clang-1/lib/CodeGen/CGBuiltin.cpp

1009 строки
41 KiB
C++

//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Builtin calls as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "TargetInfo.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/TargetBuiltins.h"
#include "llvm/Intrinsics.h"
#include "llvm/Target/TargetData.h"
using namespace clang;
using namespace CodeGen;
using namespace llvm;
/// Utility to insert an atomic instruction based on Instrinsic::ID
/// and the expression node.
static RValue EmitBinaryAtomic(CodeGenFunction& CGF,
Intrinsic::ID Id, const CallExpr *E) {
const llvm::Type *ResType[2];
ResType[0] = CGF.ConvertType(E->getType());
ResType[1] = CGF.ConvertType(E->getArg(0)->getType());
Value *AtomF = CGF.CGM.getIntrinsic(Id, ResType, 2);
return RValue::get(CGF.Builder.CreateCall2(AtomF,
CGF.EmitScalarExpr(E->getArg(0)),
CGF.EmitScalarExpr(E->getArg(1))));
}
/// Utility to insert an atomic instruction based Instrinsic::ID and
// the expression node, where the return value is the result of the
// operation.
static RValue EmitBinaryAtomicPost(CodeGenFunction& CGF,
Intrinsic::ID Id, const CallExpr *E,
Instruction::BinaryOps Op) {
const llvm::Type *ResType[2];
ResType[0] = CGF.ConvertType(E->getType());
ResType[1] = CGF.ConvertType(E->getArg(0)->getType());
Value *AtomF = CGF.CGM.getIntrinsic(Id, ResType, 2);
Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
Value *Operand = CGF.EmitScalarExpr(E->getArg(1));
Value *Result = CGF.Builder.CreateCall2(AtomF, Ptr, Operand);
if (Id == Intrinsic::atomic_load_nand)
Result = CGF.Builder.CreateNot(Result);
return RValue::get(CGF.Builder.CreateBinOp(Op, Result, Operand));
}
static llvm::ConstantInt *getInt32(llvm::LLVMContext &Context, int32_t Value) {
return llvm::ConstantInt::get(llvm::Type::getInt32Ty(Context), Value);
}
RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
unsigned BuiltinID, const CallExpr *E) {
// See if we can constant fold this builtin. If so, don't emit it at all.
Expr::EvalResult Result;
if (E->Evaluate(Result, CGM.getContext())) {
if (Result.Val.isInt())
return RValue::get(llvm::ConstantInt::get(VMContext,
Result.Val.getInt()));
else if (Result.Val.isFloat())
return RValue::get(ConstantFP::get(VMContext, Result.Val.getFloat()));
}
switch (BuiltinID) {
default: break; // Handle intrinsics and libm functions below.
case Builtin::BI__builtin___CFStringMakeConstantString:
case Builtin::BI__builtin___NSStringMakeConstantString:
return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
case Builtin::BI__builtin_stdarg_start:
case Builtin::BI__builtin_va_start:
case Builtin::BI__builtin_va_end: {
Value *ArgValue = EmitVAListRef(E->getArg(0));
const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext);
if (ArgValue->getType() != DestType)
ArgValue = Builder.CreateBitCast(ArgValue, DestType,
ArgValue->getName().data());
Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
Intrinsic::vaend : Intrinsic::vastart;
return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
}
case Builtin::BI__builtin_va_copy: {
Value *DstPtr = EmitVAListRef(E->getArg(0));
Value *SrcPtr = EmitVAListRef(E->getArg(1));
const llvm::Type *Type = llvm::Type::getInt8PtrTy(VMContext);
DstPtr = Builder.CreateBitCast(DstPtr, Type);
SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
DstPtr, SrcPtr));
}
case Builtin::BI__builtin_abs: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
Value *CmpResult =
Builder.CreateICmpSGE(ArgValue,
llvm::Constant::getNullValue(ArgValue->getType()),
"abscond");
Value *Result =
Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
return RValue::get(Result);
}
case Builtin::BI__builtin_ctz:
case Builtin::BI__builtin_ctzl:
case Builtin::BI__builtin_ctzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
const llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_clz:
case Builtin::BI__builtin_clzl:
case Builtin::BI__builtin_clzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctlz, &ArgType, 1);
const llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_ffs:
case Builtin::BI__builtin_ffsl:
case Builtin::BI__builtin_ffsll: {
// ffs(x) -> x ? cttz(x) + 1 : 0
