зеркало из https://github.com/microsoft/clang-1.git
570 строки
21 KiB
C++
570 строки
21 KiB
C++
//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is the code that handles AST -> LLVM type lowering.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenTypes.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/AST/AST.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
/// RecordOrganizer - This helper class, used by CGRecordLayout, layouts
|
|
/// structs and unions. It manages transient information used during layout.
|
|
/// FIXME : Handle field aligments. Handle packed structs.
|
|
class RecordOrganizer {
|
|
public:
|
|
explicit RecordOrganizer(CodeGenTypes &Types, const RecordDecl& Record) :
|
|
CGT(Types), RD(Record), STy(NULL) {}
|
|
|
|
/// layoutStructFields - Do the actual work and lay out all fields. Create
|
|
/// corresponding llvm struct type. This should be invoked only after
|
|
/// all fields are added.
|
|
void layoutStructFields(const ASTRecordLayout &RL);
|
|
|
|
/// layoutUnionFields - Do the actual work and lay out all fields. Create
|
|
/// corresponding llvm struct type. This should be invoked only after
|
|
/// all fields are added.
|
|
void layoutUnionFields(const ASTRecordLayout &RL);
|
|
|
|
/// getLLVMType - Return associated llvm struct type. This may be NULL
|
|
/// if fields are not laid out.
|
|
llvm::Type *getLLVMType() const {
|
|
return STy;
|
|
}
|
|
|
|
llvm::SmallSet<unsigned, 8> &getPaddingFields() {
|
|
return PaddingFields;
|
|
}
|
|
|
|
private:
|
|
CodeGenTypes &CGT;
|
|
const RecordDecl& RD;
|
|
llvm::Type *STy;
|
|
llvm::SmallSet<unsigned, 8> PaddingFields;
|
|
};
|
|
}
|
|
|
|
CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
|
|
const llvm::TargetData &TD)
|
|
: Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD) {
|
|
}
|
|
|
|
CodeGenTypes::~CodeGenTypes() {
|
|
for(llvm::DenseMap<const TagDecl *, CGRecordLayout *>::iterator
|
|
I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
|
|
I != E; ++I)
|
|
delete I->second;
|
|
CGRecordLayouts.clear();
|
|
}
|
|
|
|
/// ConvertType - Convert the specified type to its LLVM form.
|
|
const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
|
|
llvm::PATypeHolder Result = ConvertTypeRecursive(T);
|
|
|
|
// Any pointers that were converted defered evaluation of their pointee type,
|
|
// creating an opaque type instead. This is in order to avoid problems with
|
|
// circular types. Loop through all these defered pointees, if any, and
|
|
// resolve them now.
|
|
while (!PointersToResolve.empty()) {
|
|
std::pair<const PointerLikeType *, llvm::OpaqueType*> P =
|
|
PointersToResolve.back();
|
|
PointersToResolve.pop_back();
|
|
// We can handle bare pointers here because we know that the only pointers
|
|
// to the Opaque type are P.second and from other types. Refining the
|
|
// opqaue type away will invalidate P.second, but we don't mind :).
|
|
const llvm::Type *NT = ConvertTypeRecursive(P.first->getPointeeType());
|
|
P.second->refineAbstractTypeTo(NT);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) {
|
|
// See if type is already cached.
|
|
llvm::DenseMap<Type *, llvm::PATypeHolder>::iterator
|
|
I = TypeCache.find(T.getCanonicalType().getTypePtr());
|
|
// If type is found in map and this is not a definition for a opaque
|
|
// place holder type then use it. Otherwise, convert type T.
|
|
if (I != TypeCache.end())
|
|
return I->second.get();
|
|
|
|
const llvm::Type *ResultType = ConvertNewType(T);
|
|
TypeCache.insert(std::make_pair(T.getCanonicalType().getTypePtr(),
|
|
llvm::PATypeHolder(ResultType)));
|
|
return ResultType;
|
|
}
|
|
|
|
/// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
|
|
/// ConvertType in that it is used to convert to the memory representation for
|
|
/// a type. For example, the scalar representation for _Bool is i1, but the
|
|
/// memory representation is usually i8 or i32, depending on the target.
|
|
const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
|
|
const llvm::Type *R = ConvertType(T);
|
|
|
|
// If this is a non-bool type, don't map it.
