clang-1/include/clang/AST/DeclBase.h

869 строки
29 KiB
C++

//===-- DeclBase.h - Base Classes for representing declarations *- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Decl and DeclContext interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLBASE_H
#define LLVM_CLANG_AST_DECLBASE_H
#include "clang/AST/Attr.h"
#include "clang/AST/Type.h"
// FIXME: Layering violation
#include "clang/Parse/AccessSpecifier.h"
#include "clang/Basic/SourceLocation.h"
#include "llvm/ADT/PointerIntPair.h"
namespace clang {
class DeclContext;
class TranslationUnitDecl;
class NamespaceDecl;
class UsingDirectiveDecl;
class NamedDecl;
class FunctionDecl;
class CXXRecordDecl;
class EnumDecl;
class ObjCMethodDecl;
class ObjCContainerDecl;
class ObjCInterfaceDecl;
class ObjCCategoryDecl;
class ObjCProtocolDecl;
class ObjCImplementationDecl;
class ObjCCategoryImplDecl;
class LinkageSpecDecl;
class BlockDecl;
class DeclarationName;
/// Decl - This represents one declaration (or definition), e.g. a variable,
/// typedef, function, struct, etc.
///
class Decl {
public:
/// \brief Lists the kind of concrete classes of Decl.
enum Kind {
#define DECL(Derived, Base) Derived,
#define DECL_RANGE(CommonBase, Start, End) \
CommonBase##First = Start, CommonBase##Last = End,
#define LAST_DECL_RANGE(CommonBase, Start, End) \
CommonBase##First = Start, CommonBase##Last = End
#include "clang/AST/DeclNodes.def"
};
/// IdentifierNamespace - According to C99 6.2.3, there are four namespaces,
/// labels, tags, members and ordinary identifiers. These are meant
/// as bitmasks, so that searches in C++ can look into the "tag" namespace
/// during ordinary lookup.
enum IdentifierNamespace {
IDNS_Label = 0x1,
IDNS_Tag = 0x2,
IDNS_Member = 0x4,
IDNS_Ordinary = 0x8,
IDNS_Protocol = 0x10
};
/// ObjCDeclQualifier - Qualifier used on types in method declarations
/// for remote messaging. They are meant for the arguments though and
/// applied to the Decls (ObjCMethodDecl and ParmVarDecl).
enum ObjCDeclQualifier {
OBJC_TQ_None = 0x0,
OBJC_TQ_In = 0x1,
OBJC_TQ_Inout = 0x2,
OBJC_TQ_Out = 0x4,
OBJC_TQ_Bycopy = 0x8,
OBJC_TQ_Byref = 0x10,
OBJC_TQ_Oneway = 0x20
};
private:
/// Loc - The location that this decl.
SourceLocation Loc;
/// NextDeclarator - If this decl was part of a multi-declarator declaration,
/// such as "int X, Y, *Z;" this indicates Decl for the next declarator.
Decl *NextDeclarator;
/// NextDeclInScope - The next declaration within the same lexical
/// DeclContext. These pointers form the linked list that is
/// traversed via DeclContext's decls_begin()/decls_end().
/// FIXME: If NextDeclarator is non-NULL, will it always be the same
/// as NextDeclInScope? If so, we can use a
/// PointerIntPair<Decl*, 1> to make Decl smaller.
Decl *NextDeclInScope;
friend class DeclContext;
/// DeclCtx - Holds either a DeclContext* or a MultipleDC*.
/// For declarations that don't contain C++ scope specifiers, it contains
/// the DeclContext where the Decl was declared.
/// For declarations with C++ scope specifiers, it contains a MultipleDC*
/// with the context where it semantically belongs (SemanticDC) and the
/// context where it was lexically declared (LexicalDC).
