clang-1/lib/AST/Type.cpp

1362 строки
46 KiB
C++

//===--- Type.cpp - Type representation and manipulation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related functionality.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/Type.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
bool QualType::isConstant(ASTContext &Ctx) const {
if (isConstQualified())
return true;
if (getTypePtr()->isArrayType())
return Ctx.getAsArrayType(*this)->getElementType().isConstant(Ctx);
return false;
}
void Type::Destroy(ASTContext& C) {
this->~Type();
C.Deallocate(this);
}
void VariableArrayType::Destroy(ASTContext& C) {
SizeExpr->Destroy(C);
this->~VariableArrayType();
C.Deallocate(this);
}
void DependentSizedArrayType::Destroy(ASTContext& C) {
SizeExpr->Destroy(C);
this->~DependentSizedArrayType();
C.Deallocate(this);
}
/// getArrayElementTypeNoTypeQual - If this is an array type, return the
/// element type of the array, potentially with type qualifiers missing.
/// This method should never be used when type qualifiers are meaningful.
const Type *Type::getArrayElementTypeNoTypeQual() const {
// If this is directly an array type, return it.
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType().getTypePtr();
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ArrayType>(CanonicalType)) {
// Look through type qualifiers
if (ArrayType *AT = dyn_cast<ArrayType>(CanonicalType.getUnqualifiedType()))
return AT->getElementType().getTypePtr();
return 0;
}
// If this is a typedef for an array type, strip the typedef off without
// losing all typedef information.
return getDesugaredType()->getArrayElementTypeNoTypeQual();
}
/// getDesugaredType - Return the specified type with any "sugar" removed from
/// type type. This takes off typedefs, typeof's etc. If the outer level of
/// the type is already concrete, it returns it unmodified. This is similar
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
/// example, it return "T*" as "T*", (not as "int*"), because the pointer is
/// concrete.
QualType Type::getDesugaredType() const {
if (const TypedefType *TDT = dyn_cast<TypedefType>(this))
return TDT->LookThroughTypedefs();
if (const TypeOfExpr *TOE = dyn_cast<TypeOfExpr>(this))
return TOE->getUnderlyingExpr()->getType();
if (const TypeOfType *TOT = dyn_cast<TypeOfType>(this))
return TOT->getUnderlyingType();
if (const ClassTemplateSpecializationType *Spec
= dyn_cast<ClassTemplateSpecializationType>(this))
return Spec->getCanonicalTypeInternal();
// FIXME: remove this cast.
return QualType(const_cast<Type*>(this), 0);
}
/// isVoidType - Helper method to determine if this is the 'void' type.
bool Type::isVoidType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Void;
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
return AS->getBaseType()->isVoidType();
return false;
}
bool Type::isObjectType() const {
if (isa<FunctionType>(CanonicalType) || isa<ReferenceType>(CanonicalType))
return false;
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
return AS->getBaseType()->isObjectType();
return !CanonicalType->isIncompleteType();
}
bool Type::isDerivedType() const {
switch (CanonicalType->getTypeClass()) {
case ExtQual:
return cast<ExtQualType>(CanonicalType)->getBaseType()->isDerivedType();
case Pointer:
case VariableArray:
case ConstantArray:
case IncompleteArray:
case FunctionProto:
case FunctionNoProto:
case Reference:
return true;
case Tagged:
return !cast<TagType>(CanonicalType)->getDecl()->isEnum();
default:
return false;
}
}
bool Type::isClassType() const {
if (const RecordType *RT = getAsRecordType())
return RT->getDecl()->isClass();
return false;
}
bool Type::isStructureType() const {
if (const RecordType *RT = getAsRecordType())
return RT->getDecl()->isStruct();
return false;
}
bool Type::isUnionType() const {
if (const RecordType *RT = getAsRecordType())
return RT->getDecl()->isUnion();
return false;
}
bool Type::isComplexType() const {
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isFloatingType();
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
return AS->getBaseType()->isComplexType();
return false;
}
bool Type::isComplexIntegerType() const {
// Check for GCC complex integer extension.
