зеркало из https://github.com/microsoft/clang-1.git
1397 строки
53 KiB
C++
1397 строки
53 KiB
C++
//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the C++ related Decl classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTMutationListener.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Decl Allocation/Deallocation Method Implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
|
|
: UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
|
|
UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false),
|
|
Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
|
|
Abstract(false), HasTrivialConstructor(true),
|
|
HasTrivialCopyConstructor(true), HasTrivialCopyAssignment(true),
|
|
HasTrivialDestructor(true), ComputedVisibleConversions(false),
|
|
DeclaredDefaultConstructor(false), DeclaredCopyConstructor(false),
|
|
DeclaredCopyAssignment(false), DeclaredDestructor(false),
|
|
NumBases(0), NumVBases(0), Bases(), VBases(),
|
|
Definition(D), FirstFriend(0) {
|
|
}
|
|
|
|
CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
|
|
SourceLocation L, IdentifierInfo *Id,
|
|
CXXRecordDecl *PrevDecl,
|
|
SourceLocation TKL)
|
|
: RecordDecl(K, TK, DC, L, Id, PrevDecl, TKL),
|
|
DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
|
|
TemplateOrInstantiation() { }
|
|
|
|
CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
|
|
DeclContext *DC, SourceLocation L,
|
|
IdentifierInfo *Id, SourceLocation TKL,
|
|
CXXRecordDecl* PrevDecl,
|
|
bool DelayTypeCreation) {
|
|
CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, L, Id,
|
|
PrevDecl, TKL);
|
|
|
|
// FIXME: DelayTypeCreation seems like such a hack
|
|
if (!DelayTypeCreation)
|
|
C.getTypeDeclType(R, PrevDecl);
|
|
return R;
|
|
}
|
|
|
|
CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, EmptyShell Empty) {
|
|
return new (C) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(), 0, 0,
|
|
SourceLocation());
|
|
}
|
|
|
|
void
|
|
CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
|
|
unsigned NumBases) {
|
|
ASTContext &C = getASTContext();
|
|
|
|
// C++ [dcl.init.aggr]p1:
|
|
// An aggregate is an array or a class (clause 9) with [...]
|
|
// no base classes [...].
|
|
data().Aggregate = false;
|
|
|
|
if (!data().Bases.isOffset() && data().NumBases > 0)
|
|
C.Deallocate(data().getBases());
|
|
|
|
// The set of seen virtual base types.
|
|
llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
|
|
|
|
// The virtual bases of this class.
|
|
llvm::SmallVector<const CXXBaseSpecifier *, 8> VBases;
|
|
|
|
data().Bases = new(C) CXXBaseSpecifier [NumBases];
|
|
data().NumBases = NumBases;
|
|
for (unsigned i = 0; i < NumBases; ++i) {
|
|
data().getBases()[i] = *Bases[i];
|
|
// Keep track of inherited vbases for this base class.
|
|
const CXXBaseSpecifier *Base = Bases[i];
|
|
QualType BaseType = Base->getType();
|
|
// Skip dependent types; we can't do any checking on them now.
|
|
if (BaseType->isDependentType())
|
|
continue;
|
|
CXXRecordDecl *BaseClassDecl
|
|
= cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
|
|
|
|
// C++ [dcl.init.aggr]p1:
|
|
// An aggregate is [...] a class with [...] no base classes [...].
|
|
data().Aggregate = false;
|
|
|
|
// C++ [class]p4:
|
|
// A POD-struct is an aggregate class...
|
|
data().PlainOldData = false;
|
|
|
|
// A class with a non-empty base class is not empty.
|
|
// FIXME: Standard ref?
|
|
if (!BaseClassDecl->isEmpty())
|
|
data().Empty = false;
|
|
|
|
// C++ [class.virtual]p1:
|
|
// A class that declares or inherits a virtual function is called a
|
|
// polymorphic class.
|
|
if (BaseClassDecl->isPolymorphic())
|
|
data().Polymorphic = true;
|
|
|
|
// Now go through all virtual bases of this base and add them.
|
|
for (CXXRecordDecl::base_class_iterator VBase =
|
|
BaseClassDecl->vbases_begin(),
|
|
E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
|
|
// Add this base if it's not already in the list.
|
|
if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType())))
|
|
VBases.push_back(VBase);
|
|
}
|
|
|
|
if (Base->isVirtual()) {
|
|
// Add this base if it's not already in the list.
|
|
if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
|
|
VBases.push_back(Base);
|
|
|
|
// C++0x [meta.unary.prop] is_empty:
|
|
// T is a class type, but not a union type, with ... no virtual base
|
|
// classes
|
|
data().Empty = false;
|
|
|
|
// C++ [class.ctor]p5:
|
|
// A constructor is trivial if its class has no virtual base classes.
|
|
data().HasTrivialConstructor = false;
|
|
|
|
// C++ [class.copy]p6:
|
|
// A copy constructor is trivial if its class has no virtual base
|
|
// classes.
|
|
data().HasTrivialCopyConstructor = false;
|
|
|
|
// C++ [class.copy]p11:
|
|
// A copy assignment operator is trivial if its class has no virtual
|
|
// base classes.
|
|
data().HasTrivialCopyAssignment = false;
|
|
} else {
|
|
// C++ [class.ctor]p5:
|
|
// A constructor is trivial if all the direct base classes of its
|
|
// class have trivial constructors.
|
|
if (!BaseClassDecl->hasTrivialConstructor())
|
|
data().HasTrivialConstructor = false;
|
|
|
|
// C++ [class.copy]p6:
|
|
// A copy constructor is trivial if all the direct base classes of its
|
|
// class have trivial copy constructors.
|
|
if (!BaseClassDecl->hasTrivialCopyConstructor())
|
|
data().HasTrivialCopyConstructor = false;
|
|
|
|
// C++ [class.copy]p11:
|
|
// A copy assignment operator is trivial if all the direct base classes
|
|
// of its class have trivial copy assignment operators.
|
|
if (!BaseClassDecl->hasTrivialCopyAssignment())
|
|
data().HasTrivialCopyAssignment = false;
|
|
}
|
|
|
|
// C++ [class.ctor]p3:
|
|
// A destructor is trivial if all the direct base classes of its class
|
|
// have trivial destructors.
|
|
if (!BaseClassDecl->hasTrivialDestructor())
|
|
data().HasTrivialDestructor = false;
|
|
}
|
|
|
|
if (VBases.empty())
|
|
return;
|
|
|
|
// Create base specifier for any direct or indirect virtual bases.
