зеркало из https://github.com/microsoft/clang-1.git
2962 строки
111 KiB
C++
2962 строки
111 KiB
C++
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ASTContext interface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Bitcode/Serialize.h"
|
|
#include "llvm/Bitcode/Deserialize.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
using namespace clang;
|
|
|
|
enum FloatingRank {
|
|
FloatRank, DoubleRank, LongDoubleRank
|
|
};
|
|
|
|
ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
|
|
TargetInfo &t,
|
|
IdentifierTable &idents, SelectorTable &sels,
|
|
bool FreeMem, unsigned size_reserve) :
|
|
CFConstantStringTypeDecl(0), ObjCFastEnumerationStateTypeDecl(0),
|
|
SourceMgr(SM), LangOpts(LOpts), FreeMemory(FreeMem), Target(t),
|
|
Idents(idents), Selectors(sels)
|
|
{
|
|
if (size_reserve > 0) Types.reserve(size_reserve);
|
|
InitBuiltinTypes();
|
|
BuiltinInfo.InitializeBuiltins(idents, Target, LangOpts.Freestanding);
|
|
TUDecl = TranslationUnitDecl::Create(*this);
|
|
}
|
|
|
|
ASTContext::~ASTContext() {
|
|
// Deallocate all the types.
|
|
while (!Types.empty()) {
|
|
Types.back()->Destroy(*this);
|
|
Types.pop_back();
|
|
}
|
|
|
|
{
|
|
llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
|
|
I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
|
|
while (I != E) {
|
|
ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
|
|
delete R;
|
|
}
|
|
}
|
|
|
|
{
|
|
llvm::DenseMap<const ObjCInterfaceDecl*, const ASTRecordLayout*>::iterator
|
|
I = ASTObjCInterfaces.begin(), E = ASTObjCInterfaces.end();
|
|
while (I != E) {
|
|
ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
|
|
delete R;
|
|
}
|
|
}
|
|
|
|
{
|
|
llvm::DenseMap<const ObjCInterfaceDecl*, const RecordDecl*>::iterator
|
|
I = ASTRecordForInterface.begin(), E = ASTRecordForInterface.end();
|
|
while (I != E) {
|
|
RecordDecl *R = const_cast<RecordDecl*>((I++)->second);
|
|
R->Destroy(*this);
|
|
}
|
|
}
|
|
|
|
TUDecl->Destroy(*this);
|
|
}
|
|
|
|
void ASTContext::PrintStats() const {
|
|
fprintf(stderr, "*** AST Context Stats:\n");
|
|
fprintf(stderr, " %d types total.\n", (int)Types.size());
|
|
unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
|
|
unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
|
|
unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
|
|
unsigned NumMemberPointer = 0;
|
|
|
|
unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
|
|
unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
|
|
unsigned NumObjCQualifiedIds = 0;
|
|
unsigned NumTypeOfTypes = 0, NumTypeOfExprs = 0;
|
|
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
|
|
Type *T = Types[i];
|
|
if (isa<BuiltinType>(T))
|
|
++NumBuiltin;
|
|
else if (isa<PointerType>(T))
|
|
++NumPointer;
|
|
else if (isa<BlockPointerType>(T))
|
|
++NumBlockPointer;
|
|
else if (isa<ReferenceType>(T))
|
|
++NumReference;
|
|
else if (isa<MemberPointerType>(T))
|
|
++NumMemberPointer;
|
|
else if (isa<ComplexType>(T))
|
|
++NumComplex;
|
|
else if (isa<ArrayType>(T))
|
|
++NumArray;
|
|
else if (isa<VectorType>(T))
|
|
++NumVector;
|
|
else if (isa<FunctionTypeNoProto>(T))
|
|
++NumFunctionNP;
|
|
else if (isa<FunctionTypeProto>(T))
|
|
++NumFunctionP;
|
|
else if (isa<TypedefType>(T))
|
|
++NumTypeName;
|
|
else if (TagType *TT = dyn_cast<TagType>(T)) {
|
|
++NumTagged;
|
|
switch (TT->getDecl()->getTagKind()) {
|
|
default: assert(0 && "Unknown tagged type!");
|
|
case TagDecl::TK_struct: ++NumTagStruct; break;
|
|
case TagDecl::TK_union: ++NumTagUnion; break;
|
|
case TagDecl::TK_class: ++NumTagClass; break;
|
|
case TagDecl::TK_enum: ++NumTagEnum; break;
|
|
}
|
|
} else if (isa<ObjCInterfaceType>(T))
|
|
++NumObjCInterfaces;
|
|
else if (isa<ObjCQualifiedInterfaceType>(T))
|
|
++NumObjCQualifiedInterfaces;
|
|
else if (isa<ObjCQualifiedIdType>(T))
|
|
++NumObjCQualifiedIds;
|
|
else if (isa<TypeOfType>(T))
|
|
++NumTypeOfTypes;
|
|
else if (isa<TypeOfExpr>(T))
|
|
++NumTypeOfExprs;
|
|
else {
|
|
QualType(T, 0).dump();
|
|
assert(0 && "Unknown type!");
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, " %d builtin types\n", NumBuiltin);
|
|
fprintf(stderr, " %d pointer types\n", NumPointer);
|
|
fprintf(stderr, " %d block pointer types\n", NumBlockPointer);
|
|
fprintf(stderr, " %d reference types\n", NumReference);
|
|
fprintf(stderr, " %d member pointer types\n", NumMemberPointer);
|
|
fprintf(stderr, " %d complex types\n", NumComplex);
|
|
fprintf(stderr, " %d array types\n", NumArray);
|
|
fprintf(stderr, " %d vector types\n", NumVector);
|
|
fprintf(stderr, " %d function types with proto\n", NumFunctionP);
|
|
fprintf(stderr, " %d function types with no proto\n", NumFunctionNP);
|
|
fprintf(stderr, " %d typename (typedef) types\n", NumTypeName);
|
|
fprintf(stderr, " %d tagged types\n", NumTagged);
|
|
fprintf(stderr, " %d struct types\n", NumTagStruct);
|
|
fprintf(stderr, " %d union types\n", NumTagUnion);
|
|
fprintf(stderr, " %d class types\n", NumTagClass);
|
|
fprintf(stderr, " %d enum types\n", NumTagEnum);
|
|
fprintf(stderr, " %d interface types\n", NumObjCInterfaces);
|
|
fprintf(stderr, " %d protocol qualified interface types\n",
|
|
NumObjCQualifiedInterfaces);
|
|
fprintf(stderr, " %d protocol qualified id types\n",
|
|
NumObjCQualifiedIds);
|
|
fprintf(stderr, " %d typeof types\n", NumTypeOfTypes);
|
|
fprintf(stderr, " %d typeof exprs\n", NumTypeOfExprs);
|
|
|
|
fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
|
|
NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
|
|
NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
|
|
NumMemberPointer*sizeof(MemberPointerType)+
|
|
NumFunctionP*sizeof(FunctionTypeProto)+
|
|
NumFunctionNP*sizeof(FunctionTypeNoProto)+
|
|
NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
|
|
NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprs*sizeof(TypeOfExpr)));
|
|
}
|
|
|
|
|
|
void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
|
|
Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
|
|
}
|
|
|
|
void ASTContext::InitBuiltinTypes() {
|
|
assert(VoidTy.isNull() && "Context reinitialized?");
|
|
|
|
// C99 6.2.5p19.
|
|
InitBuiltinType(VoidTy, BuiltinType::Void);
|
|
|
|
// C99 6.2.5p2.
|
|
InitBuiltinType(BoolTy, BuiltinType::Bool);
|
|
// C99 6.2.5p3.
|
|
if (Target.isCharSigned())
|
|
InitBuiltinType(CharTy, BuiltinType::Char_S);
|
|
else
|
|
InitBuiltinType(CharTy, BuiltinType::Char_U);
|
|
// C99 6.2.5p4.
|
|
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
|
|
InitBuiltinType(ShortTy, BuiltinType::Short);
|
|
InitBuiltinType(IntTy, BuiltinType::Int);
|
|
InitBuiltinType(LongTy, BuiltinType::Long);
|
|
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
|
|
|
|
// C99 6.2.5p6.
|
|
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
|
|
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
|
|
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
|
|
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
|
|
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
|
|
|
|
// C99 6.2.5p10.
|
|
InitBuiltinType(FloatTy, BuiltinType::Float);
|
|
InitBuiltinType(DoubleTy, BuiltinType::Double);
|
|
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
|
|
|
|
// C++ 3.9.1p5
|
|
InitBuiltinType(WCharTy, BuiltinType::WChar);
|
|
|
|
// Placeholder type for functions.
|
|
InitBuiltinType(OverloadTy, BuiltinType::Overload);
|
|
|
|
// Placeholder type for type-dependent expressions whose type is
|
|
// completely unknown. No code should ever check a type against
|
|
// DependentTy and users should never see it; however, it is here to
|
|
// help diagnose failures to properly check for type-dependent
|
|
// expressions.
