зеркало из https://github.com/microsoft/clang-1.git
1362 строки
46 KiB
C++
1362 строки
46 KiB
C++
//===--- Type.cpp - Type representation and manipulation ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements type-related functionality.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
|
|
using namespace clang;
|
|
|
|
bool QualType::isConstant(ASTContext &Ctx) const {
|
|
if (isConstQualified())
|
|
return true;
|
|
|
|
if (getTypePtr()->isArrayType())
|
|
return Ctx.getAsArrayType(*this)->getElementType().isConstant(Ctx);
|
|
|
|
return false;
|
|
}
|
|
|
|
void Type::Destroy(ASTContext& C) {
|
|
this->~Type();
|
|
C.Deallocate(this);
|
|
}
|
|
|
|
void VariableArrayType::Destroy(ASTContext& C) {
|
|
SizeExpr->Destroy(C);
|
|
this->~VariableArrayType();
|
|
C.Deallocate(this);
|
|
}
|
|
|
|
void DependentSizedArrayType::Destroy(ASTContext& C) {
|
|
SizeExpr->Destroy(C);
|
|
this->~DependentSizedArrayType();
|
|
C.Deallocate(this);
|
|
}
|
|
|
|
/// getArrayElementTypeNoTypeQual - If this is an array type, return the
|
|
/// element type of the array, potentially with type qualifiers missing.
|
|
/// This method should never be used when type qualifiers are meaningful.
|
|
const Type *Type::getArrayElementTypeNoTypeQual() const {
|
|
// If this is directly an array type, return it.
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
|
|
return ATy->getElementType().getTypePtr();
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<ArrayType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(CanonicalType.getUnqualifiedType()))
|
|
return AT->getElementType().getTypePtr();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for an array type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return getDesugaredType()->getArrayElementTypeNoTypeQual();
|
|
}
|
|
|
|
/// getDesugaredType - Return the specified type with any "sugar" removed from
|
|
/// type type. This takes off typedefs, typeof's etc. If the outer level of
|
|
/// the type is already concrete, it returns it unmodified. This is similar
|
|
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
|
|
/// example, it return "T*" as "T*", (not as "int*"), because the pointer is
|
|
/// concrete.
|
|
QualType Type::getDesugaredType() const {
|
|
if (const TypedefType *TDT = dyn_cast<TypedefType>(this))
|
|
return TDT->LookThroughTypedefs();
|
|
if (const TypeOfExpr *TOE = dyn_cast<TypeOfExpr>(this))
|
|
return TOE->getUnderlyingExpr()->getType();
|
|
if (const TypeOfType *TOT = dyn_cast<TypeOfType>(this))
|
|
return TOT->getUnderlyingType();
|
|
if (const ClassTemplateSpecializationType *Spec
|
|
= dyn_cast<ClassTemplateSpecializationType>(this))
|
|
return Spec->getCanonicalTypeInternal();
|
|
|
|
// FIXME: remove this cast.
|
|
return QualType(const_cast<Type*>(this), 0);
|
|
}
|
|
|
|
/// isVoidType - Helper method to determine if this is the 'void' type.
|
|
bool Type::isVoidType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Void;
|
|
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
|
|
return AS->getBaseType()->isVoidType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isObjectType() const {
|
|
if (isa<FunctionType>(CanonicalType) || isa<ReferenceType>(CanonicalType))
|
|
return false;
|
|
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
|
|
return AS->getBaseType()->isObjectType();
|
|
return !CanonicalType->isIncompleteType();
|
|
}
|
|
|
|
bool Type::isDerivedType() const {
|
|
switch (CanonicalType->getTypeClass()) {
|
|
case ExtQual:
|
|
return cast<ExtQualType>(CanonicalType)->getBaseType()->isDerivedType();
|
|
case Pointer:
|
|
case VariableArray:
|
|
case ConstantArray:
|
|
case IncompleteArray:
|
|
case FunctionProto:
|
|
case FunctionNoProto:
|
|
case Reference:
|
|
return true;
|
|
case Tagged:
|
|
return !cast<TagType>(CanonicalType)->getDecl()->isEnum();
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool Type::isClassType() const {
|
|
if (const RecordType *RT = getAsRecordType())
|
|
return RT->getDecl()->isClass();
|
|
return false;
|
|
}
|
|
bool Type::isStructureType() const {
|
|
if (const RecordType *RT = getAsRecordType())
|
|
return RT->getDecl()->isStruct();
|
|
return false;
|
|
}
|
|
bool Type::isUnionType() const {
|
|
if (const RecordType *RT = getAsRecordType())
|
|
return RT->getDecl()->isUnion();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isComplexType() const {
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
|
|
return CT->getElementType()->isFloatingType();
|
|
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
|
|
return AS->getBaseType()->isComplexType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isComplexIntegerType() const {
|
|
// Check for GCC complex integer extension.