|
|
data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
|
|
data().NumVBases = VBases.size();
|
|
for (int I = 0, E = VBases.size(); I != E; ++I) {
|
|
TypeSourceInfo *VBaseTypeInfo = VBases[I]->getTypeSourceInfo();
|
|
|
|
// Skip dependent types; we can't do any checking on them now.
|
|
if (VBaseTypeInfo->getType()->isDependentType())
|
|
continue;
|
|
|
|
CXXRecordDecl *VBaseClassDecl = cast<CXXRecordDecl>(
|
|
VBaseTypeInfo->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
data().getVBases()[I] =
|
|
CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true,
|
|
VBaseClassDecl->getTagKind() == TTK_Class,
|
|
VBases[I]->getAccessSpecifier(), VBaseTypeInfo,
|
|
SourceLocation());
|
|
}
|
|
}
|
|
|
|
/// Callback function for CXXRecordDecl::forallBases that acknowledges
|
|
/// that it saw a base class.
|
|
static bool SawBase(const CXXRecordDecl *, void *) {
|
|
return true;
|
|
}
|
|
|
|
bool CXXRecordDecl::hasAnyDependentBases() const {
|
|
if (!isDependentContext())
|
|
return false;
|
|
|
|
return !forallBases(SawBase, 0);
|
|
}
|
|
|
|
bool CXXRecordDecl::hasConstCopyConstructor(const ASTContext &Context) const {
|
|
return getCopyConstructor(Context, Qualifiers::Const) != 0;
|
|
}
|
|
|
|
/// \brief Perform a simplistic form of overload resolution that only considers
|
|
/// cv-qualifiers on a single parameter, and return the best overload candidate
|
|
/// (if there is one).
|
|
static CXXMethodDecl *
|
|
GetBestOverloadCandidateSimple(
|
|
const llvm::SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) {
|
|
if (Cands.empty())
|
|
return 0;
|
|
if (Cands.size() == 1)
|
|
return Cands[0].first;
|
|
|
|
unsigned Best = 0, N = Cands.size();
|
|
for (unsigned I = 1; I != N; ++I)
|
|
if (Cands[Best].second.isSupersetOf(Cands[I].second))
|
|
Best = I;
|
|
|
|
for (unsigned I = 1; I != N; ++I)
|
|
if (Cands[Best].second.isSupersetOf(Cands[I].second))
|
|
return 0;
|
|
|
|
return Cands[Best].first;
|
|
}
|
|
|
|
CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(const ASTContext &Context,
|
|
unsigned TypeQuals) const{
|
|
QualType ClassType
|
|
= Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
|
|
DeclarationName ConstructorName
|
|
= Context.DeclarationNames.getCXXConstructorName(
|
|
Context.getCanonicalType(ClassType));
|
|
unsigned FoundTQs;
|
|
llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
|
|
DeclContext::lookup_const_iterator Con, ConEnd;
|
|
for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
|
|
Con != ConEnd; ++Con) {
|
|
// C++ [class.copy]p2:
|
|
// A non-template constructor for class X is a copy constructor if [...]
|
|
if (isa<FunctionTemplateDecl>(*Con))
|
|
continue;
|
|
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
|
|
if (Constructor->isCopyConstructor(FoundTQs)) {
|
|
if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
|
|
(!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
|
|
Found.push_back(std::make_pair(
|
|
const_cast<CXXConstructorDecl *>(Constructor),
|
|
Qualifiers::fromCVRMask(FoundTQs)));
|
|
}
|
|
}
|
|
|
|
return cast_or_null<CXXConstructorDecl>(
|
|
GetBestOverloadCandidateSimple(Found));
|
|
}
|
|
|
|
CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const {
|
|
ASTContext &Context = getASTContext();
|
|
QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this));
|
|
DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
|
|
|
|
llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
|
|
DeclContext::lookup_const_iterator Op, OpEnd;
|
|
for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) {
|
|
// C++ [class.copy]p9:
|
|
// A user-declared copy assignment operator is a non-static non-template
|
|
// member function of class X with exactly one parameter of type X, X&,
|
|
// const X&, volatile X& or const volatile X&.
|
|
const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
|
|
if (!Method || Method->isStatic() || Method->getPrimaryTemplate())
|
|
continue;
|
|
|
|
const FunctionProtoType *FnType
|
|
= Method->getType()->getAs<FunctionProtoType>();
|
|
assert(FnType && "Overloaded operator has no prototype.");
|
|
// Don't assert on this; an invalid decl might have been left in the AST.
|
|
if (FnType->getNumArgs() != 1 || FnType->isVariadic())
|
|
continue;
|
|
|
|
QualType ArgType = FnType->getArgType(0);
|
|
Qualifiers Quals;
|
|
if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
|
|
ArgType = Ref->getPointeeType();
|
|
// If we have a const argument and we have a reference to a non-const,
|
|
// this function does not match.
|
|
if (ArgIsConst && !ArgType.isConstQualified())
|
|
continue;
|
|
|
|
Quals = ArgType.getQualifiers();
|
|
} else {
|
|
// By-value copy-assignment operators are treated like const X&
|
|
// copy-assignment operators.
|
|
Quals = Qualifiers::fromCVRMask(Qualifiers::Const);
|
|
}
|
|
|
|
if (!Context.hasSameUnqualifiedType(ArgType, Class))
|
|
continue;
|
|
|
|
// Save this copy-assignment operator. It might be "the one".
|
|
Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals));
|
|
}
|
|
|
|
// Use a simplistic form of overload resolution to find the candidate.
|
|
return GetBestOverloadCandidateSimple(Found);
|
|
}
|
|
|
|
void CXXRecordDecl::markedVirtualFunctionPure() {
|
|
// C++ [class.abstract]p2:
|
|
// A class is abstract if it has at least one pure virtual function.
|
|
data().Abstract = true;
|
|
}
|
|
|
|
void CXXRecordDecl::addedMember(Decl *D) {
|
|
// Ignore friends and invalid declarations.
|
|
if (D->getFriendObjectKind() || D->isInvalidDecl())
|
|
return;
|
|
|
|
FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
|
|
if (FunTmpl)
|
|
D = FunTmpl->getTemplatedDecl();
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (Method->isVirtual()) {
|
|
// C++ [dcl.init.aggr]p1:
|
|
// An aggregate is an array or a class with [...] no virtual functions.
