зеркало из https://github.com/microsoft/clang-1.git
5053 строки
186 KiB
C++
5053 строки
186 KiB
C++
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements type-related semantic analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTMutationListener.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/TypeLocVisitor.h"
|
|
#include "clang/Basic/OpenCL.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Parse/ParseDiagnostic.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/DelayedDiagnostic.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
using namespace clang;
|
|
|
|
/// isOmittedBlockReturnType - Return true if this declarator is missing a
|
|
/// return type because this is a omitted return type on a block literal.
|
|
static bool isOmittedBlockReturnType(const Declarator &D) {
|
|
if (D.getContext() != Declarator::BlockLiteralContext ||
|
|
D.getDeclSpec().hasTypeSpecifier())
|
|
return false;
|
|
|
|
if (D.getNumTypeObjects() == 0)
|
|
return true; // ^{ ... }
|
|
|
|
if (D.getNumTypeObjects() == 1 &&
|
|
D.getTypeObject(0).Kind == DeclaratorChunk::Function)
|
|
return true; // ^(int X, float Y) { ... }
|
|
|
|
return false;
|
|
}
|
|
|
|
/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
|
|
/// doesn't apply to the given type.
|
|
static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
|
|
QualType type) {
|
|
bool useExpansionLoc = false;
|
|
|
|
unsigned diagID = 0;
|
|
switch (attr.getKind()) {
|
|
case AttributeList::AT_ObjCGC:
|
|
diagID = diag::warn_pointer_attribute_wrong_type;
|
|
useExpansionLoc = true;
|
|
break;
|
|
|
|
case AttributeList::AT_ObjCOwnership:
|
|
diagID = diag::warn_objc_object_attribute_wrong_type;
|
|
useExpansionLoc = true;
|
|
break;
|
|
|
|
default:
|
|
// Assume everything else was a function attribute.
|
|
diagID = diag::warn_function_attribute_wrong_type;
|
|
break;
|
|
}
|
|
|
|
SourceLocation loc = attr.getLoc();
|
|
StringRef name = attr.getName()->getName();
|
|
|
|
// The GC attributes are usually written with macros; special-case them.
|
|
if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
|
|
if (attr.getParameterName()->isStr("strong")) {
|
|
if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
|
|
} else if (attr.getParameterName()->isStr("weak")) {
|
|
if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
|
|
}
|
|
}
|
|
|
|
S.Diag(loc, diagID) << name << type;
|
|
}
|
|
|
|
// objc_gc applies to Objective-C pointers or, otherwise, to the
|
|
// smallest available pointer type (i.e. 'void*' in 'void**').
|
|
#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
|
|
case AttributeList::AT_ObjCGC: \
|
|
case AttributeList::AT_ObjCOwnership
|
|
|
|
// Function type attributes.
|
|
#define FUNCTION_TYPE_ATTRS_CASELIST \
|
|
case AttributeList::AT_NoReturn: \
|
|
case AttributeList::AT_CDecl: \
|
|
case AttributeList::AT_FastCall: \
|
|
case AttributeList::AT_StdCall: \
|
|
case AttributeList::AT_ThisCall: \
|
|
case AttributeList::AT_Pascal: \
|
|
case AttributeList::AT_Regparm: \
|
|
case AttributeList::AT_Pcs: \
|
|
case AttributeList::AT_PnaclCall: \
|
|
case AttributeList::AT_IntelOclBicc \
|
|
|
|
namespace {
|
|
/// An object which stores processing state for the entire
|
|
/// GetTypeForDeclarator process.
|
|
class TypeProcessingState {
|
|
Sema &sema;
|
|
|
|
/// The declarator being processed.
|
|
Declarator &declarator;
|
|
|
|
/// The index of the declarator chunk we're currently processing.
|
|
/// May be the total number of valid chunks, indicating the
|
|
/// DeclSpec.
|
|
unsigned chunkIndex;
|
|
|
|
/// Whether there are non-trivial modifications to the decl spec.
|
|
bool trivial;
|
|
|
|
/// Whether we saved the attributes in the decl spec.
|
|
bool hasSavedAttrs;
|
|
|
|
/// The original set of attributes on the DeclSpec.
|
|
SmallVector<AttributeList*, 2> savedAttrs;
|
|
|
|
/// A list of attributes to diagnose the uselessness of when the
|
|
/// processing is complete.
|
|
SmallVector<AttributeList*, 2> ignoredTypeAttrs;
|
|
|
|
public:
|
|
TypeProcessingState(Sema &sema, Declarator &declarator)
|
|
: sema(sema), declarator(declarator),
|
|
chunkIndex(declarator.getNumTypeObjects()),
|
|
trivial(true), hasSavedAttrs(false) {}
|
|
|
|
Sema &getSema() const {
|
|
return sema;
|
|
}
|
|
|
|
Declarator &getDeclarator() const {
|
|
return declarator;
|
|
}
|
|
|
|
bool isProcessingDeclSpec() const {
|
|
return chunkIndex == declarator.getNumTypeObjects();
|
|
}
|
|
|
|
unsigned getCurrentChunkIndex() const {
|
|
return chunkIndex;
|
|
}
|
|
|
|
void setCurrentChunkIndex(unsigned idx) {
|
|
assert(idx <= declarator.getNumTypeObjects());
|
|
chunkIndex = idx;
|
|
}
|
|
|
|
AttributeList *&getCurrentAttrListRef() const {
|
|
if (isProcessingDeclSpec())
|
|
return getMutableDeclSpec().getAttributes().getListRef();
|
|
return declarator.getTypeObject(chunkIndex).getAttrListRef();
|
|
}
|
|
|
|
/// Save the current set of attributes on the DeclSpec.
|
|
void saveDeclSpecAttrs() {
|
|
// Don't try to save them multiple times.
|
|
if (hasSavedAttrs) return;
|
|
|
|
DeclSpec &spec = getMutableDeclSpec();
|
|
for (AttributeList *attr = spec.getAttributes().getList(); attr;
|
|
attr = attr->getNext())
|
|
savedAttrs.push_back(attr);
|
|
trivial &= savedAttrs.empty();
|
|
hasSavedAttrs = true;
|
|
}
|
|
|
|
/// Record that we had nowhere to put the given type attribute.
|
|
/// We will diagnose such attributes later.
|
|
void addIgnoredTypeAttr(AttributeList &attr) {
|
|
ignoredTypeAttrs.push_back(&attr);
|
|
}
|
|
|
|
/// Diagnose all the ignored type attributes, given that the
|
|
/// declarator worked out to the given type.
|
|
void diagnoseIgnoredTypeAttrs(QualType type) const {
|
|
for (SmallVectorImpl<AttributeList*>::const_iterator
|
|
i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
|
|
i != e; ++i)
|
|
diagnoseBadTypeAttribute(getSema(), **i, type);
|
|
}
|
|
|
|
~TypeProcessingState() {
|
|
if (trivial) return;
|
|
|
|
restoreDeclSpecAttrs();
|
|
}
|
|
|
|
private:
|
|
DeclSpec &getMutableDeclSpec() const {
|
|
return const_cast<DeclSpec&>(declarator.getDeclSpec());
|
|
}
|
|
|
|
void restoreDeclSpecAttrs() {
|
|
assert(hasSavedAttrs);
|
|
|
|
if (savedAttrs.empty()) {
|
|
getMutableDeclSpec().getAttributes().set(0);
|
|
return;
|
|
}
|
|
|
|
getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
|
|
for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
|
|
savedAttrs[i]->setNext(savedAttrs[i+1]);
|
|
savedAttrs.back()->setNext(0);
|
|
}
|
|
};
|
|
|
|
/// Basically std::pair except that we really want to avoid an
|
|
/// implicit operator= for safety concerns. It's also a minor
|
|
/// link-time optimization for this to be a private type.
|
|
struct AttrAndList {
|
|
/// The attribute.
|
|
AttributeList &first;
|
|
|
|
/// The head of the list the attribute is currently in.
|
|
AttributeList *&second;
|
|
|
|
AttrAndList(AttributeList &attr, AttributeList *&head)
|
|
: first(attr), second(head) {}
|
|
};
|
|
}
|
|
|
|
namespace llvm {
|
|
template <> struct isPodLike<AttrAndList> {
|
|
static const bool value = true;
|
|
};
|
|
}
|
|
|
|
static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
|
|
attr.setNext(head);
|
|
head = &attr;
|
|
}
|
|
|
|
static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
|
|
if (head == &attr) {
|
|
head = attr.getNext();
|
|
return;
|
|
}
|
|
|
|
AttributeList *cur = head;
|
|
while (true) {
|
|
assert(cur && cur->getNext() && "ran out of attrs?");
|
|
if (cur->getNext() == &attr) {
|
|
cur->setNext(attr.getNext());
|
|
return;
|
|
}
|
|
cur = cur->getNext();
|
|
}
|
|
}
|
|
|
|
static void moveAttrFromListToList(AttributeList &attr,
|
|
AttributeList *&fromList,
|
|
AttributeList *&toList) {
|
|
spliceAttrOutOfList(attr, fromList);
|
|
spliceAttrIntoList(attr, toList);
|
|
}
|
|
|
|
/// The location of a type attribute.
|
|
enum TypeAttrLocation {
|
|
/// The attribute is in the decl-specifier-seq.
|
|
TAL_DeclSpec,
|
|
/// The attribute is part of a DeclaratorChunk.
|
|
TAL_DeclChunk,
|
|
/// The attribute is immediately after the declaration's name.
|
|
TAL_DeclName
|
|
};
|
|
|
|
static void processTypeAttrs(TypeProcessingState &state,
|
|
QualType &type, TypeAttrLocation TAL,
|
|
AttributeList *attrs);
|
|
|
|
static bool handleFunctionTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &type);
|
|
|
|
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr, QualType &type);
|
|
|
|
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr, QualType &type);
|
|
|
|
static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr, QualType &type) {
|
|
if (attr.getKind() == AttributeList::AT_ObjCGC)
|
|
return handleObjCGCTypeAttr(state, attr, type);
|
|
assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
|
|
return handleObjCOwnershipTypeAttr(state, attr, type);
|
|
}
|
|
|
|
/// Given the index of a declarator chunk, check whether that chunk
|
|
/// directly specifies the return type of a function and, if so, find
|
|
/// an appropriate place for it.
|
|
///
|
|
/// \param i - a notional index which the search will start
|
|
/// immediately inside
|
|
static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
|
|
unsigned i) {
|
|
assert(i <= declarator.getNumTypeObjects());
|
|
|
|
DeclaratorChunk *result = 0;
|
|
|
|
// First, look inwards past parens for a function declarator.
|
|
for (; i != 0; --i) {
|
|
DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
|
|
switch (fnChunk.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
continue;
|
|
|
|
// If we find anything except a function, bail out.
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
return result;
|
|
|
|
// If we do find a function declarator, scan inwards from that,
|
|
// looking for a block-pointer declarator.
|
|
case DeclaratorChunk::Function:
|
|
for (--i; i != 0; --i) {
|
|
DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
|
|
switch (blockChunk.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
continue;
|
|
case DeclaratorChunk::BlockPointer:
|
|
result = &blockChunk;
|
|
goto continue_outer;
|
|
}
|
|
llvm_unreachable("bad declarator chunk kind");
|
|
}
|
|
|
|
// If we run out of declarators doing that, we're done.
|
|
return result;
|
|
}
|
|
llvm_unreachable("bad declarator chunk kind");
|
|
|
|
// Okay, reconsider from our new point.
|
|
continue_outer: ;
|
|
}
|
|
|
|
// Ran out of chunks, bail out.
|
|
return result;
|
|
}
|
|
|
|
/// Given that an objc_gc attribute was written somewhere on a
|
|
/// declaration *other* than on the declarator itself (for which, use
|
|
/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
|
|
/// didn't apply in whatever position it was written in, try to move
|
|
/// it to a more appropriate position.
|
|
static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType type) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// Move it to the outermost normal or block pointer declarator.
|
|
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer: {
|
|
// But don't move an ARC ownership attribute to the return type
|
|
// of a block.
|
|
DeclaratorChunk *destChunk = 0;
|
|
if (state.isProcessingDeclSpec() &&
|
|
attr.getKind() == AttributeList::AT_ObjCOwnership)
|
|
destChunk = maybeMovePastReturnType(declarator, i - 1);
|
|
if (!destChunk) destChunk = &chunk;
|
|
|
|
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
|
|
destChunk->getAttrListRef());
|
|
return;
|
|
}
|
|
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Array:
|
|
continue;
|
|
|
|
// We may be starting at the return type of a block.
|
|
case DeclaratorChunk::Function:
|
|
if (state.isProcessingDeclSpec() &&
|
|
attr.getKind() == AttributeList::AT_ObjCOwnership) {
|
|
if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
|
|
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
|
|
dest->getAttrListRef());
|
|
return;
|
|
}
|
|
}
|
|
goto error;
|
|
|
|
// Don't walk through these.
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
goto error;
|
|
}
|
|
}
|
|
error:
|
|
|
|
diagnoseBadTypeAttribute(state.getSema(), attr, type);
|
|
}
|
|
|
|
/// Distribute an objc_gc type attribute that was written on the
|
|
/// declarator.
|
|
static void
|
|
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &declSpecType) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// objc_gc goes on the innermost pointer to something that's not a
|
|
// pointer.
|
|
unsigned innermost = -1U;
|
|
bool considerDeclSpec = true;
|
|
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer:
|
|
innermost = i;
|
|
continue;
|
|
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Array:
|
|
continue;
|
|
|
|
case DeclaratorChunk::Function:
|
|
considerDeclSpec = false;
|
|
goto done;
|
|
}
|
|
}
|
|
done:
|
|
|
|
// That might actually be the decl spec if we weren't blocked by
|
|
// anything in the declarator.
|
|
if (considerDeclSpec) {
|
|
if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
|
|
// Splice the attribute into the decl spec. Prevents the
|
|
// attribute from being applied multiple times and gives
|
|
// the source-location-filler something to work with.
|
|
state.saveDeclSpecAttrs();
|
|
moveAttrFromListToList(attr, declarator.getAttrListRef(),
|
|
declarator.getMutableDeclSpec().getAttributes().getListRef());
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise, if we found an appropriate chunk, splice the attribute
|
|
// into it.
|
|
if (innermost != -1U) {
|
|
moveAttrFromListToList(attr, declarator.getAttrListRef(),
|
|
declarator.getTypeObject(innermost).getAttrListRef());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, diagnose when we're done building the type.
|
|
spliceAttrOutOfList(attr, declarator.getAttrListRef());
|
|
state.addIgnoredTypeAttr(attr);
|
|
}
|
|
|
|
/// A function type attribute was written somewhere in a declaration
|
|
/// *other* than on the declarator itself or in the decl spec. Given
|
|
/// that it didn't apply in whatever position it was written in, try
|
|
/// to move it to a more appropriate position.
|
|
static void distributeFunctionTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType type) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// Try to push the attribute from the return type of a function to
|
|
// the function itself.
|
|
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Function:
|
|
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
|
|
chunk.getAttrListRef());
|
|
return;
|
|
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
continue;
|
|
}
|
|
}
|
|
|
|
diagnoseBadTypeAttribute(state.getSema(), attr, type);
|
|
}
|
|
|
|
/// Try to distribute a function type attribute to the innermost
|
|
/// function chunk or type. Returns true if the attribute was
|
|
/// distributed, false if no location was found.
|
|
static bool
|
|
distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
AttributeList *&attrList,
|
|
QualType &declSpecType) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// Put it on the innermost function chunk, if there is one.
|
|
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(i);
|
|
if (chunk.Kind != DeclaratorChunk::Function) continue;
|
|
|
|
moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
|
|
return true;
|
|
}
|
|
|
|
if (handleFunctionTypeAttr(state, attr, declSpecType)) {
|
|
spliceAttrOutOfList(attr, attrList);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// A function type attribute was written in the decl spec. Try to
|
|
/// apply it somewhere.
|
|
static void
|
|
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &declSpecType) {
|
|
state.saveDeclSpecAttrs();
|
|
|
|
// C++11 attributes before the decl specifiers actually appertain to
|
|
// the declarators. Move them straight there. We don't support the
|
|
// 'put them wherever you like' semantics we allow for GNU attributes.
|
|
if (attr.isCXX11Attribute()) {
|
|
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
|
|
state.getDeclarator().getAttrListRef());
|
|
return;
|
|
}
|
|
|
|
// Try to distribute to the innermost.
|
|
if (distributeFunctionTypeAttrToInnermost(state, attr,
|
|
state.getCurrentAttrListRef(),
|
|
declSpecType))
|
|
return;
|
|
|
|
// If that failed, diagnose the bad attribute when the declarator is
|
|
// fully built.
|
|
state.addIgnoredTypeAttr(attr);
|
|
}
|
|
|
|
/// A function type attribute was written on the declarator. Try to
|
|
/// apply it somewhere.
|
|
static void
|
|
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &declSpecType) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// Try to distribute to the innermost.
|
|
if (distributeFunctionTypeAttrToInnermost(state, attr,
|
|
declarator.getAttrListRef(),
|
|
declSpecType))
|
|
return;
|
|
|
|
// If that failed, diagnose the bad attribute when the declarator is
|
|
// fully built.
|
|
spliceAttrOutOfList(attr, declarator.getAttrListRef());
|
|
state.addIgnoredTypeAttr(attr);
|
|
}
|
|
|
|
/// \brief Given that there are attributes written on the declarator
|
|
/// itself, try to distribute any type attributes to the appropriate
|
|
/// declarator chunk.
|
|
///
|
|
/// These are attributes like the following:
|
|
/// int f ATTR;
|
|
/// int (f ATTR)();
|
|
/// but not necessarily this:
|
|
/// int f() ATTR;
|
|
static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
|
|
QualType &declSpecType) {
|
|
// Collect all the type attributes from the declarator itself.
|
|
assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
|
|
AttributeList *attr = state.getDeclarator().getAttributes();
|
|
AttributeList *next;
|
|
do {
|
|
next = attr->getNext();
|
|
|
|
// Do not distribute C++11 attributes. They have strict rules for what
|
|
// they appertain to.
|
|
if (attr->isCXX11Attribute())
|
|
continue;
|
|
|
|
switch (attr->getKind()) {
|
|
OBJC_POINTER_TYPE_ATTRS_CASELIST:
|
|
distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
|
|
break;
|
|
|
|
case AttributeList::AT_NSReturnsRetained:
|
|
if (!state.getSema().getLangOpts().ObjCAutoRefCount)
|
|
break;
|
|
// fallthrough
|
|
|
|
FUNCTION_TYPE_ATTRS_CASELIST:
|
|
distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
} while ((attr = next));
|
|
}
|
|
|
|
/// Add a synthetic '()' to a block-literal declarator if it is
|
|
/// required, given the return type.
|
|
static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
|
|
QualType declSpecType) {
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// First, check whether the declarator would produce a function,
|
|
// i.e. whether the innermost semantic chunk is a function.
|
|
if (declarator.isFunctionDeclarator()) {
|
|
// If so, make that declarator a prototyped declarator.
|
|
declarator.getFunctionTypeInfo().hasPrototype = true;
|
|
return;
|
|
}
|
|
|
|
// If there are any type objects, the type as written won't name a
|
|
// function, regardless of the decl spec type. This is because a
|
|
// block signature declarator is always an abstract-declarator, and
|
|
// abstract-declarators can't just be parentheses chunks. Therefore
|
|
// we need to build a function chunk unless there are no type
|
|
// objects and the decl spec type is a function.
|
|
if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
|
|
return;
|
|
|
|
// Note that there *are* cases with invalid declarators where
|
|
// declarators consist solely of parentheses. In general, these
|
|
// occur only in failed efforts to make function declarators, so
|
|
// faking up the function chunk is still the right thing to do.
|
|
|
|
// Otherwise, we need to fake up a function declarator.
|
|
SourceLocation loc = declarator.getLocStart();
|
|
|
|
// ...and *prepend* it to the declarator.
|
|
SourceLocation NoLoc;
|
|
declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
|
|
/*HasProto=*/true,
|
|
/*IsAmbiguous=*/false,
|
|
/*LParenLoc=*/NoLoc,
|
|
/*ArgInfo=*/0,
|
|
/*NumArgs=*/0,
|
|
/*EllipsisLoc=*/NoLoc,
|
|
/*RParenLoc=*/NoLoc,
|
|
/*TypeQuals=*/0,
|
|
/*RefQualifierIsLvalueRef=*/true,
|
|
/*RefQualifierLoc=*/NoLoc,
|
|
/*ConstQualifierLoc=*/NoLoc,
|
|
/*VolatileQualifierLoc=*/NoLoc,
|
|
/*MutableLoc=*/NoLoc,
|
|
EST_None,
|
|
/*ESpecLoc=*/NoLoc,
|
|
/*Exceptions=*/0,
|
|
/*ExceptionRanges=*/0,
|
|
/*NumExceptions=*/0,
|
|
/*NoexceptExpr=*/0,
|
|
loc, loc, declarator));
|
|
|
|
// For consistency, make sure the state still has us as processing
|
|
// the decl spec.
|
|
assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
|
|
state.setCurrentChunkIndex(declarator.getNumTypeObjects());
|
|
}
|
|
|
|
/// \brief Convert the specified declspec to the appropriate type
|
|
/// object.
|
|
/// \param state Specifies the declarator containing the declaration specifier
|
|
/// to be converted, along with other associated processing state.
