clang-1/lib/CodeGen/CGObjC.cpp

1003 строки
40 KiB
C++

//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Objective-C code as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/StmtObjC.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Target/TargetData.h"
using namespace clang;
using namespace CodeGen;
/// Emits an instance of NSConstantString representing the object.
llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
{
llvm::Constant *C =
CGM.getObjCRuntime().GenerateConstantString(E->getString());
// FIXME: This bitcast should just be made an invariant on the Runtime.
return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
}
/// Emit a selector.
llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
// Untyped selector.
// Note that this implementation allows for non-constant strings to be passed
// as arguments to @selector(). Currently, the only thing preventing this
// behaviour is the type checking in the front end.
return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
}
llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
// FIXME: This should pass the Decl not the name.
return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
}
RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
ReturnValueSlot Return) {
// Only the lookup mechanism and first two arguments of the method
// implementation vary between runtimes. We can get the receiver and
// arguments in generic code.
CGObjCRuntime &Runtime = CGM.getObjCRuntime();
bool isSuperMessage = false;
bool isClassMessage = false;
ObjCInterfaceDecl *OID = 0;
// Find the receiver
llvm::Value *Receiver = 0;
switch (E->getReceiverKind()) {
case ObjCMessageExpr::Instance:
Receiver = EmitScalarExpr(E->getInstanceReceiver());
break;
case ObjCMessageExpr::Class: {
const ObjCObjectType *ObjTy
= E->getClassReceiver()->getAs<ObjCObjectType>();
assert(ObjTy && "Invalid Objective-C class message send");
OID = ObjTy->getInterface();
assert(OID && "Invalid Objective-C class message send");
Receiver = Runtime.GetClass(Builder, OID);
isClassMessage = true;
break;
}
case ObjCMessageExpr::SuperInstance:
Receiver = LoadObjCSelf();
isSuperMessage = true;
break;
case ObjCMessageExpr::SuperClass:
Receiver = LoadObjCSelf();
isSuperMessage = true;
isClassMessage = true;
break;
}
CallArgList Args;
EmitCallArgs(Args, E->getMethodDecl(), E->arg_begin(), E->arg_end());
QualType ResultType =
E->getMethodDecl() ? E->getMethodDecl()->getResultType() : E->getType();
if (isSuperMessage) {
// super is only valid in an Objective-C method
const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
return Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
E->getSelector(),
OMD->getClassInterface(),
isCategoryImpl,
Receiver,
isClassMessage,
Args,
E->getMethodDecl());
}
return Runtime.GenerateMessageSend(*this, Return, ResultType,
E->getSelector(),
Receiver, Args, OID,
E->getMethodDecl());
}
/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
/// the LLVM function and sets the other context used by
/// CodeGenFunction.
void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
const ObjCContainerDecl *CD) {
FunctionArgList args;
// Check if we should generate debug info for this method.
if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>())
DebugInfo = CGM.getModuleDebugInfo();
llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(OMD);
CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
args.push_back(OMD->getSelfDecl());
args.push_back(OMD->getCmdDecl());
for (ObjCMethodDecl::param_iterator PI = OMD->param_begin(),
E = OMD->param_end(); PI != E; ++PI)
args.push_back(*PI);
CurGD = OMD;
StartFunction(OMD, OMD->getResultType(), Fn, FI, args, OMD->getLocStart());
}
void CodeGenFunction::GenerateObjCGetterBody(ObjCIvarDecl *Ivar,
bool IsAtomic, bool IsStrong) {
LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(),
Ivar, 0);
llvm::Value *GetCopyStructFn =
CGM.getObjCRuntime().GetGetStructFunction();
CodeGenTypes &Types = CGM.getTypes();
// objc_copyStruct (ReturnValue, &structIvar,
// sizeof (Type of Ivar), isAtomic, false);
CallArgList Args;
RValue RV = RValue::get(Builder.CreateBitCast(ReturnValue,
Types.ConvertType(getContext().VoidPtrTy)));
Args.push_back(std::make_pair(RV, getContext().VoidPtrTy));
RV = RValue::get(Builder.CreateBitCast(LV.getAddress(),
Types.ConvertType(getContext().VoidPtrTy)));
Args.push_back(std::make_pair(RV, getContext().VoidPtrTy));
// sizeof (Type of Ivar)
CharUnits Size = getContext().getTypeSizeInChars(Ivar->getType());
llvm::Value *SizeVal =
llvm::ConstantInt::get(Types.ConvertType(getContext().LongTy),
Size.getQuantity());
Args.push_back(std::make_pair(RValue::get(SizeVal),
getContext().LongTy));
llvm::Value *isAtomic =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy),
IsAtomic ? 1 : 0);
Args.push_back(std::make_pair(RValue::get(isAtomic),
getContext().BoolTy));
llvm::Value *hasStrong =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy),
IsStrong ? 1 : 0);
Args.push_back(std::make_pair(RValue::get(hasStrong),
getContext().BoolTy));
EmitCall(Types.getFunctionInfo(getContext().VoidTy, Args,
FunctionType::ExtInfo()),
GetCopyStructFn, ReturnValueSlot(), Args);
}
/// Generate an Objective-C method. An Objective-C method is a C function with
/// its pointer, name, and types registered in the class struture.
