clang-1/CodeGen/CGExpr.cpp

508 строки
20 KiB
C++

//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/AST.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Support/MathExtras.h"
using namespace clang;
using namespace CodeGen;
//===--------------------------------------------------------------------===//
// Miscellaneous Helper Methods
//===--------------------------------------------------------------------===//
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
/// block.
llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
const char *Name) {
return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
}
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
/// expression and compare the result against zero, returning an Int1Ty value.
llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
QualType BoolTy = getContext().BoolTy;
if (!E->getType()->isComplexType())
return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
}
/// EmitAnyExpr - Emit code to compute the specified expression which can have
/// any type. The result is returned as an RValue struct. If this is an
/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
/// the result should be returned.
RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
bool isAggLocVolatile) {
if (!hasAggregateLLVMType(E->getType()))
return RValue::get(EmitScalarExpr(E));
else if (E->getType()->isComplexType())
return RValue::getComplex(EmitComplexExpr(E));
EmitAggExpr(E, AggLoc, isAggLocVolatile);
return RValue::getAggregate(AggLoc);
}
//===----------------------------------------------------------------------===//
// LValue Expression Emission
//===----------------------------------------------------------------------===//
/// EmitLValue - Emit code to compute a designator that specifies the location
/// of the expression.
///
/// This can return one of two things: a simple address or a bitfield
/// reference. In either case, the LLVM Value* in the LValue structure is
/// guaranteed to be an LLVM pointer type.
///
/// If this returns a bitfield reference, nothing about the pointee type of
/// the LLVM value is known: For example, it may not be a pointer to an
/// integer.
///
/// If this returns a normal address, and if the lvalue's C type is fixed
/// size, this method guarantees that the returned pointer type will point to
/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
/// variable length type, this is not possible.
///
LValue CodeGenFunction::EmitLValue(const Expr *E) {
switch (E->getStmtClass()) {
default: {
fprintf(stderr, "Unimplemented lvalue expr!\n");
E->dump(getContext().SourceMgr);
llvm::Type *Ty = llvm::PointerType::get(ConvertType(E->getType()));
return LValue::MakeAddr(llvm::UndefValue::get(Ty));
}
case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
case Expr::PreDefinedExprClass:
return EmitPreDefinedLValue(cast<PreDefinedExpr>(E));
case Expr::StringLiteralClass:
return EmitStringLiteralLValue(cast<StringLiteral>(E));
case Expr::UnaryOperatorClass:
return EmitUnaryOpLValue(cast<UnaryOperator>(E));
case Expr::ArraySubscriptExprClass:
return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
case Expr::OCUVectorElementExprClass:
return EmitOCUVectorElementExpr(cast<OCUVectorElementExpr>(E));
case Expr::MemberExprClass: return EmitMemberExpr(cast<MemberExpr>(E));
}
}
/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
/// this method emits the address of the lvalue, then loads the result as an
/// rvalue, returning the rvalue.
RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
if (LV.isSimple()) {
llvm::Value *Ptr = LV.getAddress();
const llvm::Type *EltTy =
cast<llvm::PointerType>(Ptr->getType())->getElementType();
// Simple scalar l-value.
if (EltTy->isFirstClassType())
return RValue::get(Builder.CreateLoad(Ptr, "tmp"));
assert(ExprType->isFunctionType() && "Unknown scalar value");
return RValue::get(Ptr);
}
if (LV.isVectorElt()) {
llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp");
return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
"vecext"));
}
// If this is a reference to a subset of the elements of a vector, either
// shuffle the input or extract/insert them as appropriate.
if (LV.isOCUVectorElt())
return EmitLoadOfOCUElementLValue(LV, ExprType);
assert(0 && "Bitfield ref not impl!");
//an invalid RValue, but the assert will
//ensure that this point is never reached
return RValue();
}
// If this is a reference to a subset of the elements of a vector, either
// shuffle the input or extract/insert them as appropriate.
