зеркало из https://github.com/microsoft/clang-1.git
413 строки
16 KiB
C++
413 строки
16 KiB
C++
//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements C++ semantic analysis for scope specifiers.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace clang;
|
|
|
|
/// \brief Compute the DeclContext that is associated with the given
|
|
/// scope specifier.
|
|
///
|
|
/// \param SS the C++ scope specifier as it appears in the source
|
|
///
|
|
/// \param EnteringContext when true, we will be entering the context of
|
|
/// this scope specifier, so we can retrieve the declaration context of a
|
|
/// class template or class template partial specialization even if it is
|
|
/// not the current instantiation.
|
|
///
|
|
/// \returns the declaration context represented by the scope specifier @p SS,
|
|
/// or NULL if the declaration context cannot be computed (e.g., because it is
|
|
/// dependent and not the current instantiation).
|
|
DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
|
|
bool EnteringContext) {
|
|
if (!SS.isSet() || SS.isInvalid())
|
|
return 0;
|
|
|
|
NestedNameSpecifier *NNS
|
|
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
if (NNS->isDependent()) {
|
|
// If this nested-name-specifier refers to the current
|
|
// instantiation, return its DeclContext.
|
|
if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
|
|
return Record;
|
|
|
|
if (EnteringContext) {
|
|
if (const TemplateSpecializationType *SpecType
|
|
= dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
|
|
// We are entering the context of the nested name specifier, so try to
|
|
// match the nested name specifier to either a primary class template
|
|
// or a class template partial specialization.
|
|
if (ClassTemplateDecl *ClassTemplate
|
|
= dyn_cast_or_null<ClassTemplateDecl>(
|
|
SpecType->getTemplateName().getAsTemplateDecl())) {
|
|
QualType ContextType
|
|
= Context.getCanonicalType(QualType(SpecType, 0));
|
|
|
|
// If the type of the nested name specifier is the same as the
|
|
// injected class name of the named class template, we're entering
|
|
// into that class template definition.
|
|
QualType Injected = ClassTemplate->getInjectedClassNameType(Context);
|
|
if (Context.hasSameType(Injected, ContextType))
|
|
return ClassTemplate->getTemplatedDecl();
|
|
|
|
// If the type of the nested name specifier is the same as the
|
|
// type of one of the class template's class template partial
|
|
// specializations, we're entering into the definition of that
|
|
// class template partial specialization.
|
|
if (ClassTemplatePartialSpecializationDecl *PartialSpec
|
|
= ClassTemplate->findPartialSpecialization(ContextType))
|
|
return PartialSpec;
|
|
}
|
|
} else if (const RecordType *RecordT
|
|
= dyn_cast_or_null<RecordType>(NNS->getAsType())) {
|
|
// The nested name specifier refers to a member of a class template.
|
|
return RecordT->getDecl();
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
assert(false && "Dependent nested-name-specifier has no DeclContext");
|
|
break;
|
|
|
|
case NestedNameSpecifier::Namespace:
|
|
return NNS->getAsNamespace();
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate: {
|
|
const TagType *Tag = NNS->getAsType()->getAs<TagType>();
|
|
assert(Tag && "Non-tag type in nested-name-specifier");
|
|
return Tag->getDecl();
|
|
} break;
|
|
|
|
case NestedNameSpecifier::Global:
|
|
return Context.getTranslationUnitDecl();
|
|
}
|
|
|
|
// Required to silence a GCC warning.
|
|
return 0;
|
|
}
|
|
|
|
bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
|
|
if (!SS.isSet() || SS.isInvalid())
|
|
return false;
|
|
|
|
NestedNameSpecifier *NNS
|
|
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
return NNS->isDependent();
|
|
}
|
|
|
|
// \brief Determine whether this C++ scope specifier refers to an
|
|
// unknown specialization, i.e., a dependent type that is not the
|
|
// current instantiation.
|
|
bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
|
|
if (!isDependentScopeSpecifier(SS))
|
|
return false;
|
|
|
|
NestedNameSpecifier *NNS
|
|
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
return getCurrentInstantiationOf(NNS) == 0;
|
|
}
|
|
|
|
/// \brief If the given nested name specifier refers to the current
|
|
/// instantiation, return the declaration that corresponds to that
|
|
/// current instantiation (C++0x [temp.dep.type]p1).
|
|
///
|
|
/// \param NNS a dependent nested name specifier.
|
|
CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
|
|
assert(getLangOptions().CPlusPlus && "Only callable in C++");
|
|
assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
|
|
|
|
if (!NNS->getAsType())
|
|
return 0;
|
|
|
|
QualType T = QualType(NNS->getAsType(), 0);
|
|
// If the nested name specifier does not refer to a type, then it
|
|
// does not refer to the current instantiation.
|
|
if (T.isNull())
|
|
return 0;
|
|
|
|
T = Context.getCanonicalType(T);
|
|
|
|
for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getParent()) {
|
|
// If we've hit a namespace or the global scope, then the
|
|
// nested-name-specifier can't refer to the current instantiation.
|
|
if (Ctx->isFileContext())
|
|
return 0;
|
|
|
|
// Skip non-class contexts.