|
|
data().Aggregate = false;
|
|
|
|
// C++ [class]p4:
|
|
// A POD-struct is an aggregate class...
|
|
data().PlainOldData = false;
|
|
|
|
// Virtual functions make the class non-empty.
|
|
// FIXME: Standard ref?
|
|
data().Empty = false;
|
|
|
|
// C++ [class.virtual]p1:
|
|
// A class that declares or inherits a virtual function is called a
|
|
// polymorphic class.
|
|
data().Polymorphic = true;
|
|
|
|
// None of the special member functions are trivial.
|
|
data().HasTrivialConstructor = false;
|
|
data().HasTrivialCopyConstructor = false;
|
|
data().HasTrivialCopyAssignment = false;
|
|
// FIXME: Destructor?
|
|
}
|
|
}
|
|
|
|
if (D->isImplicit()) {
|
|
// Notify that an implicit member was added after the definition
|
|
// was completed.
|
|
if (!isBeingDefined())
|
|
if (ASTMutationListener *L = getASTMutationListener())
|
|
L->AddedCXXImplicitMember(data().Definition, D);
|
|
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
|
|
// If this is the implicit default constructor, note that we have now
|
|
// declared it.
|
|
if (Constructor->isDefaultConstructor())
|
|
data().DeclaredDefaultConstructor = true;
|
|
// If this is the implicit copy constructor, note that we have now
|
|
// declared it.
|
|
else if (Constructor->isCopyConstructor())
|
|
data().DeclaredCopyConstructor = true;
|
|
return;
|
|
}
|
|
|
|
if (isa<CXXDestructorDecl>(D)) {
|
|
data().DeclaredDestructor = true;
|
|
return;
|
|
}
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
|
|
// If this is the implicit copy constructor, note that we have now
|
|
// declared it.
|
|
// FIXME: Move constructors
|
|
if (Method->getOverloadedOperator() == OO_Equal)
|
|
data().DeclaredCopyAssignment = true;
|
|
return;
|
|
}
|
|
|
|
// Any other implicit declarations are handled like normal declarations.
|
|
}
|
|
|
|
// Handle (user-declared) constructors.
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
|
|
// Note that we have a user-declared constructor.
|
|
data().UserDeclaredConstructor = true;
|
|
|
|
// Note that we have no need of an implicitly-declared default constructor.
|
|
data().DeclaredDefaultConstructor = true;
|
|
|
|
// C++ [dcl.init.aggr]p1:
|
|
// An aggregate is an array or a class (clause 9) with no
|
|
// user-declared constructors (12.1) [...].
|
|
data().Aggregate = false;
|
|
|
|
// C++ [class]p4:
|
|
// A POD-struct is an aggregate class [...]
|
|
data().PlainOldData = false;
|
|
|
|
// C++ [class.ctor]p5:
|
|
// A constructor is trivial if it is an implicitly-declared default
|
|
// constructor.
|
|
// FIXME: C++0x: don't do this for "= default" default constructors.
|
|
data().HasTrivialConstructor = false;
|
|
|
|
// Note when we have a user-declared copy constructor, which will
|
|
// suppress the implicit declaration of a copy constructor.
|
|
if (!FunTmpl && Constructor->isCopyConstructor()) {
|
|
data().UserDeclaredCopyConstructor = true;
|
|
data().DeclaredCopyConstructor = true;
|
|
|
|
// C++ [class.copy]p6:
|
|
// A copy constructor is trivial if it is implicitly declared.
|
|
// FIXME: C++0x: don't do this for "= default" copy constructors.
|
|
data().HasTrivialCopyConstructor = false;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Handle (user-declared) destructors.
|
|
if (isa<CXXDestructorDecl>(D)) {
|
|
data().DeclaredDestructor = true;
|
|
data().UserDeclaredDestructor = true;
|
|
|
|
// C++ [class]p4:
|
|
// A POD-struct is an aggregate class that has [...] no user-defined
|
|
// destructor.
|
|
data().PlainOldData = false;
|
|
|
|
// C++ [class.dtor]p3:
|
|
// A destructor is trivial if it is an implicitly-declared destructor and
|
|
// [...].
|
|
//
|
|
// FIXME: C++0x: don't do this for "= default" destructors
|
|
data().HasTrivialDestructor = false;
|
|
|
|
return;
|
|
}
|
|
|
|
// Handle (user-declared) member functions.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (Method->getOverloadedOperator() == OO_Equal) {
|
|
// We're interested specifically in copy assignment operators.
|
|
const FunctionProtoType *FnType
|
|
= Method->getType()->getAs<FunctionProtoType>();
|
|
assert(FnType && "Overloaded operator has no proto function type.");
|
|
assert(FnType->getNumArgs() == 1 && !FnType->isVariadic());
|
|
|
|
// Copy assignment operators must be non-templates.
|
|
if (Method->getPrimaryTemplate() || FunTmpl)
|
|
return;
|
|
|
|
ASTContext &Context = getASTContext();
|
|
QualType ArgType = FnType->getArgType(0);
|
|
if (const LValueReferenceType *Ref =ArgType->getAs<LValueReferenceType>())
|
|
ArgType = Ref->getPointeeType();
|
|
|
|
ArgType = ArgType.getUnqualifiedType();
|
|
QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
|
|
const_cast<CXXRecordDecl*>(this)));
|
|
|
|
if (!Context.hasSameUnqualifiedType(ClassType, ArgType))
|
|
return;
|
|
|
|
// This is a copy assignment operator.
|
|
// FIXME: Move assignment operators.
|
|
|
|
// Suppress the implicit declaration of a copy constructor.
|
|
data().UserDeclaredCopyAssignment = true;
|
|
data().DeclaredCopyAssignment = true;
|
|
|
|
// C++ [class.copy]p11:
|
|
// A copy assignment operator is trivial if it is implicitly declared.
|
|
// FIXME: C++0x: don't do this for "= default" copy operators.
|
|
data().HasTrivialCopyAssignment = false;
|
|
|
|
// C++ [class]p4:
|
|
// A POD-struct is an aggregate class that [...] has no user-defined copy
|
|
// assignment operator [...].
|
|
data().PlainOldData = false;
|
|
}
|
|
|
|
// Keep the list of conversion functions up-to-date.
|
|
if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
|
|
// We don't record specializations.