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isIntegerType();
if (const ExtQualType *AS = dyn_cast<ExtQualType>(CanonicalType))
return AS->getBaseType()->isComplexIntegerType();
return false;
}
const ComplexType *Type::getAsComplexIntegerType() const {
// Are we directly a complex type?
if (const ComplexType *CTy = dyn_cast<ComplexType>(this)) {
if (CTy->getElementType()->isIntegerType())
return CTy;
return 0;
}
// If the canonical form of this type isn't what we want, reject it.
if (!isa<ComplexType>(CanonicalType)) {
// Look through type qualifiers (e.g. ExtQualType's).
if (isa<ComplexType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsComplexIntegerType();
return 0;
}
// If this is a typedef for a complex type, strip the typedef off without
// losing all typedef information.
return getDesugaredType()->getAsComplexIntegerType();
}
const BuiltinType *Type::getAsBuiltinType() const {
// If this is directly a builtin type, return it.
if (const BuiltinType *BTy = dyn_cast<BuiltinType>(this))
return BTy;
// If the canonical form of this type isn't a builtin type, reject it.
if (!isa<BuiltinType>(CanonicalType)) {
// Look through type qualifiers (e.g. ExtQualType's).
if (isa<BuiltinType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsBuiltinType();
return 0;
}
// If this is a typedef for a builtin type, strip the typedef off without
// losing all typedef information.
return getDesugaredType()->getAsBuiltinType();
}
const FunctionType *Type::getAsFunctionType() const {
// If this is directly a function type, return it.
if (const FunctionType *FTy = dyn_cast<FunctionType>(this))
return FTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<FunctionType>(CanonicalType)) {
// Look through type qualifiers
if (isa<FunctionType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsFunctionType();
return 0;
}
// If this is a typedef for a function type, strip the typedef off without
// losing all typedef information.
return getDesugaredType()->getAsFunctionType();
}
const FunctionTypeNoProto *Type::getAsFunctionTypeNoProto() const {
return dyn_cast_or_null<FunctionTypeNoProto>(getAsFunctionType());
}
const FunctionTypeProto *Type::getAsFunctionTypeProto() const {
return dyn_cast_or_null<FunctionTypeProto>(getAsFunctionType());
}
const PointerLikeType *Type::getAsPointerLikeType() const {
// If this is directly a pointer-like type, return it.
if (const PointerLikeType *PTy = dyn_cast<PointerLikeType>(this))
return PTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<PointerLikeType>(CanonicalType)) {
// Look through type qualifiers
if (isa<PointerLikeType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsPointerLikeType();
return 0;
}
// If this is a typedef for a pointer type, strip the typedef off without
// losing all typedef information.
return getDesugaredType()->getAsPointerLikeType();
}
const PointerType *Type::getAsPointerType() const {
// If this is directly a pointer type, return it.
if (const PointerType *PTy = dyn_cast<PointerType>(this))
return PTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<PointerType>(CanonicalType)) {
// Look through type qualifiers
if (isa<PointerType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsPointerType();
return 0;
}
// If this is a typedef for a pointer type, strip the typedef off without
// losing all typedef information.
return getDesugaredType()->getAsPointerType();
}
const BlockPointerType *Type::getAsBlockPointerType() const {
// If this is directly a block pointer type, return it.
if (const BlockPointerType *PTy = dyn_cast<BlockPointerType>(this))
return PTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<BlockPointerType>(CanonicalType)) {
// Look through type qualifiers
if (isa<BlockPointerType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsBlockPointerType();
return 0;
}
// If this is a typedef for a block pointer type, strip the typedef off
// without losing all typedef information.
return getDesugaredType()->getAsBlockPointerType();
}
const ReferenceType *Type::getAsReferenceType() const {
// If this is directly a reference type, return it.
if (const ReferenceType *RTy = dyn_cast<ReferenceType>(this))
return RTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ReferenceType>(CanonicalType)) {
// Look through type qualifiers
if (isa<ReferenceType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsReferenceType();
return 0;
}
// If this is a typedef for a reference type, strip the typedef off without
// losing all typedef information.
return getDesugaredType()->getAsReferenceType();
}
const MemberPointerType *Type::getAsMemberPointerType() const {
// If this is directly a member pointer type, return it.
if (const MemberPointerType *MTy = dyn_cast<MemberPointerType>(this))
return MTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<MemberPointerType>(CanonicalType)) {
// Look through type qualifiers
if (isa<MemberPointerType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsMemberPointerType();
return 0;
}
// If this is a typedef for a member pointer type, strip the typedef off
// without losing all typedef information.
return getDesugaredType()->getAsMemberPointerType();
}
/// isVariablyModifiedType (C99 6.7.5p3) - Return true for variable length
/// array types and types that contain variable array types in their
/// declarator
bool Type::isVariablyModifiedType() const {
// A VLA is a variably modified type.
if (isVariableArrayType())
return true;
// An array can contain a variably modified type
if (const Type *T = getArrayElementTypeNoTypeQual())
return T->isVariablyModifiedType();
// A pointer can point to a variably modified type.