|
|
/// \returns The type described by the declaration specifiers. This function
|
|
/// never returns null.
|
|
static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
|
|
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
|
|
// checking.
|
|
|
|
Sema &S = state.getSema();
|
|
Declarator &declarator = state.getDeclarator();
|
|
const DeclSpec &DS = declarator.getDeclSpec();
|
|
SourceLocation DeclLoc = declarator.getIdentifierLoc();
|
|
if (DeclLoc.isInvalid())
|
|
DeclLoc = DS.getLocStart();
|
|
|
|
ASTContext &Context = S.Context;
|
|
|
|
QualType Result;
|
|
switch (DS.getTypeSpecType()) {
|
|
case DeclSpec::TST_void:
|
|
Result = Context.VoidTy;
|
|
break;
|
|
case DeclSpec::TST_char:
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
|
|
Result = Context.CharTy;
|
|
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
|
|
Result = Context.SignedCharTy;
|
|
else {
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
|
|
"Unknown TSS value");
|
|
Result = Context.UnsignedCharTy;
|
|
}
|
|
break;
|
|
case DeclSpec::TST_wchar:
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
|
|
Result = Context.WCharTy;
|
|
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
|
|
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
|
|
<< DS.getSpecifierName(DS.getTypeSpecType());
|
|
Result = Context.getSignedWCharType();
|
|
} else {
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
|
|
"Unknown TSS value");
|
|
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
|
|
<< DS.getSpecifierName(DS.getTypeSpecType());
|
|
Result = Context.getUnsignedWCharType();
|
|
}
|
|
break;
|
|
case DeclSpec::TST_char16:
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
|
|
"Unknown TSS value");
|
|
Result = Context.Char16Ty;
|
|
break;
|
|
case DeclSpec::TST_char32:
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
|
|
"Unknown TSS value");
|
|
Result = Context.Char32Ty;
|
|
break;
|
|
case DeclSpec::TST_unspecified:
|
|
// "<proto1,proto2>" is an objc qualified ID with a missing id.
|
|
if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
|
|
Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
|
|
(ObjCProtocolDecl*const*)PQ,
|
|
DS.getNumProtocolQualifiers());
|
|
Result = Context.getObjCObjectPointerType(Result);
|
|
break;
|
|
}
|
|
|
|
// If this is a missing declspec in a block literal return context, then it
|
|
// is inferred from the return statements inside the block.
|
|
// The declspec is always missing in a lambda expr context; it is either
|
|
// specified with a trailing return type or inferred.
|
|
if (declarator.getContext() == Declarator::LambdaExprContext ||
|
|
isOmittedBlockReturnType(declarator)) {
|
|
Result = Context.DependentTy;
|
|
break;
|
|
}
|
|
|
|
// Unspecified typespec defaults to int in C90. However, the C90 grammar
|
|
// [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
|
|
// type-qualifier, or storage-class-specifier. If not, emit an extwarn.
|
|
// Note that the one exception to this is function definitions, which are
|
|
// allowed to be completely missing a declspec. This is handled in the
|
|
// parser already though by it pretending to have seen an 'int' in this
|
|
// case.
|
|
if (S.getLangOpts().ImplicitInt) {
|
|
// In C89 mode, we only warn if there is a completely missing declspec
|
|
// when one is not allowed.
|
|
if (DS.isEmpty()) {
|
|
S.Diag(DeclLoc, diag::ext_missing_declspec)
|
|
<< DS.getSourceRange()
|
|
<< FixItHint::CreateInsertion(DS.getLocStart(), "int");
|
|
}
|
|
} else if (!DS.hasTypeSpecifier()) {
|
|
// C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
|
|
// "At least one type specifier shall be given in the declaration
|
|
// specifiers in each declaration, and in the specifier-qualifier list in
|
|
// each struct declaration and type name."
|
|
// FIXME: Does Microsoft really have the implicit int extension in C++?
|
|
if (S.getLangOpts().CPlusPlus &&
|
|
!S.getLangOpts().MicrosoftExt) {
|
|
S.Diag(DeclLoc, diag::err_missing_type_specifier)
|
|
<< DS.getSourceRange();
|
|
|
|
// When this occurs in C++ code, often something is very broken with the
|
|
// value being declared, poison it as invalid so we don't get chains of
|
|
// errors.
|
|
declarator.setInvalidType(true);
|
|
} else {
|
|
S.Diag(DeclLoc, diag::ext_missing_type_specifier)
|
|
<< DS.getSourceRange();
|
|
}
|
|
}
|
|
|
|
// FALL THROUGH.
|
|
case DeclSpec::TST_int: {
|
|
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
|
|
case DeclSpec::TSW_short: Result = Context.ShortTy; break;
|
|
case DeclSpec::TSW_long: Result = Context.LongTy; break;
|
|
case DeclSpec::TSW_longlong:
|
|
Result = Context.LongLongTy;
|
|
|
|
// 'long long' is a C99 or C++11 feature.
|
|
if (!S.getLangOpts().C99) {
|
|
if (S.getLangOpts().CPlusPlus)
|
|
S.Diag(DS.getTypeSpecWidthLoc(),
|
|
S.getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
|
|
else
|
|
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
|
|
case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
|
|
case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
|
|
case DeclSpec::TSW_longlong:
|
|
Result = Context.UnsignedLongLongTy;
|
|
|
|
// 'long long' is a C99 or C++11 feature.
|
|
if (!S.getLangOpts().C99) {
|
|
if (S.getLangOpts().CPlusPlus)
|
|
S.Diag(DS.getTypeSpecWidthLoc(),
|
|
S.getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
|
|
else
|
|
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DeclSpec::TST_int128:
|
|
if (!S.PP.getTargetInfo().hasInt128Type())
|
|
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
|
|
Result = Context.UnsignedInt128Ty;
|
|
else
|
|
Result = Context.Int128Ty;
|
|
break;
|
|
case DeclSpec::TST_half: Result = Context.HalfTy; break;
|
|
case DeclSpec::TST_float: Result = Context.FloatTy; break;
|
|
case DeclSpec::TST_double:
|
|
if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
|
|
Result = Context.LongDoubleTy;
|
|
else
|
|
Result = Context.DoubleTy;
|
|
|
|
if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
|
|
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
|
|
declarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
|
|
case DeclSpec::TST_decimal32: // _Decimal32
|
|
case DeclSpec::TST_decimal64: // _Decimal64
|
|
case DeclSpec::TST_decimal128: // _Decimal128
|
|
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
break;
|
|
case DeclSpec::TST_class:
|
|
case DeclSpec::TST_enum:
|
|
case DeclSpec::TST_union:
|
|
case DeclSpec::TST_struct:
|
|
case DeclSpec::TST_interface: {
|
|
TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
|
|
if (!D) {
|
|
// This can happen in C++ with ambiguous lookups.
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
break;
|
|
}
|
|
|
|
// If the type is deprecated or unavailable, diagnose it.
|
|
S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
|
|
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
|
|
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTypeDeclType(D);
|
|
|
|
// In both C and C++, make an ElaboratedType.
|
|
ElaboratedTypeKeyword Keyword
|
|
= ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
|
|
Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
|
|
break;
|
|
}
|
|
case DeclSpec::TST_typename: {
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 &&
|
|
"Can't handle qualifiers on typedef names yet!");
|
|
Result = S.GetTypeFromParser(DS.getRepAsType());
|
|
if (Result.isNull())
|
|
declarator.setInvalidType(true);
|
|
else if (DeclSpec::ProtocolQualifierListTy PQ
|
|
= DS.getProtocolQualifiers()) {
|
|
if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
|
|
// Silently drop any existing protocol qualifiers.
|
|
// TODO: determine whether that's the right thing to do.
|
|
if (ObjT->getNumProtocols())
|
|
Result = ObjT->getBaseType();
|
|
|
|
if (DS.getNumProtocolQualifiers())
|
|
Result = Context.getObjCObjectType(Result,
|
|
(ObjCProtocolDecl*const*) PQ,
|
|
DS.getNumProtocolQualifiers());
|
|
} else if (Result->isObjCIdType()) {
|
|
// id<protocol-list>
|
|
Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
|
|
(ObjCProtocolDecl*const*) PQ,
|
|
DS.getNumProtocolQualifiers());
|
|
Result = Context.getObjCObjectPointerType(Result);
|
|
} else if (Result->isObjCClassType()) {
|
|
// Class<protocol-list>
|
|
Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
|
|
(ObjCProtocolDecl*const*) PQ,
|
|
DS.getNumProtocolQualifiers());
|
|
Result = Context.getObjCObjectPointerType(Result);
|
|
} else {
|
|
S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
|
|
<< DS.getSourceRange();
|
|
declarator.setInvalidType(true);
|
|
}
|
|
}
|
|
|
|
// TypeQuals handled by caller.
|
|
break;
|
|
}
|
|
case DeclSpec::TST_typeofType:
|
|
// FIXME: Preserve type source info.
|
|
Result = S.GetTypeFromParser(DS.getRepAsType());
|
|
assert(!Result.isNull() && "Didn't get a type for typeof?");
|
|
if (!Result->isDependentType())
|
|
if (const TagType *TT = Result->getAs<TagType>())
|
|
S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getTypeOfType(Result);
|
|
break;
|
|
case DeclSpec::TST_typeofExpr: {
|
|
Expr *E = DS.getRepAsExpr();
|
|
assert(E && "Didn't get an expression for typeof?");
|
|
// TypeQuals handled by caller.
|
|
Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
|
|
if (Result.isNull()) {
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
}
|
|
case DeclSpec::TST_decltype: {
|
|
Expr *E = DS.getRepAsExpr();
|
|
assert(E && "Didn't get an expression for decltype?");
|
|
// TypeQuals handled by caller.
|
|
Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
|
|
if (Result.isNull()) {
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
}
|
|
case DeclSpec::TST_underlyingType:
|
|
Result = S.GetTypeFromParser(DS.getRepAsType());
|
|
assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
|
|
Result = S.BuildUnaryTransformType(Result,
|
|
UnaryTransformType::EnumUnderlyingType,
|
|
DS.getTypeSpecTypeLoc());
|
|
if (Result.isNull()) {
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
|
|
case DeclSpec::TST_auto: {
|
|
// TypeQuals handled by caller.
|
|
Result = Context.getAutoType(QualType());
|
|
break;
|
|
}
|
|
|
|
case DeclSpec::TST_unknown_anytype:
|
|
Result = Context.UnknownAnyTy;
|
|
break;
|
|
|
|
case DeclSpec::TST_atomic:
|
|
Result = S.GetTypeFromParser(DS.getRepAsType());
|
|
assert(!Result.isNull() && "Didn't get a type for _Atomic?");
|
|
Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
|
|
if (Result.isNull()) {
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
}
|
|
break;
|
|
|
|
case DeclSpec::TST_image1d_t:
|
|
Result = Context.OCLImage1dTy;
|
|
break;
|
|
|
|
case DeclSpec::TST_image1d_array_t:
|
|
Result = Context.OCLImage1dArrayTy;
|
|
break;
|
|
|
|
case DeclSpec::TST_image1d_buffer_t:
|
|
Result = Context.OCLImage1dBufferTy;
|
|
break;
|
|
|
|
case DeclSpec::TST_image2d_t:
|
|
Result = Context.OCLImage2dTy;
|
|
break;
|
|
|
|
case DeclSpec::TST_image2d_array_t:
|
|
Result = Context.OCLImage2dArrayTy;
|
|
break;
|
|
|
|
case DeclSpec::TST_image3d_t:
|
|
Result = Context.OCLImage3dTy;
|
|
break;
|
|
|
|
case DeclSpec::TST_sampler_t:
|
|
Result = Context.OCLSamplerTy;
|
|
break;
|
|
|
|
case DeclSpec::TST_event_t:
|
|
Result = Context.OCLEventTy;
|
|
break;
|
|
|
|
case DeclSpec::TST_error:
|
|
Result = Context.IntTy;
|
|
declarator.setInvalidType(true);
|
|
break;
|
|
}
|
|
|
|
// Handle complex types.
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
|
|
if (S.getLangOpts().Freestanding)
|
|
S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
|
|
Result = Context.getComplexType(Result);
|
|
} else if (DS.isTypeAltiVecVector()) {
|
|
unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
|
|
assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
|
|
VectorType::VectorKind VecKind = VectorType::AltiVecVector;
|
|
if (DS.isTypeAltiVecPixel())
|
|
VecKind = VectorType::AltiVecPixel;
|
|
else if (DS.isTypeAltiVecBool())
|
|
VecKind = VectorType::AltiVecBool;
|
|
Result = Context.getVectorType(Result, 128/typeSize, VecKind);
|
|
}
|
|
|
|
// FIXME: Imaginary.
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
|
|
S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
|
|
|
|
// Before we process any type attributes, synthesize a block literal
|
|
// function declarator if necessary.
|
|
if (declarator.getContext() == Declarator::BlockLiteralContext)
|
|
maybeSynthesizeBlockSignature(state, Result);
|
|
|
|
// Apply any type attributes from the decl spec. This may cause the
|
|
// list of type attributes to be temporarily saved while the type
|
|
// attributes are pushed around.
|
|
if (AttributeList *attrs = DS.getAttributes().getList())
|
|
processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
|
|
|
|
// Apply const/volatile/restrict qualifiers to T.
|
|
if (unsigned TypeQuals = DS.getTypeQualifiers()) {
|
|
|
|
// Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
|
|
// of a function type includes any type qualifiers, the behavior is
|
|
// undefined."
|
|
if (Result->isFunctionType() && TypeQuals) {
|
|
if (TypeQuals & DeclSpec::TQ_const)
|
|
S.Diag(DS.getConstSpecLoc(), diag::warn_typecheck_function_qualifiers)
|
|
<< Result << DS.getSourceRange();
|
|
else if (TypeQuals & DeclSpec::TQ_volatile)
|
|
S.Diag(DS.getVolatileSpecLoc(), diag::warn_typecheck_function_qualifiers)
|
|
<< Result << DS.getSourceRange();
|
|
else {
|
|
assert((TypeQuals & (DeclSpec::TQ_restrict | DeclSpec::TQ_atomic)) &&
|
|
"Has CVRA quals but not C, V, R, or A?");
|
|
// No diagnostic; we'll diagnose 'restrict' or '_Atomic' applied to a
|
|
// function type later, in BuildQualifiedType.
|
|
}
|
|
}
|
|
|
|
// C++ [dcl.ref]p1:
|
|
// Cv-qualified references are ill-formed except when the
|
|
// cv-qualifiers are introduced through the use of a typedef
|
|
// (7.1.3) or of a template type argument (14.3), in which
|
|
// case the cv-qualifiers are ignored.
|
|
// FIXME: Shouldn't we be checking SCS_typedef here?
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
|
|
TypeQuals && Result->isReferenceType()) {
|
|
TypeQuals &= ~DeclSpec::TQ_const;
|
|
TypeQuals &= ~DeclSpec::TQ_volatile;
|
|
TypeQuals &= ~DeclSpec::TQ_atomic;
|
|
}
|
|
|
|
// C90 6.5.3 constraints: "The same type qualifier shall not appear more
|
|
// than once in the same specifier-list or qualifier-list, either directly
|
|
// or via one or more typedefs."
|
|
if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
|
|
&& TypeQuals & Result.getCVRQualifiers()) {
|
|
if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
|
|
S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
|
|
<< "const";
|
|
}
|
|
|
|
if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
|
|
S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
|
|
<< "volatile";
|
|
}
|
|
|
|
// C90 doesn't have restrict nor _Atomic, so it doesn't force us to
|
|
// produce a warning in this case.
|
|
}
|
|
|
|
QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
|
|
|
|
// If adding qualifiers fails, just use the unqualified type.
|
|
if (Qualified.isNull())
|
|
declarator.setInvalidType(true);
|
|
else
|
|
Result = Qualified;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
static std::string getPrintableNameForEntity(DeclarationName Entity) {
|
|
if (Entity)
|
|
return Entity.getAsString();
|
|
|
|
return "type name";
|
|
}
|
|
|
|
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
|
|
Qualifiers Qs, const DeclSpec *DS) {
|
|
// Enforce C99 6.7.3p2: "Types other than pointer types derived from
|
|
// object or incomplete types shall not be restrict-qualified."
|
|
if (Qs.hasRestrict()) {
|
|
unsigned DiagID = 0;
|
|
QualType ProblemTy;
|
|
|
|
if (T->isAnyPointerType() || T->isReferenceType() ||
|
|
T->isMemberPointerType()) {
|
|
QualType EltTy;
|
|
if (T->isObjCObjectPointerType())
|
|
EltTy = T;
|
|
else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
|
|
EltTy = PTy->getPointeeType();
|
|
else
|
|
EltTy = T->getPointeeType();
|
|
|
|
// If we have a pointer or reference, the pointee must have an object
|
|
// incomplete type.
|
|
if (!EltTy->isIncompleteOrObjectType()) {
|
|
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
|
|
ProblemTy = EltTy;
|
|
}
|
|
} else if (!T->isDependentType()) {
|
|
DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
|
|
ProblemTy = T;
|
|
}
|
|
|
|
if (DiagID) {
|
|
Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
|
|
Qs.removeRestrict();
|
|
}
|
|
}
|
|
|
|
return Context.getQualifiedType(T, Qs);
|
|
}
|
|
|
|
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
|
|
unsigned CVRA, const DeclSpec *DS) {
|
|
// Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
|
|
unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
|
|
|
|
// C11 6.7.3/5:
|
|
// If the same qualifier appears more than once in the same
|
|
// specifier-qualifier-list, either directly or via one or more typedefs,
|
|
// the behavior is the same as if it appeared only once.
|
|
//
|
|
// It's not specified what happens when the _Atomic qualifier is applied to
|
|
// a type specified with the _Atomic specifier, but we assume that this
|
|
// should be treated as if the _Atomic qualifier appeared multiple times.
|
|
if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
|
|
// C11 6.7.3/5:
|
|
// If other qualifiers appear along with the _Atomic qualifier in a
|
|
// specifier-qualifier-list, the resulting type is the so-qualified
|
|
// atomic type.
|
|
//
|
|
// Don't need to worry about array types here, since _Atomic can't be
|
|
// applied to such types.
|
|
SplitQualType Split = T.getSplitUnqualifiedType();
|
|
T = BuildAtomicType(QualType(Split.Ty, 0),
|
|
DS ? DS->getAtomicSpecLoc() : Loc);
|
|
if (T.isNull())
|
|
return T;
|
|
Split.Quals.addCVRQualifiers(CVR);
|
|
return BuildQualifiedType(T, Loc, Split.Quals);
|
|
}
|
|
|
|
return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
|
|
}
|
|
|
|
/// \brief Build a paren type including \p T.
|
|
QualType Sema::BuildParenType(QualType T) {
|
|
return Context.getParenType(T);
|
|
}
|
|
|
|
/// Given that we're building a pointer or reference to the given
|
|
static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
|
|
SourceLocation loc,
|
|
bool isReference) {
|
|
// Bail out if retention is unrequired or already specified.
|
|
if (!type->isObjCLifetimeType() ||
|
|
type.getObjCLifetime() != Qualifiers::OCL_None)
|
|
return type;
|
|
|
|
Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
|
|
|
|
// If the object type is const-qualified, we can safely use
|
|
// __unsafe_unretained. This is safe (because there are no read
|
|
// barriers), and it'll be safe to coerce anything but __weak* to
|
|
// the resulting type.
|
|
if (type.isConstQualified()) {
|
|
implicitLifetime = Qualifiers::OCL_ExplicitNone;
|
|
|
|
// Otherwise, check whether the static type does not require
|
|
// retaining. This currently only triggers for Class (possibly
|
|
// protocol-qualifed, and arrays thereof).
|
|
} else if (type->isObjCARCImplicitlyUnretainedType()) {
|
|
implicitLifetime = Qualifiers::OCL_ExplicitNone;
|
|
|
|
// If we are in an unevaluated context, like sizeof, skip adding a
|
|
// qualification.
|
|
} else if (S.isUnevaluatedContext()) {
|
|
return type;
|
|
|
|
// If that failed, give an error and recover using __strong. __strong
|
|
// is the option most likely to prevent spurious second-order diagnostics,
|
|
// like when binding a reference to a field.
|
|
} else {
|
|
// These types can show up in private ivars in system headers, so
|
|
// we need this to not be an error in those cases. Instead we
|
|
// want to delay.
|
|
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
|
|
S.DelayedDiagnostics.add(
|
|
sema::DelayedDiagnostic::makeForbiddenType(loc,
|
|
diag::err_arc_indirect_no_ownership, type, isReference));
|
|
} else {
|
|
S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
|
|
}
|
|
implicitLifetime = Qualifiers::OCL_Strong;
|
|
}
|
|
assert(implicitLifetime && "didn't infer any lifetime!");
|
|
|
|
Qualifiers qs;
|
|
qs.addObjCLifetime(implicitLifetime);
|
|
return S.Context.getQualifiedType(type, qs);
|
|
}
|
|
|
|
/// \brief Build a pointer type.
|
|
///
|
|
/// \param T The type to which we'll be building a pointer.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// pointer type or, if there is no such entity, the location of the
|
|
/// type that will have pointer type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the pointer
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable pointer type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildPointerType(QualType T,
|
|
SourceLocation Loc, DeclarationName Entity) {
|
|
if (T->isReferenceType()) {
|
|
// C++ 8.3.2p4: There shall be no ... pointers to references ...
|
|
Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
|
|
|
|
// In ARC, it is forbidden to build pointers to unqualified pointers.
