clang-1/lib/CodeGen/CodeGenTypes.cpp

570 строки
21 KiB
C++

//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTypes.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/AST.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Target/TargetData.h"
using namespace clang;
using namespace CodeGen;
namespace {
/// RecordOrganizer - This helper class, used by CGRecordLayout, layouts
/// structs and unions. It manages transient information used during layout.
/// FIXME : Handle field aligments. Handle packed structs.
class RecordOrganizer {
public:
explicit RecordOrganizer(CodeGenTypes &Types, const RecordDecl& Record) :
CGT(Types), RD(Record), STy(NULL) {}
/// layoutStructFields - Do the actual work and lay out all fields. Create
/// corresponding llvm struct type. This should be invoked only after
/// all fields are added.
void layoutStructFields(const ASTRecordLayout &RL);
/// layoutUnionFields - Do the actual work and lay out all fields. Create
/// corresponding llvm struct type. This should be invoked only after
/// all fields are added.
void layoutUnionFields(const ASTRecordLayout &RL);
/// getLLVMType - Return associated llvm struct type. This may be NULL
/// if fields are not laid out.
llvm::Type *getLLVMType() const {
return STy;
}
llvm::SmallSet<unsigned, 8> &getPaddingFields() {
return PaddingFields;
}
private:
CodeGenTypes &CGT;
const RecordDecl& RD;
llvm::Type *STy;
llvm::SmallSet<unsigned, 8> PaddingFields;
};
}
CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
const llvm::TargetData &TD)
: Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD) {
}
CodeGenTypes::~CodeGenTypes() {
for(llvm::DenseMap<const TagDecl *, CGRecordLayout *>::iterator
I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
I != E; ++I)
delete I->second;
CGRecordLayouts.clear();
}
/// ConvertType - Convert the specified type to its LLVM form.
const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
llvm::PATypeHolder Result = ConvertTypeRecursive(T);
// Any pointers that were converted defered evaluation of their pointee type,
// creating an opaque type instead. This is in order to avoid problems with
// circular types. Loop through all these defered pointees, if any, and
// resolve them now.
while (!PointersToResolve.empty()) {
std::pair<const PointerLikeType *, llvm::OpaqueType*> P =
PointersToResolve.back();
PointersToResolve.pop_back();
// We can handle bare pointers here because we know that the only pointers
// to the Opaque type are P.second and from other types. Refining the
// opqaue type away will invalidate P.second, but we don't mind :).
const llvm::Type *NT = ConvertTypeRecursive(P.first->getPointeeType());
P.second->refineAbstractTypeTo(NT);
}
return Result;
}
const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) {
// See if type is already cached.
llvm::DenseMap<Type *, llvm::PATypeHolder>::iterator
I = TypeCache.find(T.getCanonicalType().getTypePtr());
// If type is found in map and this is not a definition for a opaque
// place holder type then use it. Otherwise, convert type T.
if (I != TypeCache.end())
return I->second.get();
const llvm::Type *ResultType = ConvertNewType(T);
TypeCache.insert(std::make_pair(T.getCanonicalType().getTypePtr(),
llvm::PATypeHolder(ResultType)));
return ResultType;
}
/// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
/// ConvertType in that it is used to convert to the memory representation for
/// a type. For example, the scalar representation for _Bool is i1, but the
/// memory representation is usually i8 or i32, depending on the target.
const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
const llvm::Type *R = ConvertType(T);
// If this is a non-bool type, don't map it.
if (R != llvm::Type::Int1Ty)
return R;
// Otherwise, return an integer of the target-specified size.
return llvm::IntegerType::get((unsigned)Context.getTypeSize(T));
}
/// UpdateCompletedType - When we find the full definition for a TagDecl,
/// replace the 'opaque' type we previously made for it if applicable.
void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
llvm::DenseMap<const TagDecl*, llvm::PATypeHolder>::iterator TDTI =
TagDeclTypes.find(TD);
if (TDTI == TagDeclTypes.end()) return;
// Remember the opaque LLVM type for this tagdecl.
llvm::PATypeHolder OpaqueHolder = TDTI->second;
assert(isa<llvm::OpaqueType>(OpaqueHolder.get()) &&
"Updating compilation of an already non-opaque type?");
// Remove it from TagDeclTypes so that it will be regenerated.