|
|
InitBuiltinType(DependentTy, BuiltinType::Dependent);
|
|
|
|
// C99 6.2.5p11.
|
|
FloatComplexTy = getComplexType(FloatTy);
|
|
DoubleComplexTy = getComplexType(DoubleTy);
|
|
LongDoubleComplexTy = getComplexType(LongDoubleTy);
|
|
|
|
BuiltinVaListType = QualType();
|
|
ObjCIdType = QualType();
|
|
IdStructType = 0;
|
|
ObjCClassType = QualType();
|
|
ClassStructType = 0;
|
|
|
|
ObjCConstantStringType = QualType();
|
|
|
|
// void * type
|
|
VoidPtrTy = getPointerType(VoidTy);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Sizing and Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
|
|
/// scalar floating point type.
|
|
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
|
|
const BuiltinType *BT = T->getAsBuiltinType();
|
|
assert(BT && "Not a floating point type!");
|
|
switch (BT->getKind()) {
|
|
default: assert(0 && "Not a floating point type!");
|
|
case BuiltinType::Float: return Target.getFloatFormat();
|
|
case BuiltinType::Double: return Target.getDoubleFormat();
|
|
case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
|
|
}
|
|
}
|
|
|
|
/// getDeclAlign - Return a conservative estimate of the alignment of the
|
|
/// specified decl. Note that bitfields do not have a valid alignment, so
|
|
/// this method will assert on them.
|
|
unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
|
|
// FIXME: If attribute(align) is specified on the decl, round up to it.
|
|
|
|
if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
|
|
QualType T = VD->getType();
|
|
// Incomplete or function types default to 1.
|
|
if (T->isIncompleteType() || T->isFunctionType())
|
|
return 1;
|
|
|
|
while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
|
|
T = cast<ArrayType>(T)->getElementType();
|
|
|
|
return getTypeAlign(T) / Target.getCharWidth();
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/// getTypeSize - Return the size of the specified type, in bits. This method
|
|
/// does not work on incomplete types.
|
|
std::pair<uint64_t, unsigned>
|
|
ASTContext::getTypeInfo(const Type *T) {
|
|
T = getCanonicalType(T);
|
|
uint64_t Width;
|
|
unsigned Align;
|
|
switch (T->getTypeClass()) {
|
|
case Type::TypeName: assert(0 && "Not a canonical type!");
|
|
case Type::FunctionNoProto:
|
|
case Type::FunctionProto:
|
|
default:
|
|
assert(0 && "Incomplete types have no size!");
|
|
case Type::VariableArray:
|
|
assert(0 && "VLAs not implemented yet!");
|
|
case Type::DependentSizedArray:
|
|
assert(0 && "Dependently-sized arrays don't have a known size");
|
|
case Type::ConstantArray: {
|
|
const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
|
|
|
|
std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
|
|
Width = EltInfo.first*CAT->getSize().getZExtValue();
|
|
Align = EltInfo.second;
|
|
break;
|
|
}
|
|
case Type::ExtVector:
|
|
case Type::Vector: {
|
|
std::pair<uint64_t, unsigned> EltInfo =
|
|
getTypeInfo(cast<VectorType>(T)->getElementType());
|
|
Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
|
|
Align = Width;
|
|
// If the alignment is not a power of 2, round up to the next power of 2.
|
|
// This happens for non-power-of-2 length vectors.
|
|
// FIXME: this should probably be a target property.
|
|
Align = 1 << llvm::Log2_32_Ceil(Align);
|
|
break;
|
|
}
|
|
|
|
case Type::Builtin:
|
|
switch (cast<BuiltinType>(T)->getKind()) {
|
|
default: assert(0 && "Unknown builtin type!");
|
|
case BuiltinType::Void:
|
|
assert(0 && "Incomplete types have no size!");
|
|
case BuiltinType::Bool:
|
|
Width = Target.getBoolWidth();
|
|
Align = Target.getBoolAlign();
|
|
break;
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::UChar:
|
|
case BuiltinType::SChar:
|
|
Width = Target.getCharWidth();
|
|
Align = Target.getCharAlign();
|
|
break;
|
|
case BuiltinType::WChar:
|
|
Width = Target.getWCharWidth();
|
|
Align = Target.getWCharAlign();
|
|
break;
|
|
case BuiltinType::UShort:
|
|
case BuiltinType::Short:
|
|
Width = Target.getShortWidth();
|
|
Align = Target.getShortAlign();
|
|
break;
|
|
case BuiltinType::UInt:
|
|
case BuiltinType::Int:
|
|
Width = Target.getIntWidth();
|
|
Align = Target.getIntAlign();
|
|
break;
|
|
case BuiltinType::ULong:
|
|
case BuiltinType::Long:
|
|
Width = Target.getLongWidth();
|
|
Align = Target.getLongAlign();
|
|
break;
|
|
case BuiltinType::ULongLong:
|
|
case BuiltinType::LongLong:
|
|
Width = Target.getLongLongWidth();
|
|
Align = Target.getLongLongAlign();
|
|
break;
|
|
case BuiltinType::Float:
|
|
Width = Target.getFloatWidth();
|
|
Align = Target.getFloatAlign();
|
|
break;
|
|
case BuiltinType::Double:
|
|
Width = Target.getDoubleWidth();
|
|
Align = Target.getDoubleAlign();
|
|
break;
|
|
case BuiltinType::LongDouble:
|
|
Width = Target.getLongDoubleWidth();
|
|
Align = Target.getLongDoubleAlign();
|
|
break;
|
|
}
|
|
break;
|
|
case Type::FixedWidthInt:
|
|
// FIXME: This isn't precisely correct; the width/alignment should depend
|
|
// on the available types for the target
|
|
Width = cast<FixedWidthIntType>(T)->getWidth();
|
|
Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
|
|
Align = Width;
|
|
break;
|
|
case Type::ExtQual:
|
|
// FIXME: Pointers into different addr spaces could have different sizes and
|
|
// alignment requirements: getPointerInfo should take an AddrSpace.
|
|
return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
|
|
case Type::ObjCQualifiedId:
|
|
Width = Target.getPointerWidth(0);
|
|
Align = Target.getPointerAlign(0);
|
|
break;
|
|
case Type::BlockPointer: {
|
|
unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
|
|
Width = Target.getPointerWidth(AS);
|
|
Align = Target.getPointerAlign(AS);
|
|
break;
|
|
}
|
|
case Type::Pointer: {
|
|
unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
|
|
Width = Target.getPointerWidth(AS);
|
|
Align = Target.getPointerAlign(AS);
|
|
break;
|
|
}
|
|
case Type::Reference:
|
|
// "When applied to a reference or a reference type, the result is the size
|
|
// of the referenced type." C++98 5.3.3p2: expr.sizeof.
|
|
// FIXME: This is wrong for struct layout: a reference in a struct has
|
|
// pointer size.
|
|
return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
|
|
case Type::MemberPointer: {
|
|
// FIXME: This is not only platform- but also ABI-dependent. We follow
|
|
// the GCC ABI, where pointers to data are one pointer large, pointers to
|
|
// functions two pointers. But if we want to support ABI compatibility with
|
|
// other compilers too, we need to delegate this completely to TargetInfo
|
|
// or some ABI abstraction layer.
|
|
QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
|
|
unsigned AS = Pointee.getAddressSpace();
|
|
Width = Target.getPointerWidth(AS);
|
|
if (Pointee->isFunctionType())
|
|
Width *= 2;
|
|
Align = Target.getPointerAlign(AS);
|
|
// GCC aligns at single pointer width.
|
|
}
|
|
case Type::Complex: {
|
|
// Complex types have the same alignment as their elements, but twice the
|
|
// size.
|
|
std::pair<uint64_t, unsigned> EltInfo =
|
|
getTypeInfo(cast<ComplexType>(T)->getElementType());
|
|
Width = EltInfo.first*2;
|
|
Align = EltInfo.second;
|
|
break;
|
|
}
|
|
case Type::ObjCInterface: {
|
|
const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
|
|
const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
|
|
Width = Layout.getSize();
|
|
Align = Layout.getAlignment();
|
|
break;
|
|
}
|
|
case Type::Tagged: {
|
|
const TagType *TT = cast<TagType>(T);
|
|
|
|
if (TT->getDecl()->isInvalidDecl()) {
|
|
Width = 1;
|
|
Align = 1;
|
|
break;
|
|
}
|
|
|
|
if (const EnumType *ET = dyn_cast<EnumType>(TT))
|
|
return getTypeInfo(ET->getDecl()->getIntegerType());
|
|
|
|
const RecordType *RT = cast<RecordType>(TT);
|
|
const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
|
|
Width = Layout.getSize();
|
|
Align = Layout.getAlignment();
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
|
|
return std::make_pair(Width, Align);
|
|
}
|
|
|
|
/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
|
|
/// type for the current target in bits. This can be different than the ABI
|
|
/// alignment in cases where it is beneficial for performance to overalign
|
|
/// a data type.