|
|
if (getLangOpts().ObjCAutoRefCount)
|
|
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
|
|
|
|
// Build the pointer type.
|
|
return Context.getPointerType(T);
|
|
}
|
|
|
|
/// \brief Build a reference type.
|
|
///
|
|
/// \param T The type to which we'll be building a reference.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// reference type or, if there is no such entity, the location of the
|
|
/// type that will have reference type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the reference
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable reference type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity) {
|
|
assert(Context.getCanonicalType(T) != Context.OverloadTy &&
|
|
"Unresolved overloaded function type");
|
|
|
|
// C++0x [dcl.ref]p6:
|
|
// If a typedef (7.1.3), a type template-parameter (14.3.1), or a
|
|
// decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
|
|
// type T, an attempt to create the type "lvalue reference to cv TR" creates
|
|
// the type "lvalue reference to T", while an attempt to create the type
|
|
// "rvalue reference to cv TR" creates the type TR.
|
|
bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
|
|
|
|
// C++ [dcl.ref]p4: There shall be no references to references.
|
|
//
|
|
// According to C++ DR 106, references to references are only
|
|
// diagnosed when they are written directly (e.g., "int & &"),
|
|
// but not when they happen via a typedef:
|
|
//
|
|
// typedef int& intref;
|
|
// typedef intref& intref2;
|
|
//
|
|
// Parser::ParseDeclaratorInternal diagnoses the case where
|
|
// references are written directly; here, we handle the
|
|
// collapsing of references-to-references as described in C++0x.
|
|
// DR 106 and 540 introduce reference-collapsing into C++98/03.
|
|
|
|
// C++ [dcl.ref]p1:
|
|
// A declarator that specifies the type "reference to cv void"
|
|
// is ill-formed.
|
|
if (T->isVoidType()) {
|
|
Diag(Loc, diag::err_reference_to_void);
|
|
return QualType();
|
|
}
|
|
|
|
// In ARC, it is forbidden to build references to unqualified pointers.
|
|
if (getLangOpts().ObjCAutoRefCount)
|
|
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
|
|
|
|
// Handle restrict on references.
|
|
if (LValueRef)
|
|
return Context.getLValueReferenceType(T, SpelledAsLValue);
|
|
return Context.getRValueReferenceType(T);
|
|
}
|
|
|
|
/// Check whether the specified array size makes the array type a VLA. If so,
|
|
/// return true, if not, return the size of the array in SizeVal.
|
|
static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
|
|
// If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
|
|
// (like gnu99, but not c99) accept any evaluatable value as an extension.
|
|
class VLADiagnoser : public Sema::VerifyICEDiagnoser {
|
|
public:
|
|
VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
|
|
|
|
virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
|
|
}
|
|
|
|
virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
|
|
S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
|
|
}
|
|
} Diagnoser;
|
|
|
|
return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
|
|
S.LangOpts.GNUMode).isInvalid();
|
|
}
|
|
|
|
|
|
/// \brief Build an array type.
|
|
///
|
|
/// \param T The type of each element in the array.
|
|
///
|
|
/// \param ASM C99 array size modifier (e.g., '*', 'static').
|
|
///
|
|
/// \param ArraySize Expression describing the size of the array.
|
|
///
|
|
/// \param Brackets The range from the opening '[' to the closing ']'.
|
|
///
|
|
/// \param Entity The name of the entity that involves the array
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable array type, if there are no errors. Otherwise,
|
|
/// returns a NULL type.
|
|
QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
|
|
Expr *ArraySize, unsigned Quals,
|
|
SourceRange Brackets, DeclarationName Entity) {
|
|
|
|
SourceLocation Loc = Brackets.getBegin();
|
|
if (getLangOpts().CPlusPlus) {
|
|
// C++ [dcl.array]p1:
|
|
// T is called the array element type; this type shall not be a reference
|
|
// type, the (possibly cv-qualified) type void, a function type or an
|
|
// abstract class type.
|
|
//
|
|
// C++ [dcl.array]p3:
|
|
// When several "array of" specifications are adjacent, [...] only the
|
|
// first of the constant expressions that specify the bounds of the arrays
|
|
// may be omitted.
|
|
//
|
|
// Note: function types are handled in the common path with C.
|
|
if (T->isReferenceType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_of_references)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (T->isVoidType() || T->isIncompleteArrayType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (RequireNonAbstractType(Brackets.getBegin(), T,
|
|
diag::err_array_of_abstract_type))
|
|
return QualType();
|
|
|
|
} else {
|
|
// C99 6.7.5.2p1: If the element type is an incomplete or function type,
|
|
// reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
|
|
if (RequireCompleteType(Loc, T,
|
|
diag::err_illegal_decl_array_incomplete_type))
|
|
return QualType();
|
|
}
|
|
|
|
if (T->isFunctionType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_of_functions)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (T->getContainedAutoType()) {
|
|
Diag(Loc, diag::err_illegal_decl_array_of_auto)
|
|
<< getPrintableNameForEntity(Entity) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (const RecordType *EltTy = T->getAs<RecordType>()) {
|
|
// If the element type is a struct or union that contains a variadic
|
|
// array, accept it as a GNU extension: C99 6.7.2.1p2.
|
|
if (EltTy->getDecl()->hasFlexibleArrayMember())
|
|
Diag(Loc, diag::ext_flexible_array_in_array) << T;
|
|
} else if (T->isObjCObjectType()) {
|
|
Diag(Loc, diag::err_objc_array_of_interfaces) << T;
|
|
return QualType();
|
|
}
|
|
|
|
// Do placeholder conversions on the array size expression.
|
|
if (ArraySize && ArraySize->hasPlaceholderType()) {
|
|
ExprResult Result = CheckPlaceholderExpr(ArraySize);
|
|
if (Result.isInvalid()) return QualType();
|
|
ArraySize = Result.take();
|
|
}
|
|
|
|
// Do lvalue-to-rvalue conversions on the array size expression.
|
|
if (ArraySize && !ArraySize->isRValue()) {
|
|
ExprResult Result = DefaultLvalueConversion(ArraySize);
|
|
if (Result.isInvalid())
|
|
return QualType();
|
|
|
|
ArraySize = Result.take();
|
|
}
|
|
|
|
// C99 6.7.5.2p1: The size expression shall have integer type.
|
|
// C++11 allows contextual conversions to such types.
|
|
if (!getLangOpts().CPlusPlus11 &&
|
|
ArraySize && !ArraySize->isTypeDependent() &&
|
|
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
|
|
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
|
|
<< ArraySize->getType() << ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
|
|
if (!ArraySize) {
|
|
if (ASM == ArrayType::Star)
|
|
T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
|
|
else
|
|
T = Context.getIncompleteArrayType(T, ASM, Quals);
|
|
} else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
|
|
T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
|
|
} else if ((!T->isDependentType() && !T->isIncompleteType() &&
|
|
!T->isConstantSizeType()) ||
|
|
isArraySizeVLA(*this, ArraySize, ConstVal)) {
|
|
// Even in C++11, don't allow contextual conversions in the array bound
|
|
// of a VLA.
|
|
if (getLangOpts().CPlusPlus11 &&
|
|
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
|
|
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
|
|
<< ArraySize->getType() << ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// C99: an array with an element type that has a non-constant-size is a VLA.
|
|
// C99: an array with a non-ICE size is a VLA. We accept any expression
|
|
// that we can fold to a non-zero positive value as an extension.
|
|
T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
|
|
} else {
|
|
// C99 6.7.5.2p1: If the expression is a constant expression, it shall
|
|
// have a value greater than zero.
|
|
if (ConstVal.isSigned() && ConstVal.isNegative()) {
|
|
if (Entity)
|
|
Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
|
|
<< getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
|
|
else
|
|
Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
|
|
<< ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
if (ConstVal == 0) {
|
|
// GCC accepts zero sized static arrays. We allow them when
|
|
// we're not in a SFINAE context.
|
|
Diag(ArraySize->getLocStart(),
|
|
isSFINAEContext()? diag::err_typecheck_zero_array_size
|
|
: diag::ext_typecheck_zero_array_size)
|
|
<< ArraySize->getSourceRange();
|
|
|
|
if (ASM == ArrayType::Static) {
|
|
Diag(ArraySize->getLocStart(),
|
|
diag::warn_typecheck_zero_static_array_size)
|
|
<< ArraySize->getSourceRange();
|
|
ASM = ArrayType::Normal;
|
|
}
|
|
} else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
|
|
!T->isIncompleteType()) {
|
|
// Is the array too large?
|
|
unsigned ActiveSizeBits
|
|
= ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
|
|
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
|
|
Diag(ArraySize->getLocStart(), diag::err_array_too_large)
|
|
<< ConstVal.toString(10)
|
|
<< ArraySize->getSourceRange();
|
|
}
|
|
|
|
T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
|
|
}
|
|
|
|
// OpenCL v1.2 s6.9.d: variable length arrays are not supported.
|
|
if (getLangOpts().OpenCL && T->isVariableArrayType()) {
|
|
Diag(Loc, diag::err_opencl_vla);
|
|
return QualType();
|
|
}
|
|
// If this is not C99, extwarn about VLA's and C99 array size modifiers.
|
|
if (!getLangOpts().C99) {
|
|
if (T->isVariableArrayType()) {
|
|
// Prohibit the use of non-POD types in VLAs.
|
|
QualType BaseT = Context.getBaseElementType(T);
|
|
if (!T->isDependentType() &&
|
|
!BaseT.isPODType(Context) &&
|
|
!BaseT->isObjCLifetimeType()) {
|
|
Diag(Loc, diag::err_vla_non_pod)
|
|
<< BaseT;
|
|
return QualType();
|
|
}
|
|
// Prohibit the use of VLAs during template argument deduction.
|
|
else if (isSFINAEContext()) {
|
|
Diag(Loc, diag::err_vla_in_sfinae);
|
|
return QualType();
|
|
}
|
|
// Just extwarn about VLAs.
|
|
else
|
|
Diag(Loc, diag::ext_vla);
|
|
} else if (ASM != ArrayType::Normal || Quals != 0)
|
|
Diag(Loc,
|
|
getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
|
|
: diag::ext_c99_array_usage) << ASM;
|
|
}
|
|
|
|
if (T->isVariableArrayType()) {
|
|
// Warn about VLAs for -Wvla.
|
|
Diag(Loc, diag::warn_vla_used);
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
/// \brief Build an ext-vector type.
|
|
///
|
|
/// Run the required checks for the extended vector type.
|
|
QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
|
|
SourceLocation AttrLoc) {
|
|
// unlike gcc's vector_size attribute, we do not allow vectors to be defined
|
|
// in conjunction with complex types (pointers, arrays, functions, etc.).
|
|
if (!T->isDependentType() &&
|
|
!T->isIntegerType() && !T->isRealFloatingType()) {
|
|
Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
|
|
llvm::APSInt vecSize(32);
|
|
if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
|
|
Diag(AttrLoc, diag::err_attribute_argument_not_int)
|
|
<< "ext_vector_type" << ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// unlike gcc's vector_size attribute, the size is specified as the
|
|
// number of elements, not the number of bytes.
|
|
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
|
|
|
|
if (vectorSize == 0) {
|
|
Diag(AttrLoc, diag::err_attribute_zero_size)
|
|
<< ArraySize->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
return Context.getExtVectorType(T, vectorSize);
|
|
}
|
|
|
|
return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
|
|
}
|
|
|
|
QualType Sema::BuildFunctionType(QualType T,
|
|
llvm::MutableArrayRef<QualType> ParamTypes,
|
|
SourceLocation Loc, DeclarationName Entity,
|
|
const FunctionProtoType::ExtProtoInfo &EPI) {
|
|
if (T->isArrayType() || T->isFunctionType()) {
|
|
Diag(Loc, diag::err_func_returning_array_function)
|
|
<< T->isFunctionType() << T;
|
|
return QualType();
|
|
}
|
|
|
|
// Functions cannot return half FP.
|
|
if (T->isHalfType()) {
|
|
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
|
|
FixItHint::CreateInsertion(Loc, "*");
|
|
return QualType();
|
|
}
|
|
|
|
bool Invalid = false;
|
|
for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
|
|
// FIXME: Loc is too inprecise here, should use proper locations for args.
|
|
QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
|
|
if (ParamType->isVoidType()) {
|
|
Diag(Loc, diag::err_param_with_void_type);
|
|
Invalid = true;
|
|
} else if (ParamType->isHalfType()) {
|
|
// Disallow half FP arguments.
|
|
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
|
|
FixItHint::CreateInsertion(Loc, "*");
|
|
Invalid = true;
|
|
}
|
|
|
|
ParamTypes[Idx] = ParamType;
|
|
}
|
|
|
|
if (Invalid)
|
|
return QualType();
|
|
|
|
return Context.getFunctionType(T, ParamTypes, EPI);
|
|
}
|
|
|
|
/// \brief Build a member pointer type \c T Class::*.
|
|
///
|
|
/// \param T the type to which the member pointer refers.
|
|
/// \param Class the class type into which the member pointer points.
|
|
/// \param Loc the location where this type begins
|
|
/// \param Entity the name of the entity that will have this member pointer type
|
|
///
|
|
/// \returns a member pointer type, if successful, or a NULL type if there was
|
|
/// an error.
|
|
QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity) {
|
|
// Verify that we're not building a pointer to pointer to function with
|
|
// exception specification.
|
|
if (CheckDistantExceptionSpec(T)) {
|
|
Diag(Loc, diag::err_distant_exception_spec);
|
|
|
|
// FIXME: If we're doing this as part of template instantiation,
|
|
// we should return immediately.
|
|
|
|
// Build the type anyway, but use the canonical type so that the
|
|
// exception specifiers are stripped off.
|
|
T = Context.getCanonicalType(T);
|
|
}
|
|
|
|
// C++ 8.3.3p3: A pointer to member shall not point to ... a member
|
|
// with reference type, or "cv void."
|
|
if (T->isReferenceType()) {
|
|
Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
|
|
<< (Entity? Entity.getAsString() : "type name") << T;
|
|
return QualType();
|
|
}
|
|
|
|
if (T->isVoidType()) {
|
|
Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
|
|
<< (Entity? Entity.getAsString() : "type name");
|
|
return QualType();
|
|
}
|
|
|
|
if (!Class->isDependentType() && !Class->isRecordType()) {
|
|
Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
|
|
return QualType();
|
|
}
|
|
|
|
// C++ allows the class type in a member pointer to be an incomplete type.
|
|
// In the Microsoft ABI, the size of the member pointer can vary
|
|
// according to the class type, which means that we really need a
|
|
// complete type if possible, which means we need to instantiate templates.
|
|
//
|
|
// If template instantiation fails or the type is just incomplete, we have to
|
|
// add an extra slot to the member pointer. Yes, this does cause problems
|
|
// when passing pointers between TUs that disagree about the size.
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
CXXRecordDecl *RD = Class->getAsCXXRecordDecl();
|
|
if (RD && !RD->hasAttr<MSInheritanceAttr>()) {
|
|
// Lock in the inheritance model on the first use of a member pointer.
|
|
// Otherwise we may disagree about the size at different points in the TU.
|
|
// FIXME: MSVC picks a model on the first use that needs to know the size,
|
|
// rather than on the first mention of the type, e.g. typedefs.
|
|
if (RequireCompleteType(Loc, Class, 0) && !RD->isBeingDefined()) {
|
|
// We know it doesn't have an attribute and it's incomplete, so use the
|
|
// unspecified inheritance model. If we're in the record body, we can
|
|
// figure out the inheritance model.
|
|
for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
|
|
E = RD->redecls_end(); I != E; ++I) {
|
|
I->addAttr(::new (Context) UnspecifiedInheritanceAttr(
|
|
RD->getSourceRange(), Context));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Context.getMemberPointerType(T, Class.getTypePtr());
|
|
}
|
|
|
|
/// \brief Build a block pointer type.
|
|
///
|
|
/// \param T The type to which we'll be building a block pointer.
|
|
///
|
|
/// \param Loc The source location, used for diagnostics.
|
|
///
|
|
/// \param Entity The name of the entity that involves the block pointer
|
|
/// type, if known.
|
|
///
|
|
/// \returns A suitable block pointer type, if there are no
|
|
/// errors. Otherwise, returns a NULL type.
|
|
QualType Sema::BuildBlockPointerType(QualType T,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity) {
|
|
if (!T->isFunctionType()) {
|
|
Diag(Loc, diag::err_nonfunction_block_type);
|
|
return QualType();
|
|
}
|
|
|
|
return Context.getBlockPointerType(T);
|
|
}
|
|
|
|
QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
|
|
QualType QT = Ty.get();
|
|
if (QT.isNull()) {
|
|
if (TInfo) *TInfo = 0;
|
|
return QualType();
|
|
}
|
|
|
|
TypeSourceInfo *DI = 0;
|
|
if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
|
|
QT = LIT->getType();
|
|
DI = LIT->getTypeSourceInfo();
|
|
}
|
|
|
|
if (TInfo) *TInfo = DI;
|
|
return QT;
|
|
}
|
|
|
|
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
|
|
Qualifiers::ObjCLifetime ownership,
|
|
unsigned chunkIndex);
|
|
|
|
/// Given that this is the declaration of a parameter under ARC,
|
|
/// attempt to infer attributes and such for pointer-to-whatever
|
|
/// types.
|
|
static void inferARCWriteback(TypeProcessingState &state,
|
|
QualType &declSpecType) {
|
|
Sema &S = state.getSema();
|
|
Declarator &declarator = state.getDeclarator();
|
|
|
|
// TODO: should we care about decl qualifiers?
|
|
|
|
// Check whether the declarator has the expected form. We walk
|
|
// from the inside out in order to make the block logic work.
|
|
unsigned outermostPointerIndex = 0;
|
|
bool isBlockPointer = false;
|
|
unsigned numPointers = 0;
|
|
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
|
|
unsigned chunkIndex = i;
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
// Ignore parens.
|
|
break;
|
|
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::Pointer:
|
|
// Count the number of pointers. Treat references
|
|
// interchangeably as pointers; if they're mis-ordered, normal
|
|
// type building will discover that.
|
|
outermostPointerIndex = chunkIndex;
|
|
numPointers++;
|
|
break;
|
|
|
|
case DeclaratorChunk::BlockPointer:
|
|
// If we have a pointer to block pointer, that's an acceptable
|
|
// indirect reference; anything else is not an application of
|
|
// the rules.
|
|
if (numPointers != 1) return;
|
|
numPointers++;
|
|
outermostPointerIndex = chunkIndex;
|
|
isBlockPointer = true;
|
|
|
|
// We don't care about pointer structure in return values here.
|
|
goto done;
|
|
|
|
case DeclaratorChunk::Array: // suppress if written (id[])?