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
const llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue, "tmp"),
llvm::ConstantInt::get(ArgType, 1), "tmp");
Value *Zero = llvm::Constant::getNullValue(ArgType);
Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_parity:
case Builtin::BI__builtin_parityl:
case Builtin::BI__builtin_parityll: {
// parity(x) -> ctpop(x) & 1
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1);
const llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp = Builder.CreateCall(F, ArgValue, "tmp");
Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1),
"tmp");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_popcount:
case Builtin::BI__builtin_popcountl:
case Builtin::BI__builtin_popcountll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1);
const llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_expect:
// FIXME: pass expect through to LLVM
return RValue::get(EmitScalarExpr(E->getArg(0)));
case Builtin::BI__builtin_bswap32:
case Builtin::BI__builtin_bswap64: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::bswap, &ArgType, 1);
return RValue::get(Builder.CreateCall(F, ArgValue, "tmp"));
}
case Builtin::BI__builtin_object_size: {
// We pass this builtin onto the optimizer so that it can
// figure out the object size in more complex cases.
const llvm::Type *ResType[] = {
ConvertType(E->getType())
};
// LLVM only supports 0 and 2, make sure that we pass along that
// as a boolean.
Value *Ty = EmitScalarExpr(E->getArg(1));
ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
assert(CI);
uint64_t val = CI->getZExtValue();
CI = ConstantInt::get(llvm::Type::getInt1Ty(VMContext), (val & 0x2) >> 1);
Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType, 1);
return RValue::get(Builder.CreateCall2(F,
EmitScalarExpr(E->getArg(0)),
CI));
}
case Builtin::BI__builtin_prefetch: {
Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
// FIXME: Technically these constants should of type 'int', yes?
RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 3);
Value *F = CGM.getIntrinsic(Intrinsic::prefetch, 0, 0);
return RValue::get(Builder.CreateCall3(F, Address, RW, Locality));
}
case Builtin::BI__builtin_trap: {
Value *F = CGM.getIntrinsic(Intrinsic::trap, 0, 0);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_unreachable: {
if (CatchUndefined && HaveInsertPoint())
EmitBranch(getTrapBB());
Value *V = Builder.CreateUnreachable();
Builder.ClearInsertionPoint();
return RValue::get(V);
}
case Builtin::BI__builtin_powi:
case Builtin::BI__builtin_powif:
case Builtin::BI__builtin_powil: {
Value *Base = EmitScalarExpr(E->getArg(0));
Value *Exponent = EmitScalarExpr(E->getArg(1));
const llvm::Type *ArgType = Base->getType();
Value *F = CGM.getIntrinsic(Intrinsic::powi, &ArgType, 1);
return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
}
case Builtin::BI__builtin_isgreater:
case Builtin::BI__builtin_isgreaterequal:
case Builtin::BI__builtin_isless:
case Builtin::BI__builtin_islessequal:
case Builtin::BI__builtin_islessgreater:
case Builtin::BI__builtin_isunordered: {
// Ordered comparisons: we know the arguments to these are matching scalar
// floating point values.
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
switch (BuiltinID) {
default: assert(0 && "Unknown ordered comparison");
case Builtin::BI__builtin_isgreater:
LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isgreaterequal:
LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isless:
LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessequal:
LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessgreater:
LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isunordered:
LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
break;
}
// ZExt bool to int type.
return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()),
"tmp"));
}
case Builtin::BI__builtin_isnan: {
Value *V = EmitScalarExpr(E->getArg(0));
V = Builder.CreateFCmpUNO(V, V, "cmp");
return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
}
case Builtin::BIalloca:
case Builtin::BI__builtin_alloca: {
// FIXME: LLVM IR Should allow alloca with an i64 size!