// Also, C++ references and member pointers can point to a variably modified
// type, where VLAs appear as an extension to C++, and should be treated
// correctly.
if (const PointerLikeType *PT = getAsPointerLikeType())
return PT->getPointeeType()->isVariablyModifiedType();
if (const MemberPointerType *PT = getAsMemberPointerType())
return PT->getPointeeType()->isVariablyModifiedType();
// A function can return a variably modified type
// This one isn't completely obvious, but it follows from the
// definition in C99 6.7.5p3. Because of this rule, it's
// illegal to declare a function returning a variably modified type.
if (const FunctionType *FT = getAsFunctionType())
return FT->getResultType()->isVariablyModifiedType();
return false;
}
const RecordType *Type::getAsRecordType() const {
// If this is directly a reference type, return it.
if (const RecordType *RTy = dyn_cast<RecordType>(this))
return RTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<RecordType>(CanonicalType)) {
// Look through type qualifiers
if (isa<RecordType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsRecordType();
return 0;
}
// If this is a typedef for a record type, strip the typedef off without
// losing all typedef information.
return getDesugaredType()->getAsRecordType();
}
const RecordType *Type::getAsStructureType() const {
// If this is directly a structure type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->isStruct())
return RT;
}
// If the canonical form of this type isn't the right kind, reject it.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (!RT->getDecl()->isStruct())
return 0;
// If this is a typedef for a structure type, strip the typedef off without
// losing all typedef information.
return getDesugaredType()->getAsStructureType();
}
// Look through type qualifiers
if (isa<RecordType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsStructureType();
return 0;
}
const RecordType *Type::getAsUnionType() const {
// If this is directly a union type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->isUnion())
return RT;
}
// If the canonical form of this type isn't the right kind, reject it.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (!RT->getDecl()->isUnion())
return 0;
// If this is a typedef for a union type, strip the typedef off without
// losing all typedef information.
return getDesugaredType()->getAsUnionType();
}
// Look through type qualifiers
if (isa<RecordType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsUnionType();
return 0;
}
const EnumType *Type::getAsEnumType() const {
// Check the canonicalized unqualified type directly; the more complex
// version is unnecessary because there isn't any typedef information
// to preserve.
return dyn_cast<EnumType>(CanonicalType.getUnqualifiedType());
}
const ComplexType *Type::getAsComplexType() const {
// Are we directly a complex type?
if (const ComplexType *CTy = dyn_cast<ComplexType>(this))
return CTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ComplexType>(CanonicalType)) {
// Look through type qualifiers
if (isa<ComplexType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsComplexType();
return 0;
}
// If this is a typedef for a complex type, strip the typedef off without
// losing all typedef information.
return getDesugaredType()->getAsComplexType();
}
const VectorType *Type::getAsVectorType() const {
// Are we directly a vector type?
if (const VectorType *VTy = dyn_cast<VectorType>(this))
return VTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<VectorType>(CanonicalType)) {
// Look through type qualifiers
if (isa<VectorType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsVectorType();
return 0;
}
// If this is a typedef for a vector type, strip the typedef off without
// losing all typedef information.
return getDesugaredType()->getAsVectorType();
}
const ExtVectorType *Type::getAsExtVectorType() const {
// Are we directly an OpenCU vector type?
if (const ExtVectorType *VTy = dyn_cast<ExtVectorType>(this))
return VTy;
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ExtVectorType>(CanonicalType)) {
// Look through type qualifiers
if (isa<ExtVectorType>(CanonicalType.getUnqualifiedType()))
return CanonicalType.getUnqualifiedType()->getAsExtVectorType();
return 0;
}
// If this is a typedef for an extended vector type, strip the typedef off
// without losing all typedef information.
return getDesugaredType()->getAsExtVectorType();
}
const ObjCInterfaceType *Type::getAsObjCInterfaceType() const {
// There is no sugar for ObjCInterfaceType's, just return the canonical
// type pointer if it is the right class. There is no typedef information to
// return and these cannot be Address-space qualified.
return dyn_cast<ObjCInterfaceType>(CanonicalType);
}
const ObjCQualifiedInterfaceType *
Type::getAsObjCQualifiedInterfaceType() const {
// There is no sugar for ObjCQualifiedInterfaceType's, just return the
// canonical type pointer if it is the right class.
return dyn_cast<ObjCQualifiedInterfaceType>(CanonicalType);
}
const ObjCQualifiedIdType *Type::getAsObjCQualifiedIdType() const {
// There is no sugar for ObjCQualifiedIdType's, just return the canonical
// type pointer if it is the right class.
return dyn_cast<ObjCQualifiedIdType>(CanonicalType);
}
const TemplateTypeParmType *Type::getAsTemplateTypeParmType() const {
// There is no sugar for template type parameters, so just return
// the canonical type pointer if it is the right class.