TagDeclTypes.erase(TDTI);
// Generate the new type.
const llvm::Type *NT = ConvertTagDeclType(TD);
// Refine the old opaque type to its new definition.
cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NT);
}
/// Produces a vector containing the all of the instance variables in an
/// Objective-C object, in the order that they appear. Used to create LLVM
/// structures corresponding to Objective-C objects.
void CodeGenTypes::CollectObjCIvarTypes(ObjCInterfaceDecl *ObjCClass,
std::vector<const llvm::Type*> &IvarTypes) {
ObjCInterfaceDecl *SuperClass = ObjCClass->getSuperClass();
if (SuperClass)
CollectObjCIvarTypes(SuperClass, IvarTypes);
for (ObjCInterfaceDecl::ivar_iterator I = ObjCClass->ivar_begin(),
E = ObjCClass->ivar_end(); I != E; ++I) {
IvarTypes.push_back(ConvertType((*I)->getType()));
ObjCIvarInfo[*I] = IvarTypes.size() - 1;
}
}
const llvm::Type *CodeGenTypes::ConvertReturnType(QualType T) {
if (T->isVoidType())
return llvm::Type::VoidTy; // Result of function uses llvm void.
else
return ConvertType(T);
}
static const llvm::Type* getTypeForFormat(const llvm::fltSemantics * format) {
if (format == &llvm::APFloat::IEEEsingle)
return llvm::Type::FloatTy;
if (format == &llvm::APFloat::IEEEdouble)
return llvm::Type::DoubleTy;
if (format == &llvm::APFloat::IEEEquad)
return llvm::Type::FP128Ty;
if (format == &llvm::APFloat::PPCDoubleDouble)
return llvm::Type::PPC_FP128Ty;
if (format == &llvm::APFloat::x87DoubleExtended)
return llvm::Type::X86_FP80Ty;
assert(9 && "Unknown float format!");
return 0;
}
const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
const clang::Type &Ty = *T.getCanonicalType();
switch (Ty.getTypeClass()) {
case Type::TypeName: // typedef isn't canonical.
case Type::TypeOfExp: // typeof isn't canonical.
case Type::TypeOfTyp: // typeof isn't canonical.
assert(0 && "Non-canonical type, shouldn't happen");
case Type::Builtin: {
switch (cast<BuiltinType>(Ty).getKind()) {
case BuiltinType::Void:
// LLVM void type can only be used as the result of a function call. Just
// map to the same as char.
return llvm::IntegerType::get(8);
case BuiltinType::Bool:
// Note that we always return bool as i1 for use as a scalar type.
return llvm::Type::Int1Ty;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::Int:
case BuiltinType::UInt:
case BuiltinType::Long:
case BuiltinType::ULong:
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return llvm::IntegerType::get(
static_cast<unsigned>(Context.getTypeSize(T)));
case BuiltinType::Float:
return getTypeForFormat(Context.Target.getFloatFormat());
case BuiltinType::Double:
return getTypeForFormat(Context.Target.getDoubleFormat());
case BuiltinType::LongDouble:
return getTypeForFormat(Context.Target.getLongDoubleFormat());
}
break;
}
case Type::Complex: {
const llvm::Type *EltTy =
ConvertTypeRecursive(cast<ComplexType>(Ty).getElementType());
return llvm::StructType::get(EltTy, EltTy, NULL);
}
case Type::Reference:
case Type::Pointer: {
const PointerLikeType &PTy = cast<PointerLikeType>(Ty);
QualType ETy = PTy.getPointeeType();
llvm::OpaqueType *PointeeType = llvm::OpaqueType::get();
PointersToResolve.push_back(std::make_pair(&PTy, PointeeType));
return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
}
case Type::VariableArray: {
const VariableArrayType &A = cast<VariableArrayType>(Ty);
assert(A.getIndexTypeQualifier() == 0 &&
"FIXME: We only handle trivial array types so far!");
// VLAs resolve to the innermost element type; this matches
// the return of alloca, and there isn't any obviously better choice.