|
|
if (Conversion->getPrimaryTemplate())
|
|
return;
|
|
|
|
// FIXME: We intentionally don't use the decl's access here because it
|
|
// hasn't been set yet. That's really just a misdesign in Sema.
|
|
|
|
if (FunTmpl) {
|
|
if (FunTmpl->getPreviousDeclaration())
|
|
data().Conversions.replace(FunTmpl->getPreviousDeclaration(),
|
|
FunTmpl);
|
|
else
|
|
data().Conversions.addDecl(FunTmpl);
|
|
} else {
|
|
if (Conversion->getPreviousDeclaration())
|
|
data().Conversions.replace(Conversion->getPreviousDeclaration(),
|
|
Conversion);
|
|
else
|
|
data().Conversions.addDecl(Conversion);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Handle non-static data members.
|
|
if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
|
|
// C++ [dcl.init.aggr]p1:
|
|
// An aggregate is an array or a class (clause 9) with [...] no
|
|
// private or protected non-static data members (clause 11).
|
|
//
|
|
// A POD must be an aggregate.
|
|
if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
|
|
data().Aggregate = false;
|
|
data().PlainOldData = false;
|
|
}
|
|
|
|
// C++ [class]p9:
|
|
// A POD struct is a class that is both a trivial class and a
|
|
// standard-layout class, and has no non-static data members of type
|
|
// non-POD struct, non-POD union (or array of such types).
|
|
ASTContext &Context = getASTContext();
|
|
QualType T = Context.getBaseElementType(Field->getType());
|
|
if (!T->isPODType())
|
|
data().PlainOldData = false;
|
|
if (T->isReferenceType())
|
|
data().HasTrivialConstructor = false;
|
|
|
|
if (const RecordType *RecordTy = T->getAs<RecordType>()) {
|
|
CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
|
|
if (FieldRec->getDefinition()) {
|
|
if (!FieldRec->hasTrivialConstructor())
|
|
data().HasTrivialConstructor = false;
|
|
if (!FieldRec->hasTrivialCopyConstructor())
|
|
data().HasTrivialCopyConstructor = false;
|
|
if (!FieldRec->hasTrivialCopyAssignment())
|
|
data().HasTrivialCopyAssignment = false;
|
|
if (!FieldRec->hasTrivialDestructor())
|
|
data().HasTrivialDestructor = false;
|
|
}
|
|
}
|
|
|
|
// If this is not a zero-length bit-field, then the class is not empty.
|
|
if (data().Empty) {
|
|
if (!Field->getBitWidth())
|
|
data().Empty = false;
|
|
else if (!Field->getBitWidth()->isTypeDependent() &&
|
|
!Field->getBitWidth()->isValueDependent()) {
|
|
llvm::APSInt Bits;
|
|
if (Field->getBitWidth()->isIntegerConstantExpr(Bits, Context))
|
|
if (!!Bits)
|
|
data().Empty = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handle using declarations of conversion functions.
|
|
if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D))
|
|
if (Shadow->getDeclName().getNameKind()
|
|
== DeclarationName::CXXConversionFunctionName)
|
|
data().Conversions.addDecl(Shadow, Shadow->getAccess());
|
|
}
|
|
|
|
static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
|
|
QualType T;
|
|
if (isa<UsingShadowDecl>(Conv))
|
|
Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
|
|
if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
|
|
T = ConvTemp->getTemplatedDecl()->getResultType();
|
|
else
|
|
T = cast<CXXConversionDecl>(Conv)->getConversionType();
|
|
return Context.getCanonicalType(T);
|
|
}
|
|
|
|
/// Collect the visible conversions of a base class.
|
|
///
|
|
/// \param Base a base class of the class we're considering
|
|
/// \param InVirtual whether this base class is a virtual base (or a base
|
|
/// of a virtual base)
|
|
/// \param Access the access along the inheritance path to this base
|
|
/// \param ParentHiddenTypes the conversions provided by the inheritors
|
|
/// of this base
|
|
/// \param Output the set to which to add conversions from non-virtual bases
|
|
/// \param VOutput the set to which to add conversions from virtual bases
|
|
/// \param HiddenVBaseCs the set of conversions which were hidden in a
|
|
/// virtual base along some inheritance path
|
|
static void CollectVisibleConversions(ASTContext &Context,
|
|
CXXRecordDecl *Record,
|
|
bool InVirtual,
|
|
AccessSpecifier Access,
|
|
const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
|
|
UnresolvedSetImpl &Output,
|
|
UnresolvedSetImpl &VOutput,
|
|
llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
|
|
// The set of types which have conversions in this class or its
|
|
// subclasses. As an optimization, we don't copy the derived set
|
|
// unless it might change.
|
|
const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
|
|
llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
|
|
|
|
// Collect the direct conversions and figure out which conversions
|
|
// will be hidden in the subclasses.
|
|
UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
|
|
if (!Cs.empty()) {
|
|
HiddenTypesBuffer = ParentHiddenTypes;
|
|
HiddenTypes = &HiddenTypesBuffer;
|
|
|
|
for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
|
|
bool Hidden =
|
|
!HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl()));
|
|
|
|
// If this conversion is hidden and we're in a virtual base,
|
|
// remember that it's hidden along some inheritance path.
|
|
if (Hidden && InVirtual)
|
|
HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
|
|
|
|
// If this conversion isn't hidden, add it to the appropriate output.
|
|
else if (!Hidden) {
|
|
AccessSpecifier IAccess
|
|
= CXXRecordDecl::MergeAccess(Access, I.getAccess());
|
|
|
|
if (InVirtual)
|
|
VOutput.addDecl(I.getDecl(), IAccess);
|
|
else
|
|
Output.addDecl(I.getDecl(), IAccess);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect information recursively from any base classes.
|
|
for (CXXRecordDecl::base_class_iterator
|
|
I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
|
|
const RecordType *RT = I->getType()->getAs<RecordType>();
|
|
if (!RT) continue;
|
|
|
|
AccessSpecifier BaseAccess
|
|
= CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
|
|
bool BaseInVirtual = InVirtual || I->isVirtual();
|
|
|
|
CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
|
|
CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
|
|
*HiddenTypes, Output, VOutput, HiddenVBaseCs);
|
|
}
|
|
}
|
|
|
|
/// Collect the visible conversions of a class.
|
|
///
|
|
/// This would be extremely straightforward if it weren't for virtual
|
|
/// bases. It might be worth special-casing that, really.