void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
StartObjCMethod(OMD, OMD->getClassInterface());
EmitStmt(OMD->getBody());
FinishFunction(OMD->getBodyRBrace());
}
// FIXME: I wasn't sure about the synthesis approach. If we end up generating an
// AST for the whole body we can just fall back to having a GenerateFunction
// which takes the body Stmt.
/// GenerateObjCGetter - Generate an Objective-C property getter
/// function. The given Decl must be an ObjCImplementationDecl. @synthesize
/// is illegal within a category.
void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
const ObjCPropertyImplDecl *PID) {
ObjCIvarDecl *Ivar = PID->getPropertyIvarDecl();
const ObjCPropertyDecl *PD = PID->getPropertyDecl();
bool IsAtomic =
!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic);
ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
assert(OMD && "Invalid call to generate getter (empty method)");
StartObjCMethod(OMD, IMP->getClassInterface());
// Determine if we should use an objc_getProperty call for
// this. Non-atomic properties are directly evaluated.
// atomic 'copy' and 'retain' properties are also directly
// evaluated in gc-only mode.
if (CGM.getLangOptions().getGCMode() != LangOptions::GCOnly &&
IsAtomic &&
(PD->getSetterKind() == ObjCPropertyDecl::Copy ||
PD->getSetterKind() == ObjCPropertyDecl::Retain)) {
llvm::Value *GetPropertyFn =
CGM.getObjCRuntime().GetPropertyGetFunction();
if (!GetPropertyFn) {
CGM.ErrorUnsupported(PID, "Obj-C getter requiring atomic copy");
FinishFunction();
return;
}
// Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
// FIXME: Can't this be simpler? This might even be worse than the
// corresponding gcc code.
CodeGenTypes &Types = CGM.getTypes();
ValueDecl *Cmd = OMD->getCmdDecl();
llvm::Value *CmdVal = Builder.CreateLoad(LocalDeclMap[Cmd], "cmd");
QualType IdTy = getContext().getObjCIdType();
llvm::Value *SelfAsId =
Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
llvm::Value *Offset = EmitIvarOffset(IMP->getClassInterface(), Ivar);
llvm::Value *True =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 1);
CallArgList Args;
Args.push_back(std::make_pair(RValue::get(SelfAsId), IdTy));
Args.push_back(std::make_pair(RValue::get(CmdVal), Cmd->getType()));
Args.push_back(std::make_pair(RValue::get(Offset),
getContext().getPointerDiffType()));
Args.push_back(std::make_pair(RValue::get(True), getContext().BoolTy));
// FIXME: We shouldn't need to get the function info here, the
// runtime already should have computed it to build the function.
RValue RV = EmitCall(Types.getFunctionInfo(PD->getType(), Args,
FunctionType::ExtInfo()),
GetPropertyFn, ReturnValueSlot(), Args);
// We need to fix the type here. Ivars with copy & retain are
// always objects so we don't need to worry about complex or
// aggregates.
RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
Types.ConvertType(PD->getType())));
EmitReturnOfRValue(RV, PD->getType());
} else {
const llvm::Triple &Triple = getContext().Target.getTriple();
QualType IVART = Ivar->getType();
if (IsAtomic &&
IVART->isScalarType() &&
(Triple.getArch() == llvm::Triple::arm ||
Triple.getArch() == llvm::Triple::thumb) &&
(getContext().getTypeSizeInChars(IVART)
> CharUnits::fromQuantity(4)) &&
CGM.getObjCRuntime().GetGetStructFunction()) {
GenerateObjCGetterBody(Ivar, true, false);
}
else if (IVART->isAnyComplexType()) {
LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(),
Ivar, 0);
ComplexPairTy Pair = LoadComplexFromAddr(LV.getAddress(),
LV.isVolatileQualified());
StoreComplexToAddr(Pair, ReturnValue, LV.isVolatileQualified());
}
else if (hasAggregateLLVMType(IVART)) {
bool IsStrong = false;
if ((IsAtomic || (IsStrong = IvarTypeWithAggrGCObjects(IVART)))
&& CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect
&& CGM.getObjCRuntime().GetGetStructFunction()) {
GenerateObjCGetterBody(Ivar, IsAtomic, IsStrong);
}
else {
if (PID->getGetterCXXConstructor()) {
ReturnStmt *Stmt =
new (getContext()) ReturnStmt(SourceLocation(),
PID->getGetterCXXConstructor(),
0);
EmitReturnStmt(*Stmt);
}
else {
LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(),
Ivar, 0);
EmitAggregateCopy(ReturnValue, LV.getAddress(), IVART);
}
}
}
else {
LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(),
Ivar, 0);
if (PD->getType()->isReferenceType()) {
RValue RV = RValue::get(LV.getAddress());
EmitReturnOfRValue(RV, PD->getType());
}
else {
CodeGenTypes &Types = CGM.getTypes();
RValue RV = EmitLoadOfLValue(LV, IVART);
RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
Types.ConvertType(PD->getType())));
EmitReturnOfRValue(RV, PD->getType());
}
}
}
FinishFunction();
}
void CodeGenFunction::GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD,
ObjCIvarDecl *Ivar) {
// objc_copyStruct (&structIvar, &Arg,
// sizeof (struct something), true, false);
llvm::Value *GetCopyStructFn =
CGM.getObjCRuntime().GetSetStructFunction();
CodeGenTypes &Types = CGM.getTypes();
CallArgList Args;
LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0);
RValue RV =
RValue::get(Builder.CreateBitCast(LV.getAddress(),
Types.ConvertType(getContext().VoidPtrTy)));
Args.push_back(std::make_pair(RV, getContext().VoidPtrTy));
llvm::Value *Arg = LocalDeclMap[*OMD->param_begin()];
llvm::Value *ArgAsPtrTy =
Builder.CreateBitCast(Arg,
Types.ConvertType(getContext().VoidPtrTy));
RV = RValue::get(ArgAsPtrTy);
Args.push_back(std::make_pair(RV, getContext().VoidPtrTy));
// sizeof (Type of Ivar)
CharUnits Size = getContext().getTypeSizeInChars(Ivar->getType());
llvm::Value *SizeVal =
llvm::ConstantInt::get(Types.ConvertType(getContext().LongTy),
Size.getQuantity());
Args.push_back(std::make_pair(RValue::get(SizeVal),
getContext().LongTy));
llvm::Value *True =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 1);
Args.push_back(std::make_pair(RValue::get(True), getContext().BoolTy));
llvm::Value *False =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 0);
Args.push_back(std::make_pair(RValue::get(False), getContext().BoolTy));
EmitCall(Types.getFunctionInfo(getContext().VoidTy, Args,
FunctionType::ExtInfo()),
GetCopyStructFn, ReturnValueSlot(), Args);
}
/// GenerateObjCSetter - Generate an Objective-C property setter
/// function. The given Decl must be an ObjCImplementationDecl. @synthesize
/// is illegal within a category.