// FIXME: can these be address-space qualified?
return dyn_cast<TemplateTypeParmType>(CanonicalType);
}
const ClassTemplateSpecializationType *
Type::getClassTemplateSpecializationType() const {
// There is no sugar for class template specialization types, so
// just return the canonical type pointer if it is the right class.
return dyn_cast<ClassTemplateSpecializationType>(CanonicalType);
}
bool Type::isIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongLong;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
// Incomplete enum types are not treated as integer types.
// FIXME: In C++, enum types are never integer types.
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
return true;
if (isa<FixedWidthIntType>(CanonicalType))
return true;
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isIntegerType();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isIntegerType();
return false;
}
bool Type::isIntegralType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongLong;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
return true; // Complete enum types are integral.
// FIXME: In C++, enum types are never integral.
if (isa<FixedWidthIntType>(CanonicalType))
return true;
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isIntegralType();
return false;
}
bool Type::isEnumeralType() const {
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
return TT->getDecl()->isEnum();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isEnumeralType();
return false;
}
bool Type::isBooleanType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Bool;
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isBooleanType();
return false;
}
bool Type::isCharType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Char_U ||
BT->getKind() == BuiltinType::UChar ||
BT->getKind() == BuiltinType::Char_S ||
BT->getKind() == BuiltinType::SChar;
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isCharType();
return false;
}
bool Type::isWideCharType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::WChar;
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isWideCharType();
return false;
}
/// isSignedIntegerType - Return true if this is an integer type that is
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
/// an enum decl which has a signed representation, or a vector of signed
/// integer element type.
bool Type::isSignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Char_S &&
BT->getKind() <= BuiltinType::LongLong;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return ET->getDecl()->getIntegerType()->isSignedIntegerType();
if (const FixedWidthIntType *FWIT =
dyn_cast<FixedWidthIntType>(CanonicalType))
return FWIT->isSigned();
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isSignedIntegerType();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isSignedIntegerType();
return false;
}
/// isUnsignedIntegerType - Return true if this is an integer type that is
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
/// decl which has an unsigned representation, or a vector of unsigned integer
/// element type.
bool Type::isUnsignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::ULongLong;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
if (const FixedWidthIntType *FWIT =
dyn_cast<FixedWidthIntType>(CanonicalType))
return !FWIT->isSigned();
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isUnsignedIntegerType();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isUnsignedIntegerType();
return false;
}
bool Type::isFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Float &&
BT->getKind() <= BuiltinType::LongDouble;
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isFloatingType();
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isFloatingType();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isFloatingType();
return false;
}
bool Type::isRealFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Float &&
BT->getKind() <= BuiltinType::LongDouble;
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isRealFloatingType();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isRealFloatingType();
return false;
}
bool Type::isRealType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
return TT->getDecl()->isEnum() && TT->getDecl()->isDefinition();
if (isa<FixedWidthIntType>(CanonicalType))
return true;
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isRealType();
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isRealType();
return false;
}
bool Type::isArithmeticType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
// GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
// If a body isn't seen by the time we get here, return false.
return ET->getDecl()->isDefinition();
if (isa<FixedWidthIntType>(CanonicalType))
return true;
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isArithmeticType();
return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
}
bool Type::isScalarType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() != BuiltinType::Void;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
// Enums are scalar types, but only if they are defined. Incomplete enums
// are not treated as scalar types.
if (TT->getDecl()->isEnum() && TT->getDecl()->isDefinition())
return true;
return false;
}
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isScalarType();
if (isa<FixedWidthIntType>(CanonicalType))
return true;
return isa<PointerType>(CanonicalType) ||
isa<BlockPointerType>(CanonicalType) ||
isa<MemberPointerType>(CanonicalType) ||
isa<ComplexType>(CanonicalType) ||
isa<ObjCQualifiedIdType>(CanonicalType) ||
isa<ObjCQualifiedClassType>(CanonicalType);
}
/// \brief Determines whether the type is a C++ aggregate type or C
/// aggregate or union type.