/// e.g.:
///
/// namespace A {
/// void f(); // SemanticDC == LexicalDC == 'namespace A'
/// }
/// void A::f(); // SemanticDC == namespace 'A'
/// // LexicalDC == global namespace
uintptr_t DeclCtx;
struct MultipleDC {
DeclContext *SemanticDC;
DeclContext *LexicalDC;
};
inline bool isInSemaDC() const { return (DeclCtx & 0x1) == 0; }
inline bool isOutOfSemaDC() const { return (DeclCtx & 0x1) != 0; }
inline MultipleDC *getMultipleDC() const {
return reinterpret_cast<MultipleDC*>(DeclCtx & ~0x1);
}
/// DeclKind - This indicates which class this is.
Kind DeclKind : 8;
/// InvalidDecl - This indicates a semantic error occurred.
unsigned int InvalidDecl : 1;
/// HasAttrs - This indicates whether the decl has attributes or not.
unsigned int HasAttrs : 1;
/// Implicit - Whether this declaration was implicitly generated by
/// the implementation rather than explicitly written by the user.
bool Implicit : 1;
protected:
/// Access - Used by C++ decls for the access specifier.
// NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum
unsigned Access : 2;
friend class CXXClassMemberWrapper;
Decl(Kind DK, DeclContext *DC, SourceLocation L)
: Loc(L), NextDeclarator(0), NextDeclInScope(0),
DeclCtx(reinterpret_cast<uintptr_t>(DC)), DeclKind(DK), InvalidDecl(0),
HasAttrs(false), Implicit(false) {
if (Decl::CollectingStats()) addDeclKind(DK);
}
virtual ~Decl();
/// setDeclContext - Set both the semantic and lexical DeclContext
/// to DC.
void setDeclContext(DeclContext *DC);
public:
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
Kind getKind() const { return DeclKind; }
const char *getDeclKindName() const;
const DeclContext *getDeclContext() const {
if (isInSemaDC())
return reinterpret_cast<DeclContext*>(DeclCtx);
return getMultipleDC()->SemanticDC;
}
DeclContext *getDeclContext() {
return const_cast<DeclContext*>(
const_cast<const Decl*>(this)->getDeclContext());
}
void setAccess(AccessSpecifier AS) { Access = AS; }
AccessSpecifier getAccess() const { return AccessSpecifier(Access); }
bool hasAttrs() const { return HasAttrs; }
void addAttr(Attr *attr);
const Attr *getAttrs() const;
void swapAttrs(Decl *D);
void invalidateAttrs();
template<typename T> const T *getAttr() const {
for (const Attr *attr = getAttrs(); attr; attr = attr->getNext())
if (const T *V = dyn_cast<T>(attr))
return V;
return 0;
}
/// setInvalidDecl - Indicates the Decl had a semantic error. This
/// allows for graceful error recovery.
void setInvalidDecl() { InvalidDecl = 1; }
bool isInvalidDecl() const { return (bool) InvalidDecl; }
/// isImplicit - Indicates whether the declaration was implicitly
/// generated by the implementation. If false, this declaration
/// was written explicitly in the source code.
bool isImplicit() const { return Implicit; }
void setImplicit(bool I = true) { Implicit = I; }
unsigned getIdentifierNamespace() const {
switch (DeclKind) {
default:
if (DeclKind >= FunctionFirst && DeclKind <= FunctionLast)
return IDNS_Ordinary;
assert(0 && "Unknown decl kind!");
case OverloadedFunction:
case Typedef:
case EnumConstant:
case Var:
case CXXClassVar:
case ImplicitParam:
case ParmVar:
case OriginalParmVar:
case NonTypeTemplateParm:
case ObjCMethod:
case ObjCContainer:
case ObjCCategory:
case ObjCInterface:
case ObjCCategoryImpl:
case ObjCProperty:
case ObjCCompatibleAlias:
return IDNS_Ordinary;
case ObjCProtocol:
return IDNS_Protocol;
case Field:
case ObjCAtDefsField:
case ObjCIvar:
return IDNS_Member;
case Record:
case CXXRecord:
case Enum:
case TemplateTypeParm:
return IDNS_Tag;
case Namespace:
case Template:
case FunctionTemplate:
case ClassTemplate:
case TemplateTemplateParm:
return IDNS_Tag | IDNS_Ordinary;
case ClassTemplateSpecialization:
return 0;
}
}
bool isInIdentifierNamespace(unsigned NS) const {
return getIdentifierNamespace() & NS;
}
/// getLexicalDeclContext - The declaration context where this Decl was
/// lexically declared (LexicalDC). May be different from
/// getDeclContext() (SemanticDC).