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
|
|
return CT->getElementType()->isIntegerType();
|
|
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
|
|
return AS->getBaseType()->isComplexIntegerType();
|
|
return false;
|
|
}
|
|
|
|
const ComplexType *Type::getAsComplexIntegerType() const {
|
|
// Are we directly a complex type?
|
|
if (const ComplexType *CTy = dyn_cast<ComplexType>(this)) {
|
|
if (CTy->getElementType()->isIntegerType())
|
|
return CTy;
|
|
return 0;
|
|
}
|
|
|
|
// If the canonical form of this type isn't what we want, reject it.
|
|
if (!isa<ComplexType>(CanonicalType)) {
|
|
// Look through type qualifiers (e.g. ExtQualType's).
|
|
if (isa<ComplexType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsComplexIntegerType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a complex type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return getDesugaredType()->getAsComplexIntegerType();
|
|
}
|
|
|
|
const BuiltinType *Type::getAsBuiltinType() const {
|
|
// If this is directly a builtin type, return it.
|
|
if (const BuiltinType *BTy = dyn_cast<BuiltinType>(this))
|
|
return BTy;
|
|
|
|
// If the canonical form of this type isn't a builtin type, reject it.
|
|
if (!isa<BuiltinType>(CanonicalType)) {
|
|
// Look through type qualifiers (e.g. ExtQualType's).
|
|
if (isa<BuiltinType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsBuiltinType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a builtin type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return getDesugaredType()->getAsBuiltinType();
|
|
}
|
|
|
|
const FunctionType *Type::getAsFunctionType() const {
|
|
// If this is directly a function type, return it.
|
|
if (const FunctionType *FTy = dyn_cast<FunctionType>(this))
|
|
return FTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<FunctionType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<FunctionType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsFunctionType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a function type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return getDesugaredType()->getAsFunctionType();
|
|
}
|
|
|
|
const FunctionTypeNoProto *Type::getAsFunctionTypeNoProto() const {
|
|
return dyn_cast_or_null<FunctionTypeNoProto>(getAsFunctionType());
|
|
}
|
|
|
|
const FunctionTypeProto *Type::getAsFunctionTypeProto() const {
|
|
return dyn_cast_or_null<FunctionTypeProto>(getAsFunctionType());
|
|
}
|
|
|
|
|
|
const PointerLikeType *Type::getAsPointerLikeType() const {
|
|
// If this is directly a pointer-like type, return it.
|
|
if (const PointerLikeType *PTy = dyn_cast<PointerLikeType>(this))
|
|
return PTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<PointerLikeType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<PointerLikeType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsPointerLikeType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a pointer type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return getDesugaredType()->getAsPointerLikeType();
|
|
}
|
|
|
|
const PointerType *Type::getAsPointerType() const {
|
|
// If this is directly a pointer type, return it.
|
|
if (const PointerType *PTy = dyn_cast<PointerType>(this))
|
|
return PTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<PointerType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<PointerType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsPointerType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a pointer type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return getDesugaredType()->getAsPointerType();
|
|
}
|
|
|
|
const BlockPointerType *Type::getAsBlockPointerType() const {
|
|
// If this is directly a block pointer type, return it.
|
|
if (const BlockPointerType *PTy = dyn_cast<BlockPointerType>(this))
|
|
return PTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<BlockPointerType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<BlockPointerType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsBlockPointerType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a block pointer type, strip the typedef off
|
|
// without losing all typedef information.
|
|
return getDesugaredType()->getAsBlockPointerType();
|
|
}
|
|
|
|
const ReferenceType *Type::getAsReferenceType() const {
|
|
// If this is directly a reference type, return it.
|
|
if (const ReferenceType *RTy = dyn_cast<ReferenceType>(this))
|
|
return RTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<ReferenceType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<ReferenceType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsReferenceType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a reference type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return getDesugaredType()->getAsReferenceType();
|
|
}
|
|
|
|
const MemberPointerType *Type::getAsMemberPointerType() const {
|
|
// If this is directly a member pointer type, return it.
|
|
if (const MemberPointerType *MTy = dyn_cast<MemberPointerType>(this))
|
|
return MTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<MemberPointerType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<MemberPointerType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsMemberPointerType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a member pointer type, strip the typedef off
|
|
// without losing all typedef information.
|
|
return getDesugaredType()->getAsMemberPointerType();
|
|
}
|
|
|
|
/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
|
|
/// array types and types that contain variable array types in their
|
|
/// declarator
|
|
bool Type::isVariablyModifiedType() const {
|
|
// A VLA is a variably modified type.
|
|
if (isVariableArrayType())
|
|
return true;
|
|
|
|
// An array can contain a variably modified type
|
|
if (const Type *T = getArrayElementTypeNoTypeQual())
|
|
return T->isVariablyModifiedType();
|
|
|
|
// A pointer can point to a variably modified type.
|
|
// Also, C++ references and member pointers can point to a variably modified
|
|
// type, where VLAs appear as an extension to C++, and should be treated
|
|
// correctly.
|
|
if (const PointerLikeType *PT = getAsPointerLikeType())
|
|
return PT->getPointeeType()->isVariablyModifiedType();
|
|
if (const MemberPointerType *PT = getAsMemberPointerType())
|
|
return PT->getPointeeType()->isVariablyModifiedType();
|
|
|
|
// A function can return a variably modified type
|
|
// This one isn't completely obvious, but it follows from the
|
|
// definition in C99 6.7.5p3. Because of this rule, it's
|
|
// illegal to declare a function returning a variably modified type.
|
|
if (const FunctionType *FT = getAsFunctionType())
|
|
return FT->getResultType()->isVariablyModifiedType();
|
|
|
|
return false;
|
|
}
|
|
|
|
const RecordType *Type::getAsRecordType() const {
|
|
// If this is directly a reference type, return it.