RValue CodeGenFunction::EmitLoadOfOCUElementLValue(LValue LV,
QualType ExprType) {
llvm::Value *Vec = Builder.CreateLoad(LV.getOCUVectorAddr(), "tmp");
unsigned EncFields = LV.getOCUVectorElts();
// If the result of the expression is a non-vector type, we must be
// extracting a single element. Just codegen as an extractelement.
const VectorType *ExprVT = ExprType->getAsVectorType();
if (!ExprVT) {
unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
}
// If the source and destination have the same number of elements, use a
// vector shuffle instead of insert/extracts.
unsigned NumResultElts = ExprVT->getNumElements();
unsigned NumSourceElts =
cast<llvm::VectorType>(Vec->getType())->getNumElements();
if (NumResultElts == NumSourceElts) {
llvm::SmallVector<llvm::Constant*, 4> Mask;
for (unsigned i = 0; i != NumResultElts; ++i) {
unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx));
}
llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
Vec = Builder.CreateShuffleVector(Vec,
llvm::UndefValue::get(Vec->getType()),
MaskV, "tmp");
return RValue::get(Vec);
}
// Start out with an undef of the result type.
llvm::Value *Result = llvm::UndefValue::get(ConvertType(ExprType));
// Extract/Insert each element of the result.
for (unsigned i = 0; i != NumResultElts; ++i) {
unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
Elt = Builder.CreateExtractElement(Vec, Elt, "tmp");
llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
Result = Builder.CreateInsertElement(Result, Elt, OutIdx, "tmp");
}
return RValue::get(Result);
}
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
/// lvalue, where both are guaranteed to the have the same type, and that type
/// is 'Ty'.
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
QualType Ty) {
if (!Dst.isSimple()) {
if (Dst.isVectorElt()) {
// Read/modify/write the vector, inserting the new element.
// FIXME: Volatility.
llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp");
Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
Dst.getVectorIdx(), "vecins");
Builder.CreateStore(Vec, Dst.getVectorAddr());
return;
}
// If this is an update of elements of a vector, insert them as appropriate.
if (Dst.isOCUVectorElt())
return EmitStoreThroughOCUComponentLValue(Src, Dst, Ty);
assert(0 && "FIXME: Don't support store to bitfield yet");
}
llvm::Value *DstAddr = Dst.getAddress();
assert(Src.isScalar() && "Can't emit an agg store with this method");
// FIXME: Handle volatility etc.
const llvm::Type *SrcTy = Src.getScalarVal()->getType();
const llvm::Type *AddrTy =
cast<llvm::PointerType>(DstAddr->getType())->getElementType();
if (AddrTy != SrcTy)
DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy),
"storetmp");
Builder.CreateStore(Src.getScalarVal(), DstAddr);
}
void CodeGenFunction::EmitStoreThroughOCUComponentLValue(RValue Src, LValue Dst,
QualType Ty) {
// This access turns into a read/modify/write of the vector. Load the input
// value now.
llvm::Value *Vec = Builder.CreateLoad(Dst.getOCUVectorAddr(), "tmp");
// FIXME: Volatility.
unsigned EncFields = Dst.getOCUVectorElts();
llvm::Value *SrcVal = Src.getScalarVal();
if (const VectorType *VTy = Ty->getAsVectorType()) {
unsigned NumSrcElts = VTy->getNumElements();
// Extract/Insert each element.
for (unsigned i = 0; i != NumSrcElts; ++i) {
llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
Elt = Builder.CreateExtractElement(SrcVal, Elt, "tmp");
unsigned Idx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Idx);
Vec = Builder.CreateInsertElement(Vec, Elt, OutIdx, "tmp");
}
} else {
// If the Src is a scalar (not a vector) it must be updating one element.
unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
}
Builder.CreateStore(Vec, Dst.getOCUVectorAddr());
}
LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
const ValueDecl *D = E->getDecl();
if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) {
llvm::Value *V = LocalDeclMap[D];
assert(V && "BlockVarDecl not entered in LocalDeclMap?");
return LValue::MakeAddr(V);
} else if (isa<FunctionDecl>(D) || isa<FileVarDecl>(D)) {
return LValue::MakeAddr(CGM.GetAddrOfGlobalDecl(D));
}
assert(0 && "Unimp declref");
//an invalid LValue, but the assert will
//ensure that this point is never reached.