|
|
static void CollectVisibleConversions(ASTContext &Context,
|
|
CXXRecordDecl *Record,
|
|
UnresolvedSetImpl &Output) {
|
|
// The collection of all conversions in virtual bases that we've
|
|
// found. These will be added to the output as long as they don't
|
|
// appear in the hidden-conversions set.
|
|
UnresolvedSet<8> VBaseCs;
|
|
|
|
// The set of conversions in virtual bases that we've determined to
|
|
// be hidden.
|
|
llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
|
|
|
|
// The set of types hidden by classes derived from this one.
|
|
llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
|
|
|
|
// Go ahead and collect the direct conversions and add them to the
|
|
// hidden-types set.
|
|
UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
|
|
Output.append(Cs.begin(), Cs.end());
|
|
for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
|
|
HiddenTypes.insert(GetConversionType(Context, I.getDecl()));
|
|
|
|
// Recursively collect conversions from base classes.
|
|
for (CXXRecordDecl::base_class_iterator
|
|
I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
|
|
const RecordType *RT = I->getType()->getAs<RecordType>();
|
|
if (!RT) continue;
|
|
|
|
CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
|
|
I->isVirtual(), I->getAccessSpecifier(),
|
|
HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
|
|
}
|
|
|
|
// Add any unhidden conversions provided by virtual bases.
|
|
for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
|
|
I != E; ++I) {
|
|
if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
|
|
Output.addDecl(I.getDecl(), I.getAccess());
|
|
}
|
|
}
|
|
|
|
/// getVisibleConversionFunctions - get all conversion functions visible
|
|
/// in current class; including conversion function templates.
|
|
const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() {
|
|
// If root class, all conversions are visible.
|
|
if (bases_begin() == bases_end())
|
|
return &data().Conversions;
|
|
// If visible conversion list is already evaluated, return it.
|
|
if (data().ComputedVisibleConversions)
|
|
return &data().VisibleConversions;
|
|
CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
|
|
data().ComputedVisibleConversions = true;
|
|
return &data().VisibleConversions;
|
|
}
|
|
|
|
void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
|
|
// This operation is O(N) but extremely rare. Sema only uses it to
|
|
// remove UsingShadowDecls in a class that were followed by a direct
|
|
// declaration, e.g.:
|
|
// class A : B {
|
|
// using B::operator int;
|
|
// operator int();
|
|
// };
|
|
// This is uncommon by itself and even more uncommon in conjunction
|
|
// with sufficiently large numbers of directly-declared conversions
|
|
// that asymptotic behavior matters.
|
|
|
|
UnresolvedSetImpl &Convs = *getConversionFunctions();
|
|
for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
|
|
if (Convs[I].getDecl() == ConvDecl) {
|
|
Convs.erase(I);
|
|
assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
|
|
&& "conversion was found multiple times in unresolved set");
|
|
return;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("conversion not found in set!");
|
|
}
|
|
|
|
CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
|
|
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
|
|
return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
|
|
|
|
return 0;
|
|
}
|
|
|
|
MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
|
|
return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
|
|
}
|
|
|
|
void
|
|
CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
|
|
TemplateSpecializationKind TSK) {
|
|
assert(TemplateOrInstantiation.isNull() &&
|
|
"Previous template or instantiation?");
|
|
assert(!isa<ClassTemplateSpecializationDecl>(this));
|
|
TemplateOrInstantiation
|
|
= new (getASTContext()) MemberSpecializationInfo(RD, TSK);
|
|
}
|
|
|
|
TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
|
|
if (const ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(this))
|
|
return Spec->getSpecializationKind();
|
|
|
|
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
|
|
return MSInfo->getTemplateSpecializationKind();
|
|
|
|
return TSK_Undeclared;
|
|
}
|
|
|
|
void
|
|
CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
|
|
if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(this)) {
|
|
Spec->setSpecializationKind(TSK);
|
|
return;
|
|
}
|
|
|
|
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
|
|
MSInfo->setTemplateSpecializationKind(TSK);
|
|
return;
|
|
}
|
|
|
|
assert(false && "Not a class template or member class specialization");
|
|
}
|
|
|
|
CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
|
|
ASTContext &Context = getASTContext();
|
|
QualType ClassType = Context.getTypeDeclType(this);
|
|
|
|
DeclarationName Name
|
|
= Context.DeclarationNames.getCXXDestructorName(
|
|
Context.getCanonicalType(ClassType));
|
|
|
|
DeclContext::lookup_const_iterator I, E;
|
|
llvm::tie(I, E) = lookup(Name);
|
|
if (I == E)
|
|
return 0;
|
|
|
|
CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
|
|
assert(++I == E && "Found more than one destructor!");
|
|
|
|
return Dtor;
|
|
}
|
|
|
|
void CXXRecordDecl::completeDefinition() {
|
|
completeDefinition(0);
|
|
}
|
|
|
|
void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
|
|
RecordDecl::completeDefinition();
|
|
|
|
// If the class may be abstract (but hasn't been marked as such), check for
|
|
// any pure final overriders.
|
|
if (mayBeAbstract()) {
|
|
CXXFinalOverriderMap MyFinalOverriders;
|
|
if (!FinalOverriders) {
|
|
getFinalOverriders(MyFinalOverriders);
|
|
FinalOverriders = &MyFinalOverriders;
|
|
}
|
|
|
|
bool Done = false;
|
|
for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
|
|
MEnd = FinalOverriders->end();
|
|
M != MEnd && !Done; ++M) {
|
|
for (OverridingMethods::iterator SO = M->second.begin(),
|
|
SOEnd = M->second.end();
|
|
SO != SOEnd && !Done; ++SO) {
|
|
assert(SO->second.size() > 0 &&
|
|
"All virtual functions have overridding virtual functions");
|
|
|
|
// C++ [class.abstract]p4:
|
|
// A class is abstract if it contains or inherits at least one
|
|
// pure virtual function for which the final overrider is pure
|
|
// virtual.
|
|
if (SO->second.front().Method->isPure()) {
|
|
data().Abstract = true;
|
|
Done = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set access bits correctly on the directly-declared conversions.
