зеркало из https://github.com/microsoft/clang-1.git
2147 строки
78 KiB
C++
2147 строки
78 KiB
C++
//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the Expr interface and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_AST_EXPR_H
|
|
#define LLVM_CLANG_AST_EXPR_H
|
|
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include <vector>
|
|
|
|
namespace clang {
|
|
class ASTContext;
|
|
class APValue;
|
|
class Decl;
|
|
class IdentifierInfo;
|
|
class ParmVarDecl;
|
|
class NamedDecl;
|
|
class ValueDecl;
|
|
class BlockDecl;
|
|
class CXXOperatorCallExpr;
|
|
class CXXMemberCallExpr;
|
|
|
|
/// Expr - This represents one expression. Note that Expr's are subclasses of
|
|
/// Stmt. This allows an expression to be transparently used any place a Stmt
|
|
/// is required.
|
|
///
|
|
class Expr : public Stmt {
|
|
QualType TR;
|
|
|
|
/// TypeDependent - Whether this expression is type-dependent
|
|
/// (C++ [temp.dep.expr]).
|
|
bool TypeDependent : 1;
|
|
|
|
/// ValueDependent - Whether this expression is value-dependent
|
|
/// (C++ [temp.dep.constexpr]).
|
|
bool ValueDependent : 1;
|
|
|
|
protected:
|
|
// FIXME: Eventually, this constructor should go away and we should
|
|
// require every subclass to provide type/value-dependence
|
|
// information.
|
|
Expr(StmtClass SC, QualType T)
|
|
: Stmt(SC), TypeDependent(false), ValueDependent(false) {
|
|
setType(T);
|
|
}
|
|
|
|
Expr(StmtClass SC, QualType T, bool TD, bool VD)
|
|
: Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
|
|
setType(T);
|
|
}
|
|
|
|
public:
|
|
QualType getType() const { return TR; }
|
|
void setType(QualType t) {
|
|
// In C++, the type of an expression is always adjusted so that it
|
|
// will not have reference type an expression will never have
|
|
// reference type (C++ [expr]p6). Use
|
|
// QualType::getNonReferenceType() to retrieve the non-reference
|
|
// type. Additionally, inspect Expr::isLvalue to determine whether
|
|
// an expression that is adjusted in this manner should be
|
|
// considered an lvalue.
|
|
assert((TR.isNull() || !TR->isReferenceType()) &&
|
|
"Expressions can't have reference type");
|
|
|
|
TR = t;
|
|
}
|
|
|
|
/// isValueDependent - Determines whether this expression is
|
|
/// value-dependent (C++ [temp.dep.constexpr]). For example, the
|
|
/// array bound of "Chars" in the following example is
|
|
/// value-dependent.
|
|
/// @code
|
|
/// template<int Size, char (&Chars)[Size]> struct meta_string;
|
|
/// @endcode
|
|
bool isValueDependent() const { return ValueDependent; }
|
|
|
|
/// isTypeDependent - Determines whether this expression is
|
|
/// type-dependent (C++ [temp.dep.expr]), which means that its type
|
|
/// could change from one template instantiation to the next. For
|
|
/// example, the expressions "x" and "x + y" are type-dependent in
|
|
/// the following code, but "y" is not type-dependent:
|
|
/// @code
|
|
/// template<typename T>
|
|
/// void add(T x, int y) {
|
|
/// x + y;
|
|
/// }
|
|
/// @endcode
|
|
bool isTypeDependent() const { return TypeDependent; }
|
|
|
|
/// SourceLocation tokens are not useful in isolation - they are low level
|
|
/// value objects created/interpreted by SourceManager. We assume AST
|
|
/// clients will have a pointer to the respective SourceManager.
|
|
virtual SourceRange getSourceRange() const = 0;
|
|
|
|
/// getExprLoc - Return the preferred location for the arrow when diagnosing
|
|
/// a problem with a generic expression.
|
|
virtual SourceLocation getExprLoc() const { return getLocStart(); }
|
|
|
|
/// hasLocalSideEffect - Return true if this immediate expression has side
|
|
/// effects, not counting any sub-expressions.
|
|
bool hasLocalSideEffect() const;
|
|
|
|
/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
|
|
/// incomplete type other than void. Nonarray expressions that can be lvalues:
|
|
/// - name, where name must be a variable
|
|
/// - e[i]
|
|
/// - (e), where e must be an lvalue
|
|
/// - e.name, where e must be an lvalue
|
|
/// - e->name
|
|
/// - *e, the type of e cannot be a function type
|
|
/// - string-constant
|
|
/// - reference type [C++ [expr]]
|
|
///
|
|
enum isLvalueResult {
|
|
LV_Valid,
|
|
LV_NotObjectType,
|
|
LV_IncompleteVoidType,
|
|
LV_DuplicateVectorComponents,
|
|
LV_InvalidExpression,
|
|
LV_MemberFunction
|
|
};
|
|
isLvalueResult isLvalue(ASTContext &Ctx) const;
|
|
|
|
/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
|
|
/// does not have an incomplete type, does not have a const-qualified type,
|
|
/// and if it is a structure or union, does not have any member (including,
|
|
/// recursively, any member or element of all contained aggregates or unions)
|
|
/// with a const-qualified type.
|
|
enum isModifiableLvalueResult {
|
|
MLV_Valid,
|
|
MLV_NotObjectType,
|
|
MLV_IncompleteVoidType,
|
|
MLV_DuplicateVectorComponents,
|
|
MLV_InvalidExpression,
|
|
MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
|
|
MLV_IncompleteType,
|
|
MLV_ConstQualified,
|
|
MLV_ArrayType,
|
|
MLV_NotBlockQualified,
|
|
MLV_ReadonlyProperty,
|
|
MLV_NoSetterProperty,
|
|
MLV_MemberFunction
|
|
};
|
|
isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
|
|
|
|
bool isBitField();
|
|
|
|
/// getIntegerConstantExprValue() - Return the value of an integer
|
|
/// constant expression. The expression must be a valid integer
|
|
/// constant expression as determined by isIntegerConstantExpr.
|
|
llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
|
|
llvm::APSInt X;
|
|
bool success = isIntegerConstantExpr(X, Ctx);
|
|
success = success;
|
|
assert(success && "Illegal argument to getIntegerConstantExpr");
|
|
return X;
|
|
}
|
|
|
|
/// isIntegerConstantExpr - Return true if this expression is a valid integer
|
|
/// constant expression, and, if so, return its value in Result. If not a
|
|
/// valid i-c-e, return false and fill in Loc (if specified) with the location
|
|
/// of the invalid expression.
|
|
bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
|
|
SourceLocation *Loc = 0,
|
|
bool isEvaluated = true) const;
|
|
bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
|
|
llvm::APSInt X;
|
|
return isIntegerConstantExpr(X, Ctx, Loc);
|
|
}
|
|
/// isConstantInitializer - Returns true if this expression is a constant
|
|
/// initializer, which can be emitted at compile-time.
|
|
bool isConstantInitializer(ASTContext &Ctx) const;
|
|
|
|
/// EvalResult is a struct with detailed info about an evaluated expression.
|
|
struct EvalResult {
|
|
/// Val - This is the scalar value the expression can be folded to.
|
|
APValue Val;
|
|
|
|
/// HasSideEffects - Whether the evaluated expression has side effects.
|
|
/// For example, (f() && 0) can be folded, but it still has side effects.
|
|
bool HasSideEffects;
|
|
|
|
/// Diag - If the expression is unfoldable, then Diag contains a note
|
|
/// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
|
|
/// position for the error, and DiagExpr is the expression that caused
|
|
/// the error.
|
|
/// If the expression is foldable, but not an integer constant expression,
|
|
/// Diag contains a note diagnostic that describes why it isn't an integer
|
|
/// constant expression. If the expression *is* an integer constant
|
|
/// expression, then Diag will be zero.
|
|
unsigned Diag;
|
|
const Expr *DiagExpr;
|
|
SourceLocation DiagLoc;
|
|
|
|
EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
|
|
};
|
|
|
|
/// Evaluate - Return true if this is a constant which we can fold using
|
|
/// any crazy technique (that has nothing to do with language standards) that
|
|
/// we want to. If this function returns true, it returns the folded constant
|
|
/// in Result.
|
|
bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
|
|
|
|
/// isEvaluatable - Call Evaluate to see if this expression can be constant
|
|
/// folded, but discard the result.
|
|
bool isEvaluatable(ASTContext &Ctx) const;
|
|
|
|
/// EvaluateAsInt - Call Evaluate and return the folded integer. This
|
|
/// must be called on an expression that constant folds to an integer.