/// e.g.:
///
/// namespace A {
/// void f(); // SemanticDC == LexicalDC == 'namespace A'
/// }
/// void A::f(); // SemanticDC == namespace 'A'
/// // LexicalDC == global namespace
const DeclContext *getLexicalDeclContext() const {
if (isInSemaDC())
return reinterpret_cast<DeclContext*>(DeclCtx);
return getMultipleDC()->LexicalDC;
}
DeclContext *getLexicalDeclContext() {
return const_cast<DeclContext*>(
const_cast<const Decl*>(this)->getLexicalDeclContext());
}
void setLexicalDeclContext(DeclContext *DC);
/// getNextDeclarator - If this decl was part of a multi-declarator
/// declaration, such as "int X, Y, *Z;" this returns the decl for the next
/// declarator. Otherwise it returns null.
Decl *getNextDeclarator() { return NextDeclarator; }
const Decl *getNextDeclarator() const { return NextDeclarator; }
void setNextDeclarator(Decl *N) { NextDeclarator = N; }
// isDefinedOutsideFunctionOrMethod - This predicate returns true if this
// scoped decl is defined outside the current function or method. This is
// roughly global variables and functions, but also handles enums (which could
// be defined inside or outside a function etc).
bool isDefinedOutsideFunctionOrMethod() const;
// getBody - If this Decl represents a declaration for a body of code,
// such as a function or method definition, this method returns the top-level
// Stmt* of that body. Otherwise this method returns null.
virtual Stmt* getBody() const { return 0; }
// global temp stats (until we have a per-module visitor)
static void addDeclKind(Kind k);
static bool CollectingStats(bool Enable = false);
static void PrintStats();
/// isTemplateParameter - Determines whether this declartion is a
/// template parameter.
bool isTemplateParameter() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *) { return true; }
static DeclContext *castToDeclContext(const Decl *);
static Decl *castFromDeclContext(const DeclContext *);
/// Emit - Serialize this Decl to Bitcode.
void Emit(llvm::Serializer& S) const;
/// Create - Deserialize a Decl from Bitcode.
static Decl* Create(llvm::Deserializer& D, ASTContext& C);
/// Destroy - Call destructors and release memory.
virtual void Destroy(ASTContext& C);
protected:
/// EmitImpl - Provides the subclass-specific serialization logic for
/// serializing out a decl.
virtual void EmitImpl(llvm::Serializer& S) const {
// FIXME: This will eventually be a pure virtual function.
assert (false && "Not implemented.");
}
};
/// DeclContext - This is used only as base class of specific decl types that
/// can act as declaration contexts. These decls are (only the top classes
/// that directly derive from DeclContext are mentioned, not their subclasses):
///
/// TranslationUnitDecl
/// NamespaceDecl
/// FunctionDecl
/// TagDecl
/// ObjCMethodDecl
/// ObjCContainerDecl
/// ObjCCategoryImplDecl
/// ObjCImplementationDecl
/// LinkageSpecDecl
/// BlockDecl
///
class DeclContext {
/// DeclKind - This indicates which class this is.
Decl::Kind DeclKind : 8;
/// LookupPtrKind - Describes what kind of pointer LookupPtr
/// actually is.
enum LookupPtrKind {
/// LookupIsMap - Indicates that LookupPtr is actually a map.
LookupIsMap = 7
};
/// LookupPtr - Pointer to a data structure used to lookup
/// declarations within this context. If the context contains fewer
/// than seven declarations, the number of declarations is provided
/// in the 3 lowest-order bits and the upper bits are treated as a
/// pointer to an array of NamedDecl pointers. If the context
/// contains seven or more declarations, the upper bits are treated
/// as a pointer to a DenseMap<DeclarationName, std::vector<NamedDecl*>>.