void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
const ObjCPropertyImplDecl *PID) {
ObjCIvarDecl *Ivar = PID->getPropertyIvarDecl();
const ObjCPropertyDecl *PD = PID->getPropertyDecl();
ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
assert(OMD && "Invalid call to generate setter (empty method)");
StartObjCMethod(OMD, IMP->getClassInterface());
bool IsCopy = PD->getSetterKind() == ObjCPropertyDecl::Copy;
bool IsAtomic =
!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic);
// Determine if we should use an objc_setProperty call for
// this. Properties with 'copy' semantics always use it, as do
// non-atomic properties with 'release' semantics as long as we are
// not in gc-only mode.
if (IsCopy ||
(CGM.getLangOptions().getGCMode() != LangOptions::GCOnly &&
PD->getSetterKind() == ObjCPropertyDecl::Retain)) {
llvm::Value *SetPropertyFn =
CGM.getObjCRuntime().GetPropertySetFunction();
if (!SetPropertyFn) {
CGM.ErrorUnsupported(PID, "Obj-C getter requiring atomic copy");
FinishFunction();
return;
}
// Emit objc_setProperty((id) self, _cmd, offset, arg,
// <is-atomic>, <is-copy>).
// FIXME: Can't this be simpler? This might even be worse than the
// corresponding gcc code.
CodeGenTypes &Types = CGM.getTypes();
ValueDecl *Cmd = OMD->getCmdDecl();
llvm::Value *CmdVal = Builder.CreateLoad(LocalDeclMap[Cmd], "cmd");
QualType IdTy = getContext().getObjCIdType();
llvm::Value *SelfAsId =
Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
llvm::Value *Offset = EmitIvarOffset(IMP->getClassInterface(), Ivar);
llvm::Value *Arg = LocalDeclMap[*OMD->param_begin()];
llvm::Value *ArgAsId =
Builder.CreateBitCast(Builder.CreateLoad(Arg, "arg"),
Types.ConvertType(IdTy));
llvm::Value *True =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 1);
llvm::Value *False =
llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 0);
CallArgList Args;
Args.push_back(std::make_pair(RValue::get(SelfAsId), IdTy));
Args.push_back(std::make_pair(RValue::get(CmdVal), Cmd->getType()));
Args.push_back(std::make_pair(RValue::get(Offset),
getContext().getPointerDiffType()));
Args.push_back(std::make_pair(RValue::get(ArgAsId), IdTy));
Args.push_back(std::make_pair(RValue::get(IsAtomic ? True : False),
getContext().BoolTy));
Args.push_back(std::make_pair(RValue::get(IsCopy ? True : False),
getContext().BoolTy));
// FIXME: We shouldn't need to get the function info here, the runtime
// already should have computed it to build the function.
EmitCall(Types.getFunctionInfo(getContext().VoidTy, Args,
FunctionType::ExtInfo()),
SetPropertyFn,
ReturnValueSlot(), Args);
} else if (IsAtomic && hasAggregateLLVMType(Ivar->getType()) &&
!Ivar->getType()->isAnyComplexType() &&
IndirectObjCSetterArg(*CurFnInfo)
&& CGM.getObjCRuntime().GetSetStructFunction()) {
// objc_copyStruct (&structIvar, &Arg,
// sizeof (struct something), true, false);
GenerateObjCAtomicSetterBody(OMD, Ivar);
} else if (PID->getSetterCXXAssignment()) {
EmitIgnoredExpr(PID->getSetterCXXAssignment());
} else {
const llvm::Triple &Triple = getContext().Target.getTriple();
QualType IVART = Ivar->getType();
if (IsAtomic &&
IVART->isScalarType() &&
(Triple.getArch() == llvm::Triple::arm ||
Triple.getArch() == llvm::Triple::thumb) &&
(getContext().getTypeSizeInChars(IVART)
> CharUnits::fromQuantity(4)) &&
CGM.getObjCRuntime().GetGetStructFunction()) {
GenerateObjCAtomicSetterBody(OMD, Ivar);
}
else {
// FIXME: Find a clean way to avoid AST node creation.