|
|
for (UnresolvedSetIterator I = data().Conversions.begin(),
|
|
E = data().Conversions.end();
|
|
I != E; ++I)
|
|
data().Conversions.setAccess(I, (*I)->getAccess());
|
|
}
|
|
|
|
bool CXXRecordDecl::mayBeAbstract() const {
|
|
if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
|
|
isDependentContext())
|
|
return false;
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
|
|
BEnd = bases_end();
|
|
B != BEnd; ++B) {
|
|
CXXRecordDecl *BaseDecl
|
|
= cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
|
|
if (BaseDecl->isAbstract())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
CXXMethodDecl *
|
|
CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
bool isStatic, StorageClass SCAsWritten, bool isInline) {
|
|
return new (C) CXXMethodDecl(CXXMethod, RD, NameInfo, T, TInfo,
|
|
isStatic, SCAsWritten, isInline);
|
|
}
|
|
|
|
bool CXXMethodDecl::isUsualDeallocationFunction() const {
|
|
if (getOverloadedOperator() != OO_Delete &&
|
|
getOverloadedOperator() != OO_Array_Delete)
|
|
return false;
|
|
|
|
// C++ [basic.stc.dynamic.deallocation]p2:
|
|
// A template instance is never a usual deallocation function,
|
|
// regardless of its signature.
|
|
if (getPrimaryTemplate())
|
|
return false;
|
|
|
|
// C++ [basic.stc.dynamic.deallocation]p2:
|
|
// If a class T has a member deallocation function named operator delete
|
|
// with exactly one parameter, then that function is a usual (non-placement)
|
|
// deallocation function. [...]
|
|
if (getNumParams() == 1)
|
|
return true;
|
|
|
|
// C++ [basic.stc.dynamic.deallocation]p2:
|
|
// [...] If class T does not declare such an operator delete but does
|
|
// declare a member deallocation function named operator delete with
|
|
// exactly two parameters, the second of which has type std::size_t (18.1),
|
|
// then this function is a usual deallocation function.
|
|
ASTContext &Context = getASTContext();
|
|
if (getNumParams() != 2 ||
|
|
!Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
|
|
Context.getSizeType()))
|
|
return false;
|
|
|
|
// This function is a usual deallocation function if there are no
|
|
// single-parameter deallocation functions of the same kind.
|
|
for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
|
|
R.first != R.second; ++R.first) {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
|
|
if (FD->getNumParams() == 1)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CXXMethodDecl::isCopyAssignmentOperator() const {
|
|
// C++0x [class.copy]p19:
|
|
// A user-declared copy assignment operator X::operator= is a non-static
|
|
// non-template member function of class X with exactly one parameter of
|
|
// type X, X&, const X&, volatile X& or const volatile X&.
|
|
if (/*operator=*/getOverloadedOperator() != OO_Equal ||
|
|
/*non-static*/ isStatic() ||
|
|
/*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
|
|
/*exactly one parameter*/getNumParams() != 1)
|
|
return false;
|
|
|
|
QualType ParamType = getParamDecl(0)->getType();
|
|
if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
|
|
ParamType = Ref->getPointeeType();
|
|
|
|
ASTContext &Context = getASTContext();
|
|
QualType ClassType
|
|
= Context.getCanonicalType(Context.getTypeDeclType(getParent()));
|
|
return Context.hasSameUnqualifiedType(ClassType, ParamType);
|
|
}
|
|
|
|
void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
|
|
assert(MD->isCanonicalDecl() && "Method is not canonical!");
|
|
assert(!MD->getParent()->isDependentContext() &&
|
|
"Can't add an overridden method to a class template!");
|
|
|
|
getASTContext().addOverriddenMethod(this, MD);
|
|
}
|
|
|
|
CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
|
|
return getASTContext().overridden_methods_begin(this);
|
|
}
|
|
|
|
CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
|
|
return getASTContext().overridden_methods_end(this);
|
|
}
|
|
|
|
unsigned CXXMethodDecl::size_overridden_methods() const {
|
|
return getASTContext().overridden_methods_size(this);
|
|
}
|
|
|
|
QualType CXXMethodDecl::getThisType(ASTContext &C) const {
|
|
// C++ 9.3.2p1: The type of this in a member function of a class X is X*.
|
|
// If the member function is declared const, the type of this is const X*,
|
|
// if the member function is declared volatile, the type of this is
|
|
// volatile X*, and if the member function is declared const volatile,
|
|
// the type of this is const volatile X*.
|
|
|
|
assert(isInstance() && "No 'this' for static methods!");
|
|
|
|
QualType ClassTy = C.getTypeDeclType(getParent());
|
|
ClassTy = C.getQualifiedType(ClassTy,
|
|
Qualifiers::fromCVRMask(getTypeQualifiers()));
|
|
return C.getPointerType(ClassTy);
|
|
}
|
|
|
|
bool CXXMethodDecl::hasInlineBody() const {
|
|
// If this function is a template instantiation, look at the template from
|
|
// which it was instantiated.