|
|
unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
|
|
unsigned ABIAlign = getTypeAlign(T);
|
|
|
|
// Doubles should be naturally aligned if possible.
|
|
if (T->isSpecificBuiltinType(BuiltinType::Double))
|
|
return std::max(ABIAlign, 64U);
|
|
|
|
return ABIAlign;
|
|
}
|
|
|
|
|
|
/// LayoutField - Field layout.
|
|
void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
|
|
bool IsUnion, unsigned StructPacking,
|
|
ASTContext &Context) {
|
|
unsigned FieldPacking = StructPacking;
|
|
uint64_t FieldOffset = IsUnion ? 0 : Size;
|
|
uint64_t FieldSize;
|
|
unsigned FieldAlign;
|
|
|
|
// FIXME: Should this override struct packing? Probably we want to
|
|
// take the minimum?
|
|
if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
|
|
FieldPacking = PA->getAlignment();
|
|
|
|
if (const Expr *BitWidthExpr = FD->getBitWidth()) {
|
|
// TODO: Need to check this algorithm on other targets!
|
|
// (tested on Linux-X86)
|
|
FieldSize =
|
|
BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
|
|
|
|
std::pair<uint64_t, unsigned> FieldInfo =
|
|
Context.getTypeInfo(FD->getType());
|
|
uint64_t TypeSize = FieldInfo.first;
|
|
|
|
// Determine the alignment of this bitfield. The packing
|
|
// attributes define a maximum and the alignment attribute defines
|
|
// a minimum.
|
|
// FIXME: What is the right behavior when the specified alignment
|
|
// is smaller than the specified packing?
|
|
FieldAlign = FieldInfo.second;
|
|
if (FieldPacking)
|
|
FieldAlign = std::min(FieldAlign, FieldPacking);
|
|
if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
|
|
FieldAlign = std::max(FieldAlign, AA->getAlignment());
|
|
|
|
// Check if we need to add padding to give the field the correct
|
|
// alignment.
|
|
if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
|
|
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
|
|
|
|
// Padding members don't affect overall alignment
|
|
if (!FD->getIdentifier())
|
|
FieldAlign = 1;
|
|
} else {
|
|
if (FD->getType()->isIncompleteArrayType()) {
|
|
// This is a flexible array member; we can't directly
|
|
// query getTypeInfo about these, so we figure it out here.
|
|
// Flexible array members don't have any size, but they
|
|
// have to be aligned appropriately for their element type.
|
|
FieldSize = 0;
|
|
const ArrayType* ATy = Context.getAsArrayType(FD->getType());
|
|
FieldAlign = Context.getTypeAlign(ATy->getElementType());
|
|
} else {
|
|
std::pair<uint64_t, unsigned> FieldInfo =
|
|
Context.getTypeInfo(FD->getType());
|
|
FieldSize = FieldInfo.first;
|
|
FieldAlign = FieldInfo.second;
|
|
}
|
|
|
|
// Determine the alignment of this bitfield. The packing
|
|
// attributes define a maximum and the alignment attribute defines
|
|
// a minimum. Additionally, the packing alignment must be at least
|
|
// a byte for non-bitfields.
|
|
//
|
|
// FIXME: What is the right behavior when the specified alignment
|
|
// is smaller than the specified packing?
|
|
if (FieldPacking)
|
|
FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
|
|
if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
|
|
FieldAlign = std::max(FieldAlign, AA->getAlignment());
|
|
|
|
// Round up the current record size to the field's alignment boundary.
|
|
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
|
|
}
|
|
|
|
// Place this field at the current location.
|
|
FieldOffsets[FieldNo] = FieldOffset;
|
|
|
|
// Reserve space for this field.
|
|
if (IsUnion) {
|
|
Size = std::max(Size, FieldSize);
|
|
} else {
|
|
Size = FieldOffset + FieldSize;
|
|
}
|
|
|
|
// Remember max struct/class alignment.
|
|
Alignment = std::max(Alignment, FieldAlign);
|
|
}
|
|
|
|
static void CollectObjCIvars(const ObjCInterfaceDecl *OI,
|
|
std::vector<FieldDecl*> &Fields) {
|
|
const ObjCInterfaceDecl *SuperClass = OI->getSuperClass();
|
|
if (SuperClass)
|
|
CollectObjCIvars(SuperClass, Fields);
|
|
for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
|
|
E = OI->ivar_end(); I != E; ++I) {
|
|
ObjCIvarDecl *IVDecl = (*I);
|
|
if (!IVDecl->isInvalidDecl())
|
|
Fields.push_back(cast<FieldDecl>(IVDecl));
|
|
}
|
|
}
|
|
|
|
/// addRecordToClass - produces record info. for the class for its
|
|
/// ivars and all those inherited.
|
|
///
|
|
const RecordDecl *ASTContext::addRecordToClass(const ObjCInterfaceDecl *D)
|
|
{
|
|
const RecordDecl *&RD = ASTRecordForInterface[D];
|
|
if (RD)
|
|
return RD;
|
|
std::vector<FieldDecl*> RecFields;
|
|
CollectObjCIvars(D, RecFields);
|
|
RecordDecl *NewRD = RecordDecl::Create(*this, TagDecl::TK_struct, 0,
|
|
D->getLocation(),
|
|
D->getIdentifier());
|
|
/// FIXME! Can do collection of ivars and adding to the record while
|
|
/// doing it.
|
|
for (unsigned int i = 0; i != RecFields.size(); i++) {
|
|
FieldDecl *Field = FieldDecl::Create(*this, NewRD,
|
|
RecFields[i]->getLocation(),
|
|
RecFields[i]->getIdentifier(),
|
|
RecFields[i]->getType(),
|
|
RecFields[i]->getBitWidth(), false);
|
|
NewRD->addDecl(Field);
|
|
}
|
|
NewRD->completeDefinition(*this);
|
|
RD = NewRD;
|
|
return RD;
|
|
}
|
|
|
|
/// setFieldDecl - maps a field for the given Ivar reference node.
|
|
//
|
|
void ASTContext::setFieldDecl(const ObjCInterfaceDecl *OI,
|
|
const ObjCIvarDecl *Ivar,
|
|
const ObjCIvarRefExpr *MRef) {
|
|
FieldDecl *FD = (const_cast<ObjCInterfaceDecl *>(OI))->
|
|
lookupFieldDeclForIvar(*this, Ivar);
|
|
ASTFieldForIvarRef[MRef] = FD;
|
|
}
|
|
|
|
/// getASTObjcInterfaceLayout - Get or compute information about the layout of
|
|
/// the specified Objective C, which indicates its size and ivar
|
|
/// position information.
|
|
const ASTRecordLayout &
|
|
ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
|
|
// Look up this layout, if already laid out, return what we have.
|
|
const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
|
|
if (Entry) return *Entry;
|
|
|
|
// Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
|
|
// be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
|
|
ASTRecordLayout *NewEntry = NULL;
|
|
unsigned FieldCount = D->ivar_size();
|
|
if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
|
|
FieldCount++;
|
|
const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
|
|
unsigned Alignment = SL.getAlignment();
|
|
uint64_t Size = SL.getSize();
|
|
NewEntry = new ASTRecordLayout(Size, Alignment);
|
|
NewEntry->InitializeLayout(FieldCount);
|
|
// Super class is at the beginning of the layout.
|
|
NewEntry->SetFieldOffset(0, 0);
|
|
} else {
|
|
NewEntry = new ASTRecordLayout();
|
|
NewEntry->InitializeLayout(FieldCount);
|
|
}
|
|
Entry = NewEntry;
|
|
|
|
unsigned StructPacking = 0;
|
|
if (const PackedAttr *PA = D->getAttr<PackedAttr>())
|
|
StructPacking = PA->getAlignment();
|
|
|
|
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
|
|
NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
|
|
AA->getAlignment()));
|
|
|
|
// Layout each ivar sequentially.
|
|
unsigned i = 0;
|
|
for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
|
|
IVE = D->ivar_end(); IVI != IVE; ++IVI) {
|
|
const ObjCIvarDecl* Ivar = (*IVI);
|
|
NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
|
|
}
|
|
|
|
// Finally, round the size of the total struct up to the alignment of the
|
|
// struct itself.
|
|
NewEntry->FinalizeLayout();
|
|
return *NewEntry;
|
|
}
|
|
|
|
/// getASTRecordLayout - Get or compute information about the layout of the
|
|
/// specified record (struct/union/class), which indicates its size and field
|
|
/// position information.
|
|
const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
|
|
D = D->getDefinition(*this);
|
|
assert(D && "Cannot get layout of forward declarations!");
|
|
|
|
// Look up this layout, if already laid out, return what we have.
|
|
const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
|
|
if (Entry) return *Entry;
|
|
|
|
// Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
|
|
// be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
|
|
ASTRecordLayout *NewEntry = new ASTRecordLayout();
|
|
Entry = NewEntry;
|
|
|
|
// FIXME: Avoid linear walk through the fields, if possible.