|
|
llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
|
|
|
|
/// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an
|
|
/// integer constant expression with the value zero, or if this is one that is
|
|
/// cast to void*.
|
|
bool isNullPointerConstant(ASTContext &Ctx) const;
|
|
|
|
/// hasGlobalStorage - Return true if this expression has static storage
|
|
/// duration. This means that the address of this expression is a link-time
|
|
/// constant.
|
|
bool hasGlobalStorage() const;
|
|
|
|
/// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return
|
|
/// its subexpression. If that subexpression is also a ParenExpr,
|
|
/// then this method recursively returns its subexpression, and so forth.
|
|
/// Otherwise, the method returns the current Expr.
|
|
Expr* IgnoreParens();
|
|
|
|
/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
|
|
/// or CastExprs, returning their operand.
|
|
Expr *IgnoreParenCasts();
|
|
|
|
const Expr* IgnoreParens() const {
|
|
return const_cast<Expr*>(this)->IgnoreParens();
|
|
}
|
|
const Expr *IgnoreParenCasts() const {
|
|
return const_cast<Expr*>(this)->IgnoreParenCasts();
|
|
}
|
|
|
|
static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
|
|
static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() >= firstExprConstant &&
|
|
T->getStmtClass() <= lastExprConstant;
|
|
}
|
|
static bool classof(const Expr *) { return true; }
|
|
|
|
static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
|
|
return cast<Expr>(Stmt::Create(D, C));
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Primary Expressions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
|
|
/// enum, etc.
|
|
class DeclRefExpr : public Expr {
|
|
NamedDecl *D;
|
|
SourceLocation Loc;
|
|
|
|
protected:
|
|
// FIXME: Eventually, this constructor will go away and all subclasses
|
|
// will have to provide the type- and value-dependent flags.
|
|
DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
|
|
Expr(SC, t), D(d), Loc(l) {}
|
|
|
|
DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
|
|
bool VD) :
|
|
Expr(SC, t, TD, VD), D(d), Loc(l) {}
|
|
|
|
public:
|
|
// FIXME: Eventually, this constructor will go away and all clients
|
|
// will have to provide the type- and value-dependent flags.
|
|
DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
|
|
Expr(DeclRefExprClass, t), D(d), Loc(l) {}
|
|
|
|
DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
|
|
Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
|
|
|
|
NamedDecl *getDecl() { return D; }
|
|
const NamedDecl *getDecl() const { return D; }
|
|
void setDecl(NamedDecl *NewD) { D = NewD; }
|
|
|
|
SourceLocation getLocation() const { return Loc; }
|
|
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == DeclRefExprClass ||
|
|
T->getStmtClass() == CXXConditionDeclExprClass ||
|
|
T->getStmtClass() == QualifiedDeclRefExprClass;
|
|
}
|
|
static bool classof(const DeclRefExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
|
|
class PredefinedExpr : public Expr {
|
|
public:
|
|
enum IdentType {
|
|
Func,
|
|
Function,
|
|
PrettyFunction
|
|
};
|
|
|
|
private:
|
|
SourceLocation Loc;
|
|
IdentType Type;
|
|
public:
|
|
PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
|
|
: Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
|
|
|
|
IdentType getIdentType() const { return Type; }
|
|
|
|
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == PredefinedExprClass;
|
|
}
|
|
static bool classof(const PredefinedExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
class IntegerLiteral : public Expr {
|
|
llvm::APInt Value;
|
|
SourceLocation Loc;
|
|
public:
|
|
// type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
|
|
// or UnsignedLongLongTy
|
|
IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
|
|
: Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
|
|
assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
|
|
}
|
|
const llvm::APInt &getValue() const { return Value; }
|
|
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == IntegerLiteralClass;
|
|
}
|
|
static bool classof(const IntegerLiteral *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
class CharacterLiteral : public Expr {
|
|
unsigned Value;
|
|
SourceLocation Loc;
|
|
bool IsWide;
|
|
public:
|
|
// type should be IntTy
|
|
CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
|
|
: Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
|
|
}
|
|
SourceLocation getLoc() const { return Loc; }
|
|
bool isWide() const { return IsWide; }
|
|
|
|
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
|
|
|
|
unsigned getValue() const { return Value; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CharacterLiteralClass;
|
|
}
|
|
static bool classof(const CharacterLiteral *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
class FloatingLiteral : public Expr {
|
|
llvm::APFloat Value;
|
|
bool IsExact : 1;
|
|
SourceLocation Loc;
|
|
public:
|
|
FloatingLiteral(const llvm::APFloat &V, bool* isexact,
|
|
QualType Type, SourceLocation L)
|
|
: Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
|
|
|
|
const llvm::APFloat &getValue() const { return Value; }
|
|
|
|
bool isExact() const { return IsExact; }
|
|
|
|
/// getValueAsApproximateDouble - This returns the value as an inaccurate
|
|
/// double. Note that this may cause loss of precision, but is useful for
|
|
/// debugging dumps, etc.
|
|
double getValueAsApproximateDouble() const;
|
|
|
|
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == FloatingLiteralClass;
|
|
}
|
|
static bool classof(const FloatingLiteral *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// ImaginaryLiteral - We support imaginary integer and floating point literals,
|
|
/// like "1.0i". We represent these as a wrapper around FloatingLiteral and
|
|
/// IntegerLiteral classes. Instances of this class always have a Complex type
|
|
/// whose element type matches the subexpression.
|
|
///
|
|
class ImaginaryLiteral : public Expr {
|
|
Stmt *Val;
|
|
public:
|
|
ImaginaryLiteral(Expr *val, QualType Ty)
|
|
: Expr(ImaginaryLiteralClass, Ty), Val(val) {}
|
|
|
|
const Expr *getSubExpr() const { return cast<Expr>(Val); }
|
|
Expr *getSubExpr() { return cast<Expr>(Val); }
|
|
|
|
virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ImaginaryLiteralClass;
|
|
}
|
|
static bool classof(const ImaginaryLiteral *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// StringLiteral - This represents a string literal expression, e.g. "foo"
|
|
/// or L"bar" (wide strings). The actual string is returned by getStrData()
|
|
/// is NOT null-terminated, and the length of the string is determined by
|
|
/// calling getByteLength(). The C type for a string is always a
|
|
/// ConstantArrayType.
|
|
class StringLiteral : public Expr {
|
|
const char *StrData;
|
|
unsigned ByteLength;
|
|
bool IsWide;
|
|
// if the StringLiteral was composed using token pasting, both locations
|
|
// are needed. If not (the common case), firstTokLoc == lastTokLoc.
|
|
// FIXME: if space becomes an issue, we should create a sub-class.
|
|
SourceLocation firstTokLoc, lastTokLoc;
|
|
public:
|
|
StringLiteral(ASTContext& C, const char *strData, unsigned byteLength,
|
|
bool Wide, QualType t, SourceLocation b, SourceLocation e);
|
|
|
|
void Destroy(ASTContext& C);
|
|
|
|
const char *getStrData() const { return StrData; }
|
|
unsigned getByteLength() const { return ByteLength; }
|
|
bool isWide() const { return IsWide; }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(firstTokLoc,lastTokLoc);
|
|
}
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == StringLiteralClass;
|
|
}
|
|
static bool classof(const StringLiteral *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
|
|
/// AST node is only formed if full location information is requested.
|
|
class ParenExpr : public Expr {
|
|
SourceLocation L, R;
|
|
Stmt *Val;
|
|
public:
|
|
ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
|
|
: Expr(ParenExprClass, val->getType(),
|
|
val->isTypeDependent(), val->isValueDependent()),
|
|
L(l), R(r), Val(val) {}
|
|
|
|
const Expr *getSubExpr() const { return cast<Expr>(Val); }
|
|
Expr *getSubExpr() { return cast<Expr>(Val); }
|
|
virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ParenExprClass;
|
|
}
|
|
static bool classof(const ParenExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
|
|
/// UnaryOperator - This represents the unary-expression's (except sizeof and
|
|
/// alignof), the postinc/postdec operators from postfix-expression, and various
|
|
/// extensions.
|
|
///
|
|
/// Notes on various nodes:
|
|
///
|
|
/// Real/Imag - These return the real/imag part of a complex operand. If
|
|
/// applied to a non-complex value, the former returns its operand and the
|
|
/// later returns zero in the type of the operand.
|
|
///
|
|
/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
|
|
/// subexpression is a compound literal with the various MemberExpr and
|
|
/// ArraySubscriptExpr's applied to it.
|
|
///
|
|
class UnaryOperator : public Expr {
|
|
public:
|
|
// Note that additions to this should also update the StmtVisitor class.
|
|
enum Opcode {
|
|
PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
|
|
PreInc, PreDec, // [C99 6.5.3.1] Prefix increment and decrement operators.