/// FIXME: We need a better data structure for this.
llvm::PointerIntPair<void*, 3> LookupPtr;
/// FirstDecl - The first declaration stored within this declaration
/// context.
Decl *FirstDecl;
/// LastDecl - The last declaration stored within this declaration
/// context. FIXME: We could probably cache this value somewhere
/// outside of the DeclContext, to reduce the size of DeclContext by
/// another pointer.
Decl *LastDecl;
/// isLookupMap - Determine if the lookup structure is a
/// DenseMap. Othewise, it is an array.
bool isLookupMap() const { return LookupPtr.getInt() == LookupIsMap; }
static Decl *getNextDeclInScope(Decl *D) { return D->NextDeclInScope; }
protected:
DeclContext(Decl::Kind K)
: DeclKind(K), LookupPtr(), FirstDecl(0), LastDecl(0) { }
void DestroyDecls(ASTContext &C);
public:
~DeclContext();
Decl::Kind getDeclKind() const {
return DeclKind;
}
const char *getDeclKindName() const;
/// getParent - Returns the containing DeclContext.
const DeclContext *getParent() const {
return cast<Decl>(this)->getDeclContext();
}
DeclContext *getParent() {
return const_cast<DeclContext*>(
const_cast<const DeclContext*>(this)->getParent());
}
/// getLexicalParent - Returns the containing lexical DeclContext. May be
/// different from getParent, e.g.:
///
/// namespace A {
/// struct S;
/// }
/// struct A::S {}; // getParent() == namespace 'A'
/// // getLexicalParent() == translation unit
///
const DeclContext *getLexicalParent() const {
return cast<Decl>(this)->getLexicalDeclContext();
}
DeclContext *getLexicalParent() {
return const_cast<DeclContext*>(
const_cast<const DeclContext*>(this)->getLexicalParent());
}
bool isFunctionOrMethod() const {
switch (DeclKind) {
case Decl::Block:
case Decl::ObjCMethod:
return true;
default:
if (DeclKind >= Decl::FunctionFirst && DeclKind <= Decl::FunctionLast)
return true;
return false;
}
}
bool isFileContext() const {
return DeclKind == Decl::TranslationUnit || DeclKind == Decl::Namespace;
}
bool isTranslationUnit() const {
return DeclKind == Decl::TranslationUnit;
}
bool isRecord() const {
return DeclKind == Decl::Record || DeclKind == Decl::CXXRecord;
}
bool isNamespace() const {
return DeclKind == Decl::Namespace;
}
/// isTransparentContext - Determines whether this context is a
/// "transparent" context, meaning that the members declared in this
/// context are semantically declared in the nearest enclosing
/// non-transparent (opaque) context but are lexically declared in
/// this context. For example, consider the enumerators of an
/// enumeration type:
/// @code
/// enum E {
/// Val1
/// };
/// @endcode
/// Here, E is a transparent context, so its enumerator (Val1) will
/// appear (semantically) that it is in the same context of E.
/// Examples of transparent contexts include: enumerations (except for
/// C++0x scoped enums), C++ linkage specifications, and C++0x
/// inline namespaces.
bool isTransparentContext() const;
bool Encloses(DeclContext *DC) const {
for (; DC; DC = DC->getParent())
if (DC == this)
return true;
return false;
}
/// getPrimaryContext - There may be many different
/// declarations of the same entity (including forward declarations
/// of classes, multiple definitions of namespaces, etc.), each with
/// a different set of declarations. This routine returns the
/// "primary" DeclContext structure, which will contain the
/// information needed to perform name lookup into this context.
DeclContext *getPrimaryContext();
/// getLookupContext - Retrieve the innermost non-transparent
/// context of this context, which corresponds to the innermost
/// location from which name lookup can find the entities in this
/// context.