|
|
if (R != llvm::Type::Int1Ty)
|
|
return R;
|
|
|
|
// Otherwise, return an integer of the target-specified size.
|
|
return llvm::IntegerType::get((unsigned)Context.getTypeSize(T));
|
|
|
|
}
|
|
|
|
/// UpdateCompletedType - When we find the full definition for a TagDecl,
|
|
/// replace the 'opaque' type we previously made for it if applicable.
|
|
void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
|
|
llvm::DenseMap<const TagDecl*, llvm::PATypeHolder>::iterator TDTI =
|
|
TagDeclTypes.find(TD);
|
|
if (TDTI == TagDeclTypes.end()) return;
|
|
|
|
// Remember the opaque LLVM type for this tagdecl.
|
|
llvm::PATypeHolder OpaqueHolder = TDTI->second;
|
|
assert(isa<llvm::OpaqueType>(OpaqueHolder.get()) &&
|
|
"Updating compilation of an already non-opaque type?");
|
|
|
|
// Remove it from TagDeclTypes so that it will be regenerated.
|
|
TagDeclTypes.erase(TDTI);
|
|
|
|
// Generate the new type.
|
|
const llvm::Type *NT = ConvertTagDeclType(TD);
|
|
|
|
// Refine the old opaque type to its new definition.
|
|
cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NT);
|
|
}
|
|
|
|
/// Produces a vector containing the all of the instance variables in an
|
|
/// Objective-C object, in the order that they appear. Used to create LLVM
|
|
/// structures corresponding to Objective-C objects.
|
|
void CodeGenTypes::CollectObjCIvarTypes(ObjCInterfaceDecl *ObjCClass,
|
|
std::vector<const llvm::Type*> &IvarTypes) {
|
|
ObjCInterfaceDecl *SuperClass = ObjCClass->getSuperClass();
|
|
if (SuperClass)
|
|
CollectObjCIvarTypes(SuperClass, IvarTypes);
|
|
for (ObjCInterfaceDecl::ivar_iterator I = ObjCClass->ivar_begin(),
|
|
E = ObjCClass->ivar_end(); I != E; ++I) {
|
|
IvarTypes.push_back(ConvertType((*I)->getType()));
|
|
ObjCIvarInfo[*I] = IvarTypes.size() - 1;
|
|
}
|
|
}
|
|
|
|
const llvm::Type *CodeGenTypes::ConvertReturnType(QualType T) {
|
|
if (T->isVoidType())
|
|
return llvm::Type::VoidTy; // Result of function uses llvm void.
|
|
else
|
|
return ConvertType(T);
|
|
}
|
|
|
|
static const llvm::Type* getTypeForFormat(const llvm::fltSemantics * format) {
|
|
if (format == &llvm::APFloat::IEEEsingle)
|
|
return llvm::Type::FloatTy;
|
|
if (format == &llvm::APFloat::IEEEdouble)
|
|
return llvm::Type::DoubleTy;
|
|
if (format == &llvm::APFloat::IEEEquad)
|
|
return llvm::Type::FP128Ty;
|
|
if (format == &llvm::APFloat::PPCDoubleDouble)
|
|
return llvm::Type::PPC_FP128Ty;
|
|
if (format == &llvm::APFloat::x87DoubleExtended)
|
|
return llvm::Type::X86_FP80Ty;
|
|
assert(9 && "Unknown float format!");
|
|
return 0;
|
|
}
|
|
|
|
const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
|
|
const clang::Type &Ty = *T.getCanonicalType();
|
|
|
|
switch (Ty.getTypeClass()) {
|
|
case Type::TypeName: // typedef isn't canonical.
|
|
case Type::TypeOfExp: // typeof isn't canonical.
|
|
case Type::TypeOfTyp: // typeof isn't canonical.
|
|
assert(0 && "Non-canonical type, shouldn't happen");
|
|
case Type::Builtin: {
|
|
switch (cast<BuiltinType>(Ty).getKind()) {
|
|
case BuiltinType::Void:
|
|
// LLVM void type can only be used as the result of a function call. Just
|
|
// map to the same as char.
|
|
return llvm::IntegerType::get(8);
|
|
|
|
case BuiltinType::Bool:
|
|
// Note that we always return bool as i1 for use as a scalar type.