///
/// An aggregate type is an array or a class type (struct, union, or
/// class) that has no user-declared constructors, no private or
/// protected non-static data members, no base classes, and no virtual
/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
/// includes union types.
bool Type::isAggregateType() const {
if (const CXXRecordType *CXXClassType = dyn_cast<CXXRecordType>(CanonicalType))
return CXXClassType->getDecl()->isAggregate();
if (isa<RecordType>(CanonicalType))
return true;
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isAggregateType();
return isa<ArrayType>(CanonicalType);
}
/// isConstantSizeType - Return true if this is not a variable sized type,
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
/// incomplete types or dependent types.
bool Type::isConstantSizeType() const {
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(CanonicalType))
return EXTQT->getBaseType()->isConstantSizeType();
assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
assert(!isDependentType() && "This doesn't make sense for dependent types");
// The VAT must have a size, as it is known to be complete.
return !isa<VariableArrayType>(CanonicalType);
}
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
/// - a type that can describe objects, but which lacks information needed to
/// determine its size.
bool Type::isIncompleteType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case ExtQual:
return cast<ExtQualType>(CanonicalType)->getBaseType()->isIncompleteType();
case Builtin:
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
// be completed.
return isVoidType();
case Tagged:
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
// forward declaration, but not a full definition (C99 6.2.5p22).
return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
case IncompleteArray:
// An array of unknown size is an incomplete type (C99 6.2.5p22).
return true;
}
}
/// isPODType - Return true if this is a plain-old-data type (C++ 3.9p10)
bool Type::isPODType() const {
// The compiler shouldn't query this for incomplete types, but the user might.
// We return false for that case.
if (isIncompleteType())
return false;
switch (CanonicalType->getTypeClass()) {
// Everything not explicitly mentioned is not POD.
default: return false;
case ExtQual:
return cast<ExtQualType>(CanonicalType)->getBaseType()->isPODType();
case VariableArray:
case ConstantArray:
// IncompleteArray is caught by isIncompleteType() above.
return cast<ArrayType>(CanonicalType)->getElementType()->isPODType();
case Builtin:
case Complex:
case Pointer:
case MemberPointer:
case Vector:
case ExtVector:
case ObjCQualifiedId:
return true;
case Tagged:
if (isEnumeralType())
return true;
if (CXXRecordDecl *RDecl = dyn_cast<CXXRecordDecl>(
cast<TagType>(CanonicalType)->getDecl()))
return RDecl->isPOD();
// C struct/union is POD.
return true;
}
}
bool Type::isPromotableIntegerType() const {
if (const BuiltinType *BT = getAsBuiltinType())
switch (BT->getKind()) {
case BuiltinType::Bool:
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
return true;
default:
return false;
}
return false;
}
const char *BuiltinType::getName() const {
switch (getKind()) {
default: assert(0 && "Unknown builtin type!");
case Void: return "void";
case Bool: return "_Bool";
case Char_S: return "char";
case Char_U: return "char";
case SChar: return "signed char";
case Short: return "short";
case Int: return "int";
case Long: return "long";
case LongLong: return "long long";
case UChar: return "unsigned char";
case UShort: return "unsigned short";
case UInt: return "unsigned int";
case ULong: return "unsigned long";
case ULongLong: return "unsigned long long";
case Float: return "float";
case Double: return "double";
case LongDouble: return "long double";
case WChar: return "wchar_t";
case Overload: return "<overloaded function type>";
case Dependent: return "<dependent type>";
}
}
void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
arg_type_iterator ArgTys,
unsigned NumArgs, bool isVariadic,
unsigned TypeQuals) {
ID.AddPointer(Result.getAsOpaquePtr());
for (unsigned i = 0; i != NumArgs; ++i)
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
ID.AddInteger(isVariadic);
ID.AddInteger(TypeQuals);
}
void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic(),
getTypeQuals());
}
void ObjCQualifiedInterfaceType::Profile(llvm::FoldingSetNodeID &ID,
const ObjCInterfaceDecl *Decl,
ObjCProtocolDecl **protocols,
unsigned NumProtocols) {
ID.AddPointer(Decl);
for (unsigned i = 0; i != NumProtocols; i++)
ID.AddPointer(protocols[i]);
}
void ObjCQualifiedInterfaceType::Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getDecl(), &Protocols[0], getNumProtocols());
}
void ObjCQualifiedIdType::Profile(llvm::FoldingSetNodeID &ID,
ObjCProtocolDecl **protocols,
unsigned NumProtocols) {
for (unsigned i = 0; i != NumProtocols; i++)
ID.AddPointer(protocols[i]);
}
void ObjCQualifiedIdType::Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, &Protocols[0], getNumProtocols());
}
/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
/// potentially looking through *all* consequtive typedefs. This returns the
/// sum of the type qualifiers, so if you have:
/// typedef const int A;
/// typedef volatile A B;
/// looking through the typedefs for B will give you "const volatile A".
///
QualType TypedefType::LookThroughTypedefs() const {
// Usually, there is only a single level of typedefs, be fast in that case.