SourceLocation Loc = PD->getLocation();
ValueDecl *Self = OMD->getSelfDecl();
ObjCIvarDecl *Ivar = PID->getPropertyIvarDecl();
DeclRefExpr Base(Self, Self->getType(), VK_RValue, Loc);
ParmVarDecl *ArgDecl = *OMD->param_begin();
QualType T = ArgDecl->getType();
if (T->isReferenceType())
T = cast<ReferenceType>(T)->getPointeeType();
DeclRefExpr Arg(ArgDecl, T, VK_LValue, Loc);
ObjCIvarRefExpr IvarRef(Ivar, Ivar->getType(), Loc, &Base, true, true);
// The property type can differ from the ivar type in some situations with
// Objective-C pointer types, we can always bit cast the RHS in these cases.
if (getContext().getCanonicalType(Ivar->getType()) !=
getContext().getCanonicalType(ArgDecl->getType())) {
ImplicitCastExpr ArgCasted(ImplicitCastExpr::OnStack,
Ivar->getType(), CK_BitCast, &Arg,
VK_RValue);
BinaryOperator Assign(&IvarRef, &ArgCasted, BO_Assign,
Ivar->getType(), VK_RValue, OK_Ordinary, Loc);
EmitStmt(&Assign);
} else {
BinaryOperator Assign(&IvarRef, &Arg, BO_Assign,
Ivar->getType(), VK_RValue, OK_Ordinary, Loc);
EmitStmt(&Assign);
}
}
}
FinishFunction();
}
// FIXME: these are stolen from CGClass.cpp, which is lame.
namespace {
struct CallArrayIvarDtor : EHScopeStack::Cleanup {
const ObjCIvarDecl *ivar;
llvm::Value *self;
CallArrayIvarDtor(const ObjCIvarDecl *ivar, llvm::Value *self)
: ivar(ivar), self(self) {}
void Emit(CodeGenFunction &CGF, bool IsForEH) {
LValue lvalue =
CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), self, ivar, 0);
QualType type = ivar->getType();
const ConstantArrayType *arrayType
= CGF.getContext().getAsConstantArrayType(type);
QualType baseType = CGF.getContext().getBaseElementType(arrayType);
const CXXRecordDecl *classDecl = baseType->getAsCXXRecordDecl();
llvm::Value *base
= CGF.Builder.CreateBitCast(lvalue.getAddress(),
CGF.ConvertType(baseType)->getPointerTo());
CGF.EmitCXXAggrDestructorCall(classDecl->getDestructor(),
arrayType, base);
}
};
struct CallIvarDtor : EHScopeStack::Cleanup {
const ObjCIvarDecl *ivar;
llvm::Value *self;
CallIvarDtor(const ObjCIvarDecl *ivar, llvm::Value *self)
: ivar(ivar), self(self) {}
void Emit(CodeGenFunction &CGF, bool IsForEH) {
LValue lvalue =
CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), self, ivar, 0);
QualType type = ivar->getType();
const CXXRecordDecl *classDecl = type->getAsCXXRecordDecl();
CGF.EmitCXXDestructorCall(classDecl->getDestructor(),
Dtor_Complete, /*ForVirtualBase=*/false,
lvalue.getAddress());
}
};
}
static void emitCXXDestructMethod(CodeGenFunction &CGF,
ObjCImplementationDecl *impl) {
CodeGenFunction::RunCleanupsScope scope(CGF);
llvm::Value *self = CGF.LoadObjCSelf();
ObjCInterfaceDecl *iface
= const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
ivar; ivar = ivar->getNextIvar()) {
QualType type = ivar->getType();
// Drill down to the base element type.
QualType baseType = type;
const ConstantArrayType *arrayType =
CGF.getContext().getAsConstantArrayType(baseType);
if (arrayType) baseType = CGF.getContext().getBaseElementType(arrayType);
// Check whether the ivar is a destructible type.
QualType::DestructionKind destructKind = baseType.isDestructedType();
assert(destructKind == type.isDestructedType());
switch (destructKind) {
case QualType::DK_none:
continue;
case QualType::DK_cxx_destructor:
if (arrayType)
CGF.EHStack.pushCleanup<CallArrayIvarDtor>(NormalAndEHCleanup,
ivar, self);
else
CGF.EHStack.pushCleanup<CallIvarDtor>(NormalAndEHCleanup,
ivar, self);
break;
}
}
assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
}
void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
ObjCMethodDecl *MD,
bool ctor) {
MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
StartObjCMethod(MD, IMP->getClassInterface());
// Emit .cxx_construct.
if (ctor) {
llvm::SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
E = IMP->init_end(); B != E; ++B) {
CXXCtorInitializer *IvarInit = (*B);
FieldDecl *Field = IvarInit->getAnyMember();
ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
LoadObjCSelf(), Ivar, 0);
EmitAggExpr(IvarInit->getInit(), AggValueSlot::forLValue(LV, true));
}
// constructor returns 'self'.