|
|
return llvm::Type::Int1Ty;
|
|
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
case BuiltinType::Long:
|
|
case BuiltinType::ULong:
|
|
case BuiltinType::LongLong:
|
|
case BuiltinType::ULongLong:
|
|
return llvm::IntegerType::get(
|
|
static_cast<unsigned>(Context.getTypeSize(T)));
|
|
|
|
case BuiltinType::Float:
|
|
return getTypeForFormat(Context.Target.getFloatFormat());
|
|
case BuiltinType::Double:
|
|
return getTypeForFormat(Context.Target.getDoubleFormat());
|
|
case BuiltinType::LongDouble:
|
|
return getTypeForFormat(Context.Target.getLongDoubleFormat());
|
|
}
|
|
break;
|
|
}
|
|
case Type::Complex: {
|
|
const llvm::Type *EltTy =
|
|
ConvertTypeRecursive(cast<ComplexType>(Ty).getElementType());
|
|
return llvm::StructType::get(EltTy, EltTy, NULL);
|
|
}
|
|
case Type::Reference:
|
|
case Type::Pointer: {
|
|
const PointerLikeType &PTy = cast<PointerLikeType>(Ty);
|
|
QualType ETy = PTy.getPointeeType();
|
|
llvm::OpaqueType *PointeeType = llvm::OpaqueType::get();
|
|
PointersToResolve.push_back(std::make_pair(&PTy, PointeeType));
|
|
return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
|
|
}
|
|
|
|
case Type::VariableArray: {
|
|
const VariableArrayType &A = cast<VariableArrayType>(Ty);
|
|
assert(A.getIndexTypeQualifier() == 0 &&
|
|
"FIXME: We only handle trivial array types so far!");
|
|
// VLAs resolve to the innermost element type; this matches
|
|
// the return of alloca, and there isn't any obviously better choice.
|
|
return ConvertTypeRecursive(A.getElementType());
|
|
}
|
|
case Type::IncompleteArray: {
|
|
const IncompleteArrayType &A = cast<IncompleteArrayType>(Ty);
|
|
assert(A.getIndexTypeQualifier() == 0 &&
|
|
"FIXME: We only handle trivial array types so far!");
|
|
// int X[] -> [0 x int]
|
|
return llvm::ArrayType::get(ConvertTypeRecursive(A.getElementType()), 0);
|
|
}
|
|
case Type::ConstantArray: {
|
|
const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
|
|
const llvm::Type *EltTy = ConvertTypeRecursive(A.getElementType());
|
|
return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
|
|
}
|
|
case Type::ExtVector:
|
|
case Type::Vector: {
|
|
const VectorType &VT = cast<VectorType>(Ty);
|
|
return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()),
|
|
VT.getNumElements());
|
|
}
|
|
case Type::FunctionNoProto:
|
|
case Type::FunctionProto: {
|
|
const FunctionType &FP = cast<FunctionType>(Ty);
|
|
const llvm::Type *ResultType;
|
|
|
|
if (FP.getResultType()->isVoidType())
|
|
ResultType = llvm::Type::VoidTy; // Result of function uses llvm void.
|
|
else
|
|
ResultType = ConvertTypeRecursive(FP.getResultType());
|
|
|
|
// FIXME: Convert argument types.
|
|
bool isVarArg;
|
|
std::vector<const llvm::Type*> ArgTys;
|
|
|
|
// Struct return passes the struct byref.
|
|
if (!ResultType->isSingleValueType() && ResultType != llvm::Type::VoidTy) {
|
|
ArgTys.push_back(llvm::PointerType::get(ResultType,
|
|
FP.getResultType().getAddressSpace()));
|
|
ResultType = llvm::Type::VoidTy;
|
|
}
|
|
|
|
if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(&FP)) {
|
|
DecodeArgumentTypes(*FTP, ArgTys);
|
|
isVarArg = FTP->isVariadic();
|
|
} else {
|
|
isVarArg = true;
|
|
}
|
|
|
|
return llvm::FunctionType::get(ResultType, ArgTys, isVarArg);
|
|
}
|
|
|
|
case Type::ASQual:
|
|
return
|
|
ConvertTypeRecursive(QualType(cast<ASQualType>(Ty).getBaseType(), 0));
|
|
|
|
case Type::ObjCInterface: {
|
|
// Warning: Use of this is strongly discouraged. Late binding of instance
|
|
// variables is supported on some runtimes and so using static binding can
|
|
// break code when libraries are updated. Only use this if you have
|
|
// previously checked that the ObjCRuntime subclass in use does not support
|
|
// late-bound ivars.