|
|
NewEntry->InitializeLayout(std::distance(D->field_begin(), D->field_end()));
|
|
bool IsUnion = D->isUnion();
|
|
|
|
unsigned StructPacking = 0;
|
|
if (const PackedAttr *PA = D->getAttr<PackedAttr>())
|
|
StructPacking = PA->getAlignment();
|
|
|
|
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
|
|
NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
|
|
AA->getAlignment()));
|
|
|
|
// Layout each field, for now, just sequentially, respecting alignment. In
|
|
// the future, this will need to be tweakable by targets.
|
|
unsigned FieldIdx = 0;
|
|
for (RecordDecl::field_iterator Field = D->field_begin(),
|
|
FieldEnd = D->field_end();
|
|
Field != FieldEnd; (void)++Field, ++FieldIdx)
|
|
NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
|
|
|
|
// Finally, round the size of the total struct up to the alignment of the
|
|
// struct itself.
|
|
NewEntry->FinalizeLayout();
|
|
return *NewEntry;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type creation/memoization methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
|
|
QualType CanT = getCanonicalType(T);
|
|
if (CanT.getAddressSpace() == AddressSpace)
|
|
return T;
|
|
|
|
// If we are composing extended qualifiers together, merge together into one
|
|
// ExtQualType node.
|
|
unsigned CVRQuals = T.getCVRQualifiers();
|
|
QualType::GCAttrTypes GCAttr = QualType::GCNone;
|
|
Type *TypeNode = T.getTypePtr();
|
|
|
|
if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
|
|
// If this type already has an address space specified, it cannot get
|
|
// another one.
|
|
assert(EQT->getAddressSpace() == 0 &&
|
|
"Type cannot be in multiple addr spaces!");
|
|
GCAttr = EQT->getObjCGCAttr();
|
|
TypeNode = EQT->getBaseType();
|
|
}
|
|
|
|
// Check if we've already instantiated this type.
|
|
llvm::FoldingSetNodeID ID;
|
|
ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
|
|
void *InsertPos = 0;
|
|
if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(EXTQy, CVRQuals);
|
|
|
|
// If the base type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!TypeNode->isCanonical()) {
|
|
Canonical = getAddrSpaceQualType(CanT, AddressSpace);
|
|
|
|
// Update InsertPos, the previous call could have invalidated it.
|
|
ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
ExtQualType *New =
|
|
new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
|
|
ExtQualTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, CVRQuals);
|
|
}
|
|
|
|
QualType ASTContext::getObjCGCQualType(QualType T,
|
|
QualType::GCAttrTypes GCAttr) {
|
|
QualType CanT = getCanonicalType(T);
|
|
if (CanT.getObjCGCAttr() == GCAttr)
|
|
return T;
|
|
|
|
// If we are composing extended qualifiers together, merge together into one
|
|
// ExtQualType node.
|
|
unsigned CVRQuals = T.getCVRQualifiers();
|
|
Type *TypeNode = T.getTypePtr();
|
|
unsigned AddressSpace = 0;
|
|
|
|
if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
|
|
// If this type already has an address space specified, it cannot get
|
|
// another one.
|
|
assert(EQT->getObjCGCAttr() == QualType::GCNone &&
|
|
"Type cannot be in multiple addr spaces!");
|
|
AddressSpace = EQT->getAddressSpace();
|
|
TypeNode = EQT->getBaseType();
|
|
}
|
|
|
|
// Check if we've already instantiated an gc qual'd type of this type.
|
|
llvm::FoldingSetNodeID ID;
|
|
ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
|
|
void *InsertPos = 0;
|
|
if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(EXTQy, CVRQuals);
|
|
|
|
// If the base type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T->isCanonical()) {
|
|
Canonical = getObjCGCQualType(CanT, GCAttr);
|
|
|
|
// Update InsertPos, the previous call could have invalidated it.
|
|
ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
ExtQualType *New =
|
|
new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
|
|
ExtQualTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, CVRQuals);
|
|
}
|
|
|
|
/// getComplexType - Return the uniqued reference to the type for a complex
|
|
/// number with the specified element type.
|
|
QualType ASTContext::getComplexType(QualType T) {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
ComplexType::Profile(ID, T);
|
|
|
|
void *InsertPos = 0;
|
|
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(CT, 0);
|
|
|
|
// If the pointee type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T->isCanonical()) {
|
|
Canonical = getComplexType(getCanonicalType(T));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
ComplexType *New = new (*this,8) ComplexType(T, Canonical);
|
|
Types.push_back(New);
|
|
ComplexTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
|
|
llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
|
|
SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
|
|
FixedWidthIntType *&Entry = Map[Width];
|
|
if (!Entry)
|
|
Entry = new FixedWidthIntType(Width, Signed);
|
|
return QualType(Entry, 0);
|
|
}
|
|
|
|
/// getPointerType - Return the uniqued reference to the type for a pointer to
|
|
/// the specified type.
|
|
QualType ASTContext::getPointerType(QualType T) {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
PointerType::Profile(ID, T);
|
|
|
|
void *InsertPos = 0;
|
|
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(PT, 0);
|
|
|
|
// If the pointee type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T->isCanonical()) {
|
|
Canonical = getPointerType(getCanonicalType(T));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
PointerType *New = new (*this,8) PointerType(T, Canonical);
|
|
Types.push_back(New);
|
|
PointerTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getBlockPointerType - Return the uniqued reference to the type for
|
|
/// a pointer to the specified block.
|
|
QualType ASTContext::getBlockPointerType(QualType T) {
|
|
assert(T->isFunctionType() && "block of function types only");
|
|
// Unique pointers, to guarantee there is only one block of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
BlockPointerType::Profile(ID, T);
|
|
|
|
void *InsertPos = 0;
|
|
if (BlockPointerType *PT =
|
|
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(PT, 0);
|
|
|
|
// If the block pointee type isn't canonical, this won't be a canonical
|
|
// type either so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T->isCanonical()) {
|
|
Canonical = getBlockPointerType(getCanonicalType(T));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
BlockPointerType *NewIP =
|
|
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
|
|
Types.push_back(New);
|
|
BlockPointerTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getReferenceType - Return the uniqued reference to the type for a reference
|
|
/// to the specified type.
|
|
QualType ASTContext::getReferenceType(QualType T) {
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
ReferenceType::Profile(ID, T);
|
|
|
|
void *InsertPos = 0;
|
|
if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(RT, 0);
|
|
|
|
// If the referencee type isn't canonical, this won't be a canonical type
|
|
// either, so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T->isCanonical()) {
|
|
Canonical = getReferenceType(getCanonicalType(T));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
|
|
ReferenceType *New = new (*this,8) ReferenceType(T, Canonical);
|
|
Types.push_back(New);
|
|
ReferenceTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getMemberPointerType - Return the uniqued reference to the type for a
|
|
/// member pointer to the specified type, in the specified class.
|
|
QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
|
|
{
|
|
// Unique pointers, to guarantee there is only one pointer of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
MemberPointerType::Profile(ID, T, Cls);
|
|
|
|
void *InsertPos = 0;
|
|
if (MemberPointerType *PT =
|
|
MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(PT, 0);
|
|
|
|
// If the pointee or class type isn't canonical, this won't be a canonical
|
|
// type either, so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!T->isCanonical()) {
|
|
Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
MemberPointerType *NewIP =
|
|
MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
|
|
Types.push_back(New);
|
|
MemberPointerTypes.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getConstantArrayType - Return the unique reference to the type for an
|
|
/// array of the specified element type.
|
|
QualType ASTContext::getConstantArrayType(QualType EltTy,
|
|
const llvm::APInt &ArySize,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned EltTypeQuals) {
|
|
llvm::FoldingSetNodeID ID;
|
|
ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
|
|
|
|
void *InsertPos = 0;
|
|
if (ConstantArrayType *ATP =
|
|
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(ATP, 0);
|
|
|
|
// If the element type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!EltTy->isCanonical()) {
|
|
Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
|
|
ASM, EltTypeQuals);
|
|
// Get the new insert position for the node we care about.
|
|
ConstantArrayType *NewIP =
|
|
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
|
|
ConstantArrayType *New =
|
|
new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
|
|
ConstantArrayTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getVariableArrayType - Returns a non-unique reference to the type for a
|
|
/// variable array of the specified element type.
|
|
QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned EltTypeQuals) {
|
|
// Since we don't unique expressions, it isn't possible to unique VLA's
|
|
// that have an expression provided for their size.
|
|
|
|
VariableArrayType *New =
|
|
new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
|
|
|
|
VariableArrayTypes.push_back(New);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getDependentSizedArrayType - Returns a non-unique reference to
|
|
/// the type for a dependently-sized array of the specified element
|
|
/// type. FIXME: We will need these to be uniqued, or at least
|
|
/// comparable, at some point.
|
|
QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned EltTypeQuals) {
|
|
assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
|
|
"Size must be type- or value-dependent!");
|
|
|
|
// Since we don't unique expressions, it isn't possible to unique
|
|
// dependently-sized array types.