|
|
if (const RecordType *RTy = dyn_cast<RecordType>(this))
|
|
return RTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<RecordType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<RecordType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsRecordType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a record type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return getDesugaredType()->getAsRecordType();
|
|
}
|
|
|
|
const RecordType *Type::getAsStructureType() const {
|
|
// If this is directly a structure type, return it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
|
|
if (RT->getDecl()->isStruct())
|
|
return RT;
|
|
}
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (!RT->getDecl()->isStruct())
|
|
return 0;
|
|
|
|
// If this is a typedef for a structure type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return getDesugaredType()->getAsStructureType();
|
|
}
|
|
// Look through type qualifiers
|
|
if (isa<RecordType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsStructureType();
|
|
return 0;
|
|
}
|
|
|
|
const RecordType *Type::getAsUnionType() const {
|
|
// If this is directly a union type, return it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
|
|
if (RT->getDecl()->isUnion())
|
|
return RT;
|
|
}
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (!RT->getDecl()->isUnion())
|
|
return 0;
|
|
|
|
// If this is a typedef for a union type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return getDesugaredType()->getAsUnionType();
|
|
}
|
|
|
|
// Look through type qualifiers
|
|
if (isa<RecordType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsUnionType();
|
|
return 0;
|
|
}
|
|
|
|
const EnumType *Type::getAsEnumType() const {
|
|
// Check the canonicalized unqualified type directly; the more complex
|
|
// version is unnecessary because there isn't any typedef information
|
|
// to preserve.
|
|
return dyn_cast<EnumType>(CanonicalType.getUnqualifiedType());
|
|
}
|
|
|
|
const ComplexType *Type::getAsComplexType() const {
|
|
// Are we directly a complex type?
|
|
if (const ComplexType *CTy = dyn_cast<ComplexType>(this))
|
|
return CTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<ComplexType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<ComplexType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsComplexType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a complex type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return getDesugaredType()->getAsComplexType();
|
|
}
|
|
|
|
const VectorType *Type::getAsVectorType() const {
|
|
// Are we directly a vector type?
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(this))
|
|
return VTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<VectorType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<VectorType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsVectorType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for a vector type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return getDesugaredType()->getAsVectorType();
|
|
}
|
|
|
|
const ExtVectorType *Type::getAsExtVectorType() const {
|
|
// Are we directly an OpenCU vector type?
|
|
if (const ExtVectorType *VTy = dyn_cast<ExtVectorType>(this))
|
|
return VTy;
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<ExtVectorType>(CanonicalType)) {
|
|
// Look through type qualifiers
|
|
if (isa<ExtVectorType>(CanonicalType.getUnqualifiedType()))
|
|
return CanonicalType.getUnqualifiedType()->getAsExtVectorType();
|
|
return 0;
|
|
}
|
|
|
|
// If this is a typedef for an extended vector type, strip the typedef off
|
|
// without losing all typedef information.
|
|
return getDesugaredType()->getAsExtVectorType();
|
|
}
|
|
|
|
const ObjCInterfaceType *Type::getAsObjCInterfaceType() const {
|
|
// There is no sugar for ObjCInterfaceType's, just return the canonical
|
|
// type pointer if it is the right class. There is no typedef information to
|
|
// return and these cannot be Address-space qualified.
|
|
return dyn_cast<ObjCInterfaceType>(CanonicalType);
|
|
}
|
|
|
|
const ObjCQualifiedInterfaceType *
|
|
Type::getAsObjCQualifiedInterfaceType() const {
|
|
// There is no sugar for ObjCQualifiedInterfaceType's, just return the
|
|
// canonical type pointer if it is the right class.
|
|
return dyn_cast<ObjCQualifiedInterfaceType>(CanonicalType);
|
|
}
|
|
|
|
const ObjCQualifiedIdType *Type::getAsObjCQualifiedIdType() const {
|
|
// There is no sugar for ObjCQualifiedIdType's, just return the canonical
|
|
// type pointer if it is the right class.
|
|
return dyn_cast<ObjCQualifiedIdType>(CanonicalType);
|
|
}
|
|
|
|
const TemplateTypeParmType *Type::getAsTemplateTypeParmType() const {
|
|
// There is no sugar for template type parameters, so just return
|
|
// the canonical type pointer if it is the right class.
|
|
// FIXME: can these be address-space qualified?
|
|
return dyn_cast<TemplateTypeParmType>(CanonicalType);
|
|
}
|
|
|
|
const ClassTemplateSpecializationType *
|
|
Type::getClassTemplateSpecializationType() const {
|
|
// There is no sugar for class template specialization types, so
|
|
// just return the canonical type pointer if it is the right class.
|
|
return dyn_cast<ClassTemplateSpecializationType>(CanonicalType);
|
|
}
|
|
|
|
|
|
bool Type::isIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongLong;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
// Incomplete enum types are not treated as integer types.
|
|
// FIXME: In C++, enum types are never integer types.
|
|
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
|
|
return true;
|
|
if (isa<FixedWidthIntType>(CanonicalType))
|
|
return true;
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isIntegerType();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isIntegerType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isIntegralType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongLong;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
|
|
return true; // Complete enum types are integral.
|
|
// FIXME: In C++, enum types are never integral.
|
|
if (isa<FixedWidthIntType>(CanonicalType))
|
|
return true;
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isIntegralType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isEnumeralType() const {
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
return TT->getDecl()->isEnum();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isEnumeralType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isBooleanType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Bool;
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isBooleanType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isCharType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Char_U ||
|
|
BT->getKind() == BuiltinType::UChar ||
|
|
BT->getKind() == BuiltinType::Char_S ||
|
|
BT->getKind() == BuiltinType::SChar;
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isCharType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isWideCharType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::WChar;
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isWideCharType();
|
|
return false;
|
|
}
|
|
|
|
/// isSignedIntegerType - Return true if this is an integer type that is
|
|
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
|
|
/// an enum decl which has a signed representation, or a vector of signed
|
|
/// integer element type.