Value *Size = EmitScalarExpr(E->getArg(0));
Size = Builder.CreateIntCast(Size, llvm::Type::getInt32Ty(VMContext), false, "tmp");
return RValue::get(Builder.CreateAlloca(llvm::Type::getInt8Ty(VMContext), Size, "tmp"));
}
case Builtin::BIbzero:
case Builtin::BI__builtin_bzero: {
Value *Address = EmitScalarExpr(E->getArg(0));
Builder.CreateCall4(CGM.getMemSetFn(), Address,
llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), 0),
EmitScalarExpr(E->getArg(1)),
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1));
return RValue::get(Address);
}
case Builtin::BImemcpy:
case Builtin::BI__builtin_memcpy: {
Value *Address = EmitScalarExpr(E->getArg(0));
Builder.CreateCall4(CGM.getMemCpyFn(), Address,
EmitScalarExpr(E->getArg(1)),
EmitScalarExpr(E->getArg(2)),
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1));
return RValue::get(Address);
}
case Builtin::BImemmove:
case Builtin::BI__builtin_memmove: {
Value *Address = EmitScalarExpr(E->getArg(0));
Builder.CreateCall4(CGM.getMemMoveFn(), Address,
EmitScalarExpr(E->getArg(1)),
EmitScalarExpr(E->getArg(2)),
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1));
return RValue::get(Address);
}
case Builtin::BImemset:
case Builtin::BI__builtin_memset: {
Value *Address = EmitScalarExpr(E->getArg(0));
Builder.CreateCall4(CGM.getMemSetFn(), Address,
Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
llvm::Type::getInt8Ty(VMContext)),
EmitScalarExpr(E->getArg(2)),
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1));
return RValue::get(Address);
}
case Builtin::BI__builtin_dwarf_cfa: {
// The offset in bytes from the first argument to the CFA.
//
// Why on earth is this in the frontend? Is there any reason at
// all that the backend can't reasonably determine this while
// lowering llvm.eh.dwarf.cfa()?
//
// TODO: If there's a satisfactory reason, add a target hook for
// this instead of hard-coding 0, which is correct for most targets.
int32_t Offset = 0;
Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa, 0, 0);
return RValue::get(Builder.CreateCall(F, getInt32(VMContext, Offset)));
}
case Builtin::BI__builtin_return_address: {
Value *Depth = EmitScalarExpr(E->getArg(0));
Depth = Builder.CreateIntCast(Depth,
llvm::Type::getInt32Ty(VMContext),
false, "tmp");
Value *F = CGM.getIntrinsic(Intrinsic::returnaddress, 0, 0);
return RValue::get(Builder.CreateCall(F, Depth));
}
case Builtin::BI__builtin_frame_address: {
Value *Depth = EmitScalarExpr(E->getArg(0));
Depth = Builder.CreateIntCast(Depth,
llvm::Type::getInt32Ty(VMContext),
false, "tmp");
Value *F = CGM.getIntrinsic(Intrinsic::frameaddress, 0, 0);
return RValue::get(Builder.CreateCall(F, Depth));
}
case Builtin::BI__builtin_extract_return_addr: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
return RValue::get(Result);
}
case Builtin::BI__builtin_frob_return_addr: {
Value *Address = EmitScalarExpr(E->getArg(0));
Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
return RValue::get(Result);
}
case Builtin::BI__builtin_dwarf_sp_column: {
const llvm::IntegerType *Ty
= cast<llvm::IntegerType>(ConvertType(E->getType()));
int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
if (Column == -1) {
CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
return RValue::get(llvm::UndefValue::get(Ty));
}
return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
}
case Builtin::BI__builtin_init_dwarf_reg_size_table: {
Value *Address = EmitScalarExpr(E->getArg(0));
if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
}
case Builtin::BI__builtin_eh_return: {
Value *Int = EmitScalarExpr(E->getArg(0));
Value *Ptr = EmitScalarExpr(E->getArg(1));
const llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
"LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
? Intrinsic::eh_return_i32
: Intrinsic::eh_return_i64,
0, 0);
Builder.CreateCall2(F, Int, Ptr);
Value *V = Builder.CreateUnreachable();
Builder.ClearInsertionPoint();
return RValue::get(V);
}
case Builtin::BI__builtin_unwind_init: {
Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init, 0, 0);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_extend_pointer: {
// Extends a pointer to the size of an _Unwind_Word, which is
// uint64_t on all platforms. Generally this gets poked into a
// register and eventually used as an address, so if the
// addressing registers are wider than pointers and the platform
// doesn't implicitly ignore high-order bits when doing
// addressing, we need to make sure we zext / sext based on
// the platform's expectations.