|
|
|
|
DependentSizedArrayType *New =
|
|
new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
|
|
ASM, EltTypeQuals);
|
|
|
|
DependentSizedArrayTypes.push_back(New);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
QualType ASTContext::getIncompleteArrayType(QualType EltTy,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned EltTypeQuals) {
|
|
llvm::FoldingSetNodeID ID;
|
|
IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
|
|
|
|
void *InsertPos = 0;
|
|
if (IncompleteArrayType *ATP =
|
|
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(ATP, 0);
|
|
|
|
// If the element type isn't canonical, this won't be a canonical type
|
|
// either, so fill in the canonical type field.
|
|
QualType Canonical;
|
|
|
|
if (!EltTy->isCanonical()) {
|
|
Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
|
|
ASM, EltTypeQuals);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
IncompleteArrayType *NewIP =
|
|
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
|
|
IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
|
|
ASM, EltTypeQuals);
|
|
|
|
IncompleteArrayTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getVectorType - Return the unique reference to a vector type of
|
|
/// the specified element type and size. VectorType must be a built-in type.
|
|
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
|
|
BuiltinType *baseType;
|
|
|
|
baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
|
|
assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
|
|
|
|
// Check if we've already instantiated a vector of this type.
|
|
llvm::FoldingSetNodeID ID;
|
|
VectorType::Profile(ID, vecType, NumElts, Type::Vector);
|
|
void *InsertPos = 0;
|
|
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(VTP, 0);
|
|
|
|
// If the element type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!vecType->isCanonical()) {
|
|
Canonical = getVectorType(getCanonicalType(vecType), NumElts);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
|
|
VectorTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getExtVectorType - Return the unique reference to an extended vector type of
|
|
/// the specified element type and size. VectorType must be a built-in type.
|
|
QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
|
|
BuiltinType *baseType;
|
|
|
|
baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
|
|
assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
|
|
|
|
// Check if we've already instantiated a vector of this type.
|
|
llvm::FoldingSetNodeID ID;
|
|
VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
|
|
void *InsertPos = 0;
|
|
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(VTP, 0);
|
|
|
|
// If the element type isn't canonical, this won't be a canonical type either,
|
|
// so fill in the canonical type field.
|
|
QualType Canonical;
|
|
if (!vecType->isCanonical()) {
|
|
Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
|
|
VectorTypes.InsertNode(New, InsertPos);
|
|
Types.push_back(New);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
|
|
///
|
|
QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
|
|
// Unique functions, to guarantee there is only one function of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
FunctionTypeNoProto::Profile(ID, ResultTy);
|
|
|
|
void *InsertPos = 0;
|
|
if (FunctionTypeNoProto *FT =
|
|
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(FT, 0);
|
|
|
|
QualType Canonical;
|
|
if (!ResultTy->isCanonical()) {
|
|
Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy));
|
|
|
|
// Get the new insert position for the node we care about.
|
|
FunctionTypeNoProto *NewIP =
|
|
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
|
|
FunctionTypeNoProto *New =new(*this,8)FunctionTypeNoProto(ResultTy,Canonical);
|
|
Types.push_back(New);
|
|
FunctionTypeNoProtos.InsertNode(New, InsertPos);
|
|
return QualType(New, 0);
|
|
}
|
|
|
|
/// getFunctionType - Return a normal function type with a typed argument
|
|
/// list. isVariadic indicates whether the argument list includes '...'.
|
|
QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
|
|
unsigned NumArgs, bool isVariadic,
|
|
unsigned TypeQuals) {
|
|
// Unique functions, to guarantee there is only one function of a particular
|
|
// structure.
|
|
llvm::FoldingSetNodeID ID;
|
|
FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
|
|
TypeQuals);
|
|
|
|
void *InsertPos = 0;
|
|
if (FunctionTypeProto *FTP =
|
|
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(FTP, 0);
|
|
|
|
// Determine whether the type being created is already canonical or not.
|
|
bool isCanonical = ResultTy->isCanonical();
|
|
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
|
|
if (!ArgArray[i]->isCanonical())
|
|
isCanonical = false;
|
|
|
|
// If this type isn't canonical, get the canonical version of it.
|
|
QualType Canonical;
|
|
if (!isCanonical) {
|
|
llvm::SmallVector<QualType, 16> CanonicalArgs;
|
|
CanonicalArgs.reserve(NumArgs);
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
|
|
|
|
Canonical = getFunctionType(getCanonicalType(ResultTy),
|
|
&CanonicalArgs[0], NumArgs,
|
|
isVariadic, TypeQuals);
|
|
|
|
// Get the new insert position for the node we care about.
|
|
FunctionTypeProto *NewIP =
|
|
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
|
|
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
|
|
}
|
|
|
|
// FunctionTypeProto objects are allocated with extra bytes after them
|
|
// for a variable size array (for parameter types) at the end of them.
|
|
FunctionTypeProto *FTP =
|
|
(FunctionTypeProto*)Allocate(sizeof(FunctionTypeProto) +
|
|
NumArgs*sizeof(QualType), 8);
|
|
new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
|
|
TypeQuals, Canonical);
|
|
Types.push_back(FTP);
|
|
FunctionTypeProtos.InsertNode(FTP, InsertPos);
|
|
return QualType(FTP, 0);
|
|
}
|
|
|
|
/// getTypeDeclType - Return the unique reference to the type for the
|
|
/// specified type declaration.
|
|
QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
|
|
assert(Decl && "Passed null for Decl param");
|
|
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
|
|
|
|
if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
|
|
return getTypedefType(Typedef);
|
|
else if (isa<TemplateTypeParmDecl>(Decl)) {
|
|
assert(false && "Template type parameter types are always available.");
|
|
} else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
|
|
return getObjCInterfaceType(ObjCInterface);
|
|
|
|
if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Decl)) {
|
|
if (PrevDecl)
|
|
Decl->TypeForDecl = PrevDecl->TypeForDecl;
|
|
else
|
|
Decl->TypeForDecl = new (*this,8) CXXRecordType(CXXRecord);
|
|
}
|
|
else if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
|
|
if (PrevDecl)
|
|
Decl->TypeForDecl = PrevDecl->TypeForDecl;
|
|
else
|
|
Decl->TypeForDecl = new (*this,8) RecordType(Record);
|
|
}
|
|
else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
|
|
if (PrevDecl)
|
|
Decl->TypeForDecl = PrevDecl->TypeForDecl;
|
|
else
|
|
Decl->TypeForDecl = new (*this,8) EnumType(Enum);
|
|
}
|
|
else
|
|
assert(false && "TypeDecl without a type?");
|
|
|
|
if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
}
|
|
|
|
/// getTypedefType - Return the unique reference to the type for the
|
|
/// specified typename decl.
|
|
QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
|
|
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
|
|
|
|
QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
|
|
Decl->TypeForDecl = new(*this,8) TypedefType(Type::TypeName, Decl, Canonical);
|
|
Types.push_back(Decl->TypeForDecl);
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
}
|
|
|
|
/// getObjCInterfaceType - Return the unique reference to the type for the
|
|
/// specified ObjC interface decl.
|
|
QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
|
|
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
|
|
|
|
Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
|
|
Types.push_back(Decl->TypeForDecl);
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
}
|
|
|
|
/// buildObjCInterfaceType - Returns a new type for the interface
|
|
/// declaration, regardless. It also removes any previously built
|
|
/// record declaration so caller can rebuild it.
|
|
QualType ASTContext::buildObjCInterfaceType(ObjCInterfaceDecl *Decl) {
|
|
const RecordDecl *&RD = ASTRecordForInterface[Decl];
|
|
if (RD)
|
|
RD = 0;
|
|
Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, Decl);
|
|
Types.push_back(Decl->TypeForDecl);
|
|
return QualType(Decl->TypeForDecl, 0);
|
|
}
|
|
|
|
/// \brief Retrieve the template type parameter type for a template
|
|
/// parameter with the given depth, index, and (optionally) name.
