explicitly.
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
|
|
TL.setHasBaseTypeAsWritten(false);
|
|
TL.getBaseLoc().initialize(Context, SourceLocation());
|
|
} else {
|
|
TL.setHasBaseTypeAsWritten(true);
|
|
Visit(TL.getBaseLoc());
|
|
}
|
|
|
|
// Protocol qualifiers.
|
|
if (DS.getProtocolQualifiers()) {
|
|
assert(TL.getNumProtocols() > 0);
|
|
assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
|
|
TL.setLAngleLoc(DS.getProtocolLAngleLoc());
|
|
TL.setRAngleLoc(DS.getSourceRange().getEnd());
|
|
for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
|
|
TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
|
|
} else {
|
|
assert(TL.getNumProtocols() == 0);
|
|
TL.setLAngleLoc(SourceLocation());
|
|
TL.setRAngleLoc(SourceLocation());
|
|
}
|
|
}
|
|
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
|
|
TL.setStarLoc(SourceLocation());
|
|
Visit(TL.getPointeeLoc());
|
|
}
|
|
void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
|
|
// If we got no declarator info from previous Sema routines,
|
|
// just fill with the typespec loc.
|
|
if (!TInfo) {
|
|
TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
|
|
return;
|
|
}
|
|
|
|
TypeLoc OldTL = TInfo->getTypeLoc();
|
|
if (TInfo->getType()->getAs<ElaboratedType>()) {
|
|
ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
|
|
TemplateSpecializationTypeLoc NamedTL =
|
|
cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
|
|
TL.copy(NamedTL);
|
|
}
|
|
else
|
|
TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
|
|
}
|
|
void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
|
|
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
|
|
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
|
|
TL.setParensRange(DS.getTypeofParensRange());
|
|
}
|
|
void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
|
|
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
|
|
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
|
|
TL.setParensRange(DS.getTypeofParensRange());
|
|
assert(DS.getRepAsType());
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
TL.setUnderlyingTInfo(TInfo);
|
|
}
|
|
void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
|
|
// By default, use the source location of the type specifier.
|
|
TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
|
|
if (TL.needsExtraLocalData()) {
|
|
// Set info for the written builtin specifiers.
|
|
TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
|
|
// Try to have a meaningful source location.
|
|
if (TL.getWrittenSignSpec() != TSS_unspecified)
|
|
// Sign spec loc overrides the others (e.g., 'unsigned long').
|
|
TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
|
|
else if (TL.getWrittenWidthSpec() != TSW_unspecified)
|
|
// Width spec loc overrides type spec loc (e.g., 'short int').
|
|
TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
|
|
}
|
|
}
|
|
void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
|
|
ElaboratedTypeKeyword Keyword
|
|
= TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
|
|
if (DS.getTypeSpecType() == TST_typename) {
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
if (TInfo) {
|
|
TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
|
|
return;
|
|
}
|
|
}
|
|
TL.setKeywordLoc(Keyword != ETK_None
|
|
? DS.getTypeSpecTypeLoc()
|
|
: SourceLocation());
|
|
const CXXScopeSpec& SS = DS.getTypeSpecScope();
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
|
|
}
|
|
void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
|
|
ElaboratedTypeKeyword Keyword
|
|
= TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
|
|
if (DS.getTypeSpecType() == TST_typename) {
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
if (TInfo) {
|
|
TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
|
|
return;
|
|
}
|
|
}
|
|
TL.setKeywordLoc(Keyword != ETK_None
|
|
? DS.getTypeSpecTypeLoc()
|
|
: SourceLocation());
|
|
const CXXScopeSpec& SS = DS.getTypeSpecScope();
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
|
|
}
|
|
void VisitDependentTemplateSpecializationTypeLoc(
|
|
DependentTemplateSpecializationTypeLoc TL) {
|
|
ElaboratedTypeKeyword Keyword
|
|
= TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
|
|
if (Keyword == ETK_Typename) {
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
if (TInfo) {
|
|
TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
|
|
TInfo->getTypeLoc()));
|
|
return;
|
|
}
|
|
}
|
|
TL.initializeLocal(Context, SourceLocation());
|
|
TL.setKeywordLoc(Keyword != ETK_None
|
|
? DS.getTypeSpecTypeLoc()
|
|
: SourceLocation());
|
|
const CXXScopeSpec& SS = DS.getTypeSpecScope();
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
|
|
}
|
|
void VisitTagTypeLoc(TagTypeLoc TL) {
|
|
TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
|
|
}
|
|
|
|
void VisitTypeLoc(TypeLoc TL) {
|
|
// FIXME: add other typespec types and change this to an assert.