|
|
ObjCInterfaceType OIT = cast<ObjCInterfaceType>(Ty);
|
|
std::vector<const llvm::Type*> IvarTypes;
|
|
CollectObjCIvarTypes(OIT.getDecl(), IvarTypes);
|
|
return llvm::StructType::get(IvarTypes);
|
|
}
|
|
|
|
case Type::ObjCQualifiedInterface:
|
|
assert(0 && "FIXME: add missing functionality here");
|
|
break;
|
|
|
|
case Type::ObjCQualifiedId:
|
|
assert(0 && "FIXME: add missing functionality here");
|
|
break;
|
|
|
|
case Type::Tagged: {
|
|
const TagDecl *TD = cast<TagType>(Ty).getDecl();
|
|
const llvm::Type *Res = ConvertTagDeclType(TD);
|
|
|
|
std::string TypeName(TD->getKindName());
|
|
TypeName += '.';
|
|
|
|
// Name the codegen type after the typedef name
|
|
// if there is no tag type name available
|
|
if (TD->getIdentifier())
|
|
TypeName += TD->getName();
|
|
else if (const TypedefType *TdT = dyn_cast<TypedefType>(T))
|
|
TypeName += TdT->getDecl()->getName();
|
|
else
|
|
TypeName += "anon";
|
|
|
|
TheModule.addTypeName(TypeName, Res);
|
|
return Res;
|
|
}
|
|
}
|
|
|
|
// FIXME: implement.
|
|
return llvm::OpaqueType::get();
|
|
}
|
|
|
|
void CodeGenTypes::DecodeArgumentTypes(const FunctionTypeProto &FTP,
|
|
std::vector<const llvm::Type*> &ArgTys) {
|
|
for (unsigned i = 0, e = FTP.getNumArgs(); i != e; ++i) {
|
|
const llvm::Type *Ty = ConvertTypeRecursive(FTP.getArgType(i));
|
|
if (Ty->isSingleValueType())
|
|
ArgTys.push_back(Ty);
|
|
else
|
|
// byval arguments are always on the stack, which is addr space #0.
|
|
ArgTys.push_back(llvm::PointerType::getUnqual(Ty));
|
|
}
|
|
}
|
|
|
|
/// ConvertTagDeclType - Lay out a tagged decl type like struct or union or
|
|
/// enum.
|
|
const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) {
|
|
llvm::DenseMap<const TagDecl*, llvm::PATypeHolder>::iterator TDTI =
|
|
TagDeclTypes.find(TD);
|
|
|
|
// If we've already compiled this tag type, use the previous definition.
|
|
if (TDTI != TagDeclTypes.end())
|
|
return TDTI->second;
|
|
|
|
// If this is still a forward definition, just define an opaque type to use
|
|
// for this tagged decl.
|
|
if (!TD->isDefinition()) {
|
|
llvm::Type *ResultType = llvm::OpaqueType::get();
|
|
TagDeclTypes.insert(std::make_pair(TD, ResultType));
|
|
return ResultType;
|
|
}
|
|
|
|
// Okay, this is a definition of a type. Compile the implementation now.
|
|
|
|
if (TD->isEnum()) {
|
|
// Don't bother storing enums in TagDeclTypes.
|
|
return ConvertTypeRecursive(cast<EnumDecl>(TD)->getIntegerType());
|
|
}
|
|
|
|
// This decl could well be recursive. In this case, insert an opaque
|
|
// definition of this type, which the recursive uses will get. We will then
|
|
// refine this opaque version later.
|
|
|
|
// Create new OpaqueType now for later use in case this is a recursive
|
|
// type. This will later be refined to the actual type.
|
|
llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get();
|
|
TagDeclTypes.insert(std::make_pair(TD, ResultHolder));
|
|
|
|
const llvm::Type *ResultType;
|
|
const RecordDecl *RD = cast<const RecordDecl>(TD);
|
|
if (TD->isStruct() || TD->isClass()) {
|
|
// Layout fields.