//
// See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
LLVMContext &C = CGM.getLLVMContext();
// Cast the pointer to intptr_t.
Value *Ptr = EmitScalarExpr(E->getArg(0));
const llvm::IntegerType *IntPtrTy = CGM.getTargetData().getIntPtrType(C);
Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
// If that's 64 bits, we're done.
if (IntPtrTy->getBitWidth() == 64)
return RValue::get(Result);
// Otherwise, ask the codegen data what to do.
const llvm::IntegerType *Int64Ty = llvm::IntegerType::get(C, 64);
if (getTargetHooks().extendPointerWithSExt())
return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
else
return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
}
#if 0
// FIXME: Finish/enable when LLVM backend support stabilizes
case Builtin::BI__builtin_setjmp: {
Value *Buf = EmitScalarExpr(E->getArg(0));
// Store the frame pointer to the buffer
Value *FrameAddrF = CGM.getIntrinsic(Intrinsic::frameaddress, 0, 0);
Value *FrameAddr =
Builder.CreateCall(FrameAddrF,
Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)));
Builder.CreateStore(FrameAddr, Buf);
// Call the setjmp intrinsic
Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp, 0, 0);
const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext);
Buf = Builder.CreateBitCast(Buf, DestType);
return RValue::get(Builder.CreateCall(F, Buf));
}
case Builtin::BI__builtin_longjmp: {
Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp, 0, 0);
Value *Buf = EmitScalarExpr(E->getArg(0));
const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext);
Buf = Builder.CreateBitCast(Buf, DestType);
return RValue::get(Builder.CreateCall(F, Buf));
}
#endif
case Builtin::BI__sync_fetch_and_add:
case Builtin::BI__sync_fetch_and_sub:
case Builtin::BI__sync_fetch_and_or:
case Builtin::BI__sync_fetch_and_and:
case Builtin::BI__sync_fetch_and_xor:
case Builtin::BI__sync_add_and_fetch:
case Builtin::BI__sync_sub_and_fetch:
case Builtin::BI__sync_and_and_fetch:
case Builtin::BI__sync_or_and_fetch:
case Builtin::BI__sync_xor_and_fetch:
case Builtin::BI__sync_val_compare_and_swap:
case Builtin::BI__sync_bool_compare_and_swap:
case Builtin::BI__sync_lock_test_and_set:
case Builtin::BI__sync_lock_release:
assert(0 && "Shouldn't make it through sema");
case Builtin::BI__sync_fetch_and_add_1:
case Builtin::BI__sync_fetch_and_add_2:
case Builtin::BI__sync_fetch_and_add_4:
case Builtin::BI__sync_fetch_and_add_8:
case Builtin::BI__sync_fetch_and_add_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_add, E);
case Builtin::BI__sync_fetch_and_sub_1:
case Builtin::BI__sync_fetch_and_sub_2:
case Builtin::BI__sync_fetch_and_sub_4:
case Builtin::BI__sync_fetch_and_sub_8:
case Builtin::BI__sync_fetch_and_sub_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_sub, E);
case Builtin::BI__sync_fetch_and_or_1:
case Builtin::BI__sync_fetch_and_or_2:
case Builtin::BI__sync_fetch_and_or_4:
case Builtin::BI__sync_fetch_and_or_8:
case Builtin::BI__sync_fetch_and_or_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_or, E);
case Builtin::BI__sync_fetch_and_and_1:
case Builtin::BI__sync_fetch_and_and_2:
case Builtin::BI__sync_fetch_and_and_4:
case Builtin::BI__sync_fetch_and_and_8:
case Builtin::BI__sync_fetch_and_and_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_and, E);
case Builtin::BI__sync_fetch_and_xor_1:
case Builtin::BI__sync_fetch_and_xor_2:
case Builtin::BI__sync_fetch_and_xor_4:
case Builtin::BI__sync_fetch_and_xor_8:
case Builtin::BI__sync_fetch_and_xor_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_xor, E);
case Builtin::BI__sync_fetch_and_nand_1:
case Builtin::BI__sync_fetch_and_nand_2:
case Builtin::BI__sync_fetch_and_nand_4:
case Builtin::BI__sync_fetch_and_nand_8:
case Builtin::BI__sync_fetch_and_nand_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_nand, E);
// Clang extensions: not overloaded yet.