|
|
bool Type::isSignedIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
|
|
return BT->getKind() >= BuiltinType::Char_S &&
|
|
BT->getKind() <= BuiltinType::LongLong;
|
|
}
|
|
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
return ET->getDecl()->getIntegerType()->isSignedIntegerType();
|
|
|
|
if (const FixedWidthIntType *FWIT =
|
|
dyn_cast<FixedWidthIntType>(CanonicalType))
|
|
return FWIT->isSigned();
|
|
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isSignedIntegerType();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isSignedIntegerType();
|
|
return false;
|
|
}
|
|
|
|
/// isUnsignedIntegerType - Return true if this is an integer type that is
|
|
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
|
|
/// decl which has an unsigned representation, or a vector of unsigned integer
|
|
/// element type.
|
|
bool Type::isUnsignedIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::ULongLong;
|
|
}
|
|
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
|
|
|
|
if (const FixedWidthIntType *FWIT =
|
|
dyn_cast<FixedWidthIntType>(CanonicalType))
|
|
return !FWIT->isSigned();
|
|
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isUnsignedIntegerType();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isUnsignedIntegerType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isFloatingType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Float &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
|
|
return CT->getElementType()->isFloatingType();
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isFloatingType();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isFloatingType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isRealFloatingType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Float &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isRealFloatingType();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isRealFloatingType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isRealType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
|
|
if (isa<FixedWidthIntType>(CanonicalType))
|
|
return true;
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isRealType();
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isRealType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isArithmeticType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
// GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
|
|
// If a body isn't seen by the time we get here, return false.
|
|
return ET->getDecl()->isDefinition();
|
|
if (isa<FixedWidthIntType>(CanonicalType))
|
|
return true;
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isArithmeticType();
|
|
return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
|
|
}
|
|
|
|
bool Type::isScalarType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() != BuiltinType::Void;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
|
|
// Enums are scalar types, but only if they are defined. Incomplete enums
|
|
// are not treated as scalar types.
|
|
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
|
|
return true;
|
|
return false;
|
|
}
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isScalarType();
|
|
if (isa<FixedWidthIntType>(CanonicalType))
|
|
return true;
|
|
return isa<PointerType>(CanonicalType) ||
|
|
isa<BlockPointerType>(CanonicalType) ||
|
|
isa<MemberPointerType>(CanonicalType) ||
|
|
isa<ComplexType>(CanonicalType) ||
|
|
isa<ObjCQualifiedIdType>(CanonicalType) ||
|
|
isa<ObjCQualifiedClassType>(CanonicalType);
|
|
}
|
|
|
|
/// \brief Determines whether the type is a C++ aggregate type or C
|
|
/// aggregate or union type.
|
|
///
|
|
/// An aggregate type is an array or a class type (struct, union, or
|
|
/// class) that has no user-declared constructors, no private or
|
|
/// protected non-static data members, no base classes, and no virtual
|
|
/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
|
|
/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
|
|
/// includes union types.
|
|
bool Type::isAggregateType() const {
|
|
if (const CXXRecordType *CXXClassType = dyn_cast<CXXRecordType>(CanonicalType))
|
|
return CXXClassType->getDecl()->isAggregate();
|
|
if (isa<RecordType>(CanonicalType))
|
|
return true;
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isAggregateType();
|
|
return isa<ArrayType>(CanonicalType);
|
|
}
|
|
|
|
/// isConstantSizeType - Return true if this is not a variable sized type,
|
|
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
|
|
/// incomplete types or dependent types.
|
|
bool Type::isConstantSizeType() const {
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
|
|
return EXTQT->getBaseType()->isConstantSizeType();
|
|
assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
|
|
assert(!isDependentType() && "This doesn't make sense for dependent types");
|
|
// The VAT must have a size, as it is known to be complete.
|
|
return !isa<VariableArrayType>(CanonicalType);
|
|
}
|
|
|
|
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
|
|
/// - a type that can describe objects, but which lacks information needed to
|
|
/// determine its size.
|
|
bool Type::isIncompleteType() const {
|
|
switch (CanonicalType->getTypeClass()) {
|
|
default: return false;
|
|
case ExtQual:
|
|
return cast<ExtQualType>(CanonicalType)->getBaseType()->isIncompleteType();
|
|
case Builtin:
|
|
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
|
|
// be completed.
|
|
return isVoidType();
|
|
case Tagged:
|
|
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
|
|
// forward declaration, but not a full definition (C99 6.2.5p22).
|
|
return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
|
|
case IncompleteArray:
|
|
// An array of unknown size is an incomplete type (C99 6.2.5p22).
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
|
|
bool Type::isPODType() const {
|
|
// The compiler shouldn't query this for incomplete types, but the user might.
|
|
// We return false for that case.
|
|
if (isIncompleteType())
|
|
return false;
|
|
|
|
switch (CanonicalType->getTypeClass()) {
|
|
// Everything not explicitly mentioned is not POD.
|
|
default: return false;
|
|
case ExtQual:
|
|
return cast<ExtQualType>(CanonicalType)->getBaseType()->isPODType();
|
|
case VariableArray:
|
|
case ConstantArray:
|
|
// IncompleteArray is caught by isIncompleteType() above.