|
|
RecordOrganizer RO(*this, *RD);
|
|
|
|
RO.layoutStructFields(Context.getASTRecordLayout(RD));
|
|
|
|
// Get llvm::StructType.
|
|
CGRecordLayouts[TD] = new CGRecordLayout(RO.getLLVMType(),
|
|
RO.getPaddingFields());
|
|
ResultType = RO.getLLVMType();
|
|
|
|
} else if (TD->isUnion()) {
|
|
// Just use the largest element of the union, breaking ties with the
|
|
// highest aligned member.
|
|
if (RD->getNumMembers() != 0) {
|
|
RecordOrganizer RO(*this, *RD);
|
|
|
|
RO.layoutUnionFields(Context.getASTRecordLayout(RD));
|
|
|
|
// Get llvm::StructType.
|
|
CGRecordLayouts[TD] = new CGRecordLayout(RO.getLLVMType(),
|
|
RO.getPaddingFields());
|
|
ResultType = RO.getLLVMType();
|
|
} else {
|
|
ResultType = llvm::StructType::get(std::vector<const llvm::Type*>());
|
|
}
|
|
} else {
|
|
assert(0 && "FIXME: Unknown tag decl kind!");
|
|
}
|
|
|
|
// Refine our Opaque type to ResultType. This can invalidate ResultType, so
|
|
// make sure to read the result out of the holder.
|
|
cast<llvm::OpaqueType>(ResultHolder.get())
|
|
->refineAbstractTypeTo(ResultType);
|
|
|
|
return ResultHolder.get();
|
|
}
|
|
|
|
/// getLLVMFieldNo - Return llvm::StructType element number
|
|
/// that corresponds to the field FD.
|
|
unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) {
|
|
llvm::DenseMap<const FieldDecl*, unsigned>::iterator I = FieldInfo.find(FD);
|
|
assert (I != FieldInfo.end() && "Unable to find field info");
|
|
return I->second;
|
|
}
|
|
|
|
unsigned CodeGenTypes::getLLVMFieldNo(const ObjCIvarDecl *OID) {
|
|
llvm::DenseMap<const ObjCIvarDecl*, unsigned>::iterator
|
|
I = ObjCIvarInfo.find(OID);
|
|
assert(I != ObjCIvarInfo.end() && "Unable to find field info");
|
|
return I->second;
|
|
}
|
|
|
|
/// addFieldInfo - Assign field number to field FD.
|
|
void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) {
|
|
FieldInfo[FD] = No;
|
|
}
|
|
|
|
/// getBitFieldInfo - Return the BitFieldInfo that corresponds to the field FD.
|
|
CodeGenTypes::BitFieldInfo CodeGenTypes::getBitFieldInfo(const FieldDecl *FD) {
|
|
llvm::DenseMap<const FieldDecl *, BitFieldInfo>::iterator
|
|
I = BitFields.find(FD);
|
|
assert (I != BitFields.end() && "Unable to find bitfield info");
|
|
return I->second;
|
|
}
|
|
|
|
/// addBitFieldInfo - Assign a start bit and a size to field FD.
|
|
void CodeGenTypes::addBitFieldInfo(const FieldDecl *FD, unsigned Begin,
|
|
unsigned Size) {
|
|
BitFields.insert(std::make_pair(FD, BitFieldInfo(Begin, Size)));
|
|
}
|
|
|
|
/// getCGRecordLayout - Return record layout info for the given llvm::Type.
|
|
const CGRecordLayout *
|
|
CodeGenTypes::getCGRecordLayout(const TagDecl *TD) const {
|
|
llvm::DenseMap<const TagDecl*, CGRecordLayout *>::iterator I
|
|
= CGRecordLayouts.find(TD);
|
|
assert (I != CGRecordLayouts.end()
|
|
&& "Unable to find record layout information for type");
|
|
return I->second;
|
|
}
|
|
|
|
/// layoutStructFields - Do the actual work and lay out all fields. Create
|
|
/// corresponding llvm struct type.
|
|
/// Note that this doesn't actually try to do struct layout; it depends on
|
|
/// the layout built by the AST. (We have to do struct layout to do Sema,
|
|
/// and there's no point to duplicating the work.)
|
|
void RecordOrganizer::layoutStructFields(const ASTRecordLayout &RL) {
|
|
// FIXME: This code currently always generates packed structures.
|
|
// Unpacked structures are more readable, and sometimes more efficient!