case Builtin::BI__sync_fetch_and_min:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_min, E);
case Builtin::BI__sync_fetch_and_max:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_max, E);
case Builtin::BI__sync_fetch_and_umin:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umin, E);
case Builtin::BI__sync_fetch_and_umax:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umax, E);
case Builtin::BI__sync_add_and_fetch_1:
case Builtin::BI__sync_add_and_fetch_2:
case Builtin::BI__sync_add_and_fetch_4:
case Builtin::BI__sync_add_and_fetch_8:
case Builtin::BI__sync_add_and_fetch_16:
return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_add, E,
llvm::Instruction::Add);
case Builtin::BI__sync_sub_and_fetch_1:
case Builtin::BI__sync_sub_and_fetch_2:
case Builtin::BI__sync_sub_and_fetch_4:
case Builtin::BI__sync_sub_and_fetch_8:
case Builtin::BI__sync_sub_and_fetch_16:
return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_sub, E,
llvm::Instruction::Sub);
case Builtin::BI__sync_and_and_fetch_1:
case Builtin::BI__sync_and_and_fetch_2:
case Builtin::BI__sync_and_and_fetch_4:
case Builtin::BI__sync_and_and_fetch_8:
case Builtin::BI__sync_and_and_fetch_16:
return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_and, E,
llvm::Instruction::And);
case Builtin::BI__sync_or_and_fetch_1:
case Builtin::BI__sync_or_and_fetch_2:
case Builtin::BI__sync_or_and_fetch_4:
case Builtin::BI__sync_or_and_fetch_8:
case Builtin::BI__sync_or_and_fetch_16:
return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_or, E,
llvm::Instruction::Or);
case Builtin::BI__sync_xor_and_fetch_1:
case Builtin::BI__sync_xor_and_fetch_2:
case Builtin::BI__sync_xor_and_fetch_4:
case Builtin::BI__sync_xor_and_fetch_8:
case Builtin::BI__sync_xor_and_fetch_16:
return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_xor, E,
llvm::Instruction::Xor);
case Builtin::BI__sync_nand_and_fetch_1:
case Builtin::BI__sync_nand_and_fetch_2:
case Builtin::BI__sync_nand_and_fetch_4:
case Builtin::BI__sync_nand_and_fetch_8:
case Builtin::BI__sync_nand_and_fetch_16:
return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_nand, E,
llvm::Instruction::And);
case Builtin::BI__sync_val_compare_and_swap_1:
case Builtin::BI__sync_val_compare_and_swap_2:
case Builtin::BI__sync_val_compare_and_swap_4:
case Builtin::BI__sync_val_compare_and_swap_8:
case Builtin::BI__sync_val_compare_and_swap_16:
{
const llvm::Type *ResType[2];
ResType[0]= ConvertType(E->getType());
ResType[1] = ConvertType(E->getArg(0)->getType());
Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap, ResType, 2);
return RValue::get(Builder.CreateCall3(AtomF,
EmitScalarExpr(E->getArg(0)),
EmitScalarExpr(E->getArg(1)),
EmitScalarExpr(E->getArg(2))));
}
case Builtin::BI__sync_bool_compare_and_swap_1:
case Builtin::BI__sync_bool_compare_and_swap_2:
case Builtin::BI__sync_bool_compare_and_swap_4:
case Builtin::BI__sync_bool_compare_and_swap_8:
case Builtin::BI__sync_bool_compare_and_swap_16:
{
const llvm::Type *ResType[2];
ResType[0]= ConvertType(E->getArg(1)->getType());
ResType[1] = llvm::PointerType::getUnqual(ResType[0]);
Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap, ResType, 2);
Value *OldVal = EmitScalarExpr(E->getArg(1));
Value *PrevVal = Builder.CreateCall3(AtomF,
EmitScalarExpr(E->getArg(0)),
OldVal,
EmitScalarExpr(E->getArg(2)));
Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
// zext bool to int.