|
|
QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
|
|
IdentifierInfo *Name) {
|
|
llvm::FoldingSetNodeID ID;
|
|
TemplateTypeParmType::Profile(ID, Depth, Index, Name);
|
|
void *InsertPos = 0;
|
|
TemplateTypeParmType *TypeParm
|
|
= TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (TypeParm)
|
|
return QualType(TypeParm, 0);
|
|
|
|
if (Name)
|
|
TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
|
|
getTemplateTypeParmType(Depth, Index));
|
|
else
|
|
TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
|
|
|
|
Types.push_back(TypeParm);
|
|
TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
|
|
|
|
return QualType(TypeParm, 0);
|
|
}
|
|
|
|
QualType
|
|
ASTContext::getClassTemplateSpecializationType(TemplateDecl *Template,
|
|
unsigned NumArgs,
|
|
uintptr_t *Args, bool *ArgIsType,
|
|
QualType Canon) {
|
|
llvm::FoldingSetNodeID ID;
|
|
ClassTemplateSpecializationType::Profile(ID, Template, NumArgs, Args,
|
|
ArgIsType);
|
|
void *InsertPos = 0;
|
|
ClassTemplateSpecializationType *Spec
|
|
= ClassTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (Spec)
|
|
return QualType(Spec, 0);
|
|
|
|
void *Mem = Allocate(sizeof(ClassTemplateSpecializationType) +
|
|
(sizeof(uintptr_t) *
|
|
(ClassTemplateSpecializationType::
|
|
getNumPackedWords(NumArgs) +
|
|
NumArgs)), 8);
|
|
Spec = new (Mem) ClassTemplateSpecializationType(Template, NumArgs, Args,
|
|
ArgIsType, Canon);
|
|
Types.push_back(Spec);
|
|
ClassTemplateSpecializationTypes.InsertNode(Spec, InsertPos);
|
|
|
|
return QualType(Spec, 0);
|
|
}
|
|
|
|
/// CmpProtocolNames - Comparison predicate for sorting protocols
|
|
/// alphabetically.
|
|
static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
|
|
const ObjCProtocolDecl *RHS) {
|
|
return LHS->getDeclName() < RHS->getDeclName();
|
|
}
|
|
|
|
static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
|
|
unsigned &NumProtocols) {
|
|
ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
|
|
|
|
// Sort protocols, keyed by name.
|
|
std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
|
|
|
|
// Remove duplicates.
|
|
ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
|
|
NumProtocols = ProtocolsEnd-Protocols;
|
|
}
|
|
|
|
|
|
/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
|
|
/// the given interface decl and the conforming protocol list.
|
|
QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
|
|
ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
|
|
// Sort the protocol list alphabetically to canonicalize it.
|
|
SortAndUniqueProtocols(Protocols, NumProtocols);
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
|
|
|
|
void *InsertPos = 0;
|
|
if (ObjCQualifiedInterfaceType *QT =
|
|
ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(QT, 0);
|
|
|
|
// No Match;
|
|
ObjCQualifiedInterfaceType *QType =
|
|
new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
|
|
|
|
Types.push_back(QType);
|
|
ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
|
|
return QualType(QType, 0);
|
|
}
|
|
|
|
/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
|
|
/// and the conforming protocol list.
|
|
QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
|
|
unsigned NumProtocols) {
|
|
// Sort the protocol list alphabetically to canonicalize it.
|
|
SortAndUniqueProtocols(Protocols, NumProtocols);
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
|
|
|
|
void *InsertPos = 0;
|
|
if (ObjCQualifiedIdType *QT =
|
|
ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(QT, 0);
|
|
|
|
// No Match;
|
|
ObjCQualifiedIdType *QType =
|
|
new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
|
|
Types.push_back(QType);
|
|
ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
|
|
return QualType(QType, 0);
|
|
}
|
|
|
|
/// getObjCQualifiedClassType - Return an ObjCQualifiedIdType for the 'Class'
|
|
/// decl and the conforming protocol list.
|
|
QualType ASTContext::getObjCQualifiedClassType(ObjCProtocolDecl **Protocols,
|
|
unsigned NumProtocols) {
|
|
// Sort the protocol list alphabetically to canonicalize it.
|
|
SortAndUniqueProtocols(Protocols, NumProtocols);
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
|
|
|
|
void *InsertPos = 0;
|
|
if (ObjCQualifiedClassType *QT =
|
|
ObjCQualifiedClassTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return QualType(QT, 0);
|
|
|
|
// No Match;
|
|
ObjCQualifiedClassType *QType =
|
|
new (*this,8) ObjCQualifiedClassType(Protocols, NumProtocols);
|
|
Types.push_back(QType);
|
|
ObjCQualifiedClassTypes.InsertNode(QType, InsertPos);
|
|
return QualType(QType, 0);
|
|
}
|
|
|
|
/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
|
|
/// TypeOfExpr AST's (since expression's are never shared). For example,
|
|
/// multiple declarations that refer to "typeof(x)" all contain different
|
|
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
|
|
/// on canonical type's (which are always unique).
|
|
QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
|
|
QualType Canonical = getCanonicalType(tofExpr->getType());
|
|
TypeOfExpr *toe = new (*this,8) TypeOfExpr(tofExpr, Canonical);
|
|
Types.push_back(toe);
|
|
return QualType(toe, 0);
|
|
}
|
|
|
|
/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
|
|
/// TypeOfType AST's. The only motivation to unique these nodes would be
|
|
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
|
|
/// an issue. This doesn't effect the type checker, since it operates
|
|
/// on canonical type's (which are always unique).
|
|
QualType ASTContext::getTypeOfType(QualType tofType) {
|
|
QualType Canonical = getCanonicalType(tofType);
|
|
TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
|
|
Types.push_back(tot);
|
|
return QualType(tot, 0);
|
|
}
|
|
|
|
/// getTagDeclType - Return the unique reference to the type for the
|
|
/// specified TagDecl (struct/union/class/enum) decl.
|
|
QualType ASTContext::getTagDeclType(TagDecl *Decl) {
|
|
assert (Decl);
|
|
return getTypeDeclType(Decl);
|
|
}
|
|
|
|
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
|
|
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
|
|
/// needs to agree with the definition in <stddef.h>.
|
|
QualType ASTContext::getSizeType() const {
|
|
return getFromTargetType(Target.getSizeType());
|
|
}
|
|
|
|
/// getWCharType - Return the unique type for "wchar_t" (C99 7.17), the
|
|
/// width of characters in wide strings, The value is target dependent and
|
|
/// needs to agree with the definition in <stddef.h>.
|
|
QualType ASTContext::getWCharType() const {
|
|
if (LangOpts.CPlusPlus)
|
|
return WCharTy;
|
|
|
|
// FIXME: In C, shouldn't WCharTy just be a typedef of the target's
|
|
// wide-character type?
|
|
return getFromTargetType(Target.getWCharType());
|
|
}
|
|
|
|
/// getSignedWCharType - Return the type of "signed wchar_t".
|
|
/// Used when in C++, as a GCC extension.
|
|
QualType ASTContext::getSignedWCharType() const {
|
|
// FIXME: derive from "Target" ?
|
|
return WCharTy;
|
|
}
|
|
|
|
/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
|
|
/// Used when in C++, as a GCC extension.
|
|
QualType ASTContext::getUnsignedWCharType() const {
|
|
// FIXME: derive from "Target" ?
|
|
return UnsignedIntTy;
|
|
}
|
|
|
|
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
|
|
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
|
|
QualType ASTContext::getPointerDiffType() const {
|
|
return getFromTargetType(Target.getPtrDiffType(0));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getCanonicalType - Return the canonical (structural) type corresponding to
|
|
/// the specified potentially non-canonical type. The non-canonical version
|
|
/// of a type may have many "decorated" versions of types. Decorators can
|
|
/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
|
|
/// to be free of any of these, allowing two canonical types to be compared
|
|
/// for exact equality with a simple pointer comparison.
|
|
QualType ASTContext::getCanonicalType(QualType T) {
|
|
QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
|
|
|
|
// If the result has type qualifiers, make sure to canonicalize them as well.
|
|
unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
|
|
if (TypeQuals == 0) return CanType;
|
|
|
|
// If the type qualifiers are on an array type, get the canonical type of the
|
|
// array with the qualifiers applied to the element type.
|
|
ArrayType *AT = dyn_cast<ArrayType>(CanType);
|
|
if (!AT)
|
|
return CanType.getQualifiedType(TypeQuals);
|
|
|
|
// Get the canonical version of the element with the extra qualifiers on it.
|
|
// This can recursively sink qualifiers through multiple levels of arrays.
|
|
QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
|
|
NewEltTy = getCanonicalType(NewEltTy);
|
|
|
|
if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
|
|
return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
|
|
CAT->getIndexTypeQualifier());
|
|
if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
|
|
return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
|
|
IAT->getIndexTypeQualifier());
|
|
|
|
if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
|
|
return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
|
|
DSAT->getSizeModifier(),
|
|
DSAT->getIndexTypeQualifier());
|
|
|
|
VariableArrayType *VAT = cast<VariableArrayType>(AT);
|
|
return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
|
|
VAT->getSizeModifier(),
|
|
VAT->getIndexTypeQualifier());
|
|
}
|
|
|
|
|
|
const ArrayType *ASTContext::getAsArrayType(QualType T) {
|
|
// Handle the non-qualified case efficiently.
|
|
if (T.getCVRQualifiers() == 0) {
|
|
// Handle the common positive case fast.