|
|
AddrOf, Deref, // [C99 6.5.3.2] Address and indirection operators.
|
|
Plus, Minus, // [C99 6.5.3.3] Unary arithmetic operators.
|
|
Not, LNot, // [C99 6.5.3.3] Unary arithmetic operators.
|
|
Real, Imag, // "__real expr"/"__imag expr" Extension.
|
|
Extension, // __extension__ marker.
|
|
OffsetOf // __builtin_offsetof
|
|
};
|
|
private:
|
|
Stmt *Val;
|
|
Opcode Opc;
|
|
SourceLocation Loc;
|
|
public:
|
|
|
|
UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
|
|
: Expr(UnaryOperatorClass, type,
|
|
input->isTypeDependent() && opc != OffsetOf,
|
|
input->isValueDependent()),
|
|
Val(input), Opc(opc), Loc(l) {}
|
|
|
|
Opcode getOpcode() const { return Opc; }
|
|
Expr *getSubExpr() const { return cast<Expr>(Val); }
|
|
|
|
/// getOperatorLoc - Return the location of the operator.
|
|
SourceLocation getOperatorLoc() const { return Loc; }
|
|
|
|
/// isPostfix - Return true if this is a postfix operation, like x++.
|
|
static bool isPostfix(Opcode Op);
|
|
|
|
/// isPostfix - Return true if this is a prefix operation, like --x.
|
|
static bool isPrefix(Opcode Op);
|
|
|
|
bool isPrefix() const { return isPrefix(Opc); }
|
|
bool isPostfix() const { return isPostfix(Opc); }
|
|
bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
|
|
bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
|
|
bool isOffsetOfOp() const { return Opc == OffsetOf; }
|
|
static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
|
|
|
|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
|
|
/// corresponds to, e.g. "sizeof" or "[pre]++"
|
|
static const char *getOpcodeStr(Opcode Op);
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
if (isPostfix())
|
|
return SourceRange(Val->getLocStart(), Loc);
|
|
else
|
|
return SourceRange(Loc, Val->getLocEnd());
|
|
}
|
|
virtual SourceLocation getExprLoc() const { return Loc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == UnaryOperatorClass;
|
|
}
|
|
static bool classof(const UnaryOperator *) { return true; }
|
|
|
|
int64_t evaluateOffsetOf(ASTContext& C) const;
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
|
|
/// types and expressions.
|
|
class SizeOfAlignOfExpr : public Expr {
|
|
bool isSizeof : 1; // true if sizeof, false if alignof.
|
|
bool isType : 1; // true if operand is a type, false if an expression
|
|
union {
|
|
void *Ty;
|
|
Stmt *Ex;
|
|
} Argument;
|
|
SourceLocation OpLoc, RParenLoc;
|
|
public:
|
|
SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
|
|
QualType resultType, SourceLocation op,
|
|
SourceLocation rp) :
|
|
Expr(SizeOfAlignOfExprClass, resultType), isSizeof(issizeof),
|
|
isType(istype), OpLoc(op), RParenLoc(rp) {
|
|
if (isType)
|
|
Argument.Ty = argument;
|
|
else
|
|
// argument was an Expr*, so cast it back to that to be safe
|
|
Argument.Ex = static_cast<Expr*>(argument);
|
|
}
|
|
|
|
virtual void Destroy(ASTContext& C);
|
|
|
|
bool isSizeOf() const { return isSizeof; }
|
|
bool isArgumentType() const { return isType; }
|
|
QualType getArgumentType() const {
|
|
assert(isArgumentType() && "calling getArgumentType() when arg is expr");
|
|
return QualType::getFromOpaquePtr(Argument.Ty);
|
|
}
|
|
Expr *getArgumentExpr() {
|
|
assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
|
|
return static_cast<Expr*>(Argument.Ex);
|
|
}
|
|
const Expr *getArgumentExpr() const {
|
|
return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
|
|
}
|
|
|
|
/// Gets the argument type, or the type of the argument expression, whichever
|
|
/// is appropriate.
|
|
QualType getTypeOfArgument() const {
|
|
return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
|
|
}
|
|
|
|
SourceLocation getOperatorLoc() const { return OpLoc; }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(OpLoc, RParenLoc);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == SizeOfAlignOfExprClass;
|
|
}
|
|
static bool classof(const SizeOfAlignOfExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Postfix Operators.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
|
|
class ArraySubscriptExpr : public Expr {
|
|
enum { LHS, RHS, END_EXPR=2 };
|
|
Stmt* SubExprs[END_EXPR];
|
|
SourceLocation RBracketLoc;
|
|
public:
|
|
ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
|
|
SourceLocation rbracketloc)
|
|
: Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
|
|
SubExprs[LHS] = lhs;
|
|
SubExprs[RHS] = rhs;
|
|
}
|
|
|
|
/// An array access can be written A[4] or 4[A] (both are equivalent).
|
|
/// - getBase() and getIdx() always present the normalized view: A[4].
|
|
/// In this case getBase() returns "A" and getIdx() returns "4".
|
|
/// - getLHS() and getRHS() present the syntactic view. e.g. for
|
|
/// 4[A] getLHS() returns "4".
|
|
/// Note: Because vector element access is also written A[4] we must
|
|
/// predicate the format conversion in getBase and getIdx only on the
|
|
/// the type of the RHS, as it is possible for the LHS to be a vector of
|
|
/// integer type
|
|
Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
|
|
const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
|
|
|
|
Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
|
|
const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
|
|
|
|
Expr *getBase() {
|
|
return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
|
|
}
|
|
|
|
const Expr *getBase() const {
|
|
return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
|
|
}
|
|
|
|
Expr *getIdx() {
|
|
return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
|
|
}
|
|
|
|
const Expr *getIdx() const {
|
|
return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
|
|
}
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(getLHS()->getLocStart(), RBracketLoc);
|
|
}
|
|
|
|
virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ArraySubscriptExprClass;
|
|
}
|
|
static bool classof(const ArraySubscriptExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
|
|
/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
|
|
/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
|
|
/// while its subclasses may represent alternative syntax that (semantically)
|
|
/// results in a function call. For example, CXXOperatorCallExpr is
|
|
/// a subclass for overloaded operator calls that use operator syntax, e.g.,
|
|
/// "str1 + str2" to resolve to a function call.
|
|
class CallExpr : public Expr {
|
|
enum { FN=0, ARGS_START=1 };
|
|
Stmt **SubExprs;
|
|
unsigned NumArgs;
|
|
SourceLocation RParenLoc;
|
|
|
|
// This version of the ctor is for deserialization.
|
|
CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
|
|
SourceLocation rparenloc)
|
|
: Expr(SC,t), SubExprs(subexprs),
|
|
NumArgs(numargs), RParenLoc(rparenloc) {}
|
|
|
|
protected:
|
|
// This version of the constructor is for derived classes.
|
|
CallExpr(StmtClass SC, Expr *fn, Expr **args, unsigned numargs, QualType t,
|
|
SourceLocation rparenloc);
|
|
|
|
public:
|
|
CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
|
|
SourceLocation rparenloc);
|
|
~CallExpr() { delete [] SubExprs; }
|
|
|
|
const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
|
|
Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
|
|
void setCallee(Expr *F) { SubExprs[FN] = F; }
|
|
|
|
/// getNumArgs - Return the number of actual arguments to this call.
|
|
///
|
|
unsigned getNumArgs() const { return NumArgs; }
|
|
|
|
/// getArg - Return the specified argument.
|
|
Expr *getArg(unsigned Arg) {
|
|
assert(Arg < NumArgs && "Arg access out of range!");
|
|
return cast<Expr>(SubExprs[Arg+ARGS_START]);
|
|
}
|
|
const Expr *getArg(unsigned Arg) const {
|
|
assert(Arg < NumArgs && "Arg access out of range!");
|
|
return cast<Expr>(SubExprs[Arg+ARGS_START]);
|
|
}
|
|
/// setArg - Set the specified argument.
|
|
void setArg(unsigned Arg, Expr *ArgExpr) {
|
|
assert(Arg < NumArgs && "Arg access out of range!");
|
|
SubExprs[Arg+ARGS_START] = ArgExpr;
|
|
}
|
|
|
|
/// setNumArgs - This changes the number of arguments present in this call.
|
|
/// Any orphaned expressions are deleted by this, and any new operands are set
|
|
/// to null.
|
|
void setNumArgs(ASTContext& C, unsigned NumArgs);
|
|
|
|
typedef ExprIterator arg_iterator;
|
|
typedef ConstExprIterator const_arg_iterator;
|
|
|
|
arg_iterator arg_begin() { return SubExprs+ARGS_START; }
|
|
arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
|
|
const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
|
|
const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
|
|
|
|
/// getNumCommas - Return the number of commas that must have been present in
|
|
/// this function call.