return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
}
case Builtin::BI__sync_lock_test_and_set_1:
case Builtin::BI__sync_lock_test_and_set_2:
case Builtin::BI__sync_lock_test_and_set_4:
case Builtin::BI__sync_lock_test_and_set_8:
case Builtin::BI__sync_lock_test_and_set_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
case Builtin::BI__sync_lock_release_1:
case Builtin::BI__sync_lock_release_2:
case Builtin::BI__sync_lock_release_4:
case Builtin::BI__sync_lock_release_8:
case Builtin::BI__sync_lock_release_16: {
Value *Ptr = EmitScalarExpr(E->getArg(0));
const llvm::Type *ElTy =
cast<llvm::PointerType>(Ptr->getType())->getElementType();
llvm::StoreInst *Store =
Builder.CreateStore(llvm::Constant::getNullValue(ElTy), Ptr);
Store->setVolatile(true);
return RValue::get(0);
}
case Builtin::BI__sync_synchronize: {
Value *C[5];
C[0] = C[1] = C[2] = C[3] = llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 1);
C[4] = llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0);
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::memory_barrier), C, C + 5);
return RValue::get(0);
}
case Builtin::BI__builtin_llvm_memory_barrier: {
Value *C[5] = {
EmitScalarExpr(E->getArg(0)),
EmitScalarExpr(E->getArg(1)),
EmitScalarExpr(E->getArg(2)),
EmitScalarExpr(E->getArg(3)),
EmitScalarExpr(E->getArg(4))
};
Builder.CreateCall(CGM.getIntrinsic(Intrinsic::memory_barrier), C, C + 5);
return RValue::get(0);
}
// Library functions with special handling.
case Builtin::BIsqrt:
case Builtin::BIsqrtf:
case Builtin::BIsqrtl: {
// Rewrite sqrt to intrinsic if allowed.
if (!FD->hasAttr<ConstAttr>())
break;
Value *Arg0 = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = Arg0->getType();
Value *F = CGM.getIntrinsic(Intrinsic::sqrt, &ArgType, 1);
return RValue::get(Builder.CreateCall(F, Arg0, "tmp"));
}
case Builtin::BIpow:
case Builtin::BIpowf:
case Builtin::BIpowl: {
// Rewrite sqrt to intrinsic if allowed.
if (!FD->hasAttr<ConstAttr>())
break;
Value *Base = EmitScalarExpr(E->getArg(0));
Value *Exponent = EmitScalarExpr(E->getArg(1));
const llvm::Type *ArgType = Base->getType();
Value *F = CGM.getIntrinsic(Intrinsic::pow, &ArgType, 1);
return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
}
case Builtin::BI__builtin_signbit:
case Builtin::BI__builtin_signbitf:
case Builtin::BI__builtin_signbitl: {
LLVMContext &C = CGM.getLLVMContext();
Value *Arg = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgTy = Arg->getType();
if (ArgTy->isPPC_FP128Ty())
break; // FIXME: I'm not sure what the right implementation is here.
int ArgWidth = ArgTy->getPrimitiveSizeInBits();
const llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
}
}
// If this is an alias for a libm function (e.g. __builtin_sin) turn it into
// that function.
if (getContext().BuiltinInfo.isLibFunction(BuiltinID) ||
getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
return EmitCall(E->getCallee()->getType(),
CGM.getBuiltinLibFunction(FD, BuiltinID),
ReturnValueSlot(),
E->arg_begin(), E->arg_end());
// See if we have a target specific intrinsic.
const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
if (const char *Prefix =
llvm::Triple::getArchTypePrefix(Target.getTriple().getArch()))
IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
if (IntrinsicID != Intrinsic::not_intrinsic) {
SmallVector<Value*, 16> Args;
Function *F = CGM.getIntrinsic(IntrinsicID);
const llvm::FunctionType *FTy = F->getFunctionType();
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
Value *ArgValue = EmitScalarExpr(E->getArg(i));
// If the intrinsic arg type is different from the builtin arg type
// we need to do a bit cast.