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::MemberPointer:
|
|
return;
|
|
}
|
|
}
|
|
done:
|
|
|
|
// If we have *one* pointer, then we want to throw the qualifier on
|
|
// the declaration-specifiers, which means that it needs to be a
|
|
// retainable object type.
|
|
if (numPointers == 1) {
|
|
// If it's not a retainable object type, the rule doesn't apply.
|
|
if (!declSpecType->isObjCRetainableType()) return;
|
|
|
|
// If it already has lifetime, don't do anything.
|
|
if (declSpecType.getObjCLifetime()) return;
|
|
|
|
// Otherwise, modify the type in-place.
|
|
Qualifiers qs;
|
|
|
|
if (declSpecType->isObjCARCImplicitlyUnretainedType())
|
|
qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
|
|
else
|
|
qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
|
|
declSpecType = S.Context.getQualifiedType(declSpecType, qs);
|
|
|
|
// If we have *two* pointers, then we want to throw the qualifier on
|
|
// the outermost pointer.
|
|
} else if (numPointers == 2) {
|
|
// If we don't have a block pointer, we need to check whether the
|
|
// declaration-specifiers gave us something that will turn into a
|
|
// retainable object pointer after we slap the first pointer on it.
|
|
if (!isBlockPointer && !declSpecType->isObjCObjectType())
|
|
return;
|
|
|
|
// Look for an explicit lifetime attribute there.
|
|
DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
|
|
if (chunk.Kind != DeclaratorChunk::Pointer &&
|
|
chunk.Kind != DeclaratorChunk::BlockPointer)
|
|
return;
|
|
for (const AttributeList *attr = chunk.getAttrs(); attr;
|
|
attr = attr->getNext())
|
|
if (attr->getKind() == AttributeList::AT_ObjCOwnership)
|
|
return;
|
|
|
|
transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
|
|
outermostPointerIndex);
|
|
|
|
// Any other number of pointers/references does not trigger the rule.
|
|
} else return;
|
|
|
|
// TODO: mark whether we did this inference?
|
|
}
|
|
|
|
static void diagnoseIgnoredQualifiers(
|
|
Sema &S, unsigned Quals,
|
|
SourceLocation FallbackLoc,
|
|
SourceLocation ConstQualLoc = SourceLocation(),
|
|
SourceLocation VolatileQualLoc = SourceLocation(),
|
|
SourceLocation RestrictQualLoc = SourceLocation(),
|
|
SourceLocation AtomicQualLoc = SourceLocation()) {
|
|
if (!Quals)
|
|
return;
|
|
|
|
const SourceManager &SM = S.getSourceManager();
|
|
|
|
struct Qual {
|
|
unsigned Mask;
|
|
const char *Name;
|
|
SourceLocation Loc;
|
|
} const QualKinds[4] = {
|
|
{ DeclSpec::TQ_const, "const", ConstQualLoc },
|
|
{ DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
|
|
{ DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
|
|
{ DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
|
|
};
|
|
|
|
llvm::SmallString<32> QualStr;
|
|
unsigned NumQuals = 0;
|
|
SourceLocation Loc;
|
|
FixItHint FixIts[4];
|
|
|
|
// Build a string naming the redundant qualifiers.
|
|
for (unsigned I = 0; I != 4; ++I) {
|
|
if (Quals & QualKinds[I].Mask) {
|
|
if (!QualStr.empty()) QualStr += ' ';
|
|
QualStr += QualKinds[I].Name;
|
|
|
|
// If we have a location for the qualifier, offer a fixit.
|
|
SourceLocation QualLoc = QualKinds[I].Loc;
|
|
if (!QualLoc.isInvalid()) {
|
|
FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
|
|
if (Loc.isInvalid() || SM.isBeforeInTranslationUnit(QualLoc, Loc))
|
|
Loc = QualLoc;
|
|
}
|
|
|
|
++NumQuals;
|
|
}
|
|
}
|
|
|
|
S.Diag(Loc.isInvalid() ? FallbackLoc : Loc, diag::warn_qual_return_type)
|
|
<< QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
|
|
}
|
|
|
|
// Diagnose pointless type qualifiers on the return type of a function.
|
|
static void diagnoseIgnoredFunctionQualifiers(Sema &S, QualType RetTy,
|
|
Declarator &D,
|
|
unsigned FunctionChunkIndex) {
|
|
if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
|
|
// FIXME: TypeSourceInfo doesn't preserve location information for
|
|
// qualifiers.
|
|
diagnoseIgnoredQualifiers(S, RetTy.getLocalCVRQualifiers(),
|
|
D.getIdentifierLoc());
|
|
return;
|
|
}
|
|
|
|
for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
|
|
End = D.getNumTypeObjects();
|
|
OuterChunkIndex != End; ++OuterChunkIndex) {
|
|
DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
|
|
switch (OuterChunk.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
continue;
|
|
|
|
case DeclaratorChunk::Pointer: {
|
|
DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
|
|
diagnoseIgnoredQualifiers(
|
|
S, PTI.TypeQuals,
|
|
SourceLocation(),
|
|
SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
|
|
SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
|
|
SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
|
|
SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
|
|
return;
|
|
}
|
|
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::MemberPointer:
|
|
// FIXME: We can't currently provide an accurate source location and a
|
|
// fix-it hint for these.
|
|
unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
|
|
diagnoseIgnoredQualifiers(S, RetTy.getCVRQualifiers() | AtomicQual,
|
|
D.getIdentifierLoc());
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("unknown declarator chunk kind");
|
|
}
|
|
|
|
// If the qualifiers come from a conversion function type, don't diagnose
|
|
// them -- they're not necessarily redundant, since such a conversion
|
|
// operator can be explicitly called as "x.operator const int()".
|
|
if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
|
|
return;
|
|
|
|
// Just parens all the way out to the decl specifiers. Diagnose any qualifiers
|
|
// which are present there.
|
|
diagnoseIgnoredQualifiers(S, D.getDeclSpec().getTypeQualifiers(),
|
|
D.getIdentifierLoc(),
|
|
D.getDeclSpec().getConstSpecLoc(),
|
|
D.getDeclSpec().getVolatileSpecLoc(),
|
|
D.getDeclSpec().getRestrictSpecLoc(),
|
|
D.getDeclSpec().getAtomicSpecLoc());
|
|
}
|
|
|
|
static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
|
|
TypeSourceInfo *&ReturnTypeInfo) {
|
|
Sema &SemaRef = state.getSema();
|
|
Declarator &D = state.getDeclarator();
|
|
QualType T;
|
|
ReturnTypeInfo = 0;
|
|
|
|
// The TagDecl owned by the DeclSpec.
|
|
TagDecl *OwnedTagDecl = 0;
|
|
|
|
switch (D.getName().getKind()) {
|
|
case UnqualifiedId::IK_ImplicitSelfParam:
|
|
case UnqualifiedId::IK_OperatorFunctionId:
|
|
case UnqualifiedId::IK_Identifier:
|
|
case UnqualifiedId::IK_LiteralOperatorId:
|
|
case UnqualifiedId::IK_TemplateId:
|
|
T = ConvertDeclSpecToType(state);
|
|
|
|
if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
|
|
OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
|
|
// Owned declaration is embedded in declarator.
|
|
OwnedTagDecl->setEmbeddedInDeclarator(true);
|
|
}
|
|
break;
|
|
|
|
case UnqualifiedId::IK_ConstructorName:
|
|
case UnqualifiedId::IK_ConstructorTemplateId:
|
|
case UnqualifiedId::IK_DestructorName:
|
|
// Constructors and destructors don't have return types. Use
|
|
// "void" instead.
|
|
T = SemaRef.Context.VoidTy;
|
|
if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
|
|
processTypeAttrs(state, T, TAL_DeclSpec, attrs);
|
|
break;
|
|
|
|
case UnqualifiedId::IK_ConversionFunctionId:
|
|
// The result type of a conversion function is the type that it
|
|
// converts to.
|
|
T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
|
|
&ReturnTypeInfo);
|
|
break;
|
|
}
|
|
|
|
if (D.getAttributes())
|
|
distributeTypeAttrsFromDeclarator(state, T);
|
|
|
|
// C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
|
|
// In C++11, a function declarator using 'auto' must have a trailing return
|
|
// type (this is checked later) and we can skip this. In other languages
|
|
// using auto, we need to check regardless.
|
|
if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
|
|
(!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
|
|
int Error = -1;
|
|
|
|
switch (D.getContext()) {
|
|
case Declarator::KNRTypeListContext:
|
|
llvm_unreachable("K&R type lists aren't allowed in C++");
|
|
case Declarator::LambdaExprContext:
|
|
llvm_unreachable("Can't specify a type specifier in lambda grammar");
|
|
case Declarator::ObjCParameterContext:
|
|
case Declarator::ObjCResultContext:
|
|
case Declarator::PrototypeContext:
|
|
Error = 0; // Function prototype
|
|
break;
|
|
case Declarator::MemberContext:
|
|
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
|
|
break;
|
|
switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
|
|
case TTK_Enum: llvm_unreachable("unhandled tag kind");
|
|
case TTK_Struct: Error = 1; /* Struct member */ break;
|
|
case TTK_Union: Error = 2; /* Union member */ break;
|
|
case TTK_Class: Error = 3; /* Class member */ break;
|
|
case TTK_Interface: Error = 4; /* Interface member */ break;
|
|
}
|
|
break;
|
|
case Declarator::CXXCatchContext:
|
|
case Declarator::ObjCCatchContext:
|
|
Error = 5; // Exception declaration
|
|
break;
|
|
case Declarator::TemplateParamContext:
|
|
Error = 6; // Template parameter
|
|
break;
|
|
case Declarator::BlockLiteralContext:
|
|
Error = 7; // Block literal
|
|
break;
|
|
case Declarator::TemplateTypeArgContext:
|
|
Error = 8; // Template type argument
|
|
break;
|
|
case Declarator::AliasDeclContext:
|
|
case Declarator::AliasTemplateContext:
|
|
Error = 10; // Type alias
|
|
break;
|
|
case Declarator::TrailingReturnContext:
|
|
Error = 11; // Function return type
|
|
break;
|
|
case Declarator::TypeNameContext:
|
|
Error = 12; // Generic
|
|
break;
|
|
case Declarator::FileContext:
|
|
case Declarator::BlockContext:
|
|
case Declarator::ForContext:
|
|
case Declarator::ConditionContext:
|
|
case Declarator::CXXNewContext:
|
|
break;
|
|
}
|
|
|
|
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
|
|
Error = 9;
|
|
|
|
// In Objective-C it is an error to use 'auto' on a function declarator.
|
|
if (D.isFunctionDeclarator())
|
|
Error = 11;
|
|
|
|
// C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
|
|
// contains a trailing return type. That is only legal at the outermost
|
|
// level. Check all declarator chunks (outermost first) anyway, to give
|
|
// better diagnostics.
|
|
if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
unsigned chunkIndex = e - i - 1;
|
|
state.setCurrentChunkIndex(chunkIndex);
|
|
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
|
|
if (DeclType.Kind == DeclaratorChunk::Function) {
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
|
|
if (FTI.hasTrailingReturnType()) {
|
|
Error = -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Error != -1) {
|
|
SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
|
|
diag::err_auto_not_allowed)
|
|
<< Error;
|
|
T = SemaRef.Context.IntTy;
|
|
D.setInvalidType(true);
|
|
} else
|
|
SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
|
|
diag::warn_cxx98_compat_auto_type_specifier);
|
|
}
|
|
|
|
if (SemaRef.getLangOpts().CPlusPlus &&
|
|
OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
|
|
// Check the contexts where C++ forbids the declaration of a new class
|
|
// or enumeration in a type-specifier-seq.
|
|
switch (D.getContext()) {
|
|
case Declarator::TrailingReturnContext:
|
|
// Class and enumeration definitions are syntactically not allowed in
|
|
// trailing return types.
|
|
llvm_unreachable("parser should not have allowed this");
|
|
break;
|
|
case Declarator::FileContext:
|
|
case Declarator::MemberContext:
|
|
case Declarator::BlockContext:
|
|
case Declarator::ForContext:
|
|
case Declarator::BlockLiteralContext:
|
|
case Declarator::LambdaExprContext:
|
|
// C++11 [dcl.type]p3:
|
|
// A type-specifier-seq shall not define a class or enumeration unless
|
|
// it appears in the type-id of an alias-declaration (7.1.3) that is not
|
|
// the declaration of a template-declaration.
|
|
case Declarator::AliasDeclContext:
|
|
break;
|
|
case Declarator::AliasTemplateContext:
|
|
SemaRef.Diag(OwnedTagDecl->getLocation(),
|
|
diag::err_type_defined_in_alias_template)
|
|
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
|
|
D.setInvalidType(true);
|
|
break;
|
|
case Declarator::TypeNameContext:
|
|
case Declarator::TemplateParamContext:
|
|
case Declarator::CXXNewContext:
|
|
case Declarator::CXXCatchContext:
|
|
case Declarator::ObjCCatchContext:
|
|
case Declarator::TemplateTypeArgContext:
|
|
SemaRef.Diag(OwnedTagDecl->getLocation(),
|
|
diag::err_type_defined_in_type_specifier)
|
|
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
|
|
D.setInvalidType(true);
|
|
break;
|
|
case Declarator::PrototypeContext:
|
|
case Declarator::ObjCParameterContext:
|
|
case Declarator::ObjCResultContext:
|
|
case Declarator::KNRTypeListContext:
|
|
// C++ [dcl.fct]p6:
|
|
// Types shall not be defined in return or parameter types.
|
|
SemaRef.Diag(OwnedTagDecl->getLocation(),
|
|
diag::err_type_defined_in_param_type)
|
|
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
|
|
D.setInvalidType(true);
|
|
break;
|
|
case Declarator::ConditionContext:
|
|
// C++ 6.4p2:
|
|
// The type-specifier-seq shall not contain typedef and shall not declare
|
|
// a new class or enumeration.
|
|
SemaRef.Diag(OwnedTagDecl->getLocation(),
|
|
diag::err_type_defined_in_condition);
|
|
D.setInvalidType(true);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
|
|
std::string Quals =
|
|
Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
|
|
|
|
switch (FnTy->getRefQualifier()) {
|
|
case RQ_None:
|
|
break;
|
|
|
|
case RQ_LValue:
|
|
if (!Quals.empty())
|
|
Quals += ' ';
|
|
Quals += '&';
|
|
break;
|
|
|
|
case RQ_RValue:
|
|
if (!Quals.empty())
|
|
Quals += ' ';
|
|
Quals += "&&";
|
|
break;
|
|
}
|
|
|
|
return Quals;
|
|
}
|
|
|
|
/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
|
|
/// can be contained within the declarator chunk DeclType, and produce an
|
|
/// appropriate diagnostic if not.
|
|
static void checkQualifiedFunction(Sema &S, QualType T,
|
|
DeclaratorChunk &DeclType) {
|
|
// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
|
|
// cv-qualifier or a ref-qualifier can only appear at the topmost level
|
|
// of a type.
|
|
int DiagKind = -1;
|
|
switch (DeclType.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
case DeclaratorChunk::MemberPointer:
|
|
// These cases are permitted.
|
|
return;
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Function:
|
|
// These cases don't allow function types at all; no need to diagnose the
|
|
// qualifiers separately.
|
|
return;
|
|
case DeclaratorChunk::BlockPointer:
|
|
DiagKind = 0;
|
|
break;
|
|
case DeclaratorChunk::Pointer:
|
|
DiagKind = 1;
|
|
break;
|
|
case DeclaratorChunk::Reference:
|
|
DiagKind = 2;
|
|
break;
|
|
}
|
|
|
|
assert(DiagKind != -1);
|
|
S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
|
|
<< DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
|
|
<< getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
|
|
}
|
|
|
|
/// Produce an approprioate diagnostic for an ambiguity between a function
|
|
/// declarator and a C++ direct-initializer.
|
|
static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
|
|
DeclaratorChunk &DeclType, QualType RT) {
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
|
|
assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
|
|
|
|
// If the return type is void there is no ambiguity.
|
|
if (RT->isVoidType())
|
|
return;
|
|
|
|
// An initializer for a non-class type can have at most one argument.
|
|
if (!RT->isRecordType() && FTI.NumArgs > 1)
|
|
return;
|
|
|
|
// An initializer for a reference must have exactly one argument.
|
|
if (RT->isReferenceType() && FTI.NumArgs != 1)
|
|
return;
|
|
|
|
// Only warn if this declarator is declaring a function at block scope, and
|
|
// doesn't have a storage class (such as 'extern') specified.
|
|
if (!D.isFunctionDeclarator() ||
|
|
D.getFunctionDefinitionKind() != FDK_Declaration ||
|
|
!S.CurContext->isFunctionOrMethod() ||
|
|
D.getDeclSpec().getStorageClassSpec()
|
|
!= DeclSpec::SCS_unspecified)
|
|
return;
|
|
|
|
// Inside a condition, a direct initializer is not permitted. We allow one to
|
|
// be parsed in order to give better diagnostics in condition parsing.
|
|
if (D.getContext() == Declarator::ConditionContext)
|
|
return;
|
|
|
|
SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
|
|
|
|
S.Diag(DeclType.Loc,
|
|
FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
|
|
: diag::warn_empty_parens_are_function_decl)
|
|
<< ParenRange;
|
|
|
|
// If the declaration looks like:
|
|
// T var1,
|
|
// f();
|
|
// and name lookup finds a function named 'f', then the ',' was
|
|
// probably intended to be a ';'.
|
|
if (!D.isFirstDeclarator() && D.getIdentifier()) {
|
|
FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
|
|
FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
|
|
if (Comma.getFileID() != Name.getFileID() ||
|
|
Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
|
|
LookupResult Result(S, D.getIdentifier(), SourceLocation(),
|
|
Sema::LookupOrdinaryName);
|
|
if (S.LookupName(Result, S.getCurScope()))
|
|
S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
|
|
<< FixItHint::CreateReplacement(D.getCommaLoc(), ";")
|
|
<< D.getIdentifier();
|
|
}
|
|
}
|
|
|
|
if (FTI.NumArgs > 0) {
|
|
// For a declaration with parameters, eg. "T var(T());", suggest adding parens
|
|
// around the first parameter to turn the declaration into a variable
|
|
// declaration.
|
|
SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
|
|
SourceLocation B = Range.getBegin();
|
|
SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
|
|
// FIXME: Maybe we should suggest adding braces instead of parens
|
|
// in C++11 for classes that don't have an initializer_list constructor.
|
|
S.Diag(B, diag::note_additional_parens_for_variable_declaration)
|
|
<< FixItHint::CreateInsertion(B, "(")
|
|
<< FixItHint::CreateInsertion(E, ")");
|
|
} else {
|
|
// For a declaration without parameters, eg. "T var();", suggest replacing the
|
|
// parens with an initializer to turn the declaration into a variable
|
|
// declaration.
|
|
const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
|
|
|
|
// Empty parens mean value-initialization, and no parens mean
|
|
// default initialization. These are equivalent if the default
|
|
// constructor is user-provided or if zero-initialization is a
|
|
// no-op.
|
|
if (RD && RD->hasDefinition() &&
|
|
(RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
|
|
S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
|
|
<< FixItHint::CreateRemoval(ParenRange);
|
|
else {
|
|
std::string Init = S.getFixItZeroInitializerForType(RT);
|
|
if (Init.empty() && S.LangOpts.CPlusPlus11)
|
|
Init = "{}";
|
|
if (!Init.empty())
|
|
S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
|
|
<< FixItHint::CreateReplacement(ParenRange, Init);
|
|
}
|
|
}
|
|
}
|
|
|
|
static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
|
|
QualType declSpecType,
|
|
TypeSourceInfo *TInfo) {
|
|
|
|
QualType T = declSpecType;
|
|
Declarator &D = state.getDeclarator();
|
|
Sema &S = state.getSema();
|
|
ASTContext &Context = S.Context;
|
|
const LangOptions &LangOpts = S.getLangOpts();
|
|
|
|
// The name we're declaring, if any.
|
|
DeclarationName Name;
|
|
if (D.getIdentifier())
|
|
Name = D.getIdentifier();
|
|
|
|
// Does this declaration declare a typedef-name?
|
|
bool IsTypedefName =
|
|
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
|
|
D.getContext() == Declarator::AliasDeclContext ||
|
|
D.getContext() == Declarator::AliasTemplateContext;
|
|
|
|
// Does T refer to a function type with a cv-qualifier or a ref-qualifier?
|
|
bool IsQualifiedFunction = T->isFunctionProtoType() &&
|
|
(T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
|
|
T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
|
|
|
|
// Walk the DeclTypeInfo, building the recursive type as we go.
|
|
// DeclTypeInfos are ordered from the identifier out, which is
|
|
// opposite of what we want :).
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
unsigned chunkIndex = e - i - 1;
|
|
state.setCurrentChunkIndex(chunkIndex);
|
|
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
|
|
if (IsQualifiedFunction) {
|
|
checkQualifiedFunction(S, T, DeclType);
|
|
IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
|
|
}
|
|
switch (DeclType.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
T = S.BuildParenType(T);
|
|
break;
|
|
case DeclaratorChunk::BlockPointer:
|
|
// If blocks are disabled, emit an error.
|
|
if (!LangOpts.Blocks)
|
|
S.Diag(DeclType.Loc, diag::err_blocks_disable);
|
|
|
|
T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
|
|
if (DeclType.Cls.TypeQuals)
|
|
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
|
|
break;
|
|
case DeclaratorChunk::Pointer:
|
|
// Verify that we're not building a pointer to pointer to function with
|
|
// exception specification.
|
|
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
|
|
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
|
|
T = Context.getObjCObjectPointerType(T);
|
|
if (DeclType.Ptr.TypeQuals)
|
|
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
|
|
break;
|
|
}
|
|
T = S.BuildPointerType(T, DeclType.Loc, Name);
|
|
if (DeclType.Ptr.TypeQuals)
|
|
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
|
|
|
|
break;
|
|
case DeclaratorChunk::Reference: {
|
|
// Verify that we're not building a reference to pointer to function with
|
|
// exception specification.
|
|
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
|
|
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
|
|
|
|
Qualifiers Quals;
|
|
if (DeclType.Ref.HasRestrict)
|
|
T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
|
|
break;
|
|
}
|
|
case DeclaratorChunk::Array: {
|
|
// Verify that we're not building an array of pointers to function with
|
|
// exception specification.
|
|
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
|
|
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
|
|
D.setInvalidType(true);
|
|
// Build the type anyway.
|
|
}
|
|
DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
|
|
Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
|
|
ArrayType::ArraySizeModifier ASM;
|
|
if (ATI.isStar)
|
|
ASM = ArrayType::Star;
|
|
else if (ATI.hasStatic)
|
|
ASM = ArrayType::Static;
|
|
else
|
|
ASM = ArrayType::Normal;
|
|
if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
|
|
// FIXME: This check isn't quite right: it allows star in prototypes
|
|
// for function definitions, and disallows some edge cases detailed
|
|
// in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
|
|
S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
|
|
ASM = ArrayType::Normal;
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
// C99 6.7.5.2p1: The optional type qualifiers and the keyword static
|
|
// shall appear only in a declaration of a function parameter with an
|
|
// array type, ...
|
|
if (ASM == ArrayType::Static || ATI.TypeQuals) {
|
|
if (!(D.isPrototypeContext() ||
|
|
D.getContext() == Declarator::KNRTypeListContext)) {
|
|
S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
|
|
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
|
|
// Remove the 'static' and the type qualifiers.
|
|
if (ASM == ArrayType::Static)
|
|
ASM = ArrayType::Normal;
|
|
ATI.TypeQuals = 0;
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
// C99 6.7.5.2p1: ... and then only in the outermost array type
|
|
// derivation.
|
|
unsigned x = chunkIndex;
|
|
while (x != 0) {
|
|
// Walk outwards along the declarator chunks.
|
|
x--;
|
|
const DeclaratorChunk &DC = D.getTypeObject(x);
|
|
switch (DC.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
continue;
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Pointer:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
|
|
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
|
|
if (ASM == ArrayType::Static)
|
|
ASM = ArrayType::Normal;
|
|
ATI.TypeQuals = 0;
|
|
D.setInvalidType(true);
|
|
break;
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::BlockPointer:
|
|
// These are invalid anyway, so just ignore.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
|
|
SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
|
|
break;
|
|
}
|
|
case DeclaratorChunk::Function: {
|
|
// If the function declarator has a prototype (i.e. it is not () and
|
|
// does not have a K&R-style identifier list), then the arguments are part
|
|
// of the type, otherwise the argument list is ().