|
|
const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
|
|
if (!CheckFn)
|
|
CheckFn = this;
|
|
|
|
const FunctionDecl *fn;
|
|
return CheckFn->hasBody(fn) && !fn->isOutOfLine();
|
|
}
|
|
|
|
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
|
|
TypeSourceInfo *TInfo, bool IsVirtual,
|
|
SourceLocation L, Expr *Init,
|
|
SourceLocation R,
|
|
SourceLocation EllipsisLoc)
|
|
: Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
|
|
LParenLoc(L), RParenLoc(R), IsVirtual(IsVirtual), IsWritten(false),
|
|
SourceOrderOrNumArrayIndices(0)
|
|
{
|
|
}
|
|
|
|
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
|
|
FieldDecl *Member,
|
|
SourceLocation MemberLoc,
|
|
SourceLocation L, Expr *Init,
|
|
SourceLocation R)
|
|
: Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
|
|
LParenLoc(L), RParenLoc(R), IsVirtual(false),
|
|
IsWritten(false), SourceOrderOrNumArrayIndices(0)
|
|
{
|
|
}
|
|
|
|
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
|
|
IndirectFieldDecl *Member,
|
|
SourceLocation MemberLoc,
|
|
SourceLocation L, Expr *Init,
|
|
SourceLocation R)
|
|
: Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
|
|
LParenLoc(L), RParenLoc(R), IsVirtual(false),
|
|
IsWritten(false), SourceOrderOrNumArrayIndices(0)
|
|
{
|
|
}
|
|
|
|
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
|
|
FieldDecl *Member,
|
|
SourceLocation MemberLoc,
|
|
SourceLocation L, Expr *Init,
|
|
SourceLocation R,
|
|
VarDecl **Indices,
|
|
unsigned NumIndices)
|
|
: Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
|
|
LParenLoc(L), RParenLoc(R), IsVirtual(false),
|
|
IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
|
|
{
|
|
VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
|
|
memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
|
|
}
|
|
|
|
CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
|
|
FieldDecl *Member,
|
|
SourceLocation MemberLoc,
|
|
SourceLocation L, Expr *Init,
|
|
SourceLocation R,
|
|
VarDecl **Indices,
|
|
unsigned NumIndices) {
|
|
void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
|
|
sizeof(VarDecl *) * NumIndices,
|
|
llvm::alignOf<CXXCtorInitializer>());
|
|
return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
|
|
Indices, NumIndices);
|
|
}
|
|
|
|
TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
|
|
if (isBaseInitializer())
|
|
return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
|
|
else
|
|
return TypeLoc();
|
|
}
|
|
|
|
const Type *CXXCtorInitializer::getBaseClass() const {
|
|
if (isBaseInitializer())
|
|
return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
SourceLocation CXXCtorInitializer::getSourceLocation() const {
|
|
if (isAnyMemberInitializer())
|
|
return getMemberLocation();
|
|
|
|
return getBaseClassLoc().getLocalSourceRange().getBegin();
|
|
}
|
|
|
|
SourceRange CXXCtorInitializer::getSourceRange() const {
|
|
return SourceRange(getSourceLocation(), getRParenLoc());
|
|
}
|
|
|
|
CXXConstructorDecl *
|
|
CXXConstructorDecl::Create(ASTContext &C, EmptyShell Empty) {
|
|
return new (C) CXXConstructorDecl(0, DeclarationNameInfo(),
|
|
QualType(), 0, false, false, false);
|
|
}
|
|
|
|
CXXConstructorDecl *
|
|
CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
bool isExplicit,
|
|
bool isInline,
|
|
bool isImplicitlyDeclared) {
|
|
assert(NameInfo.getName().getNameKind()
|
|
== DeclarationName::CXXConstructorName &&
|
|
"Name must refer to a constructor");
|
|
return new (C) CXXConstructorDecl(RD, NameInfo, T, TInfo, isExplicit,
|
|
isInline, isImplicitlyDeclared);
|
|
}
|
|
|
|
bool CXXConstructorDecl::isDefaultConstructor() const {
|
|
// C++ [class.ctor]p5:
|
|
// A default constructor for a class X is a constructor of class
|
|
// X that can be called without an argument.
|
|
return (getNumParams() == 0) ||
|
|
(getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
|
|
}
|
|
|
|
bool
|
|
CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
|
|
return isCopyOrMoveConstructor(TypeQuals) &&
|
|
getParamDecl(0)->getType()->isLValueReferenceType();
|
|
}
|
|
|
|
bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
|
|
return isCopyOrMoveConstructor(TypeQuals) &&
|
|
getParamDecl(0)->getType()->isRValueReferenceType();
|
|
}
|
|
|
|
/// \brief Determine whether this is a copy or move constructor.
|
|
bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
|
|
// C++ [class.copy]p2:
|
|
// A non-template constructor for class X is a copy constructor
|
|
// if its first parameter is of type X&, const X&, volatile X& or
|
|
// const volatile X&, and either there are no other parameters
|
|
// or else all other parameters have default arguments (8.3.6).
|
|
// C++0x [class.copy]p3:
|
|
// A non-template constructor for class X is a move constructor if its
|
|
// first parameter is of type X&&, const X&&, volatile X&&, or
|
|
// const volatile X&&, and either there are no other parameters or else
|
|
// all other parameters have default arguments.
|
|
if ((getNumParams() < 1) ||
|
|
(getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
|
|
(getPrimaryTemplate() != 0) ||
|
|
(getDescribedFunctionTemplate() != 0))
|
|
return false;
|
|
|
|
const ParmVarDecl *Param = getParamDecl(0);
|
|
|
|
// Do we have a reference type?
|
|
const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
|
|
if (!ParamRefType)
|
|
return false;
|
|
|
|
// Is it a reference to our class type?
|
|
ASTContext &Context = getASTContext();
|
|
|
|
CanQualType PointeeType
|
|
= Context.getCanonicalType(ParamRefType->getPointeeType());
|
|
CanQualType ClassTy
|
|
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
|
|
if (PointeeType.getUnqualifiedType() != ClassTy)
|
|
return false;
|
|
|
|
// FIXME: other qualifiers?
|
|
|
|
// We have a copy or move constructor.
|
|
TypeQuals = PointeeType.getCVRQualifiers();
|
|
return true;
|
|
}
|
|
|
|
bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
|
|
// C++ [class.conv.ctor]p1:
|
|
// A constructor declared without the function-specifier explicit
|
|
// that can be called with a single parameter specifies a
|
|
// conversion from the type of its first parameter to the type of
|
|
// its class. Such a constructor is called a converting
|
|
// constructor.
|
|
if (isExplicit() && !AllowExplicit)
|
|
return false;
|
|
|
|
return (getNumParams() == 0 &&
|
|
getType()->getAs<FunctionProtoType>()->isVariadic()) ||
|
|
(getNumParams() == 1) ||
|
|
(getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
|
|
}
|
|
|
|
bool CXXConstructorDecl::isSpecializationCopyingObject() const {
|
|
if ((getNumParams() < 1) ||
|
|
(getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
|
|
(getPrimaryTemplate() == 0) ||
|
|
(getDescribedFunctionTemplate() != 0))
|
|
return false;
|
|
|
|
const ParmVarDecl *Param = getParamDecl(0);
|
|
|
|
ASTContext &Context = getASTContext();
|
|
CanQualType ParamType = Context.getCanonicalType(Param->getType());
|
|
|
|
// Is it the same as our our class type?