const llvm::Type *PTy = FTy->getParamType(i);
if (PTy != ArgValue->getType()) {
assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param");
ArgValue = Builder.CreateBitCast(ArgValue, PTy);
}
Args.push_back(ArgValue);
}
Value *V = Builder.CreateCall(F, Args.data(), Args.data() + Args.size());
QualType BuiltinRetType = E->getType();
const llvm::Type *RetTy = llvm::Type::getVoidTy(VMContext);
if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType);
if (RetTy != V->getType()) {
assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type");
V = Builder.CreateBitCast(V, RetTy);
}
return RValue::get(V);
}
// See if we have a target specific builtin that needs to be lowered.
if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
return RValue::get(V);
ErrorUnsupported(E, "builtin function");
// Unknown builtin, for now just dump it out and return undef.
if (hasAggregateLLVMType(E->getType()))
return RValue::getAggregate(CreateMemTemp(E->getType()));
return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
}
Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (Target.getTriple().getArch()) {
case llvm::Triple::arm:
case llvm::Triple::thumb:
return EmitARMBuiltinExpr(BuiltinID, E);
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return EmitX86BuiltinExpr(BuiltinID, E);
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
return EmitPPCBuiltinExpr(BuiltinID, E);
default:
return 0;
}
}
Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
default: return 0;
case ARM::BI__builtin_thread_pointer: {
Value *AtomF = CGM.getIntrinsic(Intrinsic::arm_thread_pointer, 0, 0);
return Builder.CreateCall(AtomF);
}
}
}
Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
llvm::SmallVector<Value*, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
switch (BuiltinID) {
default: return 0;
case X86::BI__builtin_ia32_pslldi128:
case X86::BI__builtin_ia32_psllqi128:
case X86::BI__builtin_ia32_psllwi128:
case X86::BI__builtin_ia32_psradi128:
case X86::BI__builtin_ia32_psrawi128:
case X86::BI__builtin_ia32_psrldi128:
case X86::BI__builtin_ia32_psrlqi128:
case X86::BI__builtin_ia32_psrlwi128: {
Ops[1] = Builder.CreateZExt(Ops[1], llvm::Type::getInt64Ty(VMContext), "zext");
const llvm::Type *Ty = llvm::VectorType::get(llvm::Type::getInt64Ty(VMContext), 2);
llvm::Value *Zero = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty),
Ops[1], Zero, "insert");
Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast");
const char *name = 0;
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: assert(0 && "Unsupported shift intrinsic!");
case X86::BI__builtin_ia32_pslldi128:
name = "pslldi";
ID = Intrinsic::x86_sse2_psll_d;
break;
case X86::BI__builtin_ia32_psllqi128:
name = "psllqi";
ID = Intrinsic::x86_sse2_psll_q;
break;
case X86::BI__builtin_ia32_psllwi128:
name = "psllwi";
ID = Intrinsic::x86_sse2_psll_w;
break;
case X86::BI__builtin_ia32_psradi128:
name = "psradi";
ID = Intrinsic::x86_sse2_psra_d;
break;
case X86::BI__builtin_ia32_psrawi128:
name = "psrawi";
ID = Intrinsic::x86_sse2_psra_w;
break;
case X86::BI__builtin_ia32_psrldi128:
name = "psrldi";
ID = Intrinsic::x86_sse2_psrl_d;
break;
case X86::BI__builtin_ia32_psrlqi128:
name = "psrlqi";
ID = Intrinsic::x86_sse2_psrl_q;
break;
case X86::BI__builtin_ia32_psrlwi128:
name = "psrlwi";
ID = Intrinsic::x86_sse2_psrl_w;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
}
case X86::BI__builtin_ia32_pslldi:
case X86::BI__builtin_ia32_psllqi:
case X86::BI__builtin_ia32_psllwi:
case X86::BI__builtin_ia32_psradi:
case X86::BI__builtin_ia32_psrawi:
case X86::BI__builtin_ia32_psrldi:
case X86::BI__builtin_ia32_psrlqi:
case X86::BI__builtin_ia32_psrlwi: {
Ops[1] = Builder.CreateZExt(Ops[1], llvm::Type::getInt64Ty(VMContext), "zext");
const llvm::Type *Ty = llvm::VectorType::get(llvm::Type::getInt64Ty(VMContext), 1);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast");
const char *name = 0;
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: assert(0 && "Unsupported shift intrinsic!");