QualType FirstType = getDecl()->getUnderlyingType();
if (!isa<TypedefType>(FirstType))
return FirstType;
// Otherwise, do the fully general loop.
unsigned TypeQuals = 0;
const TypedefType *TDT = this;
while (1) {
QualType CurType = TDT->getDecl()->getUnderlyingType();
/// FIXME:
/// FIXME: This is incorrect for ExtQuals!
/// FIXME:
TypeQuals |= CurType.getCVRQualifiers();
TDT = dyn_cast<TypedefType>(CurType);
if (TDT == 0)
return QualType(CurType.getTypePtr(), TypeQuals);
}
}
TypeOfExpr::TypeOfExpr(Expr *E, QualType can)
: Type(TypeOfExp, can, E->isTypeDependent()), TOExpr(E) {
assert(!isa<TypedefType>(can) && "Invalid canonical type");
}
bool RecordType::classof(const TagType *TT) {
return isa<RecordDecl>(TT->getDecl());
}
bool CXXRecordType::classof(const TagType *TT) {
return isa<CXXRecordDecl>(TT->getDecl());
}
bool EnumType::classof(const TagType *TT) {
return isa<EnumDecl>(TT->getDecl());
}
void
ClassTemplateSpecializationType::
packBooleanValues(unsigned NumArgs, bool *Values, uintptr_t *Words) {
const unsigned BitsPerWord = sizeof(uintptr_t) * 8;
for (unsigned PW = 0, NumPackedWords = getNumPackedWords(NumArgs), Arg = 0;
PW != NumPackedWords; ++PW) {
uintptr_t Word = 0;
for (unsigned Bit = 0; Bit < BitsPerWord && Arg < NumArgs; ++Bit, ++Arg) {
Word <<= 1;
Word |= Values[Arg];
}
Words[PW] = Word;
}
}
ClassTemplateSpecializationType::
ClassTemplateSpecializationType(TemplateDecl *T, unsigned NumArgs,
uintptr_t *Args, bool *ArgIsType,
QualType Canon)
: Type(ClassTemplateSpecialization, Canon, /*FIXME:Dependent=*/false),
Template(T), NumArgs(NumArgs)
{
uintptr_t *Data = reinterpret_cast<uintptr_t *>(this + 1);
// Pack the argument-is-type values into the words just after the
// class template specialization type.
packBooleanValues(NumArgs, ArgIsType, Data);
// Copy the template arguments after the packed words.
Data += getNumPackedWords(NumArgs);
for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
Data[Arg] = Args[Arg];
}
void ClassTemplateSpecializationType::Destroy(ASTContext& C) {
for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
if (!isArgType(Arg))
getArgAsExpr(Arg)->Destroy(C);
}
uintptr_t
ClassTemplateSpecializationType::getArgAsOpaqueValue(unsigned Arg) const {
const uintptr_t *Data = reinterpret_cast<const uintptr_t *>(this + 1);
Data += getNumPackedWords(NumArgs);
return Data[Arg];
}
bool ClassTemplateSpecializationType::isArgType(unsigned Arg) const {
const unsigned BitsPerWord = sizeof(uintptr_t) * 8;
const uintptr_t *Data = reinterpret_cast<const uintptr_t *>(this + 1);
Data += Arg / BitsPerWord;
return (*Data >> ((NumArgs - Arg) % BitsPerWord - 1)) & 0x01;
}
//===----------------------------------------------------------------------===//
// Type Printing
//===----------------------------------------------------------------------===//
void QualType::dump(const char *msg) const {
std::string R = "identifier";
getAsStringInternal(R);
if (msg)
fprintf(stderr, "%s: %s\n", msg, R.c_str());
else
fprintf(stderr, "%s\n", R.c_str());
}
void QualType::dump() const {
dump("");
}
void Type::dump() const {
std::string S = "identifier";
getAsStringInternal(S);
fprintf(stderr, "%s\n", S.c_str());
}
static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
// Note: funkiness to ensure we get a space only between quals.
bool NonePrinted = true;
if (TypeQuals & QualType::Const)
S += "const", NonePrinted = false;
if (TypeQuals & QualType::Volatile)
S += (NonePrinted+" volatile"), NonePrinted = false;
if (TypeQuals & QualType::Restrict)
S += (NonePrinted+" restrict"), NonePrinted = false;
}
void QualType::getAsStringInternal(std::string &S) const {
if (isNull()) {
S += "NULL TYPE";
return;
}
// Print qualifiers as appropriate.
if (unsigned Tq = getCVRQualifiers()) {
std::string TQS;
AppendTypeQualList(TQS, Tq);
if (!S.empty())
S = TQS + ' ' + S;
else
S = TQS;
}
getTypePtr()->getAsStringInternal(S);
}
void BuiltinType::getAsStringInternal(std::string &S) const {
if (S.empty()) {
S = getName();
} else {
// Prefix the basic type, e.g. 'int X'.