|
|
TL.initialize(Context, DS.getTypeSpecTypeLoc());
|
|
}
|
|
};
|
|
|
|
class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
|
|
ASTContext &Context;
|
|
const DeclaratorChunk &Chunk;
|
|
|
|
public:
|
|
DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
|
|
: Context(Context), Chunk(Chunk) {}
|
|
|
|
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
|
|
llvm_unreachable("qualified type locs not expected here!");
|
|
}
|
|
|
|
void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
|
|
TL.setCaretLoc(Chunk.Loc);
|
|
}
|
|
void VisitPointerTypeLoc(PointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Pointer);
|
|
TL.setStarLoc(Chunk.Loc);
|
|
}
|
|
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Pointer);
|
|
TL.setStarLoc(Chunk.Loc);
|
|
}
|
|
void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
|
|
const CXXScopeSpec& SS = Chunk.Mem.Scope();
|
|
NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
|
|
|
|
const Type* ClsTy = TL.getClass();
|
|
QualType ClsQT = QualType(ClsTy, 0);
|
|
TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
|
|
// Now copy source location info into the type loc component.
|
|
TypeLoc ClsTL = ClsTInfo->getTypeLoc();
|
|
switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
|
|
{
|
|
DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
|
|
DNTLoc.setKeywordLoc(SourceLocation());
|
|
DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
|
|
DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
|
|
}
|
|
break;
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
if (isa<ElaboratedType>(ClsTy)) {
|
|
ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
|
|
ETLoc.setKeywordLoc(SourceLocation());
|
|
ETLoc.setQualifierLoc(NNSLoc.getPrefix());
|
|
TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
|
|
NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
|
|
} else {
|
|
ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
|
|
}
|
|
break;
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Global:
|
|
llvm_unreachable("Nested-name-specifier must name a type");
|
|
break;
|
|
}
|
|
|
|
// Finally fill in MemberPointerLocInfo fields.
|
|
TL.setStarLoc(Chunk.Loc);
|
|
TL.setClassTInfo(ClsTInfo);
|
|
}
|
|
void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Reference);
|
|
// 'Amp' is misleading: this might have been originally
|
|
/// spelled with AmpAmp.
|
|
TL.setAmpLoc(Chunk.Loc);
|
|
}
|
|
void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Reference);
|
|
assert(!Chunk.Ref.LValueRef);
|
|
TL.setAmpAmpLoc(Chunk.Loc);
|
|
}
|
|
void VisitArrayTypeLoc(ArrayTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Array);
|
|
TL.setLBracketLoc(Chunk.Loc);
|
|
TL.setRBracketLoc(Chunk.EndLoc);
|
|
TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
|
|
}
|
|
void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Function);
|
|
TL.setLocalRangeBegin(Chunk.Loc);
|
|
TL.setLocalRangeEnd(Chunk.EndLoc);
|
|
TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
|
|
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
|
|
for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
|
|
TL.setArg(tpi++, Param);
|
|
}
|
|
// FIXME: exception specs
|
|
}
|
|
void VisitParenTypeLoc(ParenTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Paren);
|
|
TL.setLParenLoc(Chunk.Loc);
|
|
TL.setRParenLoc(Chunk.EndLoc);
|
|
}
|
|
|
|
void VisitTypeLoc(TypeLoc TL) {
|
|
llvm_unreachable("unsupported TypeLoc kind in declarator!");
|
|
}
|
|
};
|
|
}
|
|
|
|
/// \brief Create and instantiate a TypeSourceInfo with type source information.
|
|
///
|
|
/// \param T QualType referring to the type as written in source code.
|
|
///
|
|
/// \param ReturnTypeInfo For declarators whose return type does not show
|
|
/// up in the normal place in the declaration specifiers (such as a C++
|
|
/// conversion function), this pointer will refer to a type source information
|
|
/// for that return type.