return LValue();
}
LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
// __extension__ doesn't affect lvalue-ness.
if (E->getOpcode() == UnaryOperator::Extension)
return EmitLValue(E->getSubExpr());
switch (E->getOpcode()) {
default: assert(0 && "Unknown unary operator lvalue!");
case UnaryOperator::Deref:
return LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()));
case UnaryOperator::Real:
case UnaryOperator::Imag:
LValue LV = EmitLValue(E->getSubExpr());
llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
llvm::Constant *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty,
E->getOpcode() == UnaryOperator::Imag);
llvm::Value *Ops[] = {Zero, Idx};
return LValue::MakeAddr(Builder.CreateGEP(LV.getAddress(), Ops, Ops+2,
"idx"));
}
}
LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
const char *StrData = E->getStrData();
unsigned Len = E->getByteLength();
// FIXME: Can cache/reuse these within the module.
llvm::Constant *C=llvm::ConstantArray::get(std::string(StrData, StrData+Len));
// Create a global variable for this.
C = new llvm::GlobalVariable(C->getType(), true,
llvm::GlobalValue::InternalLinkage,
C, ".str", CurFn->getParent());
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
llvm::Constant *Zeros[] = { Zero, Zero };
C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
return LValue::MakeAddr(C);
}
LValue CodeGenFunction::EmitPreDefinedLValue(const PreDefinedExpr *E) {
std::string FunctionName(CurFuncDecl->getName());
std::string GlobalVarName;
switch (E->getIdentType()) {
default:
assert(0 && "unknown pre-defined ident type");
case PreDefinedExpr::Func:
GlobalVarName = "__func__.";
break;
case PreDefinedExpr::Function:
GlobalVarName = "__FUNCTION__.";
break;
case PreDefinedExpr::PrettyFunction:
// FIXME:: Demangle C++ method names
GlobalVarName = "__PRETTY_FUNCTION__.";
break;
}
GlobalVarName += CurFuncDecl->getName();
// FIXME: Can cache/reuse these within the module.
llvm::Constant *C=llvm::ConstantArray::get(FunctionName);
// Create a global variable for this.
C = new llvm::GlobalVariable(C->getType(), true,
llvm::GlobalValue::InternalLinkage,
C, GlobalVarName, CurFn->getParent());
llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
llvm::Constant *Zeros[] = { Zero, Zero };
C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
return LValue::MakeAddr(C);
}
LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
// The index must always be an integer, which is not an aggregate. Emit it.
llvm::Value *Idx = EmitScalarExpr(E->getIdx());
// If the base is a vector type, then we are forming a vector element lvalue
// with this subscript.
if (E->getLHS()->getType()->isVectorType()) {
// Emit the vector as an lvalue to get its address.
LValue LHS = EmitLValue(E->getLHS());
assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
// FIXME: This should properly sign/zero/extend or truncate Idx to i32.
return LValue::MakeVectorElt(LHS.getAddress(), Idx);
}
// The base must be a pointer, which is not an aggregate. Emit it.
llvm::Value *Base = EmitScalarExpr(E->getBase());
// Extend or truncate the index type to 32 or 64-bits.
QualType IdxTy = E->getIdx()->getType();
bool IdxSigned = IdxTy->isSignedIntegerType();
unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
if (IdxBitwidth != LLVMPointerWidth)
Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
IdxSigned, "idxprom");
// We know that the pointer points to a type of the correct size, unless the
// size is a VLA.
if (!E->getType()->isConstantSizeType(getContext()))
assert(0 && "VLA idx not implemented");
return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
}
LValue CodeGenFunction::
EmitOCUVectorElementExpr(const OCUVectorElementExpr *E) {
// Emit the base vector as an l-value.