|
|
return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
|
|
|
|
case Builtin:
|
|
case Complex:
|
|
case Pointer:
|
|
case MemberPointer:
|
|
case Vector:
|
|
case ExtVector:
|
|
case ObjCQualifiedId:
|
|
return true;
|
|
|
|
case Tagged:
|
|
if (isEnumeralType())
|
|
return true;
|
|
if (CXXRecordDecl *RDecl = dyn_cast<CXXRecordDecl>(
|
|
cast<TagType>(CanonicalType)->getDecl()))
|
|
return RDecl->isPOD();
|
|
// C struct/union is POD.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool Type::isPromotableIntegerType() const {
|
|
if (const BuiltinType *BT = getAsBuiltinType())
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Bool:
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const char *BuiltinType::getName() const {
|
|
switch (getKind()) {
|
|
default: assert(0 && "Unknown builtin type!");
|
|
case Void: return "void";
|
|
case Bool: return "_Bool";
|
|
case Char_S: return "char";
|
|
case Char_U: return "char";
|
|
case SChar: return "signed char";
|
|
case Short: return "short";
|
|
case Int: return "int";
|
|
case Long: return "long";
|
|
case LongLong: return "long long";
|
|
case UChar: return "unsigned char";
|
|
case UShort: return "unsigned short";
|
|
case UInt: return "unsigned int";
|
|
case ULong: return "unsigned long";
|
|
case ULongLong: return "unsigned long long";
|
|
case Float: return "float";
|
|
case Double: return "double";
|
|
case LongDouble: return "long double";
|
|
case WChar: return "wchar_t";
|
|
case Overload: return "<overloaded function type>";
|
|
case Dependent: return "<dependent type>";
|
|
}
|
|
}
|
|
|
|
void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
|
|
arg_type_iterator ArgTys,
|
|
unsigned NumArgs, bool isVariadic,
|
|
unsigned TypeQuals) {
|
|
ID.AddPointer(Result.getAsOpaquePtr());
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
|
|
ID.AddInteger(isVariadic);
|
|
ID.AddInteger(TypeQuals);
|
|
}
|
|
|
|
void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID) {
|
|
Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
|
|
getTypeQuals());
|
|
}
|
|
|
|
void ObjCQualifiedInterfaceType::Profile(llvm::FoldingSetNodeID &ID,
|
|
const ObjCInterfaceDecl *Decl,
|
|
ObjCProtocolDecl **protocols,
|
|
unsigned NumProtocols) {
|
|
ID.AddPointer(Decl);
|
|
for (unsigned i = 0; i != NumProtocols; i++)
|
|
ID.AddPointer(protocols[i]);
|
|
}
|
|
|
|
void ObjCQualifiedInterfaceType::Profile(llvm::FoldingSetNodeID &ID) {
|
|
Profile(ID, getDecl(), &Protocols[0], getNumProtocols());
|
|
}
|
|
|
|
void ObjCQualifiedIdType::Profile(llvm::FoldingSetNodeID &ID,
|
|
ObjCProtocolDecl **protocols,
|
|
unsigned NumProtocols) {
|
|
for (unsigned i = 0; i != NumProtocols; i++)
|
|
ID.AddPointer(protocols[i]);
|
|
}
|
|
|
|
void ObjCQualifiedIdType::Profile(llvm::FoldingSetNodeID &ID) {
|
|
Profile(ID, &Protocols[0], getNumProtocols());
|
|
}
|
|
|
|
/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
|
|
/// potentially looking through *all* consequtive typedefs. This returns the
|
|
/// sum of the type qualifiers, so if you have:
|
|
/// typedef const int A;
|
|
/// typedef volatile A B;
|
|
/// looking through the typedefs for B will give you "const volatile A".
|
|
///
|
|
QualType TypedefType::LookThroughTypedefs() const {
|
|
// Usually, there is only a single level of typedefs, be fast in that case.
|
|
QualType FirstType = getDecl()->getUnderlyingType();
|
|
if (!isa<TypedefType>(FirstType))
|
|
return FirstType;
|
|
|
|
// Otherwise, do the fully general loop.
|
|
unsigned TypeQuals = 0;
|
|
const TypedefType *TDT = this;
|
|
while (1) {
|
|
QualType CurType = TDT->getDecl()->getUnderlyingType();
|
|
|
|
|
|
/// FIXME:
|
|
/// FIXME: This is incorrect for ExtQuals!
|
|
/// FIXME:
|
|
TypeQuals |= CurType.getCVRQualifiers();
|
|
|
|
TDT = dyn_cast<TypedefType>(CurType);
|
|
if (TDT == 0)
|
|
return QualType(CurType.getTypePtr(), TypeQuals);
|
|
}
|
|
}
|
|
|
|
TypeOfExpr::TypeOfExpr(Expr *E, QualType can)
|
|
: Type(TypeOfExp, can, E->isTypeDependent()), TOExpr(E) {
|
|
assert(!isa<TypedefType>(can) && "Invalid canonical type");
|
|
}
|
|
|
|
bool RecordType::classof(const TagType *TT) {
|
|
return isa<RecordDecl>(TT->getDecl());
|
|
}
|
|
|
|
bool CXXRecordType::classof(const TagType *TT) {
|
|
return isa<CXXRecordDecl>(TT->getDecl());
|
|
}
|
|
|
|
bool EnumType::classof(const TagType *TT) {
|
|
return isa<EnumDecl>(TT->getDecl());
|
|
}
|
|
|
|
void
|
|
ClassTemplateSpecializationType::
|
|
packBooleanValues(unsigned NumArgs, bool *Values, uintptr_t *Words) {
|
|
const unsigned BitsPerWord = sizeof(uintptr_t) * 8;
|
|
|
|
for (unsigned PW = 0, NumPackedWords = getNumPackedWords(NumArgs), Arg = 0;
|
|
PW != NumPackedWords; ++PW) {
|
|
uintptr_t Word = 0;
|
|
for (unsigned Bit = 0; Bit < BitsPerWord && Arg < NumArgs; ++Bit, ++Arg) {
|
|
Word <<= 1;
|
|
Word |= Values[Arg];
|
|
}
|
|
Words[PW] = Word;
|
|
}
|
|
}
|
|
|
|
ClassTemplateSpecializationType::
|
|
ClassTemplateSpecializationType(TemplateDecl *T, unsigned NumArgs,
|
|
uintptr_t *Args, bool *ArgIsType,
|
|
QualType Canon)
|
|
: Type(ClassTemplateSpecialization, Canon, /*FIXME:Dependent=*/false),
|
|
Template(T), NumArgs(NumArgs)
|
|
{
|
|
uintptr_t *Data = reinterpret_cast<uintptr_t *>(this + 1);
|
|
|
|
// Pack the argument-is-type values into the words just after the
|
|
// class template specialization type.