|
|
TypeSourceInfo *
|
|
Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
|
|
TypeSourceInfo *ReturnTypeInfo) {
|
|
TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
|
|
UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
|
|
|
|
// Handle parameter packs whose type is a pack expansion.
|
|
if (isa<PackExpansionType>(T)) {
|
|
cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
|
|
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
|
|
}
|
|
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
while (isa<AttributedTypeLoc>(CurrTL)) {
|
|
AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
|
|
fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
|
|
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
|
|
}
|
|
|
|
DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
|
|
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
|
|
}
|
|
|
|
// If we have different source information for the return type, use
|
|
// that. This really only applies to C++ conversion functions.
|
|
if (ReturnTypeInfo) {
|
|
TypeLoc TL = ReturnTypeInfo->getTypeLoc();
|
|
assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
|
|
memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
|
|
} else {
|
|
TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
|
|
}
|
|
|
|
return TInfo;
|
|
}
|
|
|
|
/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
|
|
ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
|
|
// FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
|
|
// and Sema during declaration parsing. Try deallocating/caching them when
|
|
// it's appropriate, instead of allocating them and keeping them around.
|
|
LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
|
|
TypeAlignment);
|
|
new (LocT) LocInfoType(T, TInfo);
|
|
assert(LocT->getTypeClass() != T->getTypeClass() &&
|
|
"LocInfoType's TypeClass conflicts with an existing Type class");
|
|
return ParsedType::make(QualType(LocT, 0));
|
|
}
|
|
|
|
void LocInfoType::getAsStringInternal(std::string &Str,
|
|
const PrintingPolicy &Policy) const {
|
|
assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
|
|
" was used directly instead of getting the QualType through"
|
|
" GetTypeFromParser");
|
|
}
|
|
|
|
TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
|
|
// C99 6.7.6: Type names have no identifier. This is already validated by
|
|
// the parser.
|
|
assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
|
|
|
|
TagDecl *OwnedTag = 0;
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
|
|
QualType T = TInfo->getType();
|
|
if (D.isInvalidType())
|
|
return true;
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// Check that there are no default arguments (C++ only).
|
|
CheckExtraCXXDefaultArguments(D);
|
|
|
|
// C++0x [dcl.type]p3:
|
|
// A type-specifier-seq shall not define a class or enumeration
|
|
// unless it appears in the type-id of an alias-declaration
|
|
// (7.1.3).
|
|
if (OwnedTag && OwnedTag->isDefinition() &&
|
|
D.getContext() != Declarator::AliasDeclContext)
|
|
Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
|
|
<< Context.getTypeDeclType(OwnedTag);
|
|
}
|
|
|
|
return CreateParsedType(T, TInfo);
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Attribute Processing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
|
|
/// specified type. The attribute contains 1 argument, the id of the address
|
|
/// space for the type.
|
|
static void HandleAddressSpaceTypeAttribute(QualType &Type,
|
|
const AttributeList &Attr, Sema &S){
|
|
|
|
// If this type is already address space qualified, reject it.
|
|
// Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
|
|
// for two or more different address spaces."
|
|
if (Type.getAddressSpace()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
// Check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
|
|
llvm::APSInt addrSpace(32);
|
|
if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
|
|
!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
|
|
<< ASArgExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
// Bounds checking.
|
|
if (addrSpace.isSigned()) {
|
|
if (addrSpace.isNegative()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
|
|
<< ASArgExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
addrSpace.setIsSigned(false);
|
|
}
|
|
llvm::APSInt max(addrSpace.getBitWidth());
|
|
max = Qualifiers::MaxAddressSpace;
|
|
if (addrSpace > max) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
|
|
<< Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
|
|
Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
|
|
}
|
|
|
|
/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
|
|
/// attribute on the specified type. Returns true to indicate that
|
|
/// the attribute was handled, false to indicate that the type does
|
|
/// not permit the attribute.
|
|
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &type) {
|
|
Sema &S = state.getSema();
|
|
|
|
// Delay if this isn't some kind of pointer.