DeclContext *getLookupContext() {
return const_cast<DeclContext *>(
const_cast<const DeclContext *>(this)->getLookupContext());
}
const DeclContext *getLookupContext() const;
/// getNextContext - If this is a DeclContext that may have other
/// DeclContexts that are semantically connected but syntactically
/// different, such as C++ namespaces, this routine retrieves the
/// next DeclContext in the link. Iteration through the chain of
/// DeclContexts should begin at the primary DeclContext and
/// continue until this function returns NULL. For example, given:
/// @code
/// namespace N {
/// int x;
/// }
/// namespace N {
/// int y;
/// }
/// @endcode
/// The first occurrence of namespace N will be the primary
/// DeclContext. Its getNextContext will return the second
/// occurrence of namespace N.
DeclContext *getNextContext();
/// decl_iterator - Iterates through the declarations stored
/// within this context.
class decl_iterator {
/// Current - The current declaration.
Decl *Current;
public:
typedef Decl* value_type;
typedef Decl* reference;
typedef Decl* pointer;
typedef std::forward_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
decl_iterator() : Current(0) { }
explicit decl_iterator(Decl *C) : Current(C) { }
reference operator*() const { return Current; }
pointer operator->() const { return Current; }
decl_iterator& operator++();
decl_iterator operator++(int) {
decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(decl_iterator x, decl_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(decl_iterator x, decl_iterator y) {
return x.Current != y.Current;
}
};
/// decls_begin/decls_end - Iterate over the declarations stored in
/// this context.
decl_iterator decls_begin() const { return decl_iterator(FirstDecl); }
decl_iterator decls_end() const { return decl_iterator(); }
/// specific_decl_iterator - Iterates over a subrange of
/// declarations stored in a DeclContext, providing only those that
/// are of type SpecificDecl (or a class derived from it). This
/// iterator is used, for example, to provide iteration over just
/// the fields within a RecordDecl (with SpecificDecl = FieldDecl).
template<typename SpecificDecl>
class specific_decl_iterator {
/// Current - The current, underlying declaration iterator, which
/// will either be NULL or will point to a declaration of
/// type SpecificDecl.
DeclContext::decl_iterator Current;
/// SkipToNextDecl - Advances the current position up to the next
/// declaration of type SpecificDecl that also meets the criteria
/// required by Acceptable.
void SkipToNextDecl() {
while (*Current && !isa<SpecificDecl>(*Current))
++Current;
}
public:
typedef SpecificDecl* value_type;
typedef SpecificDecl* reference;
typedef SpecificDecl* pointer;
typedef std::iterator_traits<DeclContext::decl_iterator>::difference_type
difference_type;
typedef std::forward_iterator_tag iterator_category;
specific_decl_iterator() : Current() { }
/// specific_decl_iterator - Construct a new iterator over a
/// subset of the declarations the range [C,
/// end-of-declarations). If A is non-NULL, it is a pointer to a
/// member function of SpecificDecl that should return true for
/// all of the SpecificDecl instances that will be in the subset
/// of iterators. For example, if you want Objective-C instance
/// methods, SpecificDecl will be ObjCMethodDecl and A will be
/// &ObjCMethodDecl::isInstanceMethod.
explicit specific_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
SkipToNextDecl();
}
reference operator*() const { return cast<SpecificDecl>(*Current); }
pointer operator->() const { return cast<SpecificDecl>(*Current); }
specific_decl_iterator& operator++() {
++Current;
SkipToNextDecl();
return *this;
}
specific_decl_iterator operator++(int) {
specific_decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool
operator==(const specific_decl_iterator& x, const specific_decl_iterator& y) {
return x.Current == y.Current;
}
friend bool
operator!=(const specific_decl_iterator& x, const specific_decl_iterator& y) {
return x.Current != y.Current;
}
};
/// \brief Iterates over a filtered subrange of declarations stored
/// in a DeclContext.
///
/// This iterator visits only those declarations that are of type
/// SpecificDecl (or a class derived from it) and that meet some
/// additional run-time criteria. This iterator is used, for
/// example, to provide access to the instance methods within an
/// Objective-C interface (with SpecificDecl = ObjCMethodDecl and
/// Acceptable = ObjCMethodDecl::isInstanceMethod).
template<typename SpecificDecl, bool (SpecificDecl::*Acceptable)() const>
class filtered_decl_iterator {
/// Current - The current, underlying declaration iterator, which
/// will either be NULL or will point to a declaration of
/// type SpecificDecl.