case X86::BI__builtin_ia32_pslldi:
name = "pslldi";
ID = Intrinsic::x86_mmx_psll_d;
break;
case X86::BI__builtin_ia32_psllqi:
name = "psllqi";
ID = Intrinsic::x86_mmx_psll_q;
break;
case X86::BI__builtin_ia32_psllwi:
name = "psllwi";
ID = Intrinsic::x86_mmx_psll_w;
break;
case X86::BI__builtin_ia32_psradi:
name = "psradi";
ID = Intrinsic::x86_mmx_psra_d;
break;
case X86::BI__builtin_ia32_psrawi:
name = "psrawi";
ID = Intrinsic::x86_mmx_psra_w;
break;
case X86::BI__builtin_ia32_psrldi:
name = "psrldi";
ID = Intrinsic::x86_mmx_psrl_d;
break;
case X86::BI__builtin_ia32_psrlqi:
name = "psrlqi";
ID = Intrinsic::x86_mmx_psrl_q;
break;
case X86::BI__builtin_ia32_psrlwi:
name = "psrlwi";
ID = Intrinsic::x86_mmx_psrl_w;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
}
case X86::BI__builtin_ia32_cmpps: {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpps");
}
case X86::BI__builtin_ia32_cmpss: {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpss");
}
case X86::BI__builtin_ia32_ldmxcsr: {
const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
Value *One = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1);
Value *Tmp = Builder.CreateAlloca(llvm::Type::getInt32Ty(VMContext), One, "tmp");
Builder.CreateStore(Ops[0], Tmp);
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
Builder.CreateBitCast(Tmp, PtrTy));
}
case X86::BI__builtin_ia32_stmxcsr: {
const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
Value *One = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1);
Value *Tmp = Builder.CreateAlloca(llvm::Type::getInt32Ty(VMContext), One, "tmp");
One = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
Builder.CreateBitCast(Tmp, PtrTy));
return Builder.CreateLoad(Tmp, "stmxcsr");
}
case X86::BI__builtin_ia32_cmppd: {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmppd");
}
case X86::BI__builtin_ia32_cmpsd: {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpsd");
}
case X86::BI__builtin_ia32_storehps:
case X86::BI__builtin_ia32_storelps: {
const llvm::Type *EltTy = llvm::Type::getInt64Ty(VMContext);
llvm::Type *PtrTy = llvm::PointerType::getUnqual(EltTy);
llvm::Type *VecTy = llvm::VectorType::get(EltTy, 2);
// cast val v2i64
Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
// extract (0, 1)
unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Index);
Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
// cast pointer to i64 & store
Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case X86::BI__builtin_ia32_palignr: {
Function *F = CGM.getIntrinsic(Intrinsic::x86_ssse3_palign_r);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size());
}
case X86::BI__builtin_ia32_palignr128: {
unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
// If palignr is shifting the pair of input vectors less than 17 bytes,
// emit a shuffle instruction.
if (shiftVal <= 16) {
const llvm::Type *IntTy = llvm::Type::getInt32Ty(VMContext);
llvm::SmallVector<llvm::Constant*, 16> Indices;
for (unsigned i = 0; i != 16; ++i)
Indices.push_back(llvm::ConstantInt::get(IntTy, shiftVal + i));
Value* SV = llvm::ConstantVector::get(Indices.begin(), Indices.size());
return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
}
// If palignr is shifting the pair of input vectors more than 16 but less
// than 32 bytes, emit a logical right shift of the destination.
if (shiftVal < 32) {
const llvm::Type *EltTy = llvm::Type::getInt64Ty(VMContext);
const llvm::Type *VecTy = llvm::VectorType::get(EltTy, 2);
const llvm::Type *IntTy = llvm::Type::getInt32Ty(VMContext);
Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
Ops[1] = llvm::ConstantInt::get(IntTy, (shiftVal-16) * 8);
// create i32 constant
llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + 2, "palignr");
}
// If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
return llvm::Constant::getNullValue(ConvertType(E->getType()));
}
}
}
Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
return 0;
}