|
|
packBooleanValues(NumArgs, ArgIsType, Data);
|
|
|
|
// Copy the template arguments after the packed words.
|
|
Data += getNumPackedWords(NumArgs);
|
|
for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
|
|
Data[Arg] = Args[Arg];
|
|
}
|
|
|
|
void ClassTemplateSpecializationType::Destroy(ASTContext& C) {
|
|
for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
|
|
if (!isArgType(Arg))
|
|
getArgAsExpr(Arg)->Destroy(C);
|
|
}
|
|
|
|
uintptr_t
|
|
ClassTemplateSpecializationType::getArgAsOpaqueValue(unsigned Arg) const {
|
|
const uintptr_t *Data = reinterpret_cast<const uintptr_t *>(this + 1);
|
|
Data += getNumPackedWords(NumArgs);
|
|
return Data[Arg];
|
|
}
|
|
|
|
bool ClassTemplateSpecializationType::isArgType(unsigned Arg) const {
|
|
const unsigned BitsPerWord = sizeof(uintptr_t) * 8;
|
|
const uintptr_t *Data = reinterpret_cast<const uintptr_t *>(this + 1);
|
|
Data += Arg / BitsPerWord;
|
|
return (*Data >> ((NumArgs - Arg) % BitsPerWord - 1)) & 0x01;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Printing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void QualType::dump(const char *msg) const {
|
|
std::string R = "identifier";
|
|
getAsStringInternal(R);
|
|
if (msg)
|
|
fprintf(stderr, "%s: %s\n", msg, R.c_str());
|
|
else
|
|
fprintf(stderr, "%s\n", R.c_str());
|
|
}
|
|
void QualType::dump() const {
|
|
dump("");
|
|
}
|
|
|
|
void Type::dump() const {
|
|
std::string S = "identifier";
|
|
getAsStringInternal(S);
|
|
fprintf(stderr, "%s\n", S.c_str());
|
|
}
|
|
|
|
|
|
|
|
static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
|
|
// Note: funkiness to ensure we get a space only between quals.
|
|
bool NonePrinted = true;
|
|
if (TypeQuals & QualType::Const)
|
|
S += "const", NonePrinted = false;
|
|
if (TypeQuals & QualType::Volatile)
|
|
S += (NonePrinted+" volatile"), NonePrinted = false;
|
|
if (TypeQuals & QualType::Restrict)
|
|
S += (NonePrinted+" restrict"), NonePrinted = false;
|
|
}
|
|
|
|
void QualType::getAsStringInternal(std::string &S) const {
|
|
if (isNull()) {
|
|
S += "NULL TYPE";
|
|
return;
|
|
}
|
|
|
|
// Print qualifiers as appropriate.
|
|
if (unsigned Tq = getCVRQualifiers()) {
|
|
std::string TQS;
|
|
AppendTypeQualList(TQS, Tq);
|
|
if (!S.empty())
|
|
S = TQS + ' ' + S;
|
|
else
|
|
S = TQS;
|
|
}
|
|
|
|
getTypePtr()->getAsStringInternal(S);
|
|
}
|
|
|
|
void BuiltinType::getAsStringInternal(std::string &S) const {
|
|
if (S.empty()) {
|
|
S = getName();
|
|
} else {
|
|
// Prefix the basic type, e.g. 'int X'.
|
|
S = ' ' + S;
|
|
S = getName() + S;
|
|
}
|
|
}
|
|
|
|
void FixedWidthIntType::getAsStringInternal(std::string &S) const {
|
|
// FIXME: Once we get bitwidth attribute, write as
|
|
// "int __attribute__((bitwidth(x)))".
|
|
std::string prefix = "__clang_fixedwidth";
|
|
prefix += llvm::utostr_32(Width);
|
|
prefix += (char)(Signed ? 'S' : 'U');
|
|
if (S.empty()) {
|
|
S = prefix;
|
|
} else {
|
|
// Prefix the basic type, e.g. 'int X'.
|
|
S = prefix + S;
|
|
}
|
|
}
|
|
|
|
|
|
void ComplexType::getAsStringInternal(std::string &S) const {
|
|
ElementType->getAsStringInternal(S);
|
|
S = "_Complex " + S;
|
|
}
|
|
|
|
void ExtQualType::getAsStringInternal(std::string &S) const {
|
|
bool NeedsSpace = false;
|
|
if (AddressSpace) {
|
|
S = "__attribute__((address_space("+llvm::utostr_32(AddressSpace)+")))" + S;
|
|
NeedsSpace = true;
|
|
}
|
|
if (GCAttrType != QualType::GCNone) {
|
|
if (NeedsSpace)
|
|
S += ' ';
|
|
S += "__attribute__((objc_gc(";
|
|
if (GCAttrType == QualType::Weak)
|
|
S += "weak";
|
|
else
|
|
S += "strong";
|
|
S += ")))";
|
|
}
|
|
BaseType->getAsStringInternal(S);
|
|
}
|
|
|
|
void PointerType::getAsStringInternal(std::string &S) const {
|
|
S = '*' + S;
|
|
|
|
// Handle things like 'int (*A)[4];' correctly.