return ConvertTypeRecursive(A.getElementType());
}
case Type::IncompleteArray: {
const IncompleteArrayType &A = cast<IncompleteArrayType>(Ty);
assert(A.getIndexTypeQualifier() == 0 &&
"FIXME: We only handle trivial array types so far!");
// int X[] -> [0 x int]
return llvm::ArrayType::get(ConvertTypeRecursive(A.getElementType()), 0);
}
case Type::ConstantArray: {
const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
const llvm::Type *EltTy = ConvertTypeRecursive(A.getElementType());
return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
}
case Type::ExtVector:
case Type::Vector: {
const VectorType &VT = cast<VectorType>(Ty);
return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()),
VT.getNumElements());
}
case Type::FunctionNoProto:
case Type::FunctionProto: {
const FunctionType &FP = cast<FunctionType>(Ty);
const llvm::Type *ResultType;
if (FP.getResultType()->isVoidType())
ResultType = llvm::Type::VoidTy; // Result of function uses llvm void.
else
ResultType = ConvertTypeRecursive(FP.getResultType());
// FIXME: Convert argument types.
bool isVarArg;
std::vector<const llvm::Type*> ArgTys;
// Struct return passes the struct byref.
if (!ResultType->isSingleValueType() && ResultType != llvm::Type::VoidTy) {
ArgTys.push_back(llvm::PointerType::get(ResultType,
FP.getResultType().getAddressSpace()));
ResultType = llvm::Type::VoidTy;
}
if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(&FP)) {
DecodeArgumentTypes(*FTP, ArgTys);
isVarArg = FTP->isVariadic();
} else {
isVarArg = true;
}
return llvm::FunctionType::get(ResultType, ArgTys, isVarArg);
}
case Type::ASQual:
return
ConvertTypeRecursive(QualType(cast<ASQualType>(Ty).getBaseType(), 0));
case Type::ObjCInterface: {
// Warning: Use of this is strongly discouraged. Late binding of instance
// variables is supported on some runtimes and so using static binding can
// break code when libraries are updated. Only use this if you have
// previously checked that the ObjCRuntime subclass in use does not support
// late-bound ivars.
ObjCInterfaceType OIT = cast<ObjCInterfaceType>(Ty);
std::vector<const llvm::Type*> IvarTypes;
CollectObjCIvarTypes(OIT.getDecl(), IvarTypes);
return llvm::StructType::get(IvarTypes);
}
case Type::ObjCQualifiedInterface:
assert(0 && "FIXME: add missing functionality here");
break;
case Type::ObjCQualifiedId:
assert(0 && "FIXME: add missing functionality here");
break;
case Type::Tagged: {
const TagDecl *TD = cast<TagType>(Ty).getDecl();
const llvm::Type *Res = ConvertTagDeclType(TD);
std::string TypeName(TD->getKindName());
TypeName += '.';
// Name the codegen type after the typedef name
// if there is no tag type name available
if (TD->getIdentifier())
TypeName += TD->getName();
else if (const TypedefType *TdT = dyn_cast<TypedefType>(T))
TypeName += TdT->getDecl()->getName();
else
TypeName += "anon";
TheModule.addTypeName(TypeName, Res);
return Res;
}
}
// FIXME: implement.
return llvm::OpaqueType::get();
}
void CodeGenTypes::DecodeArgumentTypes(const FunctionTypeProto &FTP,
std::vector<const llvm::Type*> &ArgTys) {
for (unsigned i = 0, e = FTP.getNumArgs(); i != e; ++i) {
const llvm::Type *Ty = ConvertTypeRecursive(FTP.getArgType(i));
if (Ty->isSingleValueType())
ArgTys.push_back(Ty);
else
// byval arguments are always on the stack, which is addr space #0.