|
|
CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
|
|
if (!Record)
|
|
continue;
|
|
|
|
// If this record type is not dependent,
|
|
if (!Record->isDependentType())
|
|
return 0;
|
|
|
|
// C++ [temp.dep.type]p1:
|
|
//
|
|
// In the definition of a class template, a nested class of a
|
|
// class template, a member of a class template, or a member of a
|
|
// nested class of a class template, a name refers to the current
|
|
// instantiation if it is
|
|
// -- the injected-class-name (9) of the class template or
|
|
// nested class,
|
|
// -- in the definition of a primary class template, the name
|
|
// of the class template followed by the template argument
|
|
// list of the primary template (as described below)
|
|
// enclosed in <>,
|
|
// -- in the definition of a nested class of a class template,
|
|
// the name of the nested class referenced as a member of
|
|
// the current instantiation, or
|
|
// -- in the definition of a partial specialization, the name
|
|
// of the class template followed by the template argument
|
|
// list of the partial specialization enclosed in <>. If
|
|
// the nth template parameter is a parameter pack, the nth
|
|
// template argument is a pack expansion (14.6.3) whose
|
|
// pattern is the name of the parameter pack.
|
|
// (FIXME: parameter packs)
|
|
//
|
|
// All of these options come down to having the
|
|
// nested-name-specifier type that is equivalent to the
|
|
// injected-class-name of one of the types that is currently in
|
|
// our context.
|
|
if (Context.getCanonicalType(Context.getTypeDeclType(Record)) == T)
|
|
return Record;
|
|
|
|
if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) {
|
|
QualType InjectedClassName
|
|
= Template->getInjectedClassNameType(Context);
|
|
if (T == Context.getCanonicalType(InjectedClassName))
|
|
return Template->getTemplatedDecl();
|
|
}
|
|
// FIXME: check for class template partial specializations
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Require that the context specified by SS be complete.
|
|
///
|
|
/// If SS refers to a type, this routine checks whether the type is
|
|
/// complete enough (or can be made complete enough) for name lookup
|
|
/// into the DeclContext. A type that is not yet completed can be
|
|
/// considered "complete enough" if it is a class/struct/union/enum
|
|
/// that is currently being defined. Or, if we have a type that names
|
|
/// a class template specialization that is not a complete type, we
|
|
/// will attempt to instantiate that class template.
|
|
bool Sema::RequireCompleteDeclContext(const CXXScopeSpec &SS) {
|
|
if (!SS.isSet() || SS.isInvalid())
|
|
return false;
|
|
|
|
DeclContext *DC = computeDeclContext(SS, true);
|
|
if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
|
|
// If we're currently defining this type, then lookup into the
|
|
// type is okay: don't complain that it isn't complete yet.
|
|
const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>();
|
|
if (TagT->isBeingDefined())
|
|
return false;
|
|
|
|
// The type must be complete.
|
|
return RequireCompleteType(SS.getRange().getBegin(),
|
|
Context.getTypeDeclType(Tag),
|
|
diag::err_incomplete_nested_name_spec,
|
|
SS.getRange());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
|
|
/// global scope ('::').
|
|
Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S,
|
|
SourceLocation CCLoc) {
|
|
return NestedNameSpecifier::GlobalSpecifier(Context);
|
|
}
|
|
|
|
/// ActOnCXXNestedNameSpecifier - Called during parsing of a
|
|
/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
|
|
/// we want to resolve "bar::". 'SS' is empty or the previously parsed
|
|
/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
|
|
/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
|
|
/// Returns a CXXScopeTy* object representing the C++ scope.
|
|
Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation IdLoc,
|
|
SourceLocation CCLoc,
|
|
IdentifierInfo &II,
|
|
bool EnteringContext) {
|
|
NestedNameSpecifier *Prefix
|
|
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
|
|
NamedDecl *SD = LookupParsedName(S, &SS, &II, LookupNestedNameSpecifierName,
|
|
false, false, SourceLocation(),
|
|
EnteringContext);
|
|
|
|
if (SD) {
|
|
if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD))
|
|
return NestedNameSpecifier::Create(Context, Prefix, Namespace);
|
|
|
|
if (TypeDecl *Type = dyn_cast<TypeDecl>(SD)) {
|
|
// Determine whether we have a class (or, in C++0x, an enum) or
|
|
// a typedef thereof. If so, build the nested-name-specifier.
|
|
QualType T = Context.getTypeDeclType(Type);
|
|
bool AcceptableType = false;
|
|
if (T->isDependentType())
|
|
AcceptableType = true;
|
|
else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) {
|
|
if (TD->getUnderlyingType()->isRecordType() ||
|
|
(getLangOptions().CPlusPlus0x &&
|
|
TD->getUnderlyingType()->isEnumeralType()))
|
|
AcceptableType = true;
|
|
} else if (isa<RecordDecl>(Type) ||
|
|
(getLangOptions().CPlusPlus0x && isa<EnumDecl>(Type)))
|
|
AcceptableType = true;
|
|
|
|
if (AcceptableType)
|
|
return NestedNameSpecifier::Create(Context, Prefix, false,
|
|
T.getTypePtr());
|
|
}
|
|
|
|
// FIXME: It would be nice to maintain the namespace alias name, then
|
|
// see through that alias when resolving the nested-name-specifier down to
|
|
// a declaration context.