S = ' ' + S;
S = getName() + S;
}
}
void FixedWidthIntType::getAsStringInternal(std::string &S) const {
// FIXME: Once we get bitwidth attribute, write as
// "int __attribute__((bitwidth(x)))".
std::string prefix = "__clang_fixedwidth";
prefix += llvm::utostr_32(Width);
prefix += (char)(Signed ? 'S' : 'U');
if (S.empty()) {
S = prefix;
} else {
// Prefix the basic type, e.g. 'int X'.
S = prefix + S;
}
}
void ComplexType::getAsStringInternal(std::string &S) const {
ElementType->getAsStringInternal(S);
S = "_Complex " + S;
}
void ExtQualType::getAsStringInternal(std::string &S) const {
bool NeedsSpace = false;
if (AddressSpace) {
S = "__attribute__((address_space("+llvm::utostr_32(AddressSpace)+")))" + S;
NeedsSpace = true;
}
if (GCAttrType != QualType::GCNone) {
if (NeedsSpace)
S += ' ';
S += "__attribute__((objc_gc(";
if (GCAttrType == QualType::Weak)
S += "weak";
else
S += "strong";
S += ")))";
}
BaseType->getAsStringInternal(S);
}
void PointerType::getAsStringInternal(std::string &S) const {
S = '*' + S;
// Handle things like 'int (*A)[4];' correctly.
// FIXME: this should include vectors, but vectors use attributes I guess.
if (isa<ArrayType>(getPointeeType()))
S = '(' + S + ')';
getPointeeType().getAsStringInternal(S);
}
void BlockPointerType::getAsStringInternal(std::string &S) const {
S = '^' + S;
PointeeType.getAsStringInternal(S);
}
void ReferenceType::getAsStringInternal(std::string &S) const {
S = '&' + S;
// Handle things like 'int (&A)[4];' correctly.
// FIXME: this should include vectors, but vectors use attributes I guess.
if (isa<ArrayType>(getPointeeType()))
S = '(' + S + ')';
getPointeeType().getAsStringInternal(S);
}
void MemberPointerType::getAsStringInternal(std::string &S) const {
std::string C;
Class->getAsStringInternal(C);
C += "::*";
S = C + S;
// Handle things like 'int (&A)[4];' correctly.
// FIXME: this should include vectors, but vectors use attributes I guess.
if (isa<ArrayType>(getPointeeType()))
S = '(' + S + ')';
getPointeeType().getAsStringInternal(S);
}
void ConstantArrayType::getAsStringInternal(std::string &S) const {
S += '[';
S += llvm::utostr(getSize().getZExtValue());
S += ']';
getElementType().getAsStringInternal(S);
}
void IncompleteArrayType::getAsStringInternal(std::string &S) const {
S += "[]";
getElementType().getAsStringInternal(S);
}
void VariableArrayType::getAsStringInternal(std::string &S) const {
S += '[';
if (getIndexTypeQualifier()) {
AppendTypeQualList(S, getIndexTypeQualifier());
S += ' ';
}
if (getSizeModifier() == Static)
S += "static";
else if (getSizeModifier() == Star)
S += '*';
if (getSizeExpr()) {
std::string SStr;
llvm::raw_string_ostream s(SStr);
getSizeExpr()->printPretty(s);
S += s.str();
}
S += ']';
getElementType().getAsStringInternal(S);
}
void DependentSizedArrayType::getAsStringInternal(std::string &S) const {
S += '[';
if (getIndexTypeQualifier()) {
AppendTypeQualList(S, getIndexTypeQualifier());
S += ' ';
}
if (getSizeModifier() == Static)
S += "static";
else if (getSizeModifier() == Star)
S += '*';
if (getSizeExpr()) {
std::string SStr;
llvm::raw_string_ostream s(SStr);
getSizeExpr()->printPretty(s);
S += s.str();
}
S += ']';
getElementType().getAsStringInternal(S);
}
void VectorType::getAsStringInternal(std::string &S) const {
// FIXME: We prefer to print the size directly here, but have no way
// to get the size of the type.
S += " __attribute__((__vector_size__(";
S += llvm::utostr_32(NumElements); // convert back to bytes.