|
|
// (But note that any changes here are likely to impact CGExprConstant,
|
|
// which makes some messy assumptions.)
|
|
uint64_t llvmSize = 0;
|
|
// FIXME: Make this a SmallVector
|
|
std::vector<const llvm::Type*> LLVMFields;
|
|
int NumMembers = RD.getNumMembers();
|
|
|
|
for (int curField = 0; curField < NumMembers; curField++) {
|
|
const FieldDecl *FD = RD.getMember(curField);
|
|
uint64_t offset = RL.getFieldOffset(curField);
|
|
const llvm::Type *Ty = CGT.ConvertTypeRecursive(FD->getType());
|
|
uint64_t size = CGT.getTargetData().getABITypeSizeInBits(Ty);
|
|
|
|
if (FD->isBitField()) {
|
|
Expr *BitWidth = FD->getBitWidth();
|
|
llvm::APSInt FieldSize(32);
|
|
bool isBitField =
|
|
BitWidth->isIntegerConstantExpr(FieldSize, CGT.getContext());
|
|
assert (isBitField && "Invalid BitField size expression");
|
|
uint64_t BitFieldSize = FieldSize.getZExtValue();
|
|
|
|
// Bitfield field info is different from other field info;
|
|
// it actually ignores the underlying LLVM struct because
|
|
// there isn't any convenient mapping.
|
|
CGT.addFieldInfo(FD, offset / size);
|
|
CGT.addBitFieldInfo(FD, offset % size, BitFieldSize);
|
|
} else {
|
|
// Put the element into the struct. This would be simpler
|
|
// if we didn't bother, but it seems a bit too strange to
|
|
// allocate all structs as i8 arrays.
|
|
while (llvmSize < offset) {
|
|
LLVMFields.push_back(llvm::Type::Int8Ty);
|
|
llvmSize += 8;
|
|
}
|
|
|
|
llvmSize += size;
|
|
CGT.addFieldInfo(FD, LLVMFields.size());
|
|
LLVMFields.push_back(Ty);
|
|
}
|
|
}
|
|
|
|
while (llvmSize < RL.getSize()) {
|
|
LLVMFields.push_back(llvm::Type::Int8Ty);
|
|
llvmSize += 8;
|
|
}
|
|
|
|
STy = llvm::StructType::get(LLVMFields, true);
|
|
assert(CGT.getTargetData().getABITypeSizeInBits(STy) == RL.getSize());
|
|
}
|
|
|
|
/// layoutUnionFields - Do the actual work and lay out all fields. Create
|
|
/// corresponding llvm struct type. This should be invoked only after
|
|
/// all fields are added.
|
|
void RecordOrganizer::layoutUnionFields(const ASTRecordLayout &RL) {
|
|
for (int curField = 0; curField < RD.getNumMembers(); curField++) {
|
|
const FieldDecl *FD = RD.getMember(curField);
|
|
// The offset should usually be zero, but bitfields could be strange
|
|
uint64_t offset = RL.getFieldOffset(curField);
|
|
|
|
if (FD->isBitField()) {
|
|
Expr *BitWidth = FD->getBitWidth();
|
|
llvm::APSInt FieldSize(32);
|
|
bool isBitField =
|
|
BitWidth->isIntegerConstantExpr(FieldSize, CGT.getContext());
|
|
assert (isBitField && "Invalid BitField size expression");
|
|
uint64_t BitFieldSize = FieldSize.getZExtValue();
|
|
|
|
CGT.addFieldInfo(FD, 0);
|
|
CGT.addBitFieldInfo(FD, offset, BitFieldSize);
|
|
} else {
|
|
CGT.addFieldInfo(FD, 0);
|
|
}
|
|
}
|
|
|
|
// This looks stupid, but it is correct in the sense that
|
|
// it works no matter how complicated the sizes and alignments
|
|
// of the union elements are. The natural alignment
|
|
// of the result doesn't matter because anyone allocating
|
|
// structures should be aligning them appropriately anyway.
|
|
// FIXME: We can be a bit more intuitive in a lot of cases.
|
|
STy = llvm::ArrayType::get(llvm::Type::Int8Ty, RL.getSize() / 8);
|
|
assert(CGT.getTargetData().getABITypeSizeInBits(STy) == RL.getSize());
|
|
}
|