|
|
unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
|
|
|
|
/// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
|
|
/// not, return 0.
|
|
unsigned isBuiltinCall() const;
|
|
|
|
SourceLocation getRParenLoc() const { return RParenLoc; }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(getCallee()->getLocStart(), RParenLoc);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CallExprClass ||
|
|
T->getStmtClass() == CXXOperatorCallExprClass ||
|
|
T->getStmtClass() == CXXMemberCallExprClass;
|
|
}
|
|
static bool classof(const CallExpr *) { return true; }
|
|
static bool classof(const CXXOperatorCallExpr *) { return true; }
|
|
static bool classof(const CXXMemberCallExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
|
|
StmtClass SC);
|
|
};
|
|
|
|
/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
|
|
///
|
|
class MemberExpr : public Expr {
|
|
Stmt *Base;
|
|
NamedDecl *MemberDecl;
|
|
SourceLocation MemberLoc;
|
|
bool IsArrow; // True if this is "X->F", false if this is "X.F".
|
|
public:
|
|
MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
|
|
QualType ty)
|
|
: Expr(MemberExprClass, ty),
|
|
Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
|
|
|
|
void setBase(Expr *E) { Base = E; }
|
|
Expr *getBase() const { return cast<Expr>(Base); }
|
|
NamedDecl *getMemberDecl() const { return MemberDecl; }
|
|
void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
|
|
bool isArrow() const { return IsArrow; }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(getBase()->getLocStart(), MemberLoc);
|
|
}
|
|
|
|
virtual SourceLocation getExprLoc() const { return MemberLoc; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == MemberExprClass;
|
|
}
|
|
static bool classof(const MemberExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// CompoundLiteralExpr - [C99 6.5.2.5]
|
|
///
|
|
class CompoundLiteralExpr : public Expr {
|
|
/// LParenLoc - If non-null, this is the location of the left paren in a
|
|
/// compound literal like "(int){4}". This can be null if this is a
|
|
/// synthesized compound expression.
|
|
SourceLocation LParenLoc;
|
|
Stmt *Init;
|
|
bool FileScope;
|
|
public:
|
|
CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
|
|
bool fileScope)
|
|
: Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
|
|
FileScope(fileScope) {}
|
|
|
|
const Expr *getInitializer() const { return cast<Expr>(Init); }
|
|
Expr *getInitializer() { return cast<Expr>(Init); }
|
|
|
|
bool isFileScope() const { return FileScope; }
|
|
|
|
SourceLocation getLParenLoc() const { return LParenLoc; }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
// FIXME: Init should never be null.
|
|
if (!Init)
|
|
return SourceRange();
|
|
if (LParenLoc.isInvalid())
|
|
return Init->getSourceRange();
|
|
return SourceRange(LParenLoc, Init->getLocEnd());
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CompoundLiteralExprClass;
|
|
}
|
|
static bool classof(const CompoundLiteralExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// CastExpr - Base class for type casts, including both implicit
|
|
/// casts (ImplicitCastExpr) and explicit casts that have some
|
|
/// representation in the source code (ExplicitCastExpr's derived
|
|
/// classes).
|
|
class CastExpr : public Expr {
|
|
Stmt *Op;
|
|
protected:
|
|
CastExpr(StmtClass SC, QualType ty, Expr *op) :
|
|
Expr(SC, ty,
|
|
// Cast expressions are type-dependent if the type is
|
|
// dependent (C++ [temp.dep.expr]p3).
|
|
ty->isDependentType(),
|
|
// Cast expressions are value-dependent if the type is
|
|
// dependent or if the subexpression is value-dependent.
|
|
ty->isDependentType() || (op && op->isValueDependent())),
|
|
Op(op) {}
|
|
|
|
public:
|
|
Expr *getSubExpr() { return cast<Expr>(Op); }
|
|
const Expr *getSubExpr() const { return cast<Expr>(Op); }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
StmtClass SC = T->getStmtClass();
|
|
if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
|
|
return true;
|
|
|
|
if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
static bool classof(const CastExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
};
|
|
|
|
/// ImplicitCastExpr - Allows us to explicitly represent implicit type
|
|
/// conversions, which have no direct representation in the original
|
|
/// source code. For example: converting T[]->T*, void f()->void
|
|
/// (*f)(), float->double, short->int, etc.
|
|
///
|
|
/// In C, implicit casts always produce rvalues. However, in C++, an
|
|
/// implicit cast whose result is being bound to a reference will be
|
|
/// an lvalue. For example:
|
|
///
|
|
/// @code
|
|
/// class Base { };
|
|
/// class Derived : public Base { };
|
|
/// void f(Derived d) {
|
|
/// Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
|
|
/// }
|
|
/// @endcode
|
|
class ImplicitCastExpr : public CastExpr {
|
|
/// LvalueCast - Whether this cast produces an lvalue.
|
|
bool LvalueCast;
|
|
|
|
public:
|
|
ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
|
|
CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return getSubExpr()->getSourceRange();
|
|
}
|
|
|
|
/// isLvalueCast - Whether this cast produces an lvalue.
|
|
bool isLvalueCast() const { return LvalueCast; }
|
|
|
|
/// setLvalueCast - Set whether this cast produces an lvalue.
|
|
void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ImplicitCastExprClass;
|
|
}
|
|
static bool classof(const ImplicitCastExpr *) { return true; }
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// ExplicitCastExpr - An explicit cast written in the source
|
|
/// code.
|
|
///
|
|
/// This class is effectively an abstract class, because it provides
|
|
/// the basic representation of an explicitly-written cast without
|
|
/// specifying which kind of cast (C cast, functional cast, static
|
|
/// cast, etc.) was written; specific derived classes represent the
|
|
/// particular style of cast and its location information.
|
|
///
|
|
/// Unlike implicit casts, explicit cast nodes have two different
|
|
/// types: the type that was written into the source code, and the
|
|
/// actual type of the expression as determined by semantic
|
|
/// analysis. These types may differ slightly. For example, in C++ one
|
|
/// can cast to a reference type, which indicates that the resulting
|
|
/// expression will be an lvalue. The reference type, however, will
|
|
/// not be used as the type of the expression.
|
|
class ExplicitCastExpr : public CastExpr {
|
|
/// TypeAsWritten - The type that this expression is casting to, as
|
|
/// written in the source code.
|
|
QualType TypeAsWritten;
|
|
|
|
protected:
|
|
ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
|
|
: CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
|
|
|
|
public:
|
|
/// getTypeAsWritten - Returns the type that this expression is
|
|
/// casting to, as written in the source code.
|
|
QualType getTypeAsWritten() const { return TypeAsWritten; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
StmtClass SC = T->getStmtClass();
|
|
if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
|
|
return true;
|
|
if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
static bool classof(const ExplicitCastExpr *) { return true; }
|
|
};
|
|
|
|
/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
|
|
/// cast in C++ (C++ [expr.cast]), which uses the syntax
|
|
/// (Type)expr. For example: @c (int)f.
|
|
class CStyleCastExpr : public ExplicitCastExpr {
|
|
SourceLocation LPLoc; // the location of the left paren
|
|
SourceLocation RPLoc; // the location of the right paren
|
|
public:
|
|
CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
|
|
SourceLocation l, SourceLocation r) :
|
|
ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
|
|
LPLoc(l), RPLoc(r) {}
|
|
|
|
SourceLocation getLParenLoc() const { return LPLoc; }
|
|
SourceLocation getRParenLoc() const { return RPLoc; }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
|
|
}
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == CStyleCastExprClass;
|
|
}
|
|
static bool classof(const CStyleCastExpr *) { return true; }
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
class BinaryOperator : public Expr {
|
|
public:
|
|
enum Opcode {
|
|
// Operators listed in order of precedence.
|
|
// Note that additions to this should also update the StmtVisitor class.
|
|
PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
|
|
Mul, Div, Rem, // [C99 6.5.5] Multiplicative operators.
|
|
Add, Sub, // [C99 6.5.6] Additive operators.
|
|
Shl, Shr, // [C99 6.5.7] Bitwise shift operators.
|
|
LT, GT, LE, GE, // [C99 6.5.8] Relational operators.
|
|
EQ, NE, // [C99 6.5.9] Equality operators.
|
|
And, // [C99 6.5.10] Bitwise AND operator.
|
|
Xor, // [C99 6.5.11] Bitwise XOR operator.
|
|
Or, // [C99 6.5.12] Bitwise OR operator.
|
|
LAnd, // [C99 6.5.13] Logical AND operator.