LValue Base = EmitLValue(E->getBase());
assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
return LValue::MakeOCUVectorElt(Base.getAddress(),
E->getEncodedElementAccess());
}
LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
Expr *BaseExpr = E->getBase();
llvm::Value *BaseValue = NULL;
if (BaseExpr->isLvalue() == Expr::LV_Valid) {
LValue BaseLV = EmitLValue(BaseExpr);
BaseValue = BaseLV.getAddress();
if (E->isArrow()) {
QualType PTy = cast<PointerType>(BaseExpr->getType())->getPointeeType();
BaseValue =
Builder.CreateBitCast(BaseValue,
llvm::PointerType::get(ConvertType(PTy)), "tmp");
}
} else
BaseValue = EmitScalarExpr(BaseExpr);
FieldDecl *Field = E->getMemberDecl();
unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
llvm::Value *Idxs[2] = { llvm::Constant::getNullValue(llvm::Type::Int32Ty),
llvm::ConstantInt::get(llvm::Type::Int32Ty, idx) };
llvm::Value *V = Builder.CreateGEP(BaseValue,Idxs, Idxs + 2, "tmp");
// Match union field type.
if (BaseExpr->getType()->isUnionType()) {
const llvm::Type * FieldTy = ConvertType(Field->getType());
const llvm::PointerType * BaseTy =
cast<llvm::PointerType>(BaseValue->getType());
if (FieldTy != BaseTy->getElementType()) {
V = Builder.CreateBitCast(V, llvm::PointerType::get(FieldTy), "tmp");
}
}
return LValue::MakeAddr(V);
// FIXME: If record field does not have one to one match with llvm::StructType
// field then apply appropriate masks to select only member field bits.
}
//===--------------------------------------------------------------------===//
// Expression Emission
//===--------------------------------------------------------------------===//
RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
if (const ImplicitCastExpr *IcExpr =
dyn_cast<const ImplicitCastExpr>(E->getCallee()))
if (const DeclRefExpr *DRExpr =
dyn_cast<const DeclRefExpr>(IcExpr->getSubExpr()))
if (const FunctionDecl *FDecl =
dyn_cast<const FunctionDecl>(DRExpr->getDecl()))
if (unsigned builtinID = FDecl->getIdentifier()->getBuiltinID())
return EmitBuiltinExpr(builtinID, E);
llvm::Value *Callee = EmitScalarExpr(E->getCallee());
return EmitCallExpr(Callee, E);
}
RValue CodeGenFunction::EmitCallExpr(llvm::Value *Callee, const CallExpr *E) {
// The callee type will always be a pointer to function type, get the function
// type.
QualType CalleeTy = E->getCallee()->getType();
CalleeTy = cast<PointerType>(CalleeTy.getCanonicalType())->getPointeeType();
// Get information about the argument types.
FunctionTypeProto::arg_type_iterator ArgTyIt = 0, ArgTyEnd = 0;
// Calling unprototyped functions provides no argument info.
if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(CalleeTy)) {
ArgTyIt = FTP->arg_type_begin();
ArgTyEnd = FTP->arg_type_end();
}
llvm::SmallVector<llvm::Value*, 16> Args;
// Handle struct-return functions by passing a pointer to the location that
// we would like to return into.
if (hasAggregateLLVMType(E->getType())) {
// Create a temporary alloca to hold the result of the call. :(
Args.push_back(CreateTempAlloca(ConvertType(E->getType())));
// FIXME: set the stret attribute on the argument.
}
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
QualType ArgTy = E->getArg(i)->getType();
if (!hasAggregateLLVMType(ArgTy)) {
// Scalar argument is passed by-value.
Args.push_back(EmitScalarExpr(E->getArg(i)));
} else if (ArgTy->isComplexType()) {
// Make a temporary alloca to pass the argument.
llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
EmitComplexExprIntoAddr(E->getArg(i), DestMem, false);
Args.push_back(DestMem);
} else {
llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
EmitAggExpr(E->getArg(i), DestMem, false);
Args.push_back(DestMem);
}
}
llvm::Value *V = Builder.CreateCall(Callee, &Args[0], &Args[0]+Args.size());
if (V->getType() != llvm::Type::VoidTy)
V->setName("call");
else if (E->getType()->isComplexType())
return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
else if (hasAggregateLLVMType(E->getType()))
// Struct return.
return RValue::getAggregate(Args[0]);
return RValue::get(V);
}