ArgTys.push_back(llvm::PointerType::getUnqual(Ty));
}
}
/// ConvertTagDeclType - Lay out a tagged decl type like struct or union or
/// enum.
const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) {
llvm::DenseMap<const TagDecl*, llvm::PATypeHolder>::iterator TDTI =
TagDeclTypes.find(TD);
// If we've already compiled this tag type, use the previous definition.
if (TDTI != TagDeclTypes.end())
return TDTI->second;
// If this is still a forward definition, just define an opaque type to use
// for this tagged decl.
if (!TD->isDefinition()) {
llvm::Type *ResultType = llvm::OpaqueType::get();
TagDeclTypes.insert(std::make_pair(TD, ResultType));
return ResultType;
}
// Okay, this is a definition of a type. Compile the implementation now.
if (TD->isEnum()) {
// Don't bother storing enums in TagDeclTypes.
return ConvertTypeRecursive(cast<EnumDecl>(TD)->getIntegerType());
}
// This decl could well be recursive. In this case, insert an opaque
// definition of this type, which the recursive uses will get. We will then
// refine this opaque version later.
// Create new OpaqueType now for later use in case this is a recursive
// type. This will later be refined to the actual type.
llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get();
TagDeclTypes.insert(std::make_pair(TD, ResultHolder));
const llvm::Type *ResultType;
const RecordDecl *RD = cast<const RecordDecl>(TD);
if (TD->isStruct() || TD->isClass()) {
// Layout fields.
RecordOrganizer RO(*this, *RD);
RO.layoutStructFields(Context.getASTRecordLayout(RD));
// Get llvm::StructType.
CGRecordLayouts[TD] = new CGRecordLayout(RO.getLLVMType(),
RO.getPaddingFields());
ResultType = RO.getLLVMType();
} else if (TD->isUnion()) {
// Just use the largest element of the union, breaking ties with the
// highest aligned member.
if (RD->getNumMembers() != 0) {
RecordOrganizer RO(*this, *RD);
RO.layoutUnionFields(Context.getASTRecordLayout(RD));
// Get llvm::StructType.
CGRecordLayouts[TD] = new CGRecordLayout(RO.getLLVMType(),
RO.getPaddingFields());
ResultType = RO.getLLVMType();
} else {
ResultType = llvm::StructType::get(std::vector<const llvm::Type*>());
}
} else {
assert(0 && "FIXME: Unknown tag decl kind!");
}
// Refine our Opaque type to ResultType. This can invalidate ResultType, so
// make sure to read the result out of the holder.
cast<llvm::OpaqueType>(ResultHolder.get())
->refineAbstractTypeTo(ResultType);
return ResultHolder.get();
}
/// getLLVMFieldNo - Return llvm::StructType element number
/// that corresponds to the field FD.
unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) {
llvm::DenseMap<const FieldDecl*, unsigned>::iterator I = FieldInfo.find(FD);
assert (I != FieldInfo.end() && "Unable to find field info");
return I->second;
}
unsigned CodeGenTypes::getLLVMFieldNo(const ObjCIvarDecl *OID) {
llvm::DenseMap<const ObjCIvarDecl*, unsigned>::iterator
I = ObjCIvarInfo.find(OID);
assert(I != ObjCIvarInfo.end() && "Unable to find field info");
return I->second;
}
/// addFieldInfo - Assign field number to field FD.
void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) {
FieldInfo[FD] = No;
}
/// getBitFieldInfo - Return the BitFieldInfo that corresponds to the field FD.
CodeGenTypes::BitFieldInfo CodeGenTypes::getBitFieldInfo(const FieldDecl *FD) {
llvm::DenseMap<const FieldDecl *, BitFieldInfo>::iterator
I = BitFields.find(FD);
assert (I != BitFields.end() && "Unable to find bitfield info");
return I->second;
}
/// addBitFieldInfo - Assign a start bit and a size to field FD.
void CodeGenTypes::addBitFieldInfo(const FieldDecl *FD, unsigned Begin,
unsigned Size) {
BitFields.insert(std::make_pair(FD, BitFieldInfo(Begin, Size)));
}
/// getCGRecordLayout - Return record layout info for the given llvm::Type.
const CGRecordLayout *
CodeGenTypes::getCGRecordLayout(const TagDecl *TD) const {
llvm::DenseMap<const TagDecl*, CGRecordLayout *>::iterator I
= CGRecordLayouts.find(TD);
assert (I != CGRecordLayouts.end()
&& "Unable to find record layout information for type");
return I->second;
}
/// layoutStructFields - Do the actual work and lay out all fields. Create
/// corresponding llvm struct type.