S += " * sizeof(" + ElementType.getAsString() + "))))";
ElementType.getAsStringInternal(S);
}
void ExtVectorType::getAsStringInternal(std::string &S) const {
S += " __attribute__((ext_vector_type(";
S += llvm::utostr_32(NumElements);
S += ")))";
ElementType.getAsStringInternal(S);
}
void TypeOfExpr::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(e) X'.
InnerString = ' ' + InnerString;
std::string Str;
llvm::raw_string_ostream s(Str);
getUnderlyingExpr()->printPretty(s);
InnerString = "typeof(" + s.str() + ")" + InnerString;
}
void TypeOfType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(t) X'.
InnerString = ' ' + InnerString;
std::string Tmp;
getUnderlyingType().getAsStringInternal(Tmp);
InnerString = "typeof(" + Tmp + ")" + InnerString;
}
void FunctionTypeNoProto::getAsStringInternal(std::string &S) const {
// If needed for precedence reasons, wrap the inner part in grouping parens.
if (!S.empty())
S = "(" + S + ")";
S += "()";
getResultType().getAsStringInternal(S);
}
void FunctionTypeProto::getAsStringInternal(std::string &S) const {
// If needed for precedence reasons, wrap the inner part in grouping parens.
if (!S.empty())
S = "(" + S + ")";
S += "(";
std::string Tmp;
for (unsigned i = 0, e = getNumArgs(); i != e; ++i) {
if (i) S += ", ";
getArgType(i).getAsStringInternal(Tmp);
S += Tmp;
Tmp.clear();
}
if (isVariadic()) {
if (getNumArgs())
S += ", ";
S += "...";
} else if (getNumArgs() == 0) {
// Do not emit int() if we have a proto, emit 'int(void)'.
S += "void";
}
S += ")";
getResultType().getAsStringInternal(S);
}
void TypedefType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
InnerString = getDecl()->getIdentifier()->getName() + InnerString;
}
void TemplateTypeParmType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'parmname X'.
InnerString = ' ' + InnerString;
if (!Name)
InnerString = "type-parameter-" + llvm::utostr_32(Depth) + '-' +
llvm::utostr_32(Index) + InnerString;
else
InnerString = Name->getName() + InnerString;
}
void
ClassTemplateSpecializationType::
getAsStringInternal(std::string &InnerString) const {
std::string SpecString = Template->getNameAsString();
SpecString += '<';
for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
if (Arg)
SpecString += ", ";
// Print the argument into a string.
std::string ArgString;
if (isArgType(Arg))
getArgAsType(Arg).getAsStringInternal(ArgString);
else {
llvm::raw_string_ostream s(ArgString);
getArgAsExpr(Arg)->printPretty(s);
}
// If this is the first argument and its string representation
// begins with the global scope specifier ('::foo'), add a space
// to avoid printing the diagraph '<:'.
if (!Arg && !ArgString.empty() && ArgString[0] == ':')
SpecString += ' ';
SpecString += ArgString;
}
// If the last character of our string is '>', add another space to
// keep the two '>''s separate tokens. We don't *have* to do this in
// C++0x, but it's still good hygiene.
if (SpecString[SpecString.size() - 1] == '>')
SpecString += ' ';
SpecString += '>';
if (InnerString.empty())
InnerString.swap(SpecString);
else
InnerString = SpecString + ' ' + InnerString;
}
void ObjCInterfaceType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
InnerString = getDecl()->getIdentifier()->getName() + InnerString;
}
void ObjCQualifiedInterfaceType::getAsStringInternal(
std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
std::string ObjCQIString = getDecl()->getNameAsString();
ObjCQIString += '<';
bool isFirst = true;
for (qual_iterator I = qual_begin(), E = qual_end(); I != E; ++I) {
if (isFirst)
isFirst = false;
else
ObjCQIString += ',';
ObjCQIString += (*I)->getNameAsString();
}
ObjCQIString += '>';
InnerString = ObjCQIString + InnerString;
}
void ObjCQualifiedIdType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
std::string ObjCQIString = "id";
ObjCQIString += '<';
int num = getNumProtocols();
for (int i = 0; i < num; i++) {
ObjCQIString += getProtocols(i)->getNameAsString();
if (i < num-1)
ObjCQIString += ',';
}
ObjCQIString += '>';
InnerString = ObjCQIString + InnerString;
}
void TagType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
const char *Kind = getDecl()->getKindName();
const char *ID;
if (const IdentifierInfo *II = getDecl()->getIdentifier())
ID = II->getName();
else
ID = "<anonymous>";
InnerString = std::string(Kind) + " " + ID + InnerString;
}