|
|
CanQualType ClassTy
|
|
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
|
|
if (ParamType.getUnqualifiedType() != ClassTy)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
|
|
// Hack: we store the inherited constructor in the overridden method table
|
|
method_iterator It = begin_overridden_methods();
|
|
if (It == end_overridden_methods())
|
|
return 0;
|
|
|
|
return cast<CXXConstructorDecl>(*It);
|
|
}
|
|
|
|
void
|
|
CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
|
|
// Hack: we store the inherited constructor in the overridden method table
|
|
assert(size_overridden_methods() == 0 && "Base ctor already set.");
|
|
addOverriddenMethod(BaseCtor);
|
|
}
|
|
|
|
CXXDestructorDecl *
|
|
CXXDestructorDecl::Create(ASTContext &C, EmptyShell Empty) {
|
|
return new (C) CXXDestructorDecl(0, DeclarationNameInfo(),
|
|
QualType(), 0, false, false);
|
|
}
|
|
|
|
CXXDestructorDecl *
|
|
CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
bool isInline,
|
|
bool isImplicitlyDeclared) {
|
|
assert(NameInfo.getName().getNameKind()
|
|
== DeclarationName::CXXDestructorName &&
|
|
"Name must refer to a destructor");
|
|
return new (C) CXXDestructorDecl(RD, NameInfo, T, TInfo, isInline,
|
|
isImplicitlyDeclared);
|
|
}
|
|
|
|
CXXConversionDecl *
|
|
CXXConversionDecl::Create(ASTContext &C, EmptyShell Empty) {
|
|
return new (C) CXXConversionDecl(0, DeclarationNameInfo(),
|
|
QualType(), 0, false, false);
|
|
}
|
|
|
|
CXXConversionDecl *
|
|
CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T, TypeSourceInfo *TInfo,
|
|
bool isInline, bool isExplicit) {
|
|
assert(NameInfo.getName().getNameKind()
|
|
== DeclarationName::CXXConversionFunctionName &&
|
|
"Name must refer to a conversion function");
|
|
return new (C) CXXConversionDecl(RD, NameInfo, T, TInfo,
|
|
isInline, isExplicit);
|
|
}
|
|
|
|
LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
|
|
DeclContext *DC,
|
|
SourceLocation L,
|
|
LanguageIDs Lang, bool Braces) {
|
|
return new (C) LinkageSpecDecl(DC, L, Lang, Braces);
|
|
}
|
|
|
|
UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation L,
|
|
SourceLocation NamespaceLoc,
|
|
SourceRange QualifierRange,
|
|
NestedNameSpecifier *Qualifier,
|
|
SourceLocation IdentLoc,
|
|
NamedDecl *Used,
|
|
DeclContext *CommonAncestor) {
|
|
if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
|
|
Used = NS->getOriginalNamespace();
|
|
return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierRange,
|
|
Qualifier, IdentLoc, Used, CommonAncestor);
|
|
}
|
|
|
|
NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
|
|
if (NamespaceAliasDecl *NA =
|
|
dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
|
|
return NA->getNamespace();
|
|
return cast_or_null<NamespaceDecl>(NominatedNamespace);
|
|
}
|
|
|
|
NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation UsingLoc,
|
|
SourceLocation AliasLoc,
|
|
IdentifierInfo *Alias,
|
|
SourceRange QualifierRange,
|
|
NestedNameSpecifier *Qualifier,
|
|
SourceLocation IdentLoc,
|
|
NamedDecl *Namespace) {
|
|
if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
|
|
Namespace = NS->getOriginalNamespace();
|
|
return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias, QualifierRange,
|
|
Qualifier, IdentLoc, Namespace);
|
|
}
|
|
|
|
UsingDecl *UsingShadowDecl::getUsingDecl() const {
|
|
const UsingShadowDecl *Shadow = this;
|
|
while (const UsingShadowDecl *NextShadow =
|
|
dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
|
|
Shadow = NextShadow;
|
|
return cast<UsingDecl>(Shadow->UsingOrNextShadow);
|
|
}
|
|
|
|
void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
|
|
assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
|
|
"declaration already in set");
|
|
assert(S->getUsingDecl() == this);
|
|
|
|
if (FirstUsingShadow)
|
|
S->UsingOrNextShadow = FirstUsingShadow;
|
|
FirstUsingShadow = S;
|
|
}
|
|
|
|
void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
|
|
assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
|
|
"declaration not in set");
|
|
assert(S->getUsingDecl() == this);
|
|
|
|
// Remove S from the shadow decl chain. This is O(n) but hopefully rare.
|
|
|
|
if (FirstUsingShadow == S) {
|
|
FirstUsingShadow = dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow);
|
|
S->UsingOrNextShadow = this;
|
|
return;
|
|
}
|
|
|
|
UsingShadowDecl *Prev = FirstUsingShadow;
|
|
while (Prev->UsingOrNextShadow != S)
|
|
Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
|
|
Prev->UsingOrNextShadow = S->UsingOrNextShadow;
|
|
S->UsingOrNextShadow = this;
|
|
}
|
|
|
|
UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceRange NNR, SourceLocation UL,
|
|
NestedNameSpecifier* TargetNNS,
|
|
const DeclarationNameInfo &NameInfo,
|
|
bool IsTypeNameArg) {
|
|
return new (C) UsingDecl(DC, NNR, UL, TargetNNS, NameInfo, IsTypeNameArg);
|
|
}
|
|
|
|
UnresolvedUsingValueDecl *
|
|
UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation UsingLoc,
|
|
SourceRange TargetNNR,
|
|
NestedNameSpecifier *TargetNNS,
|
|
const DeclarationNameInfo &NameInfo) {
|
|
return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
|
|
TargetNNR, TargetNNS, NameInfo);
|
|
}
|
|
|
|
UnresolvedUsingTypenameDecl *
|
|
UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation UsingLoc,
|
|
SourceLocation TypenameLoc,
|
|
SourceRange TargetNNR,
|
|
NestedNameSpecifier *TargetNNS,
|
|
SourceLocation TargetNameLoc,
|
|
DeclarationName TargetName) {
|
|
return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
|
|
TargetNNR, TargetNNS,
|
|
TargetNameLoc,
|
|
TargetName.getAsIdentifierInfo());
|
|
}
|
|
|
|
StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
|
|
SourceLocation L, Expr *AssertExpr,
|
|
StringLiteral *Message) {
|
|
return new (C) StaticAssertDecl(DC, L, AssertExpr, Message);
|
|
}
|
|
|
|
static const char *getAccessName(AccessSpecifier AS) {
|
|
switch (AS) {
|
|
default:
|
|
case AS_none:
|
|
assert("Invalid access specifier!");
|
|
return 0;
|
|
case AS_public:
|
|
return "public";
|
|
case AS_private:
|
|
return "private";
|
|
case AS_protected:
|
|
return "protected";
|
|
}
|
|
}
|
|
|
|
const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
|
|
AccessSpecifier AS) {
|
|
return DB << getAccessName(AS);
|
|
}
|