/// Note that this doesn't actually try to do struct layout; it depends on
/// the layout built by the AST. (We have to do struct layout to do Sema,
/// and there's no point to duplicating the work.)
void RecordOrganizer::layoutStructFields(const ASTRecordLayout &RL) {
// FIXME: This code currently always generates packed structures.
// Unpacked structures are more readable, and sometimes more efficient!
// (But note that any changes here are likely to impact CGExprConstant,
// which makes some messy assumptions.)
uint64_t llvmSize = 0;
// FIXME: Make this a SmallVector
std::vector<const llvm::Type*> LLVMFields;
int NumMembers = RD.getNumMembers();
for (int curField = 0; curField < NumMembers; curField++) {
const FieldDecl *FD = RD.getMember(curField);
uint64_t offset = RL.getFieldOffset(curField);
const llvm::Type *Ty = CGT.ConvertTypeRecursive(FD->getType());
uint64_t size = CGT.getTargetData().getABITypeSizeInBits(Ty);
if (FD->isBitField()) {
Expr *BitWidth = FD->getBitWidth();
llvm::APSInt FieldSize(32);
bool isBitField =
BitWidth->isIntegerConstantExpr(FieldSize, CGT.getContext());
assert (isBitField && "Invalid BitField size expression");
uint64_t BitFieldSize = FieldSize.getZExtValue();
// Bitfield field info is different from other field info;
// it actually ignores the underlying LLVM struct because
// there isn't any convenient mapping.
CGT.addFieldInfo(FD, offset / size);
CGT.addBitFieldInfo(FD, offset % size, BitFieldSize);
} else {
// Put the element into the struct. This would be simpler
// if we didn't bother, but it seems a bit too strange to
// allocate all structs as i8 arrays.
while (llvmSize < offset) {
LLVMFields.push_back(llvm::Type::Int8Ty);
llvmSize += 8;
}
llvmSize += size;
CGT.addFieldInfo(FD, LLVMFields.size());
LLVMFields.push_back(Ty);
}
}
while (llvmSize < RL.getSize()) {
LLVMFields.push_back(llvm::Type::Int8Ty);
llvmSize += 8;
}
STy = llvm::StructType::get(LLVMFields, true);
assert(CGT.getTargetData().getABITypeSizeInBits(STy) == RL.getSize());
}
/// layoutUnionFields - Do the actual work and lay out all fields. Create
/// corresponding llvm struct type. This should be invoked only after
/// all fields are added.
void RecordOrganizer::layoutUnionFields(const ASTRecordLayout &RL) {
for (int curField = 0; curField < RD.getNumMembers(); curField++) {
const FieldDecl *FD = RD.getMember(curField);
// The offset should usually be zero, but bitfields could be strange
uint64_t offset = RL.getFieldOffset(curField);
if (FD->isBitField()) {
Expr *BitWidth = FD->getBitWidth();
llvm::APSInt FieldSize(32);
bool isBitField =
BitWidth->isIntegerConstantExpr(FieldSize, CGT.getContext());
assert (isBitField && "Invalid BitField size expression");
uint64_t BitFieldSize = FieldSize.getZExtValue();
CGT.addFieldInfo(FD, 0);
CGT.addBitFieldInfo(FD, offset, BitFieldSize);
} else {
CGT.addFieldInfo(FD, 0);
}
}
// This looks stupid, but it is correct in the sense that
// it works no matter how complicated the sizes and alignments
// of the union elements are. The natural alignment
// of the result doesn't matter because anyone allocating
// structures should be aligning them appropriately anyway.
// FIXME: We can be a bit more intuitive in a lot of cases.
STy = llvm::ArrayType::get(llvm::Type::Int8Ty, RL.getSize() / 8);
assert(CGT.getTargetData().getABITypeSizeInBits(STy) == RL.getSize());
}