|
|
if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD))
|
|
return NestedNameSpecifier::Create(Context, Prefix,
|
|
Alias->getNamespace());
|
|
|
|
// Fall through to produce an error: we found something that isn't
|
|
// a class or a namespace.
|
|
} else if (SS.isSet() && isDependentScopeSpecifier(SS))
|
|
return NestedNameSpecifier::Create(Context, Prefix, &II);
|
|
|
|
// If we didn't find anything during our lookup, try again with
|
|
// ordinary name lookup, which can help us produce better error
|
|
// messages.
|
|
if (!SD)
|
|
SD = LookupParsedName(S, &SS, &II, LookupOrdinaryName,
|
|
false, false, SourceLocation(),
|
|
EnteringContext);
|
|
unsigned DiagID;
|
|
if (SD)
|
|
DiagID = diag::err_expected_class_or_namespace;
|
|
else if (SS.isSet())
|
|
DiagID = diag::err_typecheck_no_member;
|
|
else
|
|
DiagID = diag::err_undeclared_var_use;
|
|
|
|
if (SS.isSet())
|
|
Diag(IdLoc, DiagID) << &II << SS.getRange();
|
|
else
|
|
Diag(IdLoc, DiagID) << &II;
|
|
|
|
return 0;
|
|
}
|
|
|
|
Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
|
|
const CXXScopeSpec &SS,
|
|
TypeTy *Ty,
|
|
SourceRange TypeRange,
|
|
SourceLocation CCLoc) {
|
|
NestedNameSpecifier *Prefix
|
|
= static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
|
QualType T = GetTypeFromParser(Ty);
|
|
return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false,
|
|
T.getTypePtr());
|
|
}
|
|
|
|
Action::OwningExprResult
|
|
Sema::ActOnCXXEnterMemberScope(Scope *S, CXXScopeSpec &SS, ExprArg Base,
|
|
tok::TokenKind OpKind) {
|
|
// Since this might be a postfix expression, get rid of ParenListExprs.
|
|
Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
|
|
|
|
Expr *BaseExpr = (Expr*)Base.get();
|
|
assert(BaseExpr && "no record expansion");
|
|
|
|
QualType BaseType = BaseExpr->getType();
|
|
// FIXME: handle dependent types
|
|
if (BaseType->isDependentType())
|
|
return move(Base);
|
|
|
|
// C++ [over.match.oper]p8:
|
|
// [...] When operator->returns, the operator-> is applied to the value
|
|
// returned, with the original second operand.
|
|
if (OpKind == tok::arrow) {
|
|
while (BaseType->isRecordType()) {
|
|
Base = BuildOverloadedArrowExpr(S, move(Base), BaseExpr->getExprLoc());
|
|
BaseExpr = (Expr*)Base.get();
|
|
if (BaseExpr == NULL)
|
|
return ExprError();
|
|
BaseType = BaseExpr->getType();
|
|
}
|
|
}
|
|
|
|
if (BaseType->isPointerType())
|
|
BaseType = BaseType->getPointeeType();
|
|
|
|
// We could end up with various non-record types here, such as extended
|
|
// vector types or Objective-C interfaces. Just return early and let
|
|
// ActOnMemberReferenceExpr do the work.
|
|
if (!BaseType->isRecordType())
|
|
return move(Base);
|
|
|
|
SS.setRange(BaseExpr->getSourceRange());
|
|
SS.setScopeRep(
|
|
NestedNameSpecifier::Create(Context, 0, false, BaseType.getTypePtr())
|
|
);
|
|
|
|
if (S)
|
|
ActOnCXXEnterDeclaratorScope(S,SS);
|
|
return move(Base);
|
|
}
|
|
|
|
void Sema::ActOnCXXExitMemberScope(Scope *S, const CXXScopeSpec &SS) {
|
|
if (S && SS.isSet())
|
|
ActOnCXXExitDeclaratorScope(S,SS);
|
|
}
|
|
|
|
|
|
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
|
|
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
|
|
/// After this method is called, according to [C++ 3.4.3p3], names should be
|
|
/// looked up in the declarator-id's scope, until the declarator is parsed and
|
|
/// ActOnCXXExitDeclaratorScope is called.
|
|
/// The 'SS' should be a non-empty valid CXXScopeSpec.
|
|
void Sema::ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
|
|
assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
|
|
if (DeclContext *DC = computeDeclContext(SS, true))
|
|
EnterDeclaratorContext(S, DC);
|
|
}
|
|
|
|
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
|
|
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
|
|
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
|
|
/// Used to indicate that names should revert to being looked up in the
|
|
/// defining scope.
|
|
void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
|
|
assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
|
|
if (SS.isInvalid())
|
|
return;
|
|
if (computeDeclContext(SS, true))
|
|
ExitDeclaratorContext(S);
|
|
}
|