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
|
|
IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
|
|
|
|
// Check for auto functions and trailing return type and adjust the
|
|
// return type accordingly.
|
|
if (!D.isInvalidType()) {
|
|
// trailing-return-type is only required if we're declaring a function,
|
|
// and not, for instance, a pointer to a function.
|
|
if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
|
|
!FTI.hasTrailingReturnType() && chunkIndex == 0) {
|
|
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
|
|
diag::err_auto_missing_trailing_return);
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
} else if (FTI.hasTrailingReturnType()) {
|
|
// T must be exactly 'auto' at this point. See CWG issue 681.
|
|
if (isa<ParenType>(T)) {
|
|
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
|
|
diag::err_trailing_return_in_parens)
|
|
<< T << D.getDeclSpec().getSourceRange();
|
|
D.setInvalidType(true);
|
|
} else if (D.getContext() != Declarator::LambdaExprContext &&
|
|
(T.hasQualifiers() || !isa<AutoType>(T))) {
|
|
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
|
|
diag::err_trailing_return_without_auto)
|
|
<< T << D.getDeclSpec().getSourceRange();
|
|
D.setInvalidType(true);
|
|
}
|
|
T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
|
|
if (T.isNull()) {
|
|
// An error occurred parsing the trailing return type.
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C99 6.7.5.3p1: The return type may not be a function or array type.
|
|
// For conversion functions, we'll diagnose this particular error later.
|
|
if ((T->isArrayType() || T->isFunctionType()) &&
|
|
(D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
|
|
unsigned diagID = diag::err_func_returning_array_function;
|
|
// Last processing chunk in block context means this function chunk
|
|
// represents the block.
|
|
if (chunkIndex == 0 &&
|
|
D.getContext() == Declarator::BlockLiteralContext)
|
|
diagID = diag::err_block_returning_array_function;
|
|
S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
// Do not allow returning half FP value.
|
|
// FIXME: This really should be in BuildFunctionType.
|
|
if (T->isHalfType()) {
|
|
if (S.getLangOpts().OpenCL) {
|
|
if (!S.getOpenCLOptions().cl_khr_fp16) {
|
|
S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
|
|
D.setInvalidType(true);
|
|
}
|
|
} else {
|
|
S.Diag(D.getIdentifierLoc(),
|
|
diag::err_parameters_retval_cannot_have_fp16_type) << 1;
|
|
D.setInvalidType(true);
|
|
}
|
|
}
|
|
|
|
// cv-qualifiers on return types are pointless except when the type is a
|
|
// class type in C++.
|
|
if ((T.getCVRQualifiers() || T->isAtomicType()) &&
|
|
!(S.getLangOpts().CPlusPlus &&
|
|
(T->isDependentType() || T->isRecordType())))
|
|
diagnoseIgnoredFunctionQualifiers(S, T, D, chunkIndex);
|
|
|
|
// Objective-C ARC ownership qualifiers are ignored on the function
|
|
// return type (by type canonicalization). Complain if this attribute
|
|
// was written here.
|
|
if (T.getQualifiers().hasObjCLifetime()) {
|
|
SourceLocation AttrLoc;
|
|
if (chunkIndex + 1 < D.getNumTypeObjects()) {
|
|
DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
|
|
for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
|
|
Attr; Attr = Attr->getNext()) {
|
|
if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
|
|
AttrLoc = Attr->getLoc();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (AttrLoc.isInvalid()) {
|
|
for (const AttributeList *Attr
|
|
= D.getDeclSpec().getAttributes().getList();
|
|
Attr; Attr = Attr->getNext()) {
|
|
if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
|
|
AttrLoc = Attr->getLoc();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (AttrLoc.isValid()) {
|
|
// The ownership attributes are almost always written via
|
|
// the predefined
|
|
// __strong/__weak/__autoreleasing/__unsafe_unretained.
|
|
if (AttrLoc.isMacroID())
|
|
AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
|
|
|
|
S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
|
|
<< T.getQualifiers().getObjCLifetime();
|
|
}
|
|
}
|
|
|
|
if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
|
|
// C++ [dcl.fct]p6:
|
|
// Types shall not be defined in return or parameter types.
|
|
TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
|
|
if (Tag->isCompleteDefinition())
|
|
S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
|
|
<< Context.getTypeDeclType(Tag);
|
|
}
|
|
|
|
// Exception specs are not allowed in typedefs. Complain, but add it
|
|
// anyway.
|
|
if (IsTypedefName && FTI.getExceptionSpecType())
|
|
S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
|
|
<< (D.getContext() == Declarator::AliasDeclContext ||
|
|
D.getContext() == Declarator::AliasTemplateContext);
|
|
|
|
// If we see "T var();" or "T var(T());" at block scope, it is probably
|
|
// an attempt to initialize a variable, not a function declaration.
|
|
if (FTI.isAmbiguous)
|
|
warnAboutAmbiguousFunction(S, D, DeclType, T);
|
|
|
|
if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
|
|
// Simple void foo(), where the incoming T is the result type.
|
|
T = Context.getFunctionNoProtoType(T);
|
|
} else {
|
|
// We allow a zero-parameter variadic function in C if the
|
|
// function is marked with the "overloadable" attribute. Scan
|
|
// for this attribute now.
|
|
if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
|
|
bool Overloadable = false;
|
|
for (const AttributeList *Attrs = D.getAttributes();
|
|
Attrs; Attrs = Attrs->getNext()) {
|
|
if (Attrs->getKind() == AttributeList::AT_Overloadable) {
|
|
Overloadable = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Overloadable)
|
|
S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
|
|
}
|
|
|
|
if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
|
|
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
|
|
// definition.
|
|
S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
|
|
D.setInvalidType(true);
|
|
// Recover by creating a K&R-style function type.
|
|
T = Context.getFunctionNoProtoType(T);
|
|
break;
|
|
}
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.Variadic = FTI.isVariadic;
|
|
EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
|
|
EPI.TypeQuals = FTI.TypeQuals;
|
|
EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
|
|
: FTI.RefQualifierIsLValueRef? RQ_LValue
|
|
: RQ_RValue;
|
|
|
|
// Otherwise, we have a function with an argument list that is
|
|
// potentially variadic.
|
|
SmallVector<QualType, 16> ArgTys;
|
|
ArgTys.reserve(FTI.NumArgs);
|
|
|
|
SmallVector<bool, 16> ConsumedArguments;
|
|
ConsumedArguments.reserve(FTI.NumArgs);
|
|
bool HasAnyConsumedArguments = false;
|
|
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
|
|
QualType ArgTy = Param->getType();
|
|
assert(!ArgTy.isNull() && "Couldn't parse type?");
|
|
|
|
// Adjust the parameter type.
|
|
assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
|
|
"Unadjusted type?");
|
|
|
|
// Look for 'void'. void is allowed only as a single argument to a
|
|
// function with no other parameters (C99 6.7.5.3p10). We record
|
|
// int(void) as a FunctionProtoType with an empty argument list.
|
|
if (ArgTy->isVoidType()) {
|
|
// If this is something like 'float(int, void)', reject it. 'void'
|
|
// is an incomplete type (C99 6.2.5p19) and function decls cannot
|
|
// have arguments of incomplete type.
|
|
if (FTI.NumArgs != 1 || FTI.isVariadic) {
|
|
S.Diag(DeclType.Loc, diag::err_void_only_param);
|
|
ArgTy = Context.IntTy;
|
|
Param->setType(ArgTy);
|
|
} else if (FTI.ArgInfo[i].Ident) {
|
|
// Reject, but continue to parse 'int(void abc)'.
|
|
S.Diag(FTI.ArgInfo[i].IdentLoc,
|
|
diag::err_param_with_void_type);
|
|
ArgTy = Context.IntTy;
|
|
Param->setType(ArgTy);
|
|
} else {
|
|
// Reject, but continue to parse 'float(const void)'.
|
|
if (ArgTy.hasQualifiers())
|
|
S.Diag(DeclType.Loc, diag::err_void_param_qualified);
|
|
|
|
// Do not add 'void' to the ArgTys list.
|
|
break;
|
|
}
|
|
} else if (ArgTy->isHalfType()) {
|
|
// Disallow half FP arguments.
|
|
// FIXME: This really should be in BuildFunctionType.
|
|
if (S.getLangOpts().OpenCL) {
|
|
if (!S.getOpenCLOptions().cl_khr_fp16) {
|
|
S.Diag(Param->getLocation(),
|
|
diag::err_opencl_half_argument) << ArgTy;
|
|
D.setInvalidType();
|
|
Param->setInvalidDecl();
|
|
}
|
|
} else {
|
|
S.Diag(Param->getLocation(),
|
|
diag::err_parameters_retval_cannot_have_fp16_type) << 0;
|
|
D.setInvalidType();
|
|
}
|
|
} else if (!FTI.hasPrototype) {
|
|
if (ArgTy->isPromotableIntegerType()) {
|
|
ArgTy = Context.getPromotedIntegerType(ArgTy);
|
|
Param->setKNRPromoted(true);
|
|
} else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
|
|
if (BTy->getKind() == BuiltinType::Float) {
|
|
ArgTy = Context.DoubleTy;
|
|
Param->setKNRPromoted(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (LangOpts.ObjCAutoRefCount) {
|
|
bool Consumed = Param->hasAttr<NSConsumedAttr>();
|
|
ConsumedArguments.push_back(Consumed);
|
|
HasAnyConsumedArguments |= Consumed;
|
|
}
|
|
|
|
ArgTys.push_back(ArgTy);
|
|
}
|
|
|
|
if (HasAnyConsumedArguments)
|
|
EPI.ConsumedArguments = ConsumedArguments.data();
|
|
|
|
SmallVector<QualType, 4> Exceptions;
|
|
SmallVector<ParsedType, 2> DynamicExceptions;
|
|
SmallVector<SourceRange, 2> DynamicExceptionRanges;
|
|
Expr *NoexceptExpr = 0;
|
|
|
|
if (FTI.getExceptionSpecType() == EST_Dynamic) {
|
|
// FIXME: It's rather inefficient to have to split into two vectors
|
|
// here.
|
|
unsigned N = FTI.NumExceptions;
|
|
DynamicExceptions.reserve(N);
|
|
DynamicExceptionRanges.reserve(N);
|
|
for (unsigned I = 0; I != N; ++I) {
|
|
DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
|
|
DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
|
|
}
|
|
} else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
|
|
NoexceptExpr = FTI.NoexceptExpr;
|
|
}
|
|
|
|
S.checkExceptionSpecification(FTI.getExceptionSpecType(),
|
|
DynamicExceptions,
|
|
DynamicExceptionRanges,
|
|
NoexceptExpr,
|
|
Exceptions,
|
|
EPI);
|
|
|
|
T = Context.getFunctionType(T, ArgTys, EPI);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case DeclaratorChunk::MemberPointer:
|
|
// The scope spec must refer to a class, or be dependent.
|
|
CXXScopeSpec &SS = DeclType.Mem.Scope();
|
|
QualType ClsType;
|
|
if (SS.isInvalid()) {
|
|
// Avoid emitting extra errors if we already errored on the scope.
|
|
D.setInvalidType(true);
|
|
} else if (S.isDependentScopeSpecifier(SS) ||
|
|
dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
|
|
NestedNameSpecifier *NNS
|
|
= static_cast<NestedNameSpecifier*>(SS.getScopeRep());
|
|
NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
|
|
NNS->getAsIdentifier());
|
|
break;
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Global:
|
|
llvm_unreachable("Nested-name-specifier must name a type");
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
ClsType = QualType(NNS->getAsType(), 0);
|
|
// Note: if the NNS has a prefix and ClsType is a nondependent
|
|
// TemplateSpecializationType, then the NNS prefix is NOT included
|
|
// in ClsType; hence we wrap ClsType into an ElaboratedType.
|
|
// NOTE: in particular, no wrap occurs if ClsType already is an
|
|
// Elaborated, DependentName, or DependentTemplateSpecialization.
|
|
if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
|
|
ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
|
|
break;
|
|
}
|
|
} else {
|
|
S.Diag(DeclType.Mem.Scope().getBeginLoc(),
|
|
diag::err_illegal_decl_mempointer_in_nonclass)
|
|
<< (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
|
|
<< DeclType.Mem.Scope().getRange();
|
|
D.setInvalidType(true);
|
|
}
|
|
|
|
if (!ClsType.isNull())
|
|
T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
|
|
if (T.isNull()) {
|
|
T = Context.IntTy;
|
|
D.setInvalidType(true);
|
|
} else if (DeclType.Mem.TypeQuals) {
|
|
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (T.isNull()) {
|
|
D.setInvalidType(true);
|
|
T = Context.IntTy;
|
|
}
|
|
|
|
// See if there are any attributes on this declarator chunk.
|
|
if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
|
|
processTypeAttrs(state, T, TAL_DeclChunk, attrs);
|
|
}
|
|
|
|
if (LangOpts.CPlusPlus && T->isFunctionType()) {
|
|
const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
|
|
assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
|
|
|
|
// C++ 8.3.5p4:
|
|
// A cv-qualifier-seq shall only be part of the function type
|
|
// for a nonstatic member function, the function type to which a pointer
|
|
// to member refers, or the top-level function type of a function typedef
|
|
// declaration.
|
|
//
|
|
// Core issue 547 also allows cv-qualifiers on function types that are
|
|
// top-level template type arguments.
|
|
bool FreeFunction;
|
|
if (!D.getCXXScopeSpec().isSet()) {
|
|
FreeFunction = ((D.getContext() != Declarator::MemberContext &&
|
|
D.getContext() != Declarator::LambdaExprContext) ||
|
|
D.getDeclSpec().isFriendSpecified());
|
|
} else {
|
|
DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
|
|
FreeFunction = (DC && !DC->isRecord());
|
|
}
|
|
|
|
// C++11 [dcl.fct]p6 (w/DR1417):
|
|
// An attempt to specify a function type with a cv-qualifier-seq or a
|
|
// ref-qualifier (including by typedef-name) is ill-formed unless it is:
|
|
// - the function type for a non-static member function,
|
|
// - the function type to which a pointer to member refers,
|
|
// - the top-level function type of a function typedef declaration or
|
|
// alias-declaration,
|
|
// - the type-id in the default argument of a type-parameter, or
|
|
// - the type-id of a template-argument for a type-parameter
|
|
if (IsQualifiedFunction &&
|
|
!(!FreeFunction &&
|
|
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
|
|
!IsTypedefName &&
|
|
D.getContext() != Declarator::TemplateTypeArgContext) {
|
|
SourceLocation Loc = D.getLocStart();
|
|
SourceRange RemovalRange;
|
|
unsigned I;
|
|
if (D.isFunctionDeclarator(I)) {
|
|
SmallVector<SourceLocation, 4> RemovalLocs;
|
|
const DeclaratorChunk &Chunk = D.getTypeObject(I);
|
|
assert(Chunk.Kind == DeclaratorChunk::Function);
|
|
if (Chunk.Fun.hasRefQualifier())
|
|
RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
|
|
if (Chunk.Fun.TypeQuals & Qualifiers::Const)
|
|
RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
|
|
if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
|
|
RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
|
|
// FIXME: We do not track the location of the __restrict qualifier.
|
|
//if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
|
|
// RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
|
|
if (!RemovalLocs.empty()) {
|
|
std::sort(RemovalLocs.begin(), RemovalLocs.end(),
|
|
BeforeThanCompare<SourceLocation>(S.getSourceManager()));
|
|
RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
|
|
Loc = RemovalLocs.front();
|
|
}
|
|
}
|
|
|
|
S.Diag(Loc, diag::err_invalid_qualified_function_type)
|
|
<< FreeFunction << D.isFunctionDeclarator() << T
|
|
<< getFunctionQualifiersAsString(FnTy)
|
|
<< FixItHint::CreateRemoval(RemovalRange);
|
|
|
|
// Strip the cv-qualifiers and ref-qualifiers from the type.
|
|
FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
|
|
EPI.TypeQuals = 0;
|
|
EPI.RefQualifier = RQ_None;
|
|
|
|
T = Context.getFunctionType(FnTy->getResultType(),
|
|
ArrayRef<QualType>(FnTy->arg_type_begin(),
|
|
FnTy->getNumArgs()),
|
|
EPI);
|
|
// Rebuild any parens around the identifier in the function type.
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
|
|
break;
|
|
T = S.BuildParenType(T);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Apply any undistributed attributes from the declarator.
|
|
if (!T.isNull())
|
|
if (AttributeList *attrs = D.getAttributes())
|
|
processTypeAttrs(state, T, TAL_DeclName, attrs);
|
|
|
|
// Diagnose any ignored type attributes.
|
|
if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
|
|
|
|
// C++0x [dcl.constexpr]p9:
|
|
// A constexpr specifier used in an object declaration declares the object
|
|
// as const.
|
|
if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
|
|
T.addConst();
|
|
}
|
|
|
|
// If there was an ellipsis in the declarator, the declaration declares a
|
|
// parameter pack whose type may be a pack expansion type.
|
|
if (D.hasEllipsis() && !T.isNull()) {
|
|
// C++0x [dcl.fct]p13:
|
|
// A declarator-id or abstract-declarator containing an ellipsis shall
|
|
// only be used in a parameter-declaration. Such a parameter-declaration
|
|
// is a parameter pack (14.5.3). [...]
|
|
switch (D.getContext()) {
|
|
case Declarator::PrototypeContext:
|
|
// C++0x [dcl.fct]p13:
|
|
// [...] When it is part of a parameter-declaration-clause, the
|
|
// parameter pack is a function parameter pack (14.5.3). The type T
|
|
// of the declarator-id of the function parameter pack shall contain
|
|
// a template parameter pack; each template parameter pack in T is
|
|
// expanded by the function parameter pack.
|
|
//
|
|
// We represent function parameter packs as function parameters whose
|
|
// type is a pack expansion.
|
|
if (!T->containsUnexpandedParameterPack()) {
|
|
S.Diag(D.getEllipsisLoc(),
|
|
diag::err_function_parameter_pack_without_parameter_packs)
|
|
<< T << D.getSourceRange();
|
|
D.setEllipsisLoc(SourceLocation());
|
|
} else {
|
|
T = Context.getPackExpansionType(T, None);
|
|
}
|
|
break;
|
|
|
|
case Declarator::TemplateParamContext:
|
|
// C++0x [temp.param]p15:
|
|
// If a template-parameter is a [...] is a parameter-declaration that
|
|
// declares a parameter pack (8.3.5), then the template-parameter is a
|
|
// template parameter pack (14.5.3).
|
|
//
|
|
// Note: core issue 778 clarifies that, if there are any unexpanded
|
|
// parameter packs in the type of the non-type template parameter, then
|
|
// it expands those parameter packs.
|
|
if (T->containsUnexpandedParameterPack())
|
|
T = Context.getPackExpansionType(T, None);
|
|
else
|
|
S.Diag(D.getEllipsisLoc(),
|
|
LangOpts.CPlusPlus11
|
|
? diag::warn_cxx98_compat_variadic_templates
|
|
: diag::ext_variadic_templates);
|
|
break;
|
|
|
|
case Declarator::FileContext:
|
|
case Declarator::KNRTypeListContext:
|
|
case Declarator::ObjCParameterContext: // FIXME: special diagnostic here?
|
|
case Declarator::ObjCResultContext: // FIXME: special diagnostic here?
|
|
case Declarator::TypeNameContext:
|
|
case Declarator::CXXNewContext:
|
|
case Declarator::AliasDeclContext:
|
|
case Declarator::AliasTemplateContext:
|
|
case Declarator::MemberContext:
|
|
case Declarator::BlockContext:
|
|
case Declarator::ForContext:
|
|
case Declarator::ConditionContext:
|
|
case Declarator::CXXCatchContext:
|
|
case Declarator::ObjCCatchContext:
|
|
case Declarator::BlockLiteralContext:
|
|
case Declarator::LambdaExprContext:
|
|
case Declarator::TrailingReturnContext:
|
|
case Declarator::TemplateTypeArgContext:
|
|
// FIXME: We may want to allow parameter packs in block-literal contexts
|
|
// in the future.
|
|
S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
|
|
D.setEllipsisLoc(SourceLocation());
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (T.isNull())
|
|
return Context.getNullTypeSourceInfo();
|
|
else if (D.isInvalidType())
|
|
return Context.getTrivialTypeSourceInfo(T);
|
|
|
|
return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
|
|
}
|
|
|
|
/// GetTypeForDeclarator - Convert the type for the specified
|
|
/// declarator to Type instances.
|
|
///
|
|
/// The result of this call will never be null, but the associated
|
|
/// type may be a null type if there's an unrecoverable error.
|
|
TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
|
|
// Determine the type of the declarator. Not all forms of declarator
|
|
// have a type.