|
|
LOr, // [C99 6.5.14] Logical OR operator.
|
|
Assign, MulAssign,// [C99 6.5.16] Assignment operators.
|
|
DivAssign, RemAssign,
|
|
AddAssign, SubAssign,
|
|
ShlAssign, ShrAssign,
|
|
AndAssign, XorAssign,
|
|
OrAssign,
|
|
Comma // [C99 6.5.17] Comma operator.
|
|
};
|
|
private:
|
|
enum { LHS, RHS, END_EXPR };
|
|
Stmt* SubExprs[END_EXPR];
|
|
Opcode Opc;
|
|
SourceLocation OpLoc;
|
|
public:
|
|
|
|
BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
|
|
SourceLocation opLoc)
|
|
: Expr(BinaryOperatorClass, ResTy,
|
|
lhs->isTypeDependent() || rhs->isTypeDependent(),
|
|
lhs->isValueDependent() || rhs->isValueDependent()),
|
|
Opc(opc), OpLoc(opLoc) {
|
|
SubExprs[LHS] = lhs;
|
|
SubExprs[RHS] = rhs;
|
|
assert(!isCompoundAssignmentOp() &&
|
|
"Use ArithAssignBinaryOperator for compound assignments");
|
|
}
|
|
|
|
SourceLocation getOperatorLoc() const { return OpLoc; }
|
|
Opcode getOpcode() const { return Opc; }
|
|
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
|
|
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
|
|
}
|
|
|
|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
|
|
/// corresponds to, e.g. "<<=".
|
|
static const char *getOpcodeStr(Opcode Op);
|
|
|
|
/// predicates to categorize the respective opcodes.
|
|
bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
|
|
bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
|
|
bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
|
|
bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
|
|
|
|
static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
|
|
bool isRelationalOp() const { return isRelationalOp(Opc); }
|
|
|
|
static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
|
|
bool isEqualityOp() const { return isEqualityOp(Opc); }
|
|
|
|
static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
|
|
bool isLogicalOp() const { return isLogicalOp(Opc); }
|
|
|
|
bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
|
|
bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
|
|
bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
|
|
|
|
static bool classof(const Stmt *S) {
|
|
return S->getStmtClass() == BinaryOperatorClass ||
|
|
S->getStmtClass() == CompoundAssignOperatorClass;
|
|
}
|
|
static bool classof(const BinaryOperator *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
|
|
protected:
|
|
BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
|
|
SourceLocation oploc, bool dead)
|
|
: Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
|
|
SubExprs[LHS] = lhs;
|
|
SubExprs[RHS] = rhs;
|
|
}
|
|
};
|
|
|
|
/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
|
|
/// track of the type the operation is performed in. Due to the semantics of
|
|
/// these operators, the operands are promoted, the aritmetic performed, an
|
|
/// implicit conversion back to the result type done, then the assignment takes
|
|
/// place. This captures the intermediate type which the computation is done
|
|
/// in.
|
|
class CompoundAssignOperator : public BinaryOperator {
|
|
QualType ComputationType;
|
|
public:
|
|
CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
|
|
QualType ResType, QualType CompType,
|
|
SourceLocation OpLoc)
|
|
: BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
|
|
ComputationType(CompType) {
|
|
assert(isCompoundAssignmentOp() &&
|
|
"Only should be used for compound assignments");
|
|
}
|
|
|
|
QualType getComputationType() const { return ComputationType; }
|
|
|
|
static bool classof(const CompoundAssignOperator *) { return true; }
|
|
static bool classof(const Stmt *S) {
|
|
return S->getStmtClass() == CompoundAssignOperatorClass;
|
|
}
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
|
|
ASTContext& C);
|
|
};
|
|
|
|
/// ConditionalOperator - The ?: operator. Note that LHS may be null when the
|
|
/// GNU "missing LHS" extension is in use.
|
|
///
|
|
class ConditionalOperator : public Expr {
|
|
enum { COND, LHS, RHS, END_EXPR };
|
|
Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
|
|
public:
|
|
ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
|
|
: Expr(ConditionalOperatorClass, t,
|
|
// FIXME: the type of the conditional operator doesn't
|
|
// depend on the type of the conditional, but the standard
|
|
// seems to imply that it could. File a bug!
|
|
((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
|
|
(cond->isValueDependent() ||
|
|
(lhs && lhs->isValueDependent()) ||
|
|
(rhs && rhs->isValueDependent()))) {
|
|
SubExprs[COND] = cond;
|
|
SubExprs[LHS] = lhs;
|
|
SubExprs[RHS] = rhs;
|
|
}
|
|
|
|
// getCond - Return the expression representing the condition for
|
|
// the ?: operator.
|
|
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
|
|
|
|
// getTrueExpr - Return the subexpression representing the value of the ?:
|
|
// expression if the condition evaluates to true. In most cases this value
|
|
// will be the same as getLHS() except a GCC extension allows the left
|
|
// subexpression to be omitted, and instead of the condition be returned.
|
|
// e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
|
|
// is only evaluated once.
|
|
Expr *getTrueExpr() const {
|
|
return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
|
|
}
|
|
|
|
// getTrueExpr - Return the subexpression representing the value of the ?:
|
|
// expression if the condition evaluates to false. This is the same as getRHS.
|
|
Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
|
|
|
|
Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
|
|
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
|
|
}
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ConditionalOperatorClass;
|
|
}
|
|
static bool classof(const ConditionalOperator *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// AddrLabelExpr - The GNU address of label extension, representing &&label.
|
|
class AddrLabelExpr : public Expr {
|
|
SourceLocation AmpAmpLoc, LabelLoc;
|
|
LabelStmt *Label;
|
|
public:
|
|
AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
|
|
QualType t)
|
|
: Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(AmpAmpLoc, LabelLoc);
|
|
}
|
|
|
|
LabelStmt *getLabel() const { return Label; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == AddrLabelExprClass;
|
|
}
|
|
static bool classof(const AddrLabelExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
|
|
/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
|
|
/// takes the value of the last subexpression.
|
|
class StmtExpr : public Expr {
|
|
Stmt *SubStmt;
|
|
SourceLocation LParenLoc, RParenLoc;
|
|
public:
|
|
StmtExpr(CompoundStmt *substmt, QualType T,
|
|
SourceLocation lp, SourceLocation rp) :
|
|
Expr(StmtExprClass, T), SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
|
|
|
|
CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
|
|
const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(LParenLoc, RParenLoc);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == StmtExprClass;
|
|
}
|
|
static bool classof(const StmtExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
|
|
/// This AST node represents a function that returns 1 if two *types* (not
|
|
/// expressions) are compatible. The result of this built-in function can be
|
|
/// used in integer constant expressions.
|
|
class TypesCompatibleExpr : public Expr {
|
|
QualType Type1;
|
|
QualType Type2;
|
|
SourceLocation BuiltinLoc, RParenLoc;
|
|
public:
|
|
TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
|
|
QualType t1, QualType t2, SourceLocation RP) :
|
|
Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
|
|
BuiltinLoc(BLoc), RParenLoc(RP) {}
|
|
|
|
QualType getArgType1() const { return Type1; }
|
|
QualType getArgType2() const { return Type2; }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(BuiltinLoc, RParenLoc);
|
|
}
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == TypesCompatibleExprClass;
|
|
}
|
|
static bool classof(const TypesCompatibleExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// ShuffleVectorExpr - clang-specific builtin-in function
|
|
/// __builtin_shufflevector.
|
|
/// This AST node represents a operator that does a constant
|
|
/// shuffle, similar to LLVM's shufflevector instruction. It takes
|
|
/// two vectors and a variable number of constant indices,
|
|
/// and returns the appropriately shuffled vector.
|
|
class ShuffleVectorExpr : public Expr {
|
|
SourceLocation BuiltinLoc, RParenLoc;
|
|
|
|
// SubExprs - the list of values passed to the __builtin_shufflevector
|
|
// function. The first two are vectors, and the rest are constant
|
|
// indices. The number of values in this list is always
|
|
// 2+the number of indices in the vector type.
|
|
Stmt **SubExprs;
|
|
unsigned NumExprs;
|
|
|
|
public:
|
|
ShuffleVectorExpr(Expr **args, unsigned nexpr,
|
|
QualType Type, SourceLocation BLoc,
|
|
SourceLocation RP) :
|
|
Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
|
|
RParenLoc(RP), NumExprs(nexpr) {
|
|
|
|
SubExprs = new Stmt*[nexpr];
|
|
for (unsigned i = 0; i < nexpr; i++)
|
|
SubExprs[i] = args[i];
|
|
}
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(BuiltinLoc, RParenLoc);
|
|
}
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ShuffleVectorExprClass;
|
|
}
|
|
static bool classof(const ShuffleVectorExpr *) { return true; }
|
|
|
|
~ShuffleVectorExpr() {
|
|
delete [] SubExprs;
|
|
}
|
|
|
|
/// getNumSubExprs - Return the size of the SubExprs array. This includes the
|
|
/// constant expression, the actual arguments passed in, and the function
|
|
/// pointers.