|
|
if (!type->isPointerType() &&
|
|
!type->isObjCObjectPointerType() &&
|
|
!type->isBlockPointerType())
|
|
return false;
|
|
|
|
if (type.getObjCGCAttr() != Qualifiers::GCNone) {
|
|
S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// Check the attribute arguments.
|
|
if (!attr.getParameterName()) {
|
|
S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
|
|
<< "objc_gc" << 1;
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
Qualifiers::GC GCAttr;
|
|
if (attr.getNumArgs() != 0) {
|
|
S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
if (attr.getParameterName()->isStr("weak"))
|
|
GCAttr = Qualifiers::Weak;
|
|
else if (attr.getParameterName()->isStr("strong"))
|
|
GCAttr = Qualifiers::Strong;
|
|
else {
|
|
S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
|
|
<< "objc_gc" << attr.getParameterName();
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
QualType origType = type;
|
|
type = S.Context.getObjCGCQualType(origType, GCAttr);
|
|
|
|
// Make an attributed type to preserve the source information.
|
|
if (attr.getLoc().isValid())
|
|
type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
|
|
origType, type);
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
/// A helper class to unwrap a type down to a function for the
|
|
/// purposes of applying attributes there.
|
|
///
|
|
/// Use:
|
|
/// FunctionTypeUnwrapper unwrapped(SemaRef, T);
|
|
/// if (unwrapped.isFunctionType()) {
|
|
/// const FunctionType *fn = unwrapped.get();
|
|
/// // change fn somehow
|
|
/// T = unwrapped.wrap(fn);
|
|
/// }
|
|
struct FunctionTypeUnwrapper {
|
|
enum WrapKind {
|
|
Desugar,
|
|
Parens,
|
|
Pointer,
|
|
BlockPointer,
|
|
Reference,
|
|
MemberPointer
|
|
};
|
|
|
|
QualType Original;
|
|
const FunctionType *Fn;
|
|
llvm::SmallVector<unsigned char /*WrapKind*/, 8> Stack;
|
|
|
|
FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
|
|
while (true) {
|
|
const Type *Ty = T.getTypePtr();
|
|
if (isa<FunctionType>(Ty)) {
|
|
Fn = cast<FunctionType>(Ty);
|
|
return;
|
|
} else if (isa<ParenType>(Ty)) {
|
|
T = cast<ParenType>(Ty)->getInnerType();
|
|
Stack.push_back(Parens);
|
|
} else if (isa<PointerType>(Ty)) {
|
|
T = cast<PointerType>(Ty)->getPointeeType();
|
|
Stack.push_back(Pointer);
|
|
} else if (isa<BlockPointerType>(Ty)) {
|
|
T = cast<BlockPointerType>(Ty)->getPointeeType();
|
|
Stack.push_back(BlockPointer);
|
|
} else if (isa<MemberPointerType>(Ty)) {
|
|
T = cast<MemberPointerType>(Ty)->getPointeeType();
|
|
Stack.push_back(MemberPointer);
|
|
} else if (isa<ReferenceType>(Ty)) {
|
|
T = cast<ReferenceType>(Ty)->getPointeeType();
|
|
Stack.push_back(Reference);
|
|
} else {
|
|
const Type *DTy = Ty->getUnqualifiedDesugaredType();
|
|
if (Ty == DTy) {
|
|
Fn = 0;
|
|
return;
|
|
}
|
|
|
|
T = QualType(DTy, 0);
|
|
Stack.push_back(Desugar);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isFunctionType() const { return (Fn != 0); }
|
|
const FunctionType *get() const { return Fn; }
|
|
|
|
QualType wrap(Sema &S, const FunctionType *New) {
|
|
// If T wasn't modified from the unwrapped type, do nothing.
|
|
if (New == get()) return Original;
|
|
|
|
Fn = New;
|
|
return wrap(S.Context, Original, 0);
|
|
}
|
|
|
|
private:
|
|
QualType wrap(ASTContext &C, QualType Old, unsigned I) {
|
|
if (I == Stack.size())
|
|
return C.getQualifiedType(Fn, Old.getQualifiers());
|
|
|
|
// Build up the inner type, applying the qualifiers from the old
|
|
// type to the new type.