|
|
|
|
TypeProcessingState state(*this, D);
|
|
|
|
TypeSourceInfo *ReturnTypeInfo = 0;
|
|
QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
|
|
if (T.isNull())
|
|
return Context.getNullTypeSourceInfo();
|
|
|
|
if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
|
|
inferARCWriteback(state, T);
|
|
|
|
return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
|
|
}
|
|
|
|
static void transferARCOwnershipToDeclSpec(Sema &S,
|
|
QualType &declSpecTy,
|
|
Qualifiers::ObjCLifetime ownership) {
|
|
if (declSpecTy->isObjCRetainableType() &&
|
|
declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
|
|
Qualifiers qs;
|
|
qs.addObjCLifetime(ownership);
|
|
declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
|
|
}
|
|
}
|
|
|
|
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
|
|
Qualifiers::ObjCLifetime ownership,
|
|
unsigned chunkIndex) {
|
|
Sema &S = state.getSema();
|
|
Declarator &D = state.getDeclarator();
|
|
|
|
// Look for an explicit lifetime attribute.
|
|
DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
|
|
for (const AttributeList *attr = chunk.getAttrs(); attr;
|
|
attr = attr->getNext())
|
|
if (attr->getKind() == AttributeList::AT_ObjCOwnership)
|
|
return;
|
|
|
|
const char *attrStr = 0;
|
|
switch (ownership) {
|
|
case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
|
|
case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
|
|
case Qualifiers::OCL_Strong: attrStr = "strong"; break;
|
|
case Qualifiers::OCL_Weak: attrStr = "weak"; break;
|
|
case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
|
|
}
|
|
|
|
// If there wasn't one, add one (with an invalid source location
|
|
// so that we don't make an AttributedType for it).
|
|
AttributeList *attr = D.getAttributePool()
|
|
.create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
|
|
/*scope*/ 0, SourceLocation(),
|
|
&S.Context.Idents.get(attrStr), SourceLocation(),
|
|
/*args*/ 0, 0, AttributeList::AS_GNU);
|
|
spliceAttrIntoList(*attr, chunk.getAttrListRef());
|
|
|
|
// TODO: mark whether we did this inference?
|
|
}
|
|
|
|
/// \brief Used for transferring ownership in casts resulting in l-values.
|
|
static void transferARCOwnership(TypeProcessingState &state,
|
|
QualType &declSpecTy,
|
|
Qualifiers::ObjCLifetime ownership) {
|
|
Sema &S = state.getSema();
|
|
Declarator &D = state.getDeclarator();
|
|
|
|
int inner = -1;
|
|
bool hasIndirection = false;
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
DeclaratorChunk &chunk = D.getTypeObject(i);
|
|
switch (chunk.Kind) {
|
|
case DeclaratorChunk::Paren:
|
|
// Ignore parens.
|
|
break;
|
|
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::Pointer:
|
|
if (inner != -1)
|
|
hasIndirection = true;
|
|
inner = i;
|
|
break;
|
|
|
|
case DeclaratorChunk::BlockPointer:
|
|
if (inner != -1)
|
|
transferARCOwnershipToDeclaratorChunk(state, ownership, i);
|
|
return;
|
|
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::MemberPointer:
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (inner == -1)
|
|
return;
|
|
|
|
DeclaratorChunk &chunk = D.getTypeObject(inner);
|
|
if (chunk.Kind == DeclaratorChunk::Pointer) {
|
|
if (declSpecTy->isObjCRetainableType())
|
|
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
|
|
if (declSpecTy->isObjCObjectType() && hasIndirection)
|
|
return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
|
|
} else {
|
|
assert(chunk.Kind == DeclaratorChunk::Array ||
|
|
chunk.Kind == DeclaratorChunk::Reference);
|
|
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
|
|
}
|
|
}
|
|
|
|
TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
|
|
TypeProcessingState state(*this, D);
|
|
|
|
TypeSourceInfo *ReturnTypeInfo = 0;
|
|
QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
|
|
if (declSpecTy.isNull())
|
|
return Context.getNullTypeSourceInfo();
|
|
|
|
if (getLangOpts().ObjCAutoRefCount) {
|
|
Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
|
|
if (ownership != Qualifiers::OCL_None)
|
|
transferARCOwnership(state, declSpecTy, ownership);
|
|
}
|
|
|
|
return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
|
|
}
|
|
|
|
/// Map an AttributedType::Kind to an AttributeList::Kind.
|
|
static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
|
|
switch (kind) {
|
|
case AttributedType::attr_address_space:
|
|
return AttributeList::AT_AddressSpace;
|
|
case AttributedType::attr_regparm:
|
|
return AttributeList::AT_Regparm;
|
|
case AttributedType::attr_vector_size:
|
|
return AttributeList::AT_VectorSize;
|
|
case AttributedType::attr_neon_vector_type:
|
|
return AttributeList::AT_NeonVectorType;
|
|
case AttributedType::attr_neon_polyvector_type:
|
|
return AttributeList::AT_NeonPolyVectorType;
|
|
case AttributedType::attr_objc_gc:
|
|
return AttributeList::AT_ObjCGC;
|
|
case AttributedType::attr_objc_ownership:
|
|
return AttributeList::AT_ObjCOwnership;
|
|
case AttributedType::attr_noreturn:
|
|
return AttributeList::AT_NoReturn;
|
|
case AttributedType::attr_cdecl:
|
|
return AttributeList::AT_CDecl;
|
|
case AttributedType::attr_fastcall:
|
|
return AttributeList::AT_FastCall;
|
|
case AttributedType::attr_stdcall:
|
|
return AttributeList::AT_StdCall;
|
|
case AttributedType::attr_thiscall:
|
|
return AttributeList::AT_ThisCall;
|
|
case AttributedType::attr_pascal:
|
|
return AttributeList::AT_Pascal;
|
|
case AttributedType::attr_pcs:
|
|
return AttributeList::AT_Pcs;
|
|
case AttributedType::attr_pnaclcall:
|
|
return AttributeList::AT_PnaclCall;
|
|
case AttributedType::attr_inteloclbicc:
|
|
return AttributeList::AT_IntelOclBicc;
|
|
}
|
|
llvm_unreachable("unexpected attribute kind!");
|
|
}
|
|
|
|
static void fillAttributedTypeLoc(AttributedTypeLoc TL,
|
|
const AttributeList *attrs) {
|
|
AttributedType::Kind kind = TL.getAttrKind();
|
|
|
|
assert(attrs && "no type attributes in the expected location!");
|
|
AttributeList::Kind parsedKind = getAttrListKind(kind);
|
|
while (attrs->getKind() != parsedKind) {
|
|
attrs = attrs->getNext();
|
|
assert(attrs && "no matching attribute in expected location!");
|
|
}
|
|
|
|
TL.setAttrNameLoc(attrs->getLoc());
|
|
if (TL.hasAttrExprOperand())
|
|
TL.setAttrExprOperand(attrs->getArg(0));
|
|
else if (TL.hasAttrEnumOperand())
|
|
TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
|
|
|
|
// FIXME: preserve this information to here.
|
|
if (TL.hasAttrOperand())
|
|
TL.setAttrOperandParensRange(SourceRange());
|
|
}
|
|
|
|
namespace {
|
|
class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
|
|
ASTContext &Context;
|
|
const DeclSpec &DS;
|
|
|
|
public:
|
|
TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
|
|
: Context(Context), DS(DS) {}
|
|
|
|
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
|
|
fillAttributedTypeLoc(TL, DS.getAttributes().getList());
|
|
Visit(TL.getModifiedLoc());
|
|
}
|
|
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
|
|
Visit(TL.getUnqualifiedLoc());
|
|
}
|
|
void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
|
|
TL.setNameLoc(DS.getTypeSpecTypeLoc());
|
|
}
|
|
void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
|
|
TL.setNameLoc(DS.getTypeSpecTypeLoc());
|
|
// FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
|
|
// addition field. What we have is good enough for dispay of location
|
|
// of 'fixit' on interface name.
|
|
TL.setNameEndLoc(DS.getLocEnd());
|
|
}
|
|
void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
|
|
// Handle the base type, which might not have been written explicitly.
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
|
|
TL.setHasBaseTypeAsWritten(false);
|
|
TL.getBaseLoc().initialize(Context, SourceLocation());
|
|
} else {
|
|
TL.setHasBaseTypeAsWritten(true);
|
|
Visit(TL.getBaseLoc());
|
|
}
|
|
|
|
// Protocol qualifiers.
|
|
if (DS.getProtocolQualifiers()) {
|
|
assert(TL.getNumProtocols() > 0);
|
|
assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
|
|
TL.setLAngleLoc(DS.getProtocolLAngleLoc());
|
|
TL.setRAngleLoc(DS.getSourceRange().getEnd());
|
|
for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
|
|
TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
|
|
} else {
|
|
assert(TL.getNumProtocols() == 0);
|
|
TL.setLAngleLoc(SourceLocation());
|
|
TL.setRAngleLoc(SourceLocation());
|
|
}
|
|
}
|
|
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
|
|
TL.setStarLoc(SourceLocation());
|
|
Visit(TL.getPointeeLoc());
|
|
}
|
|
void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
|
|
// If we got no declarator info from previous Sema routines,
|
|
// just fill with the typespec loc.
|
|
if (!TInfo) {
|
|
TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
|
|
return;
|
|
}
|
|
|
|
TypeLoc OldTL = TInfo->getTypeLoc();
|
|
if (TInfo->getType()->getAs<ElaboratedType>()) {
|
|
ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
|
|
TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
|
|
.castAs<TemplateSpecializationTypeLoc>();
|
|
TL.copy(NamedTL);
|
|
}
|
|
else
|
|
TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
|
|
}
|
|
void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
|
|
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
|
|
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
|
|
TL.setParensRange(DS.getTypeofParensRange());
|
|
}
|
|
void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
|
|
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
|
|
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
|
|
TL.setParensRange(DS.getTypeofParensRange());
|
|
assert(DS.getRepAsType());
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
TL.setUnderlyingTInfo(TInfo);
|
|
}
|
|
void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
|
|
// FIXME: This holds only because we only have one unary transform.
|
|
assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
|
|
TL.setKWLoc(DS.getTypeSpecTypeLoc());
|
|
TL.setParensRange(DS.getTypeofParensRange());
|
|
assert(DS.getRepAsType());
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
TL.setUnderlyingTInfo(TInfo);
|
|
}
|
|
void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
|
|
// By default, use the source location of the type specifier.
|
|
TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
|
|
if (TL.needsExtraLocalData()) {
|
|
// Set info for the written builtin specifiers.
|
|
TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
|
|
// Try to have a meaningful source location.
|
|
if (TL.getWrittenSignSpec() != TSS_unspecified)
|
|
// Sign spec loc overrides the others (e.g., 'unsigned long').
|
|
TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
|
|
else if (TL.getWrittenWidthSpec() != TSW_unspecified)
|
|
// Width spec loc overrides type spec loc (e.g., 'short int').
|
|
TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
|
|
}
|
|
}
|
|
void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
|
|
ElaboratedTypeKeyword Keyword
|
|
= TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
|
|
if (DS.getTypeSpecType() == TST_typename) {
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
if (TInfo) {
|
|
TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
|
|
return;
|
|
}
|
|
}
|
|
TL.setElaboratedKeywordLoc(Keyword != ETK_None
|
|
? DS.getTypeSpecTypeLoc()
|
|
: SourceLocation());
|
|
const CXXScopeSpec& SS = DS.getTypeSpecScope();
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
|
|
}
|
|
void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
|
|
assert(DS.getTypeSpecType() == TST_typename);
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
assert(TInfo);
|
|
TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
|
|
}
|
|
void VisitDependentTemplateSpecializationTypeLoc(
|
|
DependentTemplateSpecializationTypeLoc TL) {
|
|
assert(DS.getTypeSpecType() == TST_typename);
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
assert(TInfo);
|
|
TL.copy(
|
|
TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
|
|
}
|
|
void VisitTagTypeLoc(TagTypeLoc TL) {
|
|
TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
|
|
}
|
|
void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
|
|
// An AtomicTypeLoc can come from either an _Atomic(...) type specifier
|
|
// or an _Atomic qualifier.
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
|
|
TL.setKWLoc(DS.getTypeSpecTypeLoc());
|
|
TL.setParensRange(DS.getTypeofParensRange());
|
|
|
|
TypeSourceInfo *TInfo = 0;
|
|
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
|
|
assert(TInfo);
|
|
TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
|
|
} else {
|
|
TL.setKWLoc(DS.getAtomicSpecLoc());
|
|
// No parens, to indicate this was spelled as an _Atomic qualifier.
|
|
TL.setParensRange(SourceRange());
|
|
Visit(TL.getValueLoc());
|
|
}
|
|
}
|
|
|
|
void VisitTypeLoc(TypeLoc TL) {
|
|
// FIXME: add other typespec types and change this to an assert.
|
|
TL.initialize(Context, DS.getTypeSpecTypeLoc());
|
|
}
|
|
};
|
|
|
|
class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
|
|
ASTContext &Context;
|
|
const DeclaratorChunk &Chunk;
|
|
|
|
public:
|
|
DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
|
|
: Context(Context), Chunk(Chunk) {}
|
|
|
|
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
|
|
llvm_unreachable("qualified type locs not expected here!");
|
|
}
|
|
|
|
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
|
|
fillAttributedTypeLoc(TL, Chunk.getAttrs());
|
|
}
|
|
void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
|
|
TL.setCaretLoc(Chunk.Loc);
|
|
}
|
|
void VisitPointerTypeLoc(PointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Pointer);
|
|
TL.setStarLoc(Chunk.Loc);
|
|
}
|
|
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Pointer);
|
|
TL.setStarLoc(Chunk.Loc);
|
|
}
|
|
void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
|
|
const CXXScopeSpec& SS = Chunk.Mem.Scope();
|
|
NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
|
|
|
|
const Type* ClsTy = TL.getClass();
|
|
QualType ClsQT = QualType(ClsTy, 0);
|
|
TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
|
|
// Now copy source location info into the type loc component.
|
|
TypeLoc ClsTL = ClsTInfo->getTypeLoc();
|
|
switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
|
|
{
|
|
DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
|
|
DNTLoc.setElaboratedKeywordLoc(SourceLocation());
|
|
DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
|
|
DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
|
|
}
|
|
break;
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
if (isa<ElaboratedType>(ClsTy)) {
|
|
ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
|
|
ETLoc.setElaboratedKeywordLoc(SourceLocation());
|
|
ETLoc.setQualifierLoc(NNSLoc.getPrefix());
|
|
TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
|
|
NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
|
|
} else {
|
|
ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
|
|
}
|
|
break;
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Global:
|
|
llvm_unreachable("Nested-name-specifier must name a type");
|
|
}
|
|
|
|
// Finally fill in MemberPointerLocInfo fields.
|
|
TL.setStarLoc(Chunk.Loc);
|
|
TL.setClassTInfo(ClsTInfo);
|
|
}
|
|
void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Reference);
|
|
// 'Amp' is misleading: this might have been originally
|
|
/// spelled with AmpAmp.
|
|
TL.setAmpLoc(Chunk.Loc);
|
|
}
|
|
void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Reference);
|
|
assert(!Chunk.Ref.LValueRef);
|
|
TL.setAmpAmpLoc(Chunk.Loc);
|
|
}
|
|
void VisitArrayTypeLoc(ArrayTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Array);
|
|
TL.setLBracketLoc(Chunk.Loc);
|
|
TL.setRBracketLoc(Chunk.EndLoc);
|
|
TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
|
|
}
|
|
void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Function);
|
|
TL.setLocalRangeBegin(Chunk.Loc);
|
|
TL.setLocalRangeEnd(Chunk.EndLoc);
|
|
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
|
|
TL.setLParenLoc(FTI.getLParenLoc());
|
|
TL.setRParenLoc(FTI.getRParenLoc());
|
|
for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
|
|
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
|
|
TL.setArg(tpi++, Param);
|
|
}
|
|
// FIXME: exception specs
|
|
}
|
|
void VisitParenTypeLoc(ParenTypeLoc TL) {
|
|
assert(Chunk.Kind == DeclaratorChunk::Paren);
|
|
TL.setLParenLoc(Chunk.Loc);
|
|
TL.setRParenLoc(Chunk.EndLoc);
|
|
}
|
|
|
|
void VisitTypeLoc(TypeLoc TL) {
|
|
llvm_unreachable("unsupported TypeLoc kind in declarator!");
|
|
}
|
|
};
|
|
}
|
|
|
|
static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
|
|
SourceLocation Loc;
|
|
switch (Chunk.Kind) {
|
|
case DeclaratorChunk::Function:
|
|
case DeclaratorChunk::Array:
|
|
case DeclaratorChunk::Paren:
|
|
llvm_unreachable("cannot be _Atomic qualified");
|
|
|
|
case DeclaratorChunk::Pointer:
|
|
Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
|
|
break;
|
|
|
|
case DeclaratorChunk::BlockPointer:
|
|
case DeclaratorChunk::Reference:
|
|
case DeclaratorChunk::MemberPointer:
|
|
// FIXME: Provide a source location for the _Atomic keyword.
|
|
break;
|
|
}
|
|
|
|
ATL.setKWLoc(Loc);
|
|
ATL.setParensRange(SourceRange());
|
|
}
|
|
|
|
/// \brief Create and instantiate a TypeSourceInfo with type source information.
|
|
///
|
|
/// \param T QualType referring to the type as written in source code.
|
|
///
|
|
/// \param ReturnTypeInfo For declarators whose return type does not show
|
|
/// up in the normal place in the declaration specifiers (such as a C++
|
|
/// conversion function), this pointer will refer to a type source information
|
|
/// for that return type.
|
|
TypeSourceInfo *
|
|
Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
|
|
TypeSourceInfo *ReturnTypeInfo) {
|
|
TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
|
|
UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
|
|
|
|
// Handle parameter packs whose type is a pack expansion.
|
|
if (isa<PackExpansionType>(T)) {
|
|
CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
|
|
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
|
|
}
|
|
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
// An AtomicTypeLoc might be produced by an atomic qualifier in this
|
|
// declarator chunk.
|
|
if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
|
|
fillAtomicQualLoc(ATL, D.getTypeObject(i));
|
|
CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
|
|
}
|
|
|
|
while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
|
|
fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
|
|
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
|
|
}
|
|
|
|
DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
|
|
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
|
|
}
|
|
|
|
// If we have different source information for the return type, use
|
|
// that. This really only applies to C++ conversion functions.
|
|
if (ReturnTypeInfo) {
|
|
TypeLoc TL = ReturnTypeInfo->getTypeLoc();
|
|
assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
|
|
memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
|
|
} else {
|
|
TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
|
|
}
|
|
|
|
return TInfo;
|
|
}
|
|
|
|
/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
|
|
ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
|
|
// FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
|
|
// and Sema during declaration parsing. Try deallocating/caching them when
|
|
// it's appropriate, instead of allocating them and keeping them around.
|
|
LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
|
|
TypeAlignment);
|
|
new (LocT) LocInfoType(T, TInfo);
|
|
assert(LocT->getTypeClass() != T->getTypeClass() &&
|
|
"LocInfoType's TypeClass conflicts with an existing Type class");
|
|
return ParsedType::make(QualType(LocT, 0));
|
|
}
|
|
|
|
void LocInfoType::getAsStringInternal(std::string &Str,
|
|
const PrintingPolicy &Policy) const {
|
|
llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
|
|
" was used directly instead of getting the QualType through"
|
|
" GetTypeFromParser");
|
|
}
|
|
|
|
TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
|
|
// C99 6.7.6: Type names have no identifier. This is already validated by
|
|
// the parser.
|
|
assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
|
|
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
QualType T = TInfo->getType();
|
|
if (D.isInvalidType())
|
|
return true;
|
|
|
|
// Make sure there are no unused decl attributes on the declarator.
|
|
// We don't want to do this for ObjC parameters because we're going
|
|
// to apply them to the actual parameter declaration.
|
|
// Likewise, we don't want to do this for alias declarations, because
|
|
// we are actually going to build a declaration from this eventually.
|
|
if (D.getContext() != Declarator::ObjCParameterContext &&
|
|
D.getContext() != Declarator::AliasDeclContext &&
|
|
D.getContext() != Declarator::AliasTemplateContext)
|
|
checkUnusedDeclAttributes(D);
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// Check that there are no default arguments (C++ only).
|
|
CheckExtraCXXDefaultArguments(D);
|
|
}
|
|
|
|
return CreateParsedType(T, TInfo);
|
|
}
|
|
|
|
ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
|
|
QualType T = Context.getObjCInstanceType();
|
|
TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
|
|
return CreateParsedType(T, TInfo);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Attribute Processing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
|
|
/// specified type. The attribute contains 1 argument, the id of the address
|
|
/// space for the type.
|
|
static void HandleAddressSpaceTypeAttribute(QualType &Type,
|
|
const AttributeList &Attr, Sema &S){
|
|
|
|
// If this type is already address space qualified, reject it.
|
|
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
|
|
// qualifiers for two or more different address spaces."
|
|
if (Type.getAddressSpace()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
|
|
// qualified by an address-space qualifier."
|
|
if (Type->isFunctionType()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
// Check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
|
|
llvm::APSInt addrSpace(32);
|
|
if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
|
|
!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
|
|
<< ASArgExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
// Bounds checking.
|
|
if (addrSpace.isSigned()) {
|
|
if (addrSpace.isNegative()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
|
|
<< ASArgExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
addrSpace.setIsSigned(false);
|
|
}
|
|
llvm::APSInt max(addrSpace.getBitWidth());
|
|
max = Qualifiers::MaxAddressSpace;
|
|
if (addrSpace > max) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
|
|
<< Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
|
|
Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
|
|
}
|
|
|
|
/// Does this type have a "direct" ownership qualifier? That is,
|
|
/// is it written like "__strong id", as opposed to something like
|
|
/// "typeof(foo)", where that happens to be strong?