DeclContext::decl_iterator Current;
/// SkipToNextDecl - Advances the current position up to the next
/// declaration of type SpecificDecl that also meets the criteria
/// required by Acceptable.
void SkipToNextDecl() {
while (*Current &&
(!isa<SpecificDecl>(*Current) ||
(Acceptable && !(cast<SpecificDecl>(*Current)->*Acceptable)())))
++Current;
}
public:
typedef SpecificDecl* value_type;
typedef SpecificDecl* reference;
typedef SpecificDecl* pointer;
typedef std::iterator_traits<DeclContext::decl_iterator>::difference_type
difference_type;
typedef std::forward_iterator_tag iterator_category;
filtered_decl_iterator() : Current() { }
/// specific_decl_iterator - Construct a new iterator over a
/// subset of the declarations the range [C,
/// end-of-declarations). If A is non-NULL, it is a pointer to a
/// member function of SpecificDecl that should return true for
/// all of the SpecificDecl instances that will be in the subset
/// of iterators. For example, if you want Objective-C instance
/// methods, SpecificDecl will be ObjCMethodDecl and A will be
/// &ObjCMethodDecl::isInstanceMethod.
explicit filtered_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
SkipToNextDecl();
}
reference operator*() const { return cast<SpecificDecl>(*Current); }
pointer operator->() const { return cast<SpecificDecl>(*Current); }
filtered_decl_iterator& operator++() {
++Current;
SkipToNextDecl();
return *this;
}
filtered_decl_iterator operator++(int) {
filtered_decl_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool
operator==(const filtered_decl_iterator& x, const filtered_decl_iterator& y) {
return x.Current == y.Current;
}
friend bool
operator!=(const filtered_decl_iterator& x, const filtered_decl_iterator& y) {
return x.Current != y.Current;
}
};
/// @brief Add the declaration D into this context.
///
/// This routine should be invoked when the declaration D has first
/// been declared, to place D into the context where it was
/// (lexically) defined. Every declaration must be added to one
/// (and only one!) context, where it can be visited via
/// [decls_begin(), decls_end()). Once a declaration has been added
/// to its lexical context, the corresponding DeclContext owns the
/// declaration.
///
/// If D is also a NamedDecl, it will be made visible within its
/// semantic context via makeDeclVisibleInContext.
void addDecl(Decl *D);
/// lookup_iterator - An iterator that provides access to the results
/// of looking up a name within this context.
typedef NamedDecl **lookup_iterator;
/// lookup_const_iterator - An iterator that provides non-mutable
/// access to the results of lookup up a name within this context.
typedef NamedDecl * const * lookup_const_iterator;
typedef std::pair<lookup_iterator, lookup_iterator> lookup_result;
typedef std::pair<lookup_const_iterator, lookup_const_iterator>
lookup_const_result;
/// lookup - Find the declarations (if any) with the given Name in
/// this context. Returns a range of iterators that contains all of
/// the declarations with this name, with object, function, member,
/// and enumerator names preceding any tag name. Note that this
/// routine will not look into parent contexts.
lookup_result lookup(DeclarationName Name);
lookup_const_result lookup(DeclarationName Name) const;
/// @brief Makes a declaration visible within this context.
///
/// This routine makes the declaration D visible to name lookup
/// within this context and, if this is a transparent context,
/// within its parent contexts up to the first enclosing
/// non-transparent context. Making a declaration visible within a
/// context does not transfer ownership of a declaration, and a
/// declaration can be visible in many contexts that aren't its
/// lexical context.