|
|
SplitQualType SplitOld = Old.split();
|
|
|
|
// As a special case, tail-recurse if there are no qualifiers.
|
|
if (SplitOld.second.empty())
|
|
return wrap(C, SplitOld.first, I);
|
|
return C.getQualifiedType(wrap(C, SplitOld.first, I), SplitOld.second);
|
|
}
|
|
|
|
QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
|
|
if (I == Stack.size()) return QualType(Fn, 0);
|
|
|
|
switch (static_cast<WrapKind>(Stack[I++])) {
|
|
case Desugar:
|
|
// This is the point at which we potentially lose source
|
|
// information.
|
|
return wrap(C, Old->getUnqualifiedDesugaredType(), I);
|
|
|
|
case Parens: {
|
|
QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
|
|
return C.getParenType(New);
|
|
}
|
|
|
|
case Pointer: {
|
|
QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
|
|
return C.getPointerType(New);
|
|
}
|
|
|
|
case BlockPointer: {
|
|
QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
|
|
return C.getBlockPointerType(New);
|
|
}
|
|
|
|
case MemberPointer: {
|
|
const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
|
|
QualType New = wrap(C, OldMPT->getPointeeType(), I);
|
|
return C.getMemberPointerType(New, OldMPT->getClass());
|
|
}
|
|
|
|
case Reference: {
|
|
const ReferenceType *OldRef = cast<ReferenceType>(Old);
|
|
QualType New = wrap(C, OldRef->getPointeeType(), I);
|
|
if (isa<LValueReferenceType>(OldRef))
|
|
return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
|
|
else
|
|
return C.getRValueReferenceType(New);
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("unknown wrapping kind");
|
|
return QualType();
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Process an individual function attribute. Returns true to
|
|
/// indicate that the attribute was handled, false if it wasn't.
|
|
static bool handleFunctionTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &type) {
|
|
Sema &S = state.getSema();
|
|
|
|
FunctionTypeUnwrapper unwrapped(S, type);
|
|
|
|
if (attr.getKind() == AttributeList::AT_noreturn) {
|
|
if (S.CheckNoReturnAttr(attr))
|
|
return true;
|
|
|
|
// Delay if this is not a function type.
|
|
if (!unwrapped.isFunctionType())
|
|
return false;
|
|
|
|
// Otherwise we can process right away.
|
|
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
|
|
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
return true;
|
|
}
|
|
|
|
if (attr.getKind() == AttributeList::AT_regparm) {
|
|
unsigned value;
|
|
if (S.CheckRegparmAttr(attr, value))
|
|
return true;
|
|
|
|
// Delay if this is not a function type.
|
|
if (!unwrapped.isFunctionType())
|
|
return false;
|
|
|
|
// Diagnose regparm with fastcall.
|
|
const FunctionType *fn = unwrapped.get();
|
|
CallingConv CC = fn->getCallConv();
|
|
if (CC == CC_X86FastCall) {
|
|
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
|
|
<< FunctionType::getNameForCallConv(CC)
|
|
<< "regparm";
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
FunctionType::ExtInfo EI =
|
|
unwrapped.get()->getExtInfo().withRegParm(value);
|
|
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, a calling convention.
|
|
CallingConv CC;
|
|
if (S.CheckCallingConvAttr(attr, CC))
|
|
return true;
|
|
|
|
// Delay if the type didn't work out to a function.
|
|
if (!unwrapped.isFunctionType()) return false;
|
|
|
|
const FunctionType *fn = unwrapped.get();
|
|
CallingConv CCOld = fn->getCallConv();
|
|
if (S.Context.getCanonicalCallConv(CC) ==
|
|
S.Context.getCanonicalCallConv(CCOld)) {
|
|
FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
|
|
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
return true;
|
|
}
|
|
|
|
if (CCOld != CC_Default) {
|
|
// Should we diagnose reapplications of the same convention?
|
|
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
|
|
<< FunctionType::getNameForCallConv(CC)
|
|
<< FunctionType::getNameForCallConv(CCOld);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// Diagnose the use of X86 fastcall on varargs or unprototyped functions.