|
|
static bool hasDirectOwnershipQualifier(QualType type) {
|
|
// Fast path: no qualifier at all.
|
|
assert(type.getQualifiers().hasObjCLifetime());
|
|
|
|
while (true) {
|
|
// __strong id
|
|
if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
|
|
if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
|
|
return true;
|
|
|
|
type = attr->getModifiedType();
|
|
|
|
// X *__strong (...)
|
|
} else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
|
|
type = paren->getInnerType();
|
|
|
|
// That's it for things we want to complain about. In particular,
|
|
// we do not want to look through typedefs, typeof(expr),
|
|
// typeof(type), or any other way that the type is somehow
|
|
// abstracted.
|
|
} else {
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// handleObjCOwnershipTypeAttr - Process an objc_ownership
|
|
/// attribute on the specified type.
|
|
///
|
|
/// Returns 'true' if the attribute was handled.
|
|
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &type) {
|
|
bool NonObjCPointer = false;
|
|
|
|
if (!type->isDependentType()) {
|
|
if (const PointerType *ptr = type->getAs<PointerType>()) {
|
|
QualType pointee = ptr->getPointeeType();
|
|
if (pointee->isObjCRetainableType() || pointee->isPointerType())
|
|
return false;
|
|
// It is important not to lose the source info that there was an attribute
|
|
// applied to non-objc pointer. We will create an attributed type but
|
|
// its type will be the same as the original type.
|
|
NonObjCPointer = true;
|
|
} else if (!type->isObjCRetainableType()) {
|
|
return false;
|
|
}
|
|
|
|
// Don't accept an ownership attribute in the declspec if it would
|
|
// just be the return type of a block pointer.
|
|
if (state.isProcessingDeclSpec()) {
|
|
Declarator &D = state.getDeclarator();
|
|
if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Sema &S = state.getSema();
|
|
SourceLocation AttrLoc = attr.getLoc();
|
|
if (AttrLoc.isMacroID())
|
|
AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
|
|
|
|
if (!attr.getParameterName()) {
|
|
S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
|
|
<< "objc_ownership" << 1;
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// Consume lifetime attributes without further comment outside of
|
|
// ARC mode.
|
|
if (!S.getLangOpts().ObjCAutoRefCount)
|
|
return true;
|
|
|
|
Qualifiers::ObjCLifetime lifetime;
|
|
if (attr.getParameterName()->isStr("none"))
|
|
lifetime = Qualifiers::OCL_ExplicitNone;
|
|
else if (attr.getParameterName()->isStr("strong"))
|
|
lifetime = Qualifiers::OCL_Strong;
|
|
else if (attr.getParameterName()->isStr("weak"))
|
|
lifetime = Qualifiers::OCL_Weak;
|
|
else if (attr.getParameterName()->isStr("autoreleasing"))
|
|
lifetime = Qualifiers::OCL_Autoreleasing;
|
|
else {
|
|
S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
|
|
<< "objc_ownership" << attr.getParameterName();
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
SplitQualType underlyingType = type.split();
|
|
|
|
// Check for redundant/conflicting ownership qualifiers.
|
|
if (Qualifiers::ObjCLifetime previousLifetime
|
|
= type.getQualifiers().getObjCLifetime()) {
|
|
// If it's written directly, that's an error.
|
|
if (hasDirectOwnershipQualifier(type)) {
|
|
S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
|
|
<< type;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, if the qualifiers actually conflict, pull sugar off
|
|
// until we reach a type that is directly qualified.
|
|
if (previousLifetime != lifetime) {
|
|
// This should always terminate: the canonical type is
|
|
// qualified, so some bit of sugar must be hiding it.
|
|
while (!underlyingType.Quals.hasObjCLifetime()) {
|
|
underlyingType = underlyingType.getSingleStepDesugaredType();
|
|
}
|
|
underlyingType.Quals.removeObjCLifetime();
|
|
}
|
|
}
|
|
|
|
underlyingType.Quals.addObjCLifetime(lifetime);
|
|
|
|
if (NonObjCPointer) {
|
|
StringRef name = attr.getName()->getName();
|
|
switch (lifetime) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
break;
|
|
case Qualifiers::OCL_Strong: name = "__strong"; break;
|
|
case Qualifiers::OCL_Weak: name = "__weak"; break;
|
|
case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
|
|
}
|
|
S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
|
|
<< name << type;
|
|
}
|
|
|
|
QualType origType = type;
|
|
if (!NonObjCPointer)
|
|
type = S.Context.getQualifiedType(underlyingType);
|
|
|
|
// If we have a valid source location for the attribute, use an
|
|
// AttributedType instead.
|
|
if (AttrLoc.isValid())
|
|
type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
|
|
origType, type);
|
|
|
|
// Forbid __weak if the runtime doesn't support it.
|
|
if (lifetime == Qualifiers::OCL_Weak &&
|
|
!S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
|
|
|
|
// Actually, delay this until we know what we're parsing.
|
|
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
|
|
S.DelayedDiagnostics.add(
|
|
sema::DelayedDiagnostic::makeForbiddenType(
|
|
S.getSourceManager().getExpansionLoc(AttrLoc),
|
|
diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
|
|
} else {
|
|
S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
|
|
}
|
|
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// Forbid __weak for class objects marked as
|
|
// objc_arc_weak_reference_unavailable
|
|
if (lifetime == Qualifiers::OCL_Weak) {
|
|
if (const ObjCObjectPointerType *ObjT =
|
|
type->getAs<ObjCObjectPointerType>()) {
|
|
if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
|
|
if (Class->isArcWeakrefUnavailable()) {
|
|
S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
|
|
S.Diag(ObjT->getInterfaceDecl()->getLocation(),
|
|
diag::note_class_declared);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
|
|
/// attribute on the specified type. Returns true to indicate that
|
|
/// the attribute was handled, false to indicate that the type does
|
|
/// not permit the attribute.
|
|
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &type) {
|
|
Sema &S = state.getSema();
|
|
|
|
// Delay if this isn't some kind of pointer.
|
|
if (!type->isPointerType() &&
|
|
!type->isObjCObjectPointerType() &&
|
|
!type->isBlockPointerType())
|
|
return false;
|
|
|
|
if (type.getObjCGCAttr() != Qualifiers::GCNone) {
|
|
S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// Check the attribute arguments.
|
|
if (!attr.getParameterName()) {
|
|
S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
|
|
<< "objc_gc" << 1;
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
Qualifiers::GC GCAttr;
|
|
if (attr.getNumArgs() != 0) {
|
|
S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
if (attr.getParameterName()->isStr("weak"))
|
|
GCAttr = Qualifiers::Weak;
|
|
else if (attr.getParameterName()->isStr("strong"))
|
|
GCAttr = Qualifiers::Strong;
|
|
else {
|
|
S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
|
|
<< "objc_gc" << attr.getParameterName();
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
QualType origType = type;
|
|
type = S.Context.getObjCGCQualType(origType, GCAttr);
|
|
|
|
// Make an attributed type to preserve the source information.
|
|
if (attr.getLoc().isValid())
|
|
type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
|
|
origType, type);
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
/// A helper class to unwrap a type down to a function for the
|
|
/// purposes of applying attributes there.
|
|
///
|
|
/// Use:
|
|
/// FunctionTypeUnwrapper unwrapped(SemaRef, T);
|
|
/// if (unwrapped.isFunctionType()) {
|
|
/// const FunctionType *fn = unwrapped.get();
|
|
/// // change fn somehow
|
|
/// T = unwrapped.wrap(fn);
|
|
/// }
|
|
struct FunctionTypeUnwrapper {
|
|
enum WrapKind {
|
|
Desugar,
|
|
Parens,
|
|
Pointer,
|
|
BlockPointer,
|
|
Reference,
|
|
MemberPointer
|
|
};
|
|
|
|
QualType Original;
|
|
const FunctionType *Fn;
|
|
SmallVector<unsigned char /*WrapKind*/, 8> Stack;
|
|
|
|
FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
|
|
while (true) {
|
|
const Type *Ty = T.getTypePtr();
|
|
if (isa<FunctionType>(Ty)) {
|
|
Fn = cast<FunctionType>(Ty);
|
|
return;
|
|
} else if (isa<ParenType>(Ty)) {
|
|
T = cast<ParenType>(Ty)->getInnerType();
|
|
Stack.push_back(Parens);
|
|
} else if (isa<PointerType>(Ty)) {
|
|
T = cast<PointerType>(Ty)->getPointeeType();
|
|
Stack.push_back(Pointer);
|
|
} else if (isa<BlockPointerType>(Ty)) {
|
|
T = cast<BlockPointerType>(Ty)->getPointeeType();
|
|
Stack.push_back(BlockPointer);
|
|
} else if (isa<MemberPointerType>(Ty)) {
|
|
T = cast<MemberPointerType>(Ty)->getPointeeType();
|
|
Stack.push_back(MemberPointer);
|
|
} else if (isa<ReferenceType>(Ty)) {
|
|
T = cast<ReferenceType>(Ty)->getPointeeType();
|
|
Stack.push_back(Reference);
|
|
} else {
|
|
const Type *DTy = Ty->getUnqualifiedDesugaredType();
|
|
if (Ty == DTy) {
|
|
Fn = 0;
|
|
return;
|
|
}
|
|
|
|
T = QualType(DTy, 0);
|
|
Stack.push_back(Desugar);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isFunctionType() const { return (Fn != 0); }
|
|
const FunctionType *get() const { return Fn; }
|
|
|
|
QualType wrap(Sema &S, const FunctionType *New) {
|
|
// If T wasn't modified from the unwrapped type, do nothing.
|
|
if (New == get()) return Original;
|
|
|
|
Fn = New;
|
|
return wrap(S.Context, Original, 0);
|
|
}
|
|
|
|
private:
|
|
QualType wrap(ASTContext &C, QualType Old, unsigned I) {
|
|
if (I == Stack.size())
|
|
return C.getQualifiedType(Fn, Old.getQualifiers());
|
|
|
|
// Build up the inner type, applying the qualifiers from the old
|
|
// type to the new type.
|
|
SplitQualType SplitOld = Old.split();
|
|
|
|
// As a special case, tail-recurse if there are no qualifiers.
|
|
if (SplitOld.Quals.empty())
|
|
return wrap(C, SplitOld.Ty, I);
|
|
return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
|
|
}
|
|
|
|
QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
|
|
if (I == Stack.size()) return QualType(Fn, 0);
|
|
|
|
switch (static_cast<WrapKind>(Stack[I++])) {
|
|
case Desugar:
|
|
// This is the point at which we potentially lose source
|
|
// information.
|
|
return wrap(C, Old->getUnqualifiedDesugaredType(), I);
|
|
|
|
case Parens: {
|
|
QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
|
|
return C.getParenType(New);
|
|
}
|
|
|
|
case Pointer: {
|
|
QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
|
|
return C.getPointerType(New);
|
|
}
|
|
|
|
case BlockPointer: {
|
|
QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
|
|
return C.getBlockPointerType(New);
|
|
}
|
|
|
|
case MemberPointer: {
|
|
const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
|
|
QualType New = wrap(C, OldMPT->getPointeeType(), I);
|
|
return C.getMemberPointerType(New, OldMPT->getClass());
|
|
}
|
|
|
|
case Reference: {
|
|
const ReferenceType *OldRef = cast<ReferenceType>(Old);
|
|
QualType New = wrap(C, OldRef->getPointeeType(), I);
|
|
if (isa<LValueReferenceType>(OldRef))
|
|
return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
|
|
else
|
|
return C.getRValueReferenceType(New);
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("unknown wrapping kind");
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Process an individual function attribute. Returns true to
|
|
/// indicate that the attribute was handled, false if it wasn't.
|
|
static bool handleFunctionTypeAttr(TypeProcessingState &state,
|
|
AttributeList &attr,
|
|
QualType &type) {
|
|
Sema &S = state.getSema();
|
|
|
|
FunctionTypeUnwrapper unwrapped(S, type);
|
|
|
|
if (attr.getKind() == AttributeList::AT_NoReturn) {
|
|
if (S.CheckNoReturnAttr(attr))
|
|
return true;
|
|
|
|
// Delay if this is not a function type.
|
|
if (!unwrapped.isFunctionType())
|
|
return false;
|
|
|
|
// Otherwise we can process right away.
|
|
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
|
|
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
return true;
|
|
}
|
|
|
|
// ns_returns_retained is not always a type attribute, but if we got
|
|
// here, we're treating it as one right now.
|
|
if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
|
|
assert(S.getLangOpts().ObjCAutoRefCount &&
|
|
"ns_returns_retained treated as type attribute in non-ARC");
|
|
if (attr.getNumArgs()) return true;
|
|
|
|
// Delay if this is not a function type.
|
|
if (!unwrapped.isFunctionType())
|
|
return false;
|
|
|
|
FunctionType::ExtInfo EI
|
|
= unwrapped.get()->getExtInfo().withProducesResult(true);
|
|
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
return true;
|
|
}
|
|
|
|
if (attr.getKind() == AttributeList::AT_Regparm) {
|
|
unsigned value;
|
|
if (S.CheckRegparmAttr(attr, value))
|
|
return true;
|
|
|
|
// Delay if this is not a function type.
|
|
if (!unwrapped.isFunctionType())
|
|
return false;
|
|
|
|
// Diagnose regparm with fastcall.
|
|
const FunctionType *fn = unwrapped.get();
|
|
CallingConv CC = fn->getCallConv();
|
|
if (CC == CC_X86FastCall) {
|
|
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
|
|
<< FunctionType::getNameForCallConv(CC)
|
|
<< "regparm";
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
FunctionType::ExtInfo EI =
|
|
unwrapped.get()->getExtInfo().withRegParm(value);
|
|
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
return true;
|
|
}
|
|
|
|
// Delay if the type didn't work out to a function.
|
|
if (!unwrapped.isFunctionType()) return false;
|
|
|
|
// Otherwise, a calling convention.
|
|
CallingConv CC;
|
|
if (S.CheckCallingConvAttr(attr, CC))
|
|
return true;
|
|
|
|
const FunctionType *fn = unwrapped.get();
|
|
CallingConv CCOld = fn->getCallConv();
|
|
if (S.Context.getCanonicalCallConv(CC) ==
|
|
S.Context.getCanonicalCallConv(CCOld)) {
|
|
FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
|
|
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
return true;
|
|
}
|
|
|
|
if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
|
|
// Should we diagnose reapplications of the same convention?
|
|
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
|
|
<< FunctionType::getNameForCallConv(CC)
|
|
<< FunctionType::getNameForCallConv(CCOld);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// Diagnose the use of X86 fastcall on varargs or unprototyped functions.
|
|
if (CC == CC_X86FastCall) {
|
|
if (isa<FunctionNoProtoType>(fn)) {
|
|
S.Diag(attr.getLoc(), diag::err_cconv_knr)
|
|
<< FunctionType::getNameForCallConv(CC);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
|
|
if (FnP->isVariadic()) {
|
|
S.Diag(attr.getLoc(), diag::err_cconv_varargs)
|
|
<< FunctionType::getNameForCallConv(CC);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
|
|
// Also diagnose fastcall with regparm.
|
|
if (fn->getHasRegParm()) {
|
|
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
|
|
<< "regparm"
|
|
<< FunctionType::getNameForCallConv(CC);
|
|
attr.setInvalid();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
|
|
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
|
|
return true;
|
|
}
|
|
|
|
/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
|
|
static void HandleOpenCLImageAccessAttribute(QualType& CurType,
|
|
const AttributeList &Attr,
|
|
Sema &S) {
|
|
// Check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
|
|
llvm::APSInt arg(32);
|
|
if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
|
|
!sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
|
|
<< "opencl_image_access" << sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
|
|
switch (iarg) {
|
|
case CLIA_read_only:
|
|
case CLIA_write_only:
|
|
case CLIA_read_write:
|
|
// Implemented in a separate patch
|
|
break;
|
|
default:
|
|
// Implemented in a separate patch
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
|
|
<< sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// HandleVectorSizeAttribute - this attribute is only applicable to integral
|
|
/// and float scalars, although arrays, pointers, and function return values are
|
|
/// allowed in conjunction with this construct. Aggregates with this attribute
|
|
/// are invalid, even if they are of the same size as a corresponding scalar.
|
|
/// The raw attribute should contain precisely 1 argument, the vector size for
|
|
/// the variable, measured in bytes. If curType and rawAttr are well formed,
|
|
/// this routine will return a new vector type.
|
|
static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
|
|
Sema &S) {
|
|
// Check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
|
|
llvm::APSInt vecSize(32);
|
|
if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
|
|
!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
|
|
<< "vector_size" << sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
// the base type must be integer or float, and can't already be a vector.
|
|
if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
|
|
// vecSize is specified in bytes - convert to bits.
|
|
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
|
|
|
|
// the vector size needs to be an integral multiple of the type size.
|
|
if (vectorSize % typeSize) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
|
|
<< sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
if (vectorSize == 0) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
|
|
<< sizeExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
// Success! Instantiate the vector type, the number of elements is > 0, and
|
|
// not required to be a power of 2, unlike GCC.
|
|
CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
|
|
VectorType::GenericVector);
|
|
}
|
|
|
|
/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
|
|
/// a type.
|
|
static void HandleExtVectorTypeAttr(QualType &CurType,
|
|
const AttributeList &Attr,
|
|
Sema &S) {
|
|
Expr *sizeExpr;
|
|
|
|
// Special case where the argument is a template id.
|
|
if (Attr.getParameterName()) {
|
|
CXXScopeSpec SS;
|
|
SourceLocation TemplateKWLoc;
|
|
UnqualifiedId id;
|
|
id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
|
|
|
|
ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
|
|
id, false, false);
|
|
if (Size.isInvalid())
|
|
return;
|
|
|
|
sizeExpr = Size.get();
|
|
} else {
|
|
// check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
return;
|
|
}
|
|
sizeExpr = Attr.getArg(0);
|
|
}
|
|
|
|
// Create the vector type.
|
|
QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
|
|
if (!T.isNull())
|
|
CurType = T;
|
|
}
|
|
|
|
/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
|
|
/// "neon_polyvector_type" attributes are used to create vector types that
|
|
/// are mangled according to ARM's ABI. Otherwise, these types are identical
|
|
/// to those created with the "vector_size" attribute. Unlike "vector_size"
|
|
/// the argument to these Neon attributes is the number of vector elements,
|
|
/// not the vector size in bytes. The vector width and element type must
|
|
/// match one of the standard Neon vector types.
|
|
static void HandleNeonVectorTypeAttr(QualType& CurType,
|
|
const AttributeList &Attr, Sema &S,
|
|
VectorType::VectorKind VecKind,
|
|
const char *AttrName) {
|
|
// Check the attribute arguments.
|
|
if (Attr.getNumArgs() != 1) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
// The number of elements must be an ICE.
|
|
Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
|
|
llvm::APSInt numEltsInt(32);
|
|
if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
|
|
!numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
|
|
<< AttrName << numEltsExpr->getSourceRange();
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
// Only certain element types are supported for Neon vectors.
|
|
const BuiltinType* BTy = CurType->getAs<BuiltinType>();
|
|
if (!BTy ||
|
|
(VecKind == VectorType::NeonPolyVector &&
|
|
BTy->getKind() != BuiltinType::SChar &&
|
|
BTy->getKind() != BuiltinType::Short) ||
|
|
(BTy->getKind() != BuiltinType::SChar &&
|
|
BTy->getKind() != BuiltinType::UChar &&
|
|
BTy->getKind() != BuiltinType::Short &&
|
|
BTy->getKind() != BuiltinType::UShort &&
|
|
BTy->getKind() != BuiltinType::Int &&
|
|
BTy->getKind() != BuiltinType::UInt &&
|
|
BTy->getKind() != BuiltinType::LongLong &&
|
|
BTy->getKind() != BuiltinType::ULongLong &&
|
|
BTy->getKind() != BuiltinType::Float)) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
// The total size of the vector must be 64 or 128 bits.
|
|
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
|
|
unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
|
|
unsigned vecSize = typeSize * numElts;
|
|
if (vecSize != 64 && vecSize != 128) {
|
|
S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
|
|
Attr.setInvalid();
|
|
return;
|
|
}
|
|
|
|
CurType = S.Context.getVectorType(CurType, numElts, VecKind);
|
|
}
|
|
|
|
static void processTypeAttrs(TypeProcessingState &state, QualType &type,
|
|
TypeAttrLocation TAL, AttributeList *attrs) {
|
|
// Scan through and apply attributes to this type where it makes sense. Some
|
|
// attributes (such as __address_space__, __vector_size__, etc) apply to the
|
|
// type, but others can be present in the type specifiers even though they
|
|
// apply to the decl. Here we apply type attributes and ignore the rest.
|
|
|
|
AttributeList *next;
|
|
do {
|
|
AttributeList &attr = *attrs;
|
|
next = attr.getNext();
|
|
|
|
// Skip attributes that were marked to be invalid.
|
|
if (attr.isInvalid())
|
|
continue;
|
|
|
|
if (attr.isCXX11Attribute()) {
|
|
// [[gnu::...]] attributes are treated as declaration attributes, so may
|
|
// not appertain to a DeclaratorChunk, even if we handle them as type
|
|
// attributes.
|
|
if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
|
|
if (TAL == TAL_DeclChunk) {
|
|
state.getSema().Diag(attr.getLoc(),
|
|
diag::warn_cxx11_gnu_attribute_on_type)
|
|
<< attr.getName();
|
|
continue;
|
|
}
|
|
} else if (TAL != TAL_DeclChunk) {
|
|
// Otherwise, only consider type processing for a C++11 attribute if
|
|
// it's actually been applied to a type.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If this is an attribute we can handle, do so now,
|
|
// otherwise, add it to the FnAttrs list for rechaining.
|
|
switch (attr.getKind()) {
|
|
default:
|
|
// A C++11 attribute on a declarator chunk must appertain to a type.
|
|
if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
|
|
state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
|
|
<< attr.getName();
|
|
attr.setUsedAsTypeAttr();
|
|
}
|
|
break;
|
|
|
|
case AttributeList::UnknownAttribute:
|
|
if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
|
|
state.getSema().Diag(attr.getLoc(),
|
|
diag::warn_unknown_attribute_ignored)
|
|
<< attr.getName();
|
|
break;
|
|
|
|
case AttributeList::IgnoredAttribute:
|
|
break;
|
|
|
|
case AttributeList::AT_MayAlias:
|
|
// FIXME: This attribute needs to actually be handled, but if we ignore
|
|
// it it breaks large amounts of Linux software.