|
|
unsigned getNumSubExprs() const { return NumExprs; }
|
|
|
|
/// getExpr - Return the Expr at the specified index.
|
|
Expr *getExpr(unsigned Index) {
|
|
assert((Index < NumExprs) && "Arg access out of range!");
|
|
return cast<Expr>(SubExprs[Index]);
|
|
}
|
|
const Expr *getExpr(unsigned Index) const {
|
|
assert((Index < NumExprs) && "Arg access out of range!");
|
|
return cast<Expr>(SubExprs[Index]);
|
|
}
|
|
|
|
unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
|
|
assert((N < NumExprs - 2) && "Shuffle idx out of range!");
|
|
return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
|
|
}
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
|
|
/// This AST node is similar to the conditional operator (?:) in C, with
|
|
/// the following exceptions:
|
|
/// - the test expression must be a constant expression.
|
|
/// - the expression returned has it's type unaltered by promotion rules.
|
|
/// - does not evaluate the expression that was not chosen.
|
|
class ChooseExpr : public Expr {
|
|
enum { COND, LHS, RHS, END_EXPR };
|
|
Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
|
|
SourceLocation BuiltinLoc, RParenLoc;
|
|
public:
|
|
ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
|
|
SourceLocation RP)
|
|
: Expr(ChooseExprClass, t),
|
|
BuiltinLoc(BLoc), RParenLoc(RP) {
|
|
SubExprs[COND] = cond;
|
|
SubExprs[LHS] = lhs;
|
|
SubExprs[RHS] = rhs;
|
|
}
|
|
|
|
/// isConditionTrue - Return true if the condition is true. This is always
|
|
/// statically knowable for a well-formed choosexpr.
|
|
bool isConditionTrue(ASTContext &C) const;
|
|
|
|
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
|
|
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
|
|
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(BuiltinLoc, RParenLoc);
|
|
}
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ChooseExprClass;
|
|
}
|
|
static bool classof(const ChooseExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// GNUNullExpr - Implements the GNU __null extension, which is a name
|
|
/// for a null pointer constant that has integral type (e.g., int or
|
|
/// long) and is the same size and alignment as a pointer. The __null
|
|
/// extension is typically only used by system headers, which define
|
|
/// NULL as __null in C++ rather than using 0 (which is an integer
|
|
/// that may not match the size of a pointer).
|
|
class GNUNullExpr : public Expr {
|
|
/// TokenLoc - The location of the __null keyword.
|
|
SourceLocation TokenLoc;
|
|
|
|
public:
|
|
GNUNullExpr(QualType Ty, SourceLocation Loc)
|
|
: Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
|
|
|
|
/// getTokenLocation - The location of the __null token.
|
|
SourceLocation getTokenLocation() const { return TokenLoc; }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(TokenLoc);
|
|
}
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == GNUNullExprClass;
|
|
}
|
|
static bool classof(const GNUNullExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// OverloadExpr - Clang builtin function __builtin_overload.
|
|
/// This AST node provides a way to overload functions in C.
|
|
///
|
|
/// The first argument is required to be a constant expression, for the number
|
|
/// of arguments passed to each candidate function.
|
|
///
|
|
/// The next N arguments, where N is the value of the constant expression,
|
|
/// are the values to be passed as arguments.
|
|
///
|
|
/// The rest of the arguments are values of pointer to function type, which
|
|
/// are the candidate functions for overloading.
|
|
///
|
|
/// The result is a equivalent to a CallExpr taking N arguments to the
|
|
/// candidate function whose parameter types match the types of the N arguments.
|
|
///
|
|
/// example: float Z = __builtin_overload(2, X, Y, modf, mod, modl);
|
|
/// If X and Y are long doubles, Z will assigned the result of modl(X, Y);
|
|
/// If X and Y are floats, Z will be assigned the result of modf(X, Y);
|
|
class OverloadExpr : public Expr {
|
|
// SubExprs - the list of values passed to the __builtin_overload function.
|
|
// SubExpr[0] is a constant expression
|
|
// SubExpr[1-N] are the parameters to pass to the matching function call
|
|
// SubExpr[N-...] are the candidate functions, of type pointer to function.
|
|
Stmt **SubExprs;
|
|
|
|
// NumExprs - the size of the SubExprs array
|
|
unsigned NumExprs;
|
|
|
|
// The index of the matching candidate function
|
|
unsigned FnIndex;
|
|
|
|
SourceLocation BuiltinLoc;
|
|
SourceLocation RParenLoc;
|
|
public:
|
|
OverloadExpr(Expr **args, unsigned nexprs, unsigned idx, QualType t,
|
|
SourceLocation bloc, SourceLocation rploc)
|
|
: Expr(OverloadExprClass, t), NumExprs(nexprs), FnIndex(idx),
|
|
BuiltinLoc(bloc), RParenLoc(rploc) {
|
|
SubExprs = new Stmt*[nexprs];
|
|
for (unsigned i = 0; i != nexprs; ++i)
|
|
SubExprs[i] = args[i];
|
|
}
|
|
~OverloadExpr() {
|
|
delete [] SubExprs;
|
|
}
|
|
|
|
/// arg_begin - Return a pointer to the list of arguments that will be passed
|
|
/// to the matching candidate function, skipping over the initial constant
|
|
/// expression.
|
|
typedef ConstExprIterator const_arg_iterator;
|
|
const_arg_iterator arg_begin() const { return &SubExprs[0]+1; }
|
|
const_arg_iterator arg_end(ASTContext& Ctx) const {
|
|
return &SubExprs[0]+1+getNumArgs(Ctx);
|
|
}
|
|
|
|
/// getNumArgs - Return the number of arguments to pass to the candidate
|
|
/// functions.
|
|
unsigned getNumArgs(ASTContext &Ctx) const {
|
|
return getExpr(0)->getIntegerConstantExprValue(Ctx).getZExtValue();
|
|
}
|
|
|
|
/// getNumSubExprs - Return the size of the SubExprs array. This includes the
|
|
/// constant expression, the actual arguments passed in, and the function
|
|
/// pointers.
|
|
unsigned getNumSubExprs() const { return NumExprs; }
|
|
|
|
/// getExpr - Return the Expr at the specified index.
|
|
Expr *getExpr(unsigned Index) const {
|
|
assert((Index < NumExprs) && "Arg access out of range!");
|
|
return cast<Expr>(SubExprs[Index]);
|
|
}
|
|
|
|
/// getFn - Return the matching candidate function for this OverloadExpr.
|
|
Expr *getFn() const { return cast<Expr>(SubExprs[FnIndex]); }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(BuiltinLoc, RParenLoc);
|
|
}
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == OverloadExprClass;
|
|
}
|
|
static bool classof(const OverloadExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static OverloadExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// VAArgExpr, used for the builtin function __builtin_va_start.
|
|
class VAArgExpr : public Expr {
|
|
Stmt *Val;
|
|
SourceLocation BuiltinLoc, RParenLoc;
|
|
public:
|
|
VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
|
|
: Expr(VAArgExprClass, t),
|
|
Val(e),
|
|
BuiltinLoc(BLoc),
|
|
RParenLoc(RPLoc) { }
|
|
|
|
const Expr *getSubExpr() const { return cast<Expr>(Val); }
|
|
Expr *getSubExpr() { return cast<Expr>(Val); }
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(BuiltinLoc, RParenLoc);
|
|
}
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == VAArgExprClass;
|
|
}
|
|
static bool classof(const VAArgExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// @brief Describes an C or C++ initializer list.
|
|
///
|
|
/// InitListExpr describes an initializer list, which can be used to
|
|
/// initialize objects of different types, including
|
|
/// struct/class/union types, arrays, and vectors. For example:
|
|
///
|
|
/// @code
|
|
/// struct foo x = { 1, { 2, 3 } };
|
|
/// @endcode
|
|
///
|
|
/// Prior to semantic analysis, an initializer list will represent the
|
|
/// initializer list as written by the user, but will have the
|
|
/// placeholder type "void". This initializer list is called the
|
|
/// syntactic form of the initializer, and may contain C99 designated
|
|
/// initializers (represented as DesignatedInitExprs), initializations
|
|
/// of subobject members without explicit braces, and so on. Clients
|
|
/// interested in the original syntax of the initializer list should
|
|
/// use the syntactic form of the initializer list.