CodeGenTypes &Types = CGM.getTypes();
QualType IdTy(CGM.getContext().getObjCIdType());
llvm::Value *SelfAsId =
Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
// Emit .cxx_destruct.
} else {
emitCXXDestructMethod(*this, IMP);
}
FinishFunction();
}
bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
it++; it++;
const ABIArgInfo &AI = it->info;
// FIXME. Is this sufficient check?
return (AI.getKind() == ABIArgInfo::Indirect);
}
bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC)
return false;
if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
return FDTTy->getDecl()->hasObjectMember();
return false;
}
llvm::Value *CodeGenFunction::LoadObjCSelf() {
const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
}
QualType CodeGenFunction::TypeOfSelfObject() {
const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
getContext().getCanonicalType(selfDecl->getType()));
return PTy->getPointeeType();
}
LValue
CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) {
// This is a special l-value that just issues sends when we load or
// store through it.
// For certain base kinds, we need to emit the base immediately.
llvm::Value *Base;
if (E->isSuperReceiver())
Base = LoadObjCSelf();
else if (E->isClassReceiver())
Base = CGM.getObjCRuntime().GetClass(Builder, E->getClassReceiver());
else
Base = EmitScalarExpr(E->getBase());
return LValue::MakePropertyRef(E, Base);
}
static RValue GenerateMessageSendSuper(CodeGenFunction &CGF,
ReturnValueSlot Return,
QualType ResultType,
Selector S,
llvm::Value *Receiver,
const CallArgList &CallArgs) {
const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CGF.CurFuncDecl);
bool isClassMessage = OMD->isClassMethod();
bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
return CGF.CGM.getObjCRuntime()
.GenerateMessageSendSuper(CGF, Return, ResultType,
S, OMD->getClassInterface(),
isCategoryImpl, Receiver,
isClassMessage, CallArgs);
}
RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV,
ReturnValueSlot Return) {
const ObjCPropertyRefExpr *E = LV.getPropertyRefExpr();
QualType ResultType;
Selector S;
if (E->isExplicitProperty()) {
const ObjCPropertyDecl *Property = E->getExplicitProperty();
S = Property->getGetterName();
ResultType = E->getType();
} else {
const ObjCMethodDecl *Getter = E->getImplicitPropertyGetter();
S = Getter->getSelector();
ResultType = Getter->getResultType(); // with reference!
}
llvm::Value *Receiver = LV.getPropertyRefBaseAddr();
// Accesses to 'super' follow a different code path.
if (E->isSuperReceiver())
return GenerateMessageSendSuper(*this, Return, ResultType,
S, Receiver, CallArgList());
const ObjCInterfaceDecl *ReceiverClass
= (E->isClassReceiver() ? E->getClassReceiver() : 0);
return CGM.getObjCRuntime().
GenerateMessageSend(*this, Return, ResultType, S,
Receiver, CallArgList(), ReceiverClass);
}
void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src,
LValue Dst) {
const ObjCPropertyRefExpr *E = Dst.getPropertyRefExpr();
Selector S = E->getSetterSelector();
QualType ArgType;
if (E->isImplicitProperty()) {
const ObjCMethodDecl *Setter = E->getImplicitPropertySetter();
ObjCMethodDecl::param_iterator P = Setter->param_begin();
ArgType = (*P)->getType();
} else {
ArgType = E->getType();
}
// FIXME. Other than scalars, AST is not adequate for setter and
// getter type mismatches which require conversion.