///
/// If D is a redeclaration of an existing declaration that is
/// visible from this context, as determined by
/// NamedDecl::declarationReplaces, the previous declaration will be
/// replaced with D.
void makeDeclVisibleInContext(NamedDecl *D);
/// udir_iterator - Iterates through the using-directives stored
/// within this context.
typedef UsingDirectiveDecl * const * udir_iterator;
typedef std::pair<udir_iterator, udir_iterator> udir_iterator_range;
udir_iterator_range getUsingDirectives() const;
udir_iterator using_directives_begin() const {
return getUsingDirectives().first;
}
udir_iterator using_directives_end() const {
return getUsingDirectives().second;
}
static bool classof(const Decl *D);
static bool classof(const DeclContext *D) { return true; }
#define DECL_CONTEXT(Name) \
static bool classof(const Name##Decl *D) { return true; }
#include "clang/AST/DeclNodes.def"
private:
void buildLookup(DeclContext *DCtx);
void makeDeclVisibleInContextImpl(NamedDecl *D);
void EmitOutRec(llvm::Serializer& S) const;
void ReadOutRec(llvm::Deserializer& D, ASTContext& C);
friend class Decl;
};
inline bool Decl::isTemplateParameter() const {
return getKind() == TemplateTypeParm || getKind() == NonTypeTemplateParm;
}
inline bool Decl::isDefinedOutsideFunctionOrMethod() const {
if (getDeclContext())
return !getDeclContext()->getLookupContext()->isFunctionOrMethod();
else
return true;
}
inline DeclContext::decl_iterator& DeclContext::decl_iterator::operator++() {
Current = getNextDeclInScope(Current);
return *this;
}
} // end clang.
namespace llvm {
/// Implement a isa_impl_wrap specialization to check whether a DeclContext is
/// a specific Decl.
template<class ToTy>
struct isa_impl_wrap<ToTy,
const ::clang::DeclContext,const ::clang::DeclContext> {
static bool doit(const ::clang::DeclContext &Val) {
return ToTy::classof(::clang::Decl::castFromDeclContext(&Val));
}
};
template<class ToTy>
struct isa_impl_wrap<ToTy, ::clang::DeclContext, ::clang::DeclContext>
: public isa_impl_wrap<ToTy,
const ::clang::DeclContext,const ::clang::DeclContext> {};
/// Implement cast_convert_val for Decl -> DeclContext conversions.
template<class FromTy>
struct cast_convert_val< ::clang::DeclContext, FromTy, FromTy> {
static ::clang::DeclContext &doit(const FromTy &Val) {
return *FromTy::castToDeclContext(&Val);
}
};
template<class FromTy>
struct cast_convert_val< ::clang::DeclContext, FromTy*, FromTy*> {
static ::clang::DeclContext *doit(const FromTy *Val) {
return FromTy::castToDeclContext(Val);
}
};
template<class FromTy>
struct cast_convert_val< const ::clang::DeclContext, FromTy, FromTy> {
static const ::clang::DeclContext &doit(const FromTy &Val) {
return *FromTy::castToDeclContext(&Val);
}
};
template<class FromTy>
struct cast_convert_val< const ::clang::DeclContext, FromTy*, FromTy*> {
static const ::clang::DeclContext *doit(const FromTy *Val) {
return FromTy::castToDeclContext(Val);
}
};
/// Implement cast_convert_val for DeclContext -> Decl conversions.
template<class ToTy>
struct cast_convert_val<ToTy,
const ::clang::DeclContext,const ::clang::DeclContext> {
static ToTy &doit(const ::clang::DeclContext &Val) {
return *reinterpret_cast<ToTy*>(ToTy::castFromDeclContext(&Val));
}
};
template<class ToTy>
struct cast_convert_val<ToTy, ::clang::DeclContext, ::clang::DeclContext>
: public cast_convert_val<ToTy,
const ::clang::DeclContext,const ::clang::DeclContext> {};
template<class ToTy>
struct cast_convert_val<ToTy,
const ::clang::DeclContext*, const ::clang::DeclContext*> {
static ToTy *doit(const ::clang::DeclContext *Val) {
return reinterpret_cast<ToTy*>(ToTy::castFromDeclContext(Val));
}
};
template<class ToTy>
struct cast_convert_val<ToTy, ::clang::DeclContext*, ::clang::DeclContext*>
: public cast_convert_val<ToTy,
const ::clang::DeclContext*,const ::clang::DeclContext*> {};
} // end namespace llvm
#endif