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(T))
|
|
return AT;
|
|
}
|
|
|
|
// Handle the common negative case fast, ignoring CVR qualifiers.
|
|
QualType CType = T->getCanonicalTypeInternal();
|
|
|
|
// Make sure to look through type qualifiers (like ExtQuals) for the negative
|
|
// test.
|
|
if (!isa<ArrayType>(CType) &&
|
|
!isa<ArrayType>(CType.getUnqualifiedType()))
|
|
return 0;
|
|
|
|
// Apply any CVR qualifiers from the array type to the element type. This
|
|
// implements C99 6.7.3p8: "If the specification of an array type includes
|
|
// any type qualifiers, the element type is so qualified, not the array type."
|
|
|
|
// If we get here, we either have type qualifiers on the type, or we have
|
|
// sugar such as a typedef in the way. If we have type qualifiers on the type
|
|
// we must propagate them down into the elemeng type.
|
|
unsigned CVRQuals = T.getCVRQualifiers();
|
|
unsigned AddrSpace = 0;
|
|
Type *Ty = T.getTypePtr();
|
|
|
|
// Rip through ExtQualType's and typedefs to get to a concrete type.
|
|
while (1) {
|
|
if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
|
|
AddrSpace = EXTQT->getAddressSpace();
|
|
Ty = EXTQT->getBaseType();
|
|
} else {
|
|
T = Ty->getDesugaredType();
|
|
if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
|
|
break;
|
|
CVRQuals |= T.getCVRQualifiers();
|
|
Ty = T.getTypePtr();
|
|
}
|
|
}
|
|
|
|
// If we have a simple case, just return now.
|
|
const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
|
|
if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
|
|
return ATy;
|
|
|
|
// Otherwise, we have an array and we have qualifiers on it. Push the
|
|
// qualifiers into the array element type and return a new array type.
|
|
// Get the canonical version of the element with the extra qualifiers on it.
|
|
// This can recursively sink qualifiers through multiple levels of arrays.
|
|
QualType NewEltTy = ATy->getElementType();
|
|
if (AddrSpace)
|
|
NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
|
|
NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
|
|
|
|
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
|
|
return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
|
|
CAT->getSizeModifier(),
|
|
CAT->getIndexTypeQualifier()));
|
|
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
|
|
return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
|
|
IAT->getSizeModifier(),
|
|
IAT->getIndexTypeQualifier()));
|
|
|
|
if (const DependentSizedArrayType *DSAT
|
|
= dyn_cast<DependentSizedArrayType>(ATy))
|
|
return cast<ArrayType>(
|
|
getDependentSizedArrayType(NewEltTy,
|
|
DSAT->getSizeExpr(),
|
|
DSAT->getSizeModifier(),
|
|
DSAT->getIndexTypeQualifier()));
|
|
|
|
const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
|
|
return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
|
|
VAT->getSizeModifier(),
|
|
VAT->getIndexTypeQualifier()));
|
|
}
|
|
|
|
|
|
/// getArrayDecayedType - Return the properly qualified result of decaying the
|
|
/// specified array type to a pointer. This operation is non-trivial when
|
|
/// handling typedefs etc. The canonical type of "T" must be an array type,
|
|
/// this returns a pointer to a properly qualified element of the array.
|
|
///
|
|
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
|
|
QualType ASTContext::getArrayDecayedType(QualType Ty) {
|
|
// Get the element type with 'getAsArrayType' so that we don't lose any
|
|
// typedefs in the element type of the array. This also handles propagation
|
|
// of type qualifiers from the array type into the element type if present
|
|
// (C99 6.7.3p8).
|
|
const ArrayType *PrettyArrayType = getAsArrayType(Ty);
|
|
assert(PrettyArrayType && "Not an array type!");
|
|
|
|
QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
|
|
|
|
// int x[restrict 4] -> int *restrict
|
|
return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
|
|
}
|
|
|
|
QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
|
|
QualType ElemTy = VAT->getElementType();
|
|
|
|
if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
|
|
return getBaseElementType(VAT);
|
|
|
|
return ElemTy;
|
|
}
|
|
|
|
/// getFloatingRank - Return a relative rank for floating point types.
|
|
/// This routine will assert if passed a built-in type that isn't a float.
|
|
static FloatingRank getFloatingRank(QualType T) {
|
|
if (const ComplexType *CT = T->getAsComplexType())
|
|
return getFloatingRank(CT->getElementType());
|
|
|
|
assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
|
|
switch (T->getAsBuiltinType()->getKind()) {
|
|
default: assert(0 && "getFloatingRank(): not a floating type");
|
|
case BuiltinType::Float: return FloatRank;
|
|
case BuiltinType::Double: return DoubleRank;
|
|
case BuiltinType::LongDouble: return LongDoubleRank;
|
|
}
|
|
}
|
|
|
|
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
|
|
/// point or a complex type (based on typeDomain/typeSize).
|
|
/// 'typeDomain' is a real floating point or complex type.
|
|
/// 'typeSize' is a real floating point or complex type.
|
|
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
|
|
QualType Domain) const {
|
|
FloatingRank EltRank = getFloatingRank(Size);
|
|
if (Domain->isComplexType()) {
|
|
switch (EltRank) {
|
|
default: assert(0 && "getFloatingRank(): illegal value for rank");
|
|
case FloatRank: return FloatComplexTy;
|
|
case DoubleRank: return DoubleComplexTy;
|
|
case LongDoubleRank: return LongDoubleComplexTy;
|
|
}
|
|
}
|
|
|
|
assert(Domain->isRealFloatingType() && "Unknown domain!");
|
|
switch (EltRank) {
|
|
default: assert(0 && "getFloatingRank(): illegal value for rank");
|
|
case FloatRank: return FloatTy;
|
|
case DoubleRank: return DoubleTy;
|
|
case LongDoubleRank: return LongDoubleTy;
|
|
}
|
|
}
|
|
|
|
/// getFloatingTypeOrder - Compare the rank of the two specified floating
|
|
/// point types, ignoring the domain of the type (i.e. 'double' ==
|
|
/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
|
|
/// LHS < RHS, return -1.
|
|
int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
|
|
FloatingRank LHSR = getFloatingRank(LHS);
|
|
FloatingRank RHSR = getFloatingRank(RHS);
|
|
|
|
if (LHSR == RHSR)
|
|
return 0;
|
|
if (LHSR > RHSR)
|
|
return 1;
|
|
return -1;
|
|
}
|
|
|
|
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
|
|
/// routine will assert if passed a built-in type that isn't an integer or enum,
|
|
/// or if it is not canonicalized.
|
|
unsigned ASTContext::getIntegerRank(Type *T) {
|
|
assert(T->isCanonical() && "T should be canonicalized");
|
|
if (EnumType* ET = dyn_cast<EnumType>(T))
|
|
T = ET->getDecl()->getIntegerType().getTypePtr();
|
|
|
|
// There are two things which impact the integer rank: the width, and
|
|
// the ordering of builtins. The builtin ordering is encoded in the
|
|
// bottom three bits; the width is encoded in the bits above that.
|
|
if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
|
|
return FWIT->getWidth() << 3;
|
|
}
|
|
|
|
switch (cast<BuiltinType>(T)->getKind()) {
|
|
default: assert(0 && "getIntegerRank(): not a built-in integer");
|
|
case BuiltinType::Bool:
|
|
return 1 + (getIntWidth(BoolTy) << 3);
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
return 2 + (getIntWidth(CharTy) << 3);
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
return 3 + (getIntWidth(ShortTy) << 3);
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
return 4 + (getIntWidth(IntTy) << 3);
|
|
case BuiltinType::Long:
|
|
case BuiltinType::ULong:
|
|
return 5 + (getIntWidth(LongTy) << 3);
|
|
case BuiltinType::LongLong:
|
|
case BuiltinType::ULongLong:
|
|
return 6 + (getIntWidth(LongLongTy) << 3);
|
|
}
|
|
}
|
|
|
|
/// getIntegerTypeOrder - Returns the highest ranked integer type:
|
|
/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
|
|
/// LHS < RHS, return -1.
|
|
int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
|
|
Type *LHSC = getCanonicalType(LHS).getTypePtr();
|
|
Type *RHSC = getCanonicalType(RHS).getTypePtr();
|
|
if (LHSC == RHSC) return 0;
|
|
|
|
bool LHSUnsigned = LHSC->isUnsignedIntegerType();
|
|
bool RHSUnsigned = RHSC->isUnsignedIntegerType();
|
|
|
|
unsigned LHSRank = getIntegerRank(LHSC);
|
|
unsigned RHSRank = getIntegerRank(RHSC);
|
|
|
|
if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
|
|
if (LHSRank == RHSRank) return 0;
|
|
return LHSRank > RHSRank ? 1 : -1;
|
|
}
|
|
|
|
// Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
|
|
if (LHSUnsigned) {
|
|
// If the unsigned [LHS] type is larger, return it.
|
|
if (LHSRank >= RHSRank)
|
|
return 1;
|
|
|
|
// If the signed type can represent all values of the unsigned type, it
|
|
// wins. Because we are dealing with 2's complement and types that are
|
|
// powers of two larger than each other, this is always safe.
|
|
return -1;
|
|
}
|
|
|
|
// If the unsigned [RHS] type is larger, return it.