|
|
///
|
|
/// After semantic analysis, the initializer list will represent the
|
|
/// semantic form of the initializer, where the initializations of all
|
|
/// subobjects are made explicit with nested InitListExpr nodes and
|
|
/// C99 designators have been eliminated by placing the designated
|
|
/// initializations into the subobject they initialize. Additionally,
|
|
/// any "holes" in the initialization, where no initializer has been
|
|
/// specified for a particular subobject, will be replaced with
|
|
/// implicitly-generated ImplicitValueInitExpr expressions that
|
|
/// value-initialize the subobjects. Note, however, that the
|
|
/// initializer lists may still have fewer initializers than there are
|
|
/// elements to initialize within the object.
|
|
///
|
|
/// Given the semantic form of the initializer list, one can retrieve
|
|
/// the original syntactic form of that initializer list (if it
|
|
/// exists) using getSyntacticForm(). Since many initializer lists
|
|
/// have the same syntactic and semantic forms, getSyntacticForm() may
|
|
/// return NULL, indicating that the current initializer list also
|
|
/// serves as its syntactic form.
|
|
class InitListExpr : public Expr {
|
|
std::vector<Stmt *> InitExprs;
|
|
SourceLocation LBraceLoc, RBraceLoc;
|
|
|
|
/// Contains the initializer list that describes the syntactic form
|
|
/// written in the source code.
|
|
InitListExpr *SyntacticForm;
|
|
|
|
/// If this initializer list initializes a union, specifies which
|
|
/// field within the union will be initialized.
|
|
FieldDecl *UnionFieldInit;
|
|
|
|
/// Whether this initializer list originally had a GNU array-range
|
|
/// designator in it. This is a temporary marker used by CodeGen.
|
|
bool HadArrayRangeDesignator;
|
|
|
|
public:
|
|
InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
|
|
SourceLocation rbraceloc);
|
|
|
|
unsigned getNumInits() const { return InitExprs.size(); }
|
|
|
|
const Expr* getInit(unsigned Init) const {
|
|
assert(Init < getNumInits() && "Initializer access out of range!");
|
|
return cast_or_null<Expr>(InitExprs[Init]);
|
|
}
|
|
|
|
Expr* getInit(unsigned Init) {
|
|
assert(Init < getNumInits() && "Initializer access out of range!");
|
|
return cast_or_null<Expr>(InitExprs[Init]);
|
|
}
|
|
|
|
void setInit(unsigned Init, Expr *expr) {
|
|
assert(Init < getNumInits() && "Initializer access out of range!");
|
|
InitExprs[Init] = expr;
|
|
}
|
|
|
|
/// @brief Specify the number of initializers
|
|
///
|
|
/// If there are more than @p NumInits initializers, the remaining
|
|
/// initializers will be destroyed. If there are fewer than @p
|
|
/// NumInits initializers, NULL expressions will be added for the
|
|
/// unknown initializers.
|
|
void resizeInits(ASTContext &Context, unsigned NumInits);
|
|
|
|
/// @brief Updates the initializer at index @p Init with the new
|
|
/// expression @p expr, and returns the old expression at that
|
|
/// location.
|
|
///
|
|
/// When @p Init is out of range for this initializer list, the
|
|
/// initializer list will be extended with NULL expressions to
|
|
/// accomodate the new entry.
|
|
Expr *updateInit(unsigned Init, Expr *expr);
|
|
|
|
/// \brief If this initializes a union, specifies which field in the
|
|
/// union to initialize.
|
|
///
|
|
/// Typically, this field is the first named field within the
|
|
/// union. However, a designated initializer can specify the
|
|
/// initialization of a different field within the union.
|
|
FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
|
|
void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
|
|
|
|
// Explicit InitListExpr's originate from source code (and have valid source
|
|
// locations). Implicit InitListExpr's are created by the semantic analyzer.
|
|
bool isExplicit() {
|
|
return LBraceLoc.isValid() && RBraceLoc.isValid();
|
|
}
|
|
|
|
void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
|
|
|
|
/// @brief Retrieve the initializer list that describes the
|
|
/// syntactic form of the initializer.
|
|
///
|
|
///
|
|
InitListExpr *getSyntacticForm() const { return SyntacticForm; }
|
|
void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
|
|
|
|
bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
|
|
void sawArrayRangeDesignator() {
|
|
HadArrayRangeDesignator = true;
|
|
}
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(LBraceLoc, RBraceLoc);
|
|
}
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == InitListExprClass;
|
|
}
|
|
static bool classof(const InitListExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
typedef std::vector<Stmt *>::iterator iterator;
|
|
typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
|
|
|
|
iterator begin() { return InitExprs.begin(); }
|
|
iterator end() { return InitExprs.end(); }
|
|
reverse_iterator rbegin() { return InitExprs.rbegin(); }
|
|
reverse_iterator rend() { return InitExprs.rend(); }
|
|
|
|
// Serailization.
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
|
|
private:
|
|
// Used by serializer.
|
|
InitListExpr() : Expr(InitListExprClass, QualType()) {}
|
|
};
|
|
|
|
/// @brief Represents a C99 designated initializer expression.
|
|
///
|
|
/// A designated initializer expression (C99 6.7.8) contains one or
|
|
/// more designators (which can be field designators, array
|
|
/// designators, or GNU array-range designators) followed by an
|
|
/// expression that initializes the field or element(s) that the
|
|
/// designators refer to. For example, given:
|
|
///
|
|
/// @code
|
|
/// struct point {
|
|
/// double x;
|
|
/// double y;
|
|
/// };
|
|
/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
|
|
/// @endcode
|
|
///
|
|
/// The InitListExpr contains three DesignatedInitExprs, the first of
|
|
/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
|
|
/// designators, one array designator for @c [2] followed by one field
|
|
/// designator for @c .y. The initalization expression will be 1.0.
|
|
class DesignatedInitExpr : public Expr {
|
|
/// The location of the '=' or ':' prior to the actual initializer
|
|
/// expression.
|
|
SourceLocation EqualOrColonLoc;
|
|
|
|
/// Whether this designated initializer used the GNU deprecated ':'
|
|
/// syntax rather than the C99 '=' syntax.
|
|
bool UsesColonSyntax : 1;
|
|
|
|
/// The number of designators in this initializer expression.
|
|
unsigned NumDesignators : 15;
|
|
|
|
/// The number of subexpressions of this initializer expression,
|
|
/// which contains both the initializer and any additional
|
|
/// expressions used by array and array-range designators.
|
|
unsigned NumSubExprs : 16;
|
|
|
|
DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
|
|
SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
|
|
unsigned NumSubExprs)
|
|
: Expr(DesignatedInitExprClass, Ty),
|
|
EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
|
|
NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
|
|
|
|
public:
|
|
/// A field designator, e.g., ".x".
|
|
struct FieldDesignator {
|
|
/// Refers to the field that is being initialized. The low bit
|
|
/// of this field determines whether this is actually a pointer
|
|
/// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
|
|
/// initially constructed, a field designator will store an
|
|
/// IdentifierInfo*. After semantic analysis has resolved that
|
|
/// name, the field designator will instead store a FieldDecl*.
|
|
uintptr_t NameOrField;
|
|
|
|
/// The location of the '.' in the designated initializer.
|
|
unsigned DotLoc;
|
|
|
|
/// The location of the field name in the designated initializer.
|
|
unsigned FieldLoc;
|
|
};
|
|
|
|
/// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
|
|
struct ArrayOrRangeDesignator {
|
|
/// Location of the first index expression within the designated
|
|
/// initializer expression's list of subexpressions.
|
|
unsigned Index;
|
|
/// The location of the '[' starting the array range designator.
|
|
unsigned LBracketLoc;
|
|
/// The location of the ellipsis separating the start and end
|
|
/// indices. Only valid for GNU array-range designators.
|
|
unsigned EllipsisLoc;
|
|
/// The location of the ']' terminating the array range designator.
|
|
unsigned RBracketLoc;
|
|
};
|
|
|
|
/// @brief Represents a single C99 designator.
|
|
///
|
|
/// @todo This class is infuriatingly similar to clang::Designator,
|
|
/// but minor differences (storing indices vs. storing pointers)
|
|
/// keep us from reusing it. Try harder, later, to rectify these
|
|
/// differences.
|
|
class Designator {
|
|
/// @brief The kind of designator this describes.
|
|
enum {
|
|
FieldDesignator,
|
|
ArrayDesignator,
|
|
ArrayRangeDesignator
|
|
} Kind;
|
|
|
|
union {
|
|
/// A field designator, e.g., ".x".