if (Src.isScalar()) {
llvm::Value *SrcVal = Src.getScalarVal();
QualType DstType = getContext().getCanonicalType(ArgType);
const llvm::Type *DstTy = ConvertType(DstType);
if (SrcVal->getType() != DstTy)
Src =
RValue::get(EmitScalarConversion(SrcVal, E->getType(), DstType));
}
CallArgList Args;
Args.push_back(std::make_pair(Src, ArgType));
llvm::Value *Receiver = Dst.getPropertyRefBaseAddr();
QualType ResultType = getContext().VoidTy;
if (E->isSuperReceiver()) {
GenerateMessageSendSuper(*this, ReturnValueSlot(),
ResultType, S, Receiver, Args);
return;
}
const ObjCInterfaceDecl *ReceiverClass
= (E->isClassReceiver() ? E->getClassReceiver() : 0);
CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
ResultType, S, Receiver, Args,
ReceiverClass);
}
void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
llvm::Constant *EnumerationMutationFn =
CGM.getObjCRuntime().EnumerationMutationFunction();
if (!EnumerationMutationFn) {
CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
return;
}
// The local variable comes into scope immediately.
AutoVarEmission variable = AutoVarEmission::invalid();
if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
CGDebugInfo *DI = getDebugInfo();
if (DI) {
DI->setLocation(S.getSourceRange().getBegin());
DI->EmitRegionStart(Builder);
}
JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
// Fast enumeration state.
QualType StateTy = getContext().getObjCFastEnumerationStateType();
llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
EmitNullInitialization(StatePtr, StateTy);
// Number of elements in the items array.
static const unsigned NumItems = 16;
// Fetch the countByEnumeratingWithState:objects:count: selector.
IdentifierInfo *II[] = {
&CGM.getContext().Idents.get("countByEnumeratingWithState"),
&CGM.getContext().Idents.get("objects"),
&CGM.getContext().Idents.get("count")
};
Selector FastEnumSel =
CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
QualType ItemsTy =
getContext().getConstantArrayType(getContext().getObjCIdType(),
llvm::APInt(32, NumItems),
ArrayType::Normal, 0);
llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
// Emit the collection pointer.
llvm::Value *Collection = EmitScalarExpr(S.getCollection());
// Send it our message:
CallArgList Args;
// The first argument is a temporary of the enumeration-state type.
Args.push_back(std::make_pair(RValue::get(StatePtr),
getContext().getPointerType(StateTy)));
// The second argument is a temporary array with space for NumItems
// pointers. We'll actually be loading elements from the array
// pointer written into the control state; this buffer is so that
// collections that *aren't* backed by arrays can still queue up
// batches of elements.
Args.push_back(std::make_pair(RValue::get(ItemsPtr),
getContext().getPointerType(ItemsTy)));
// The third argument is the capacity of that temporary array.
const llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
Args.push_back(std::make_pair(RValue::get(Count),
getContext().UnsignedLongTy));
// Start the enumeration.
RValue CountRV =
CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
getContext().UnsignedLongTy,
FastEnumSel,
Collection, Args);
// The initial number of objects that were returned in the buffer.
llvm::Value *initialBufferLimit = CountRV.getScalarVal();
llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
// If the limit pointer was zero to begin with, the collection is
// empty; skip all this.
Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
EmptyBB, LoopInitBB);
// Otherwise, initialize the loop.
EmitBlock(LoopInitBB);
// Save the initial mutations value. This is the value at an
// address that was written into the state object by
// countByEnumeratingWithState:objects:count:.
llvm::Value *StateMutationsPtrPtr =
Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
"mutationsptr");
llvm::Value *initialMutations =
Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
// Start looping. This is the point we return to whenever we have a
// fresh, non-empty batch of objects.
llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
EmitBlock(LoopBodyBB);
// The current index into the buffer.
llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, "forcoll.index");
index->reserveOperandSpace(3);
index->addIncoming(zero, LoopInitBB);
// The current buffer size.
llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, "forcoll.count");
count->reserveOperandSpace(3);
count->addIncoming(initialBufferLimit, LoopInitBB);
// Check whether the mutations value has changed from where it was
// at start. StateMutationsPtr should actually be invariant between
// refreshes.
StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
llvm::Value *currentMutations
= Builder.CreateLoad(StateMutationsPtr, "statemutations");
llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
WasNotMutatedBB, WasMutatedBB);
// If so, call the enumeration-mutation function.