|
|
if (CC == CC_X86FastCall) {
|
|
if (isa<FunctionNoProtoType>(fn)) {
|
|
S.Diag(attr.getLoc(), diag::err_cconv_knr)
|
|
<< FunctionType::getNameForCallConv(CC);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
|
|
if (FnP->isVariadic()) {
|
|
S.Diag(attr.getLoc(), diag::err_cconv_varargs)
|
|
<< FunctionType::getNameForCallConv(CC);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// Also diagnose fastcall with regparm.
|
|
if (fn->getHasRegParm()) {
|
|
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
|
|
<< "regparm"
|
|
<< FunctionType::getNameForCallConv(CC);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
|
|
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
return true;
|
|
}
|
|
|
|
/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
|
|
static void HandleOpenCLImageAccessAttribute(QualType& CurType,
|
|
const AttributeList &Attr,
|
|
Sema &S) {
|
|
// Check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
|
|
llvm::APSInt arg(32);
|
|
if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
|
|
!sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
|
|
<< "opencl_image_access" << sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
|
|
switch (iarg) {
|
|
case CLIA_read_only:
|
|
case CLIA_write_only:
|
|
case CLIA_read_write:
|
|
// Implemented in a separate patch
|
|
break;
|
|
default:
|
|
// Implemented in a separate patch
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
|
|
<< sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// HandleVectorSizeAttribute - this attribute is only applicable to integral
|
|
/// and float scalars, although arrays, pointers, and function return values are
|
|
/// allowed in conjunction with this construct. Aggregates with this attribute
|
|
/// are invalid, even if they are of the same size as a corresponding scalar.
|
|
/// The raw attribute should contain precisely 1 argument, the vector size for
|
|
/// the variable, measured in bytes. If curType and rawAttr are well formed,
|
|
/// this routine will return a new vector type.
|
|
static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
|
|
Sema &S) {
|
|
// Check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
|
|
llvm::APSInt vecSize(32);
|
|
if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
|
|
!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
|
|
<< "vector_size" << sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
// the base type must be integer or float, and can't already be a vector.
|
|
if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
|
|
// vecSize is specified in bytes - convert to bits.
|
|
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
|
|
|
|
// the vector size needs to be an integral multiple of the type size.
|
|
if (vectorSize % typeSize) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
|
|
<< sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
if (vectorSize == 0) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
|
|
<< sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
// Success! Instantiate the vector type, the number of elements is > 0, and
|
|
// not required to be a power of 2, unlike GCC.
|
|
CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
|
|
VectorType::GenericVector);
|
|
}
|
|
|
|
/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
|
|
/// "neon_polyvector_type" attributes are used to create vector types that
|
|
/// are mangled according to ARM's ABI. Otherwise, these types are identical
|
|
/// to those created with the "vector_size" attribute. Unlike "vector_size"
|
|
/// the argument to these Neon attributes is the number of vector elements,
|
|
/// not the vector size in bytes. The vector width and element type must
|
|
/// match one of the standard Neon vector types.
|
|
static void HandleNeonVectorTypeAttr(QualType& CurType,
|
|
const AttributeList &Attr, Sema &S,
|
|
VectorType::VectorKind VecKind,
|
|
const char *AttrName) {
|
|
// Check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
// The number of elements must be an ICE.
|
|
Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
|
|
llvm::APSInt numEltsInt(32);
|
|
if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
|
|
!numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
|
|
<< AttrName << numEltsExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
// Only certain element types are supported for Neon vectors.
|
|
const BuiltinType* BTy = CurType->getAs<BuiltinType>();
|
|
if (!BTy ||
|
|
(VecKind == VectorType::NeonPolyVector &&
|
|
BTy->getKind() != BuiltinType::SChar &&
|
|
BTy->getKind() != BuiltinType::Short) ||
|
|
(BTy->getKind() != BuiltinType::SChar &&
|
|
BTy->getKind() != BuiltinType::UChar &&
|
|
BTy->getKind() != BuiltinType::Short &&
|
|
BTy->getKind() != BuiltinType::UShort &&
|
|
BTy->getKind() != BuiltinType::Int &&
|
|
BTy->getKind() != BuiltinType::UInt &&
|
|
BTy->getKind() != BuiltinType::LongLong &&
|
|
BTy->getKind() != BuiltinType::ULongLong &&
|
|
BTy->getKind() != BuiltinType::Float)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
// The total size of the vector must be 64 or 128 bits.