|
|
// FIXME: this should include vectors, but vectors use attributes I guess.
|
|
if (isa<ArrayType>(getPointeeType()))
|
|
S = '(' + S + ')';
|
|
|
|
getPointeeType().getAsStringInternal(S);
|
|
}
|
|
|
|
void BlockPointerType::getAsStringInternal(std::string &S) const {
|
|
S = '^' + S;
|
|
PointeeType.getAsStringInternal(S);
|
|
}
|
|
|
|
void ReferenceType::getAsStringInternal(std::string &S) const {
|
|
S = '&' + S;
|
|
|
|
// Handle things like 'int (&A)[4];' correctly.
|
|
// FIXME: this should include vectors, but vectors use attributes I guess.
|
|
if (isa<ArrayType>(getPointeeType()))
|
|
S = '(' + S + ')';
|
|
|
|
getPointeeType().getAsStringInternal(S);
|
|
}
|
|
|
|
void MemberPointerType::getAsStringInternal(std::string &S) const {
|
|
std::string C;
|
|
Class->getAsStringInternal(C);
|
|
C += "::*";
|
|
S = C + S;
|
|
|
|
// Handle things like 'int (&A)[4];' correctly.
|
|
// FIXME: this should include vectors, but vectors use attributes I guess.
|
|
if (isa<ArrayType>(getPointeeType()))
|
|
S = '(' + S + ')';
|
|
|
|
getPointeeType().getAsStringInternal(S);
|
|
}
|
|
|
|
void ConstantArrayType::getAsStringInternal(std::string &S) const {
|
|
S += '[';
|
|
S += llvm::utostr(getSize().getZExtValue());
|
|
S += ']';
|
|
|
|
getElementType().getAsStringInternal(S);
|
|
}
|
|
|
|
void IncompleteArrayType::getAsStringInternal(std::string &S) const {
|
|
S += "[]";
|
|
|
|
getElementType().getAsStringInternal(S);
|
|
}
|
|
|
|
void VariableArrayType::getAsStringInternal(std::string &S) const {
|
|
S += '[';
|
|
|
|
if (getIndexTypeQualifier()) {
|
|
AppendTypeQualList(S, getIndexTypeQualifier());
|
|
S += ' ';
|
|
}
|
|
|
|
if (getSizeModifier() == Static)
|
|
S += "static";
|
|
else if (getSizeModifier() == Star)
|
|
S += '*';
|
|
|
|
if (getSizeExpr()) {
|
|
std::string SStr;
|
|
llvm::raw_string_ostream s(SStr);
|
|
getSizeExpr()->printPretty(s);
|
|
S += s.str();
|
|
}
|
|
S += ']';
|
|
|
|
getElementType().getAsStringInternal(S);
|
|
}
|
|
|
|
void DependentSizedArrayType::getAsStringInternal(std::string &S) const {
|
|
S += '[';
|
|
|
|
if (getIndexTypeQualifier()) {
|
|
AppendTypeQualList(S, getIndexTypeQualifier());
|
|
S += ' ';
|
|
}
|
|
|
|
if (getSizeModifier() == Static)
|
|
S += "static";
|
|
else if (getSizeModifier() == Star)
|
|
S += '*';
|
|
|
|
if (getSizeExpr()) {
|
|
std::string SStr;
|
|
llvm::raw_string_ostream s(SStr);
|
|
getSizeExpr()->printPretty(s);
|
|
S += s.str();
|
|
}
|
|
S += ']';
|
|
|
|
getElementType().getAsStringInternal(S);
|
|
}
|
|
|
|
void VectorType::getAsStringInternal(std::string &S) const {
|
|
// FIXME: We prefer to print the size directly here, but have no way
|
|
// to get the size of the type.
|
|
S += " __attribute__((__vector_size__(";
|
|
S += llvm::utostr_32(NumElements); // convert back to bytes.
|
|
S += " * sizeof(" + ElementType.getAsString() + "))))";
|
|
ElementType.getAsStringInternal(S);
|
|
}
|
|
|
|
void ExtVectorType::getAsStringInternal(std::string &S) const {
|
|
S += " __attribute__((ext_vector_type(";
|
|
S += llvm::utostr_32(NumElements);
|
|
S += ")))";
|
|
ElementType.getAsStringInternal(S);
|
|
}
|
|
|
|
void TypeOfExpr::getAsStringInternal(std::string &InnerString) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(e) X'.
|
|
InnerString = ' ' + InnerString;
|
|
std::string Str;
|
|
llvm::raw_string_ostream s(Str);
|
|
getUnderlyingExpr()->printPretty(s);
|
|
InnerString = "typeof(" + s.str() + ")" + InnerString;
|
|
}
|
|
|
|
void TypeOfType::getAsStringInternal(std::string &InnerString) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(t) X'.
|
|
InnerString = ' ' + InnerString;
|
|
std::string Tmp;
|
|
getUnderlyingType().getAsStringInternal(Tmp);
|
|
InnerString = "typeof(" + Tmp + ")" + InnerString;
|
|
}
|
|
|
|
void FunctionTypeNoProto::getAsStringInternal(std::string &S) const {
|
|
// If needed for precedence reasons, wrap the inner part in grouping parens.