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
case AttributeList::AT_AddressSpace:
|
|
HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
OBJC_POINTER_TYPE_ATTRS_CASELIST:
|
|
if (!handleObjCPointerTypeAttr(state, attr, type))
|
|
distributeObjCPointerTypeAttr(state, attr, type);
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
case AttributeList::AT_VectorSize:
|
|
HandleVectorSizeAttr(type, attr, state.getSema());
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
case AttributeList::AT_ExtVectorType:
|
|
HandleExtVectorTypeAttr(type, attr, state.getSema());
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
case AttributeList::AT_NeonVectorType:
|
|
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
|
|
VectorType::NeonVector, "neon_vector_type");
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
case AttributeList::AT_NeonPolyVectorType:
|
|
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
|
|
VectorType::NeonPolyVector,
|
|
"neon_polyvector_type");
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
case AttributeList::AT_OpenCLImageAccess:
|
|
HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
|
|
case AttributeList::AT_Win64:
|
|
case AttributeList::AT_Ptr32:
|
|
case AttributeList::AT_Ptr64:
|
|
// FIXME: Don't ignore these. We have partial handling for them as
|
|
// declaration attributes in SemaDeclAttr.cpp; that should be moved here.
|
|
attr.setUsedAsTypeAttr();
|
|
break;
|
|
|
|
case AttributeList::AT_NSReturnsRetained:
|
|
if (!state.getSema().getLangOpts().ObjCAutoRefCount)
|
|
break;
|
|
// fallthrough into the function attrs
|
|
|
|
FUNCTION_TYPE_ATTRS_CASELIST:
|
|
attr.setUsedAsTypeAttr();
|
|
|
|
// Never process function type attributes as part of the
|
|
// declaration-specifiers.
|
|
if (TAL == TAL_DeclSpec)
|
|
distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
|
|
|
|
// Otherwise, handle the possible delays.
|
|
else if (!handleFunctionTypeAttr(state, attr, type))
|
|
distributeFunctionTypeAttr(state, attr, type);
|
|
break;
|
|
}
|
|
} while ((attrs = next));
|
|
}
|
|
|
|
/// \brief Ensure that the type of the given expression is complete.
|
|
///
|
|
/// This routine checks whether the expression \p E has a complete type. If the
|
|
/// expression refers to an instantiable construct, that instantiation is
|
|
/// performed as needed to complete its type. Furthermore
|
|
/// Sema::RequireCompleteType is called for the expression's type (or in the
|
|
/// case of a reference type, the referred-to type).
|
|
///
|
|
/// \param E The expression whose type is required to be complete.
|
|
/// \param Diagnoser The object that will emit a diagnostic if the type is
|
|
/// incomplete.
|
|
///
|
|
/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
|
|
/// otherwise.
|
|
bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
|
|
QualType T = E->getType();
|
|
|
|
// Fast path the case where the type is already complete.
|
|
if (!T->isIncompleteType())
|
|
return false;
|
|
|
|
// Incomplete array types may be completed by the initializer attached to
|
|
// their definitions. For static data members of class templates we need to
|
|
// instantiate the definition to get this initializer and complete the type.
|
|
if (T->isIncompleteArrayType()) {
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
if (Var->isStaticDataMember() &&
|
|
Var->getInstantiatedFromStaticDataMember()) {
|
|
|
|
MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
|
|
assert(MSInfo && "Missing member specialization information?");
|
|
if (MSInfo->getTemplateSpecializationKind()
|
|
!= TSK_ExplicitSpecialization) {
|
|
// If we don't already have a point of instantiation, this is it.
|
|
if (MSInfo->getPointOfInstantiation().isInvalid()) {
|
|
MSInfo->setPointOfInstantiation(E->getLocStart());
|
|
|
|
// This is a modification of an existing AST node. Notify
|
|
// listeners.
|
|
if (ASTMutationListener *L = getASTMutationListener())
|
|
L->StaticDataMemberInstantiated(Var);
|
|
}
|
|
|
|
InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
|
|
|
|
// Update the type to the newly instantiated definition's type both
|
|
// here and within the expression.
|
|
if (VarDecl *Def = Var->getDefinition()) {
|
|
DRE->setDecl(Def);
|
|
T = Def->getType();
|
|
DRE->setType(T);
|
|
E->setType(T);
|
|
}
|
|
}
|
|
|
|
// We still go on to try to complete the type independently, as it
|
|
// may also require instantiations or diagnostics if it remains
|
|
// incomplete.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: Are there other cases which require instantiating something other
|
|
// than the type to complete the type of an expression?
|
|
|
|
// Look through reference types and complete the referred type.
|
|
if (const ReferenceType *Ref = T->getAs<ReferenceType>())
|
|
T = Ref->getPointeeType();
|
|
|
|
return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
|
|
}
|
|
|
|
namespace {
|
|
struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
|
|
unsigned DiagID;
|
|
|
|
TypeDiagnoserDiag(unsigned DiagID)
|
|
: Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
|
|
|
|
virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
|
|
if (Suppressed) return;
|
|
S.Diag(Loc, DiagID) << T;
|
|
}
|
|
};
|
|
}
|
|
|
|
bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
|
|
TypeDiagnoserDiag Diagnoser(DiagID);
|
|
return RequireCompleteExprType(E, Diagnoser);
|
|
}
|
|
|
|
/// @brief Ensure that the type T is a complete type.
|
|
///
|
|
/// This routine checks whether the type @p T is complete in any
|
|
/// context where a complete type is required. If @p T is a complete
|
|
/// type, returns false. If @p T is a class template specialization,
|
|
/// this routine then attempts to perform class template
|
|
/// instantiation. If instantiation fails, or if @p T is incomplete
|
|
/// and cannot be completed, issues the diagnostic @p diag (giving it
|
|
/// the type @p T) and returns true.
|
|
///
|
|
/// @param Loc The location in the source that the incomplete type
|
|
/// diagnostic should refer to.
|
|
///
|
|
/// @param T The type that this routine is examining for completeness.
|
|
///
|
|
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
|
|
/// @c false otherwise.
|
|
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser &Diagnoser) {
|
|
// FIXME: Add this assertion to make sure we always get instantiation points.
|
|
// assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
|
|
// FIXME: Add this assertion to help us flush out problems with
|
|
// checking for dependent types and type-dependent expressions.
|
|
//
|
|
// assert(!T->isDependentType() &&
|
|
// "Can't ask whether a dependent type is complete");
|
|
|
|
// If we have a complete type, we're done.
|
|
NamedDecl *Def = 0;
|
|
if (!T->isIncompleteType(&Def)) {
|
|
// If we know about the definition but it is not visible, complain.
|
|
if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(Def)) {
|
|
// Suppress this error outside of a SFINAE context if we've already
|
|
// emitted the error once for this type. There's no usefulness in
|
|
// repeating the diagnostic.
|
|
// FIXME: Add a Fix-It that imports the corresponding module or includes
|
|
// the header.
|
|
Module *Owner = Def->getOwningModule();
|
|
Diag(Loc, diag::err_module_private_definition)
|
|
<< T << Owner->getFullModuleName();
|
|
Diag(Def->getLocation(), diag::note_previous_definition);
|
|
|
|
if (!isSFINAEContext()) {
|
|
// Recover by implicitly importing this module.
|
|
createImplicitModuleImport(Loc, Owner);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const TagType *Tag = T->getAs<TagType>();
|
|
const ObjCInterfaceType *IFace = 0;
|
|
|
|
if (Tag) {
|
|
// Avoid diagnosing invalid decls as incomplete.
|
|
if (Tag->getDecl()->isInvalidDecl())
|
|
return true;
|
|
|
|
// Give the external AST source a chance to complete the type.
|
|
if (Tag->getDecl()->hasExternalLexicalStorage()) {
|
|
Context.getExternalSource()->CompleteType(Tag->getDecl());
|
|
if (!Tag->isIncompleteType())
|
|
return false;
|
|
}
|
|
}
|
|
else if ((IFace = T->getAs<ObjCInterfaceType>())) {
|
|
// Avoid diagnosing invalid decls as incomplete.
|
|
if (IFace->getDecl()->isInvalidDecl())
|
|
return true;
|
|
|
|
// Give the external AST source a chance to complete the type.
|
|
if (IFace->getDecl()->hasExternalLexicalStorage()) {
|
|
Context.getExternalSource()->CompleteType(IFace->getDecl());
|
|
if (!IFace->isIncompleteType())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If we have a class template specialization or a class member of a
|
|
// class template specialization, or an array with known size of such,
|
|
// try to instantiate it.
|
|
QualType MaybeTemplate = T;
|
|
while (const ConstantArrayType *Array
|
|
= Context.getAsConstantArrayType(MaybeTemplate))
|
|
MaybeTemplate = Array->getElementType();
|
|
if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
|
|
if (ClassTemplateSpecializationDecl *ClassTemplateSpec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
|
|
if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
|
|
return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
|
|
TSK_ImplicitInstantiation,
|
|
/*Complain=*/!Diagnoser.Suppressed);
|
|
} else if (CXXRecordDecl *Rec
|
|
= dyn_cast<CXXRecordDecl>(Record->getDecl())) {
|
|
CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
|
|
if (!Rec->isBeingDefined() && Pattern) {
|
|
MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
|
|
assert(MSI && "Missing member specialization information?");
|
|
// This record was instantiated from a class within a template.
|
|
if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
|
|
return InstantiateClass(Loc, Rec, Pattern,
|
|
getTemplateInstantiationArgs(Rec),
|
|
TSK_ImplicitInstantiation,
|
|
/*Complain=*/!Diagnoser.Suppressed);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Diagnoser.Suppressed)
|
|
return true;
|
|
|
|
// We have an incomplete type. Produce a diagnostic.
|
|
Diagnoser.diagnose(*this, Loc, T);
|
|
|
|
// If the type was a forward declaration of a class/struct/union
|
|
// type, produce a note.
|
|
if (Tag && !Tag->getDecl()->isInvalidDecl())
|
|
Diag(Tag->getDecl()->getLocation(),
|
|
Tag->isBeingDefined() ? diag::note_type_being_defined
|
|
: diag::note_forward_declaration)
|
|
<< QualType(Tag, 0);
|
|
|
|
// If the Objective-C class was a forward declaration, produce a note.
|
|
if (IFace && !IFace->getDecl()->isInvalidDecl())
|
|
Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
|
|
unsigned DiagID) {
|
|
TypeDiagnoserDiag Diagnoser(DiagID);
|
|
return RequireCompleteType(Loc, T, Diagnoser);
|
|
}
|
|
|
|
/// \brief Get diagnostic %select index for tag kind for
|
|
/// literal type diagnostic message.
|
|
/// WARNING: Indexes apply to particular diagnostics only!
|
|
///
|
|
/// \returns diagnostic %select index.
|
|
static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
|
|
switch (Tag) {
|
|
case TTK_Struct: return 0;
|
|
case TTK_Interface: return 1;
|
|
case TTK_Class: return 2;
|
|
default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
|
|
}
|
|
}
|
|
|
|
/// @brief Ensure that the type T is a literal type.
|
|
///
|
|
/// This routine checks whether the type @p T is a literal type. If @p T is an
|
|
/// incomplete type, an attempt is made to complete it. If @p T is a literal
|
|
/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
|
|
/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
|
|
/// it the type @p T), along with notes explaining why the type is not a
|
|
/// literal type, and returns true.
|
|
///
|
|
/// @param Loc The location in the source that the non-literal type
|
|
/// diagnostic should refer to.
|
|
///
|
|
/// @param T The type that this routine is examining for literalness.
|
|
///
|
|
/// @param Diagnoser Emits a diagnostic if T is not a literal type.
|
|
///
|
|
/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
|
|
/// @c false otherwise.
|
|
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser &Diagnoser) {
|
|
assert(!T->isDependentType() && "type should not be dependent");
|
|
|
|
QualType ElemType = Context.getBaseElementType(T);
|
|
RequireCompleteType(Loc, ElemType, 0);
|
|
|
|
if (T->isLiteralType())
|
|
return false;
|
|
|
|
if (Diagnoser.Suppressed)
|
|
return true;
|
|
|
|
Diagnoser.diagnose(*this, Loc, T);
|
|
|
|
if (T->isVariableArrayType())
|
|
return true;
|
|
|
|
const RecordType *RT = ElemType->getAs<RecordType>();
|
|
if (!RT)
|
|
return true;
|
|
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
|
|
// A partially-defined class type can't be a literal type, because a literal
|
|
// class type must have a trivial destructor (which can't be checked until
|
|
// the class definition is complete).
|
|
if (!RD->isCompleteDefinition()) {
|
|
RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
|
|
return true;
|
|
}
|
|
|
|
// If the class has virtual base classes, then it's not an aggregate, and
|
|
// cannot have any constexpr constructors or a trivial default constructor,
|
|
// so is non-literal. This is better to diagnose than the resulting absence
|
|
// of constexpr constructors.
|
|
if (RD->getNumVBases()) {
|
|
Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
|
|
<< getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
|
|
E = RD->vbases_end(); I != E; ++I)
|
|
Diag(I->getLocStart(),
|
|
diag::note_constexpr_virtual_base_here) << I->getSourceRange();
|
|
} else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
|
|
!RD->hasTrivialDefaultConstructor()) {
|
|
Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
|
|
} else if (RD->hasNonLiteralTypeFieldsOrBases()) {
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
if (!I->getType()->isLiteralType()) {
|
|
Diag(I->getLocStart(),
|
|
diag::note_non_literal_base_class)
|
|
<< RD << I->getType() << I->getSourceRange();
|
|
return true;
|
|
}
|
|
}
|
|
for (CXXRecordDecl::field_iterator I = RD->field_begin(),
|
|
E = RD->field_end(); I != E; ++I) {
|
|
if (!I->getType()->isLiteralType() ||
|
|
I->getType().isVolatileQualified()) {
|
|
Diag(I->getLocation(), diag::note_non_literal_field)
|
|
<< RD << *I << I->getType()
|
|
<< I->getType().isVolatileQualified();
|
|
return true;
|
|
}
|
|
}
|
|
} else if (!RD->hasTrivialDestructor()) {
|
|
// All fields and bases are of literal types, so have trivial destructors.
|
|
// If this class's destructor is non-trivial it must be user-declared.
|
|
CXXDestructorDecl *Dtor = RD->getDestructor();
|
|
assert(Dtor && "class has literal fields and bases but no dtor?");
|
|
if (!Dtor)
|
|
return true;
|
|
|
|
Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
|
|
diag::note_non_literal_user_provided_dtor :
|
|
diag::note_non_literal_nontrivial_dtor) << RD;
|
|
if (!Dtor->isUserProvided())
|
|
SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
|
|
TypeDiagnoserDiag Diagnoser(DiagID);
|
|
return RequireLiteralType(Loc, T, Diagnoser);
|
|
}
|
|
|
|
/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
|
|
/// and qualified by the nested-name-specifier contained in SS.
|
|
QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
|
|
const CXXScopeSpec &SS, QualType T) {
|
|
if (T.isNull())
|
|
return T;
|
|
NestedNameSpecifier *NNS;
|
|
if (SS.isValid())
|
|
NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
else {
|
|
if (Keyword == ETK_None)
|
|
return T;
|
|
NNS = 0;
|
|
}
|
|
return Context.getElaboratedType(Keyword, NNS, T);
|
|
}
|
|
|
|
QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
|
|
ExprResult ER = CheckPlaceholderExpr(E);
|
|
if (ER.isInvalid()) return QualType();
|
|
E = ER.take();
|
|
|
|
if (!E->isTypeDependent()) {
|
|
QualType T = E->getType();
|
|
if (const TagType *TT = T->getAs<TagType>())
|
|
DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
|
|
}
|
|
return Context.getTypeOfExprType(E);
|
|
}
|
|
|
|
/// getDecltypeForExpr - Given an expr, will return the decltype for
|
|
/// that expression, according to the rules in C++11
|
|
/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
|
|
static QualType getDecltypeForExpr(Sema &S, Expr *E) {
|
|
if (E->isTypeDependent())
|
|
return S.Context.DependentTy;
|
|
|
|
// C++11 [dcl.type.simple]p4:
|
|
// The type denoted by decltype(e) is defined as follows:
|
|
//
|
|
// - if e is an unparenthesized id-expression or an unparenthesized class
|
|
// member access (5.2.5), decltype(e) is the type of the entity named
|
|
// by e. If there is no such entity, or if e names a set of overloaded
|
|
// functions, the program is ill-formed;
|
|
//
|
|
// We apply the same rules for Objective-C ivar and property references.
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
|
|
return VD->getType();
|
|
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
|
|
if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
|
|
return FD->getType();
|
|
} else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
|
|
return IR->getDecl()->getType();
|
|
} else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
|
|
if (PR->isExplicitProperty())
|
|
return PR->getExplicitProperty()->getType();
|
|
}
|
|
|
|
// C++11 [expr.lambda.prim]p18:
|
|
// Every occurrence of decltype((x)) where x is a possibly
|
|
// parenthesized id-expression that names an entity of automatic
|
|
// storage duration is treated as if x were transformed into an
|
|
// access to a corresponding data member of the closure type that
|
|
// would have been declared if x were an odr-use of the denoted
|
|
// entity.
|
|
using namespace sema;
|
|
if (S.getCurLambda()) {
|
|
if (isa<ParenExpr>(E)) {
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
|
|
if (!T.isNull())
|
|
return S.Context.getLValueReferenceType(T);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// C++11 [dcl.type.simple]p4:
|
|
// [...]
|
|
QualType T = E->getType();
|
|
switch (E->getValueKind()) {
|
|
// - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
|
|
// type of e;
|
|
case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
|
|
// - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
|
|
// type of e;
|
|
case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
|
|
// - otherwise, decltype(e) is the type of e.
|
|
case VK_RValue: break;
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
|
|
ExprResult ER = CheckPlaceholderExpr(E);
|
|
if (ER.isInvalid()) return QualType();
|
|
E = ER.take();
|
|
|
|
return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
|
|
}
|
|
|
|
QualType Sema::BuildUnaryTransformType(QualType BaseType,
|
|
UnaryTransformType::UTTKind UKind,
|
|
SourceLocation Loc) {
|
|
switch (UKind) {
|
|
case UnaryTransformType::EnumUnderlyingType:
|
|
if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
|
|
Diag(Loc, diag::err_only_enums_have_underlying_types);
|
|
return QualType();
|
|
} else {
|
|
QualType Underlying = BaseType;
|
|
if (!BaseType->isDependentType()) {
|
|
EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
|
|
assert(ED && "EnumType has no EnumDecl");
|
|
DiagnoseUseOfDecl(ED, Loc);
|
|
Underlying = ED->getIntegerType();
|
|
}
|
|
assert(!Underlying.isNull());
|
|
return Context.getUnaryTransformType(BaseType, Underlying,
|
|
UnaryTransformType::EnumUnderlyingType);
|
|
}
|
|
}
|
|
llvm_unreachable("unknown unary transform type");
|
|
}
|
|
|
|
QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
|
|
if (!T->isDependentType()) {
|
|
// FIXME: It isn't entirely clear whether incomplete atomic types
|
|
// are allowed or not; for simplicity, ban them for the moment.
|
|
if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
|
|
return QualType();
|
|
|
|
int DisallowedKind = -1;
|
|
if (T->isArrayType())
|
|
DisallowedKind = 1;
|
|
else if (T->isFunctionType())
|
|
DisallowedKind = 2;
|
|
else if (T->isReferenceType())
|
|
DisallowedKind = 3;
|
|
else if (T->isAtomicType())
|
|
DisallowedKind = 4;
|
|
else if (T.hasQualifiers())
|
|
DisallowedKind = 5;
|
|
else if (!T.isTriviallyCopyableType(Context))
|
|
// Some other non-trivially-copyable type (probably a C++ class)
|
|
DisallowedKind = 6;
|
|
|
|
if (DisallowedKind != -1) {
|
|
Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
|
|
return QualType();
|
|
}
|
|
|
|
// FIXME: Do we need any handling for ARC here?
|
|
}
|
|
|
|
// Build the pointer type.
|
|
return Context.getAtomicType(T);
|
|
}
|