|
|
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
|
|
unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
|
|
unsigned vecSize = typeSize * numElts;
|
|
if (vecSize != 64 && vecSize != 128) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
CurType = S.Context.getVectorType(CurType, numElts, VecKind);
|
|
}
|
|
|
|
static void processTypeAttrs(TypeProcessingState &state, QualType &type,
|
|
bool isDeclSpec, AttributeList *attrs) {
|
|
// Scan through and apply attributes to this type where it makes sense. Some
|
|
// attributes (such as __address_space__, __vector_size__, etc) apply to the
|
|
// type, but others can be present in the type specifiers even though they
|
|
// apply to the decl. Here we apply type attributes and ignore the rest.
|
|
|
|
AttributeList *next;
|
|
do {
|
|
AttributeList &attr = *attrs;
|
|
next = attr.getNext();
|
|
|
|
// Skip attributes that were marked to be invalid.
|
|
if (attr.isInvalid())
|
|
continue;
|
|
|
|
// If this is an attribute we can handle, do so now,
|
|
// otherwise, add it to the FnAttrs list for rechaining.
|
|
switch (attr.getKind()) {
|
|
default: break;
|
|
|
|
case AttributeList::AT_address_space:
|
|
HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
|
|
break;
|
|
OBJC_POINTER_TYPE_ATTRS_CASELIST:
|
|
if (!handleObjCPointerTypeAttr(state, attr, type))
|
|
distributeObjCPointerTypeAttr(state, attr, type);
|
|
break;
|
|
case AttributeList::AT_vector_size:
|
|
HandleVectorSizeAttr(type, attr, state.getSema());
|
|
break;
|
|
case AttributeList::AT_neon_vector_type:
|
|
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
|
|
VectorType::NeonVector, "neon_vector_type");
|
|
break;
|
|
case AttributeList::AT_neon_polyvector_type:
|
|
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
|
|
VectorType::NeonPolyVector,
|
|
"neon_polyvector_type");
|
|
break;
|
|
|
|
case AttributeList::AT_opencl_image_access:
|
|
HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
|
|
break;
|
|
|
|
FUNCTION_TYPE_ATTRS_CASELIST:
|
|
// Never process function type attributes as part of the
|
|
// declaration-specifiers.
|
|
if (isDeclSpec)
|
|
distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
|
|
|
|
// Otherwise, handle the possible delays.
|
|
else if (!handleFunctionTypeAttr(state, attr, type))
|
|
distributeFunctionTypeAttr(state, attr, type);
|
|
break;
|
|
}
|
|
} while ((attrs = next));
|
|
}
|
|
|
|
/// @brief Ensure that the type T is a complete type.
|
|
///
|
|
/// This routine checks whether the type @p T is complete in any
|
|
/// context where a complete type is required. If @p T is a complete
|
|
/// type, returns false. If @p T is a class template specialization,
|
|
/// this routine then attempts to perform class template
|
|
/// instantiation. If instantiation fails, or if @p T is incomplete
|
|
/// and cannot be completed, issues the diagnostic @p diag (giving it
|
|
/// the type @p T) and returns true.
|
|
///
|
|
/// @param Loc The location in the source that the incomplete type
|
|
/// diagnostic should refer to.
|
|
///
|
|
/// @param T The type that this routine is examining for completeness.
|
|
///
|
|
/// @param PD The partial diagnostic that will be printed out if T is not a
|
|
/// complete type.
|
|
///
|
|
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
|
|
/// @c false otherwise.
|
|
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
|
|
const PartialDiagnostic &PD,
|
|
std::pair<SourceLocation,
|
|
PartialDiagnostic> Note) {
|
|
unsigned diag = PD.getDiagID();
|
|
|
|
// FIXME: Add this assertion to make sure we always get instantiation points.
|
|
// assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
|
|
// FIXME: Add this assertion to help us flush out problems with
|
|
// checking for dependent types and type-dependent expressions.
|
|
//
|
|
// assert(!T->isDependentType() &&
|
|
// "Can't ask whether a dependent type is complete");
|
|
|
|
// If we have a complete type, we're done.