|
|
if (!S.empty())
|
|
S = "(" + S + ")";
|
|
|
|
S += "()";
|
|
getResultType().getAsStringInternal(S);
|
|
}
|
|
|
|
void FunctionTypeProto::getAsStringInternal(std::string &S) const {
|
|
// If needed for precedence reasons, wrap the inner part in grouping parens.
|
|
if (!S.empty())
|
|
S = "(" + S + ")";
|
|
|
|
S += "(";
|
|
std::string Tmp;
|
|
for (unsigned i = 0, e = getNumArgs(); i != e; ++i) {
|
|
if (i) S += ", ";
|
|
getArgType(i).getAsStringInternal(Tmp);
|
|
S += Tmp;
|
|
Tmp.clear();
|
|
}
|
|
|
|
if (isVariadic()) {
|
|
if (getNumArgs())
|
|
S += ", ";
|
|
S += "...";
|
|
} else if (getNumArgs() == 0) {
|
|
// Do not emit int() if we have a proto, emit 'int(void)'.
|
|
S += "void";
|
|
}
|
|
|
|
S += ")";
|
|
getResultType().getAsStringInternal(S);
|
|
}
|
|
|
|
|
|
void TypedefType::getAsStringInternal(std::string &InnerString) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
|
|
InnerString = ' ' + InnerString;
|
|
InnerString = getDecl()->getIdentifier()->getName() + InnerString;
|
|
}
|
|
|
|
void TemplateTypeParmType::getAsStringInternal(std::string &InnerString) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'parmname X'.
|
|
InnerString = ' ' + InnerString;
|
|
|
|
if (!Name)
|
|
InnerString = "type-parameter-" + llvm::utostr_32(Depth) + '-' +
|
|
llvm::utostr_32(Index) + InnerString;
|
|
else
|
|
InnerString = Name->getName() + InnerString;
|
|
}
|
|
|
|
void
|
|
ClassTemplateSpecializationType::
|
|
getAsStringInternal(std::string &InnerString) const {
|
|
std::string SpecString = Template->getNameAsString();
|
|
SpecString += '<';
|
|
for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
|
|
if (Arg)
|
|
SpecString += ", ";
|
|
|
|
// Print the argument into a string.
|
|
std::string ArgString;
|
|
if (isArgType(Arg))
|
|
getArgAsType(Arg).getAsStringInternal(ArgString);
|
|
else {
|
|
llvm::raw_string_ostream s(ArgString);
|
|
getArgAsExpr(Arg)->printPretty(s);
|
|
}
|
|
|
|
// If this is the first argument and its string representation
|
|
// begins with the global scope specifier ('::foo'), add a space
|
|
// to avoid printing the diagraph '<:'.
|
|
if (!Arg && !ArgString.empty() && ArgString[0] == ':')
|
|
SpecString += ' ';
|
|
|
|
SpecString += ArgString;
|
|
}
|
|
|
|
// If the last character of our string is '>', add another space to
|
|
// keep the two '>''s separate tokens. We don't *have* to do this in
|
|
// C++0x, but it's still good hygiene.
|
|
if (SpecString[SpecString.size() - 1] == '>')
|
|
SpecString += ' ';
|
|
|
|
SpecString += '>';
|
|
|
|
if (InnerString.empty())
|
|
InnerString.swap(SpecString);
|
|
else
|
|
InnerString = SpecString + ' ' + InnerString;
|
|
}
|
|
|
|
void ObjCInterfaceType::getAsStringInternal(std::string &InnerString) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
|
|
InnerString = ' ' + InnerString;
|
|
InnerString = getDecl()->getIdentifier()->getName() + InnerString;
|
|
}
|
|
|
|
void ObjCQualifiedInterfaceType::getAsStringInternal(
|
|
std::string &InnerString) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
|
|
InnerString = ' ' + InnerString;
|
|
std::string ObjCQIString = getDecl()->getNameAsString();
|
|
ObjCQIString += '<';
|
|
bool isFirst = true;
|
|
for (qual_iterator I = qual_begin(), E = qual_end(); I != E; ++I) {
|
|
if (isFirst)
|
|
isFirst = false;
|
|
else
|
|
ObjCQIString += ',';
|
|
ObjCQIString += (*I)->getNameAsString();
|
|
}
|
|
ObjCQIString += '>';
|
|
InnerString = ObjCQIString + InnerString;
|
|
}
|
|
|
|
void ObjCQualifiedIdType::getAsStringInternal(std::string &InnerString) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
|
|
InnerString = ' ' + InnerString;
|
|
std::string ObjCQIString = "id";
|
|
ObjCQIString += '<';
|
|
int num = getNumProtocols();
|
|
for (int i = 0; i < num; i++) {
|
|
ObjCQIString += getProtocols(i)->getNameAsString();
|
|
if (i < num-1)
|
|
ObjCQIString += ',';
|
|
}
|
|
ObjCQIString += '>';
|
|
InnerString = ObjCQIString + InnerString;
|
|
}
|
|
|
|
void TagType::getAsStringInternal(std::string &InnerString) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
|
|
InnerString = ' ' + InnerString;
|
|
|
|
const char *Kind = getDecl()->getKindName();
|
|
const char *ID;
|
|
if (const IdentifierInfo *II = getDecl()->getIdentifier())
|
|
ID = II->getName();
|
|
else
|
|
ID = "<anonymous>";
|
|
|
|
InnerString = std::string(Kind) + " " + ID + InnerString;
|
|
}
|