EmitBlock(WasMutatedBB);
llvm::Value *V =
Builder.CreateBitCast(Collection,
ConvertType(getContext().getObjCIdType()),
"tmp");
CallArgList Args2;
Args2.push_back(std::make_pair(RValue::get(V),
getContext().getObjCIdType()));
// FIXME: We shouldn't need to get the function info here, the runtime already
// should have computed it to build the function.
EmitCall(CGM.getTypes().getFunctionInfo(getContext().VoidTy, Args2,
FunctionType::ExtInfo()),
EnumerationMutationFn, ReturnValueSlot(), Args2);
// Otherwise, or if the mutation function returns, just continue.
EmitBlock(WasNotMutatedBB);
// Initialize the element variable.
RunCleanupsScope elementVariableScope(*this);
bool elementIsVariable;
LValue elementLValue;
QualType elementType;
if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
// Initialize the variable, in case it's a __block variable or something.
EmitAutoVarInit(variable);
const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
DeclRefExpr tempDRE(const_cast<VarDecl*>(D), D->getType(),
VK_LValue, SourceLocation());
elementLValue = EmitLValue(&tempDRE);
elementType = D->getType();
elementIsVariable = true;
} else {
elementLValue = LValue(); // suppress warning
elementType = cast<Expr>(S.getElement())->getType();
elementIsVariable = false;
}
const llvm::Type *convertedElementType = ConvertType(elementType);
// Fetch the buffer out of the enumeration state.
// TODO: this pointer should actually be invariant between
// refreshes, which would help us do certain loop optimizations.
llvm::Value *StateItemsPtr =
Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
llvm::Value *EnumStateItems =
Builder.CreateLoad(StateItemsPtr, "stateitems");
// Fetch the value at the current index from the buffer.
llvm::Value *CurrentItemPtr =
Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
// Cast that value to the right type.
CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
"currentitem");
// Make sure we have an l-value. Yes, this gets evaluated every
// time through the loop.
if (!elementIsVariable)
elementLValue = EmitLValue(cast<Expr>(S.getElement()));
EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, elementType);
// If we do have an element variable, this assignment is the end of
// its initialization.
if (elementIsVariable)
EmitAutoVarCleanups(variable);
// Perform the loop body, setting up break and continue labels.
BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
{
RunCleanupsScope Scope(*this);
EmitStmt(S.getBody());
}
BreakContinueStack.pop_back();
// Destroy the element variable now.
elementVariableScope.ForceCleanup();
// Check whether there are more elements.
EmitBlock(AfterBody.getBlock());
llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
// First we check in the local buffer.
llvm::Value *indexPlusOne
= Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
// If we haven't overrun the buffer yet, we can continue.
Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
LoopBodyBB, FetchMoreBB);
index->addIncoming(indexPlusOne, AfterBody.getBlock());
count->addIncoming(count, AfterBody.getBlock());
// Otherwise, we have to fetch more elements.
EmitBlock(FetchMoreBB);
CountRV =
CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
getContext().UnsignedLongTy,
FastEnumSel,
Collection, Args);
// If we got a zero count, we're done.
llvm::Value *refetchCount = CountRV.getScalarVal();
// (note that the message send might split FetchMoreBB)
index->addIncoming(zero, Builder.GetInsertBlock());
count->addIncoming(refetchCount, Builder.GetInsertBlock());
Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
EmptyBB, LoopBodyBB);
// No more elements.
EmitBlock(EmptyBB);
if (!elementIsVariable) {
// If the element was not a declaration, set it to be null.
llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
elementLValue = EmitLValue(cast<Expr>(S.getElement()));
EmitStoreThroughLValue(RValue::get(null), elementLValue, elementType);
}
if (DI) {
DI->setLocation(S.getSourceRange().getEnd());
DI->EmitRegionEnd(Builder);
}
EmitBlock(LoopEnd.getBlock());
}
void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
CGM.getObjCRuntime().EmitTryStmt(*this, S);
}
void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
CGM.getObjCRuntime().EmitThrowStmt(*this, S);
}
void CodeGenFunction::EmitObjCAtSynchronizedStmt(
const ObjCAtSynchronizedStmt &S) {
CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
}
CGObjCRuntime::~CGObjCRuntime() {}