|
|
if (!T->isIncompleteType())
|
|
return false;
|
|
|
|
// If we have a class template specialization or a class member of a
|
|
// class template specialization, or an array with known size of such,
|
|
// try to instantiate it.
|
|
QualType MaybeTemplate = T;
|
|
if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
|
|
MaybeTemplate = Array->getElementType();
|
|
if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
|
|
if (ClassTemplateSpecializationDecl *ClassTemplateSpec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
|
|
if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
|
|
return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
|
|
TSK_ImplicitInstantiation,
|
|
/*Complain=*/diag != 0);
|
|
} else if (CXXRecordDecl *Rec
|
|
= dyn_cast<CXXRecordDecl>(Record->getDecl())) {
|
|
if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
|
|
MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
|
|
assert(MSInfo && "Missing member specialization information?");
|
|
// This record was instantiated from a class within a template.
|
|
if (MSInfo->getTemplateSpecializationKind()
|
|
!= TSK_ExplicitSpecialization)
|
|
return InstantiateClass(Loc, Rec, Pattern,
|
|
getTemplateInstantiationArgs(Rec),
|
|
TSK_ImplicitInstantiation,
|
|
/*Complain=*/diag != 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (diag == 0)
|
|
return true;
|
|
|
|
const TagType *Tag = T->getAs<TagType>();
|
|
|
|
// Avoid diagnosing invalid decls as incomplete.
|
|
if (Tag && Tag->getDecl()->isInvalidDecl())
|
|
return true;
|
|
|
|
// Give the external AST source a chance to complete the type.
|
|
if (Tag && Tag->getDecl()->hasExternalLexicalStorage()) {
|
|
Context.getExternalSource()->CompleteType(Tag->getDecl());
|
|
if (!Tag->isIncompleteType())
|
|
return false;
|
|
}
|
|
|
|
// We have an incomplete type. Produce a diagnostic.
|
|
Diag(Loc, PD) << T;
|
|
|
|
// If we have a note, produce it.
|
|
if (!Note.first.isInvalid())
|
|
Diag(Note.first, Note.second);
|
|
|
|
// If the type was a forward declaration of a class/struct/union
|
|
// type, produce a note.
|
|
if (Tag && !Tag->getDecl()->isInvalidDecl())
|
|
Diag(Tag->getDecl()->getLocation(),
|
|
Tag->isBeingDefined() ? diag::note_type_being_defined
|
|
: diag::note_forward_declaration)
|
|
<< QualType(Tag, 0);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
|
|
const PartialDiagnostic &PD) {
|
|
return RequireCompleteType(Loc, T, PD,
|
|
std::make_pair(SourceLocation(), PDiag(0)));
|
|
}
|
|
|
|
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
|
|
unsigned DiagID) {
|
|
return RequireCompleteType(Loc, T, PDiag(DiagID),
|
|
std::make_pair(SourceLocation(), PDiag(0)));
|
|
}
|
|
|
|
/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
|
|
/// and qualified by the nested-name-specifier contained in SS.
|
|
QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
|
|
const CXXScopeSpec &SS, QualType T) {
|
|
if (T.isNull())
|
|
return T;
|
|
NestedNameSpecifier *NNS;
|
|
if (SS.isValid())
|
|
NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
else {
|
|
if (Keyword == ETK_None)
|
|
return T;
|
|
NNS = 0;
|
|
}
|
|
return Context.getElaboratedType(Keyword, NNS, T);
|
|
}
|
|
|
|
QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
|
|
ExprResult ER = CheckPlaceholderExpr(E);
|
|
if (ER.isInvalid()) return QualType();
|
|
E = ER.take();
|
|
|
|
if (!E->isTypeDependent()) {
|
|
QualType T = E->getType();
|
|
if (const TagType *TT = T->getAs<TagType>())
|
|
DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
|
|
}
|
|
return Context.getTypeOfExprType(E);
|
|
}
|
|
|
|
QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
|
|
ExprResult ER = CheckPlaceholderExpr(E);
|
|
if (ER.isInvalid()) return QualType();
|
|
E = ER.take();
|
|
|
|
return Context.getDecltypeType(E);
|
|
}
|