|
|
struct FieldDesignator Field;
|
|
/// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
|
|
struct ArrayOrRangeDesignator ArrayOrRange;
|
|
};
|
|
friend class DesignatedInitExpr;
|
|
|
|
public:
|
|
/// @brief Initializes a field designator.
|
|
Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
|
|
SourceLocation FieldLoc)
|
|
: Kind(FieldDesignator) {
|
|
Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
|
|
Field.DotLoc = DotLoc.getRawEncoding();
|
|
Field.FieldLoc = FieldLoc.getRawEncoding();
|
|
}
|
|
|
|
/// @brief Initializes an array designator.
|
|
Designator(unsigned Index, SourceLocation LBracketLoc,
|
|
SourceLocation RBracketLoc)
|
|
: Kind(ArrayDesignator) {
|
|
ArrayOrRange.Index = Index;
|
|
ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
|
|
ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
|
|
ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
|
|
}
|
|
|
|
/// @brief Initializes a GNU array-range designator.
|
|
Designator(unsigned Index, SourceLocation LBracketLoc,
|
|
SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
|
|
: Kind(ArrayRangeDesignator) {
|
|
ArrayOrRange.Index = Index;
|
|
ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
|
|
ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
|
|
ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
|
|
}
|
|
|
|
bool isFieldDesignator() const { return Kind == FieldDesignator; }
|
|
bool isArrayDesignator() const { return Kind == ArrayDesignator; }
|
|
bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
|
|
|
|
IdentifierInfo * getFieldName();
|
|
|
|
FieldDecl *getField() {
|
|
assert(Kind == FieldDesignator && "Only valid on a field designator");
|
|
if (Field.NameOrField & 0x01)
|
|
return 0;
|
|
else
|
|
return reinterpret_cast<FieldDecl *>(Field.NameOrField);
|
|
}
|
|
|
|
void setField(FieldDecl *FD) {
|
|
assert(Kind == FieldDesignator && "Only valid on a field designator");
|
|
Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
|
|
}
|
|
|
|
SourceLocation getDotLoc() const {
|
|
assert(Kind == FieldDesignator && "Only valid on a field designator");
|
|
return SourceLocation::getFromRawEncoding(Field.DotLoc);
|
|
}
|
|
|
|
SourceLocation getFieldLoc() const {
|
|
assert(Kind == FieldDesignator && "Only valid on a field designator");
|
|
return SourceLocation::getFromRawEncoding(Field.FieldLoc);
|
|
}
|
|
|
|
SourceLocation getLBracketLoc() const {
|
|
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
|
|
"Only valid on an array or array-range designator");
|
|
return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
|
|
}
|
|
|
|
SourceLocation getRBracketLoc() const {
|
|
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
|
|
"Only valid on an array or array-range designator");
|
|
return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
|
|
}
|
|
|
|
SourceLocation getEllipsisLoc() const {
|
|
assert(Kind == ArrayRangeDesignator &&
|
|
"Only valid on an array-range designator");
|
|
return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
|
|
}
|
|
|
|
SourceLocation getStartLocation() const {
|
|
if (Kind == FieldDesignator)
|
|
return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
|
|
else
|
|
return getLBracketLoc();
|
|
}
|
|
};
|
|
|
|
static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
|
|
unsigned NumDesignators,
|
|
Expr **IndexExprs, unsigned NumIndexExprs,
|
|
SourceLocation EqualOrColonLoc,
|
|
bool UsesColonSyntax, Expr *Init);
|
|
|
|
/// @brief Returns the number of designators in this initializer.
|
|
unsigned size() const { return NumDesignators; }
|
|
|
|
// Iterator access to the designators.
|
|
typedef Designator* designators_iterator;
|
|
designators_iterator designators_begin();
|
|
designators_iterator designators_end();
|
|
|
|
Expr *getArrayIndex(const Designator& D);
|
|
Expr *getArrayRangeStart(const Designator& D);
|
|
Expr *getArrayRangeEnd(const Designator& D);
|
|
|
|
/// @brief Retrieve the location of the '=' that precedes the
|
|
/// initializer value itself, if present.
|
|
SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
|
|
|
|
/// @brief Determines whether this designated initializer used the
|
|
/// GNU 'fieldname:' syntax or the C99 '=' syntax.
|
|
bool usesColonSyntax() const { return UsesColonSyntax; }
|
|
|
|
/// @brief Retrieve the initializer value.
|
|
Expr *getInit() const {
|
|
return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
|
|
}
|
|
|
|
void setInit(Expr *init) {
|
|
*child_begin() = init;
|
|
}
|
|
|
|
virtual SourceRange getSourceRange() const;
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == DesignatedInitExprClass;
|
|
}
|
|
static bool classof(const DesignatedInitExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
};
|
|
|
|
/// \brief Represents an implicitly-generated value initialization of
|
|
/// an object of a given type.
|
|
///
|
|
/// Implicit value initializations occur within semantic initialize
|
|
/// list expressions (\see InitListExpr) as placeholders for subobject
|
|
/// initializations not explicitly specified by the user.
|
|
class ImplicitValueInitExpr : public Expr {
|
|
public:
|
|
explicit ImplicitValueInitExpr(QualType ty)
|
|
: Expr(ImplicitValueInitExprClass, ty) { }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ImplicitValueInitExprClass;
|
|
}
|
|
static bool classof(const ImplicitValueInitExpr *) { return true; }
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange();
|
|
}
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Clang Extensions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// ExtVectorElementExpr - This represents access to specific elements of a
|
|
/// vector, and may occur on the left hand side or right hand side. For example
|
|
/// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
|
|
///
|
|
class ExtVectorElementExpr : public Expr {
|
|
Stmt *Base;
|
|
IdentifierInfo &Accessor;
|
|
SourceLocation AccessorLoc;
|
|
public:
|
|
ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
|
|
SourceLocation loc)
|
|
: Expr(ExtVectorElementExprClass, ty),
|
|
Base(base), Accessor(accessor), AccessorLoc(loc) {}
|
|
|
|
const Expr *getBase() const { return cast<Expr>(Base); }
|
|
Expr *getBase() { return cast<Expr>(Base); }
|
|
|
|
IdentifierInfo &getAccessor() const { return Accessor; }
|
|
|
|
/// getNumElements - Get the number of components being selected.
|
|
unsigned getNumElements() const;
|
|
|
|
/// containsDuplicateElements - Return true if any element access is
|
|
/// repeated.
|
|
bool containsDuplicateElements() const;
|
|
|
|
/// getEncodedElementAccess - Encode the elements accessed into an llvm
|
|
/// aggregate Constant of ConstantInt(s).
|
|
void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(getBase()->getLocStart(), AccessorLoc);
|
|
}
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == ExtVectorElementExprClass;
|
|
}
|
|
static bool classof(const ExtVectorElementExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
|
|
/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
|
|
/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
|
|
class BlockExpr : public Expr {
|
|
protected:
|
|
BlockDecl *TheBlock;
|
|
public:
|
|
BlockExpr(BlockDecl *BD, QualType ty) : Expr(BlockExprClass, ty),
|
|
TheBlock(BD) {}
|
|
|
|
BlockDecl *getBlockDecl() { return TheBlock; }
|
|
|
|
// Convenience functions for probing the underlying BlockDecl.
|
|
SourceLocation getCaretLocation() const;
|
|
const Stmt *getBody() const;
|
|
Stmt *getBody();
|
|
|
|
virtual SourceRange getSourceRange() const {
|
|
return SourceRange(getCaretLocation(), getBody()->getLocEnd());
|
|
}
|
|
|
|
/// getFunctionType - Return the underlying function type for this block.
|
|
const FunctionType *getFunctionType() const;
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == BlockExprClass;
|
|
}
|
|
static bool classof(const BlockExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
/// BlockDeclRefExpr - A reference to a declared variable, function,
|
|
/// enum, etc.
|
|
class BlockDeclRefExpr : public Expr {
|
|
ValueDecl *D;
|
|
SourceLocation Loc;
|
|
bool IsByRef;
|
|
public:
|
|
BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
|
|
Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
|
|
|
|
ValueDecl *getDecl() { return D; }
|
|
const ValueDecl *getDecl() const { return D; }
|
|
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
|
|
|
|
bool isByRef() const { return IsByRef; }
|
|
|
|
static bool classof(const Stmt *T) {
|
|
return T->getStmtClass() == BlockDeclRefExprClass;
|
|
}
|
|
static bool classof(const BlockDeclRefExpr *) { return true; }
|
|
|
|
// Iterators
|
|
virtual child_iterator child_begin();
|
|
virtual child_iterator child_end();
|
|
|
|
virtual void EmitImpl(llvm::Serializer& S) const;
|
|
static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
|
|
};
|
|
|
|
} // end namespace clang
|
|
|
|
#endif
|