|
|
if (RHSRank >= LHSRank)
|
|
return -1;
|
|
|
|
// If the signed type can represent all values of the unsigned type, it
|
|
// wins. Because we are dealing with 2's complement and types that are
|
|
// powers of two larger than each other, this is always safe.
|
|
return 1;
|
|
}
|
|
|
|
// getCFConstantStringType - Return the type used for constant CFStrings.
|
|
QualType ASTContext::getCFConstantStringType() {
|
|
if (!CFConstantStringTypeDecl) {
|
|
CFConstantStringTypeDecl =
|
|
RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
|
|
&Idents.get("NSConstantString"));
|
|
QualType FieldTypes[4];
|
|
|
|
// const int *isa;
|
|
FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
|
|
// int flags;
|
|
FieldTypes[1] = IntTy;
|
|
// const char *str;
|
|
FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
|
|
// long length;
|
|
FieldTypes[3] = LongTy;
|
|
|
|
// Create fields
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
|
|
SourceLocation(), 0,
|
|
FieldTypes[i], /*BitWidth=*/0,
|
|
/*Mutable=*/false);
|
|
CFConstantStringTypeDecl->addDecl(Field);
|
|
}
|
|
|
|
CFConstantStringTypeDecl->completeDefinition(*this);
|
|
}
|
|
|
|
return getTagDeclType(CFConstantStringTypeDecl);
|
|
}
|
|
|
|
QualType ASTContext::getObjCFastEnumerationStateType()
|
|
{
|
|
if (!ObjCFastEnumerationStateTypeDecl) {
|
|
ObjCFastEnumerationStateTypeDecl =
|
|
RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
|
|
&Idents.get("__objcFastEnumerationState"));
|
|
|
|
QualType FieldTypes[] = {
|
|
UnsignedLongTy,
|
|
getPointerType(ObjCIdType),
|
|
getPointerType(UnsignedLongTy),
|
|
getConstantArrayType(UnsignedLongTy,
|
|
llvm::APInt(32, 5), ArrayType::Normal, 0)
|
|
};
|
|
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(*this,
|
|
ObjCFastEnumerationStateTypeDecl,
|
|
SourceLocation(), 0,
|
|
FieldTypes[i], /*BitWidth=*/0,
|
|
/*Mutable=*/false);
|
|
ObjCFastEnumerationStateTypeDecl->addDecl(Field);
|
|
}
|
|
|
|
ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
|
|
}
|
|
|
|
return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
|
|
}
|
|
|
|
// This returns true if a type has been typedefed to BOOL:
|
|
// typedef <type> BOOL;
|
|
static bool isTypeTypedefedAsBOOL(QualType T) {
|
|
if (const TypedefType *TT = dyn_cast<TypedefType>(T))
|
|
if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
|
|
return II->isStr("BOOL");
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
|
|
/// purpose.
|
|
int ASTContext::getObjCEncodingTypeSize(QualType type) {
|
|
uint64_t sz = getTypeSize(type);
|
|
|
|
// Make all integer and enum types at least as large as an int
|
|
if (sz > 0 && type->isIntegralType())
|
|
sz = std::max(sz, getTypeSize(IntTy));
|
|
// Treat arrays as pointers, since that's how they're passed in.
|
|
else if (type->isArrayType())
|
|
sz = getTypeSize(VoidPtrTy);
|
|
return sz / getTypeSize(CharTy);
|
|
}
|
|
|
|
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
|
|
/// declaration.
|
|
void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
|
|
std::string& S) {
|
|
// FIXME: This is not very efficient.
|
|
// Encode type qualifer, 'in', 'inout', etc. for the return type.
|
|
getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
|
|
// Encode result type.
|
|
getObjCEncodingForType(Decl->getResultType(), S);
|
|
// Compute size of all parameters.
|
|
// Start with computing size of a pointer in number of bytes.
|
|
// FIXME: There might(should) be a better way of doing this computation!
|
|
SourceLocation Loc;
|
|
int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
|
|
// The first two arguments (self and _cmd) are pointers; account for
|
|
// their size.
|
|
int ParmOffset = 2 * PtrSize;
|
|
for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
|
|
E = Decl->param_end(); PI != E; ++PI) {
|
|
QualType PType = (*PI)->getType();
|
|
int sz = getObjCEncodingTypeSize(PType);
|
|
assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
|
|
ParmOffset += sz;
|
|
}
|
|
S += llvm::utostr(ParmOffset);
|
|
S += "@0:";
|
|
S += llvm::utostr(PtrSize);
|
|
|
|
// Argument types.
|
|
ParmOffset = 2 * PtrSize;
|
|
for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
|
|
E = Decl->param_end(); PI != E; ++PI) {
|
|
ParmVarDecl *PVDecl = *PI;
|
|
QualType PType = PVDecl->getOriginalType();
|
|
if (const ArrayType *AT =
|
|
dyn_cast<ArrayType>(PType->getCanonicalTypeInternal()))
|
|
// Use array's original type only if it has known number of
|
|
// elements.
|
|
if (!dyn_cast<ConstantArrayType>(AT))
|
|
PType = PVDecl->getType();
|
|
// Process argument qualifiers for user supplied arguments; such as,
|
|
// 'in', 'inout', etc.
|
|
getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
|
|
getObjCEncodingForType(PType, S);
|
|
S += llvm::utostr(ParmOffset);
|
|
ParmOffset += getObjCEncodingTypeSize(PType);
|
|
}
|
|
}
|
|
|
|
/// getObjCEncodingForPropertyDecl - Return the encoded type for this
|
|
/// property declaration. If non-NULL, Container must be either an
|
|
/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
|
|
/// NULL when getting encodings for protocol properties.
|
|
/// Property attributes are stored as a comma-delimited C string. The simple
|
|
/// attributes readonly and bycopy are encoded as single characters. The
|
|
/// parametrized attributes, getter=name, setter=name, and ivar=name, are
|
|
/// encoded as single characters, followed by an identifier. Property types
|
|
/// are also encoded as a parametrized attribute. The characters used to encode
|
|
/// these attributes are defined by the following enumeration:
|
|
/// @code
|
|
/// enum PropertyAttributes {
|
|
/// kPropertyReadOnly = 'R', // property is read-only.
|
|
/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
|
|
/// kPropertyByref = '&', // property is a reference to the value last assigned
|
|
/// kPropertyDynamic = 'D', // property is dynamic
|
|
/// kPropertyGetter = 'G', // followed by getter selector name
|
|
/// kPropertySetter = 'S', // followed by setter selector name
|
|
/// kPropertyInstanceVariable = 'V' // followed by instance variable name
|
|
/// kPropertyType = 't' // followed by old-style type encoding.
|
|
/// kPropertyWeak = 'W' // 'weak' property
|
|
/// kPropertyStrong = 'P' // property GC'able
|
|
/// kPropertyNonAtomic = 'N' // property non-atomic
|
|
/// };
|
|
/// @endcode
|
|
void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
|
|
const Decl *Container,
|
|
std::string& S) {
|
|
// Collect information from the property implementation decl(s).
|
|
bool Dynamic = false;
|
|
ObjCPropertyImplDecl *SynthesizePID = 0;
|
|
|
|
// FIXME: Duplicated code due to poor abstraction.
|
|
if (Container) {
|
|
if (const ObjCCategoryImplDecl *CID =
|
|
dyn_cast<ObjCCategoryImplDecl>(Container)) {
|
|
for (ObjCCategoryImplDecl::propimpl_iterator
|
|
i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) {
|
|
ObjCPropertyImplDecl *PID = *i;
|
|
if (PID->getPropertyDecl() == PD) {
|
|
if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
|
|
Dynamic = true;
|
|
} else {
|
|
SynthesizePID = PID;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
|
|
for (ObjCCategoryImplDecl::propimpl_iterator
|
|
i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) {
|
|
ObjCPropertyImplDecl *PID = *i;
|
|
if (PID->getPropertyDecl() == PD) {
|
|
if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
|
|
Dynamic = true;
|
|
} else {
|
|
SynthesizePID = PID;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: This is not very efficient.
|
|
S = "T";
|
|
|
|
// Encode result type.
|
|
// GCC has some special rules regarding encoding of properties which
|
|
// closely resembles encoding of ivars.
|
|
getObjCEncodingForTypeImpl(PD->getType(), S, true, true, NULL,
|
|
true /* outermost type */,
|
|
true /* encoding for property */);
|
|
|
|
if (PD->isReadOnly()) {
|
|
S += ",R";
|
|
} else {
|
|
switch (PD->getSetterKind()) {
|
|
case ObjCPropertyDecl::Assign: break;
|
|
case ObjCPropertyDecl::Copy: S += ",C"; break;
|
|
case ObjCPropertyDecl::Retain: S += ",&"; break;
|
|
}
|
|
}
|
|
|
|
// It really isn't clear at all what this means, since properties
|
|
// are "dynamic by default".
|
|
if (Dynamic)
|
|
S += ",D";
|
|
|
|
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
|
|
S += ",N";
|
|
|
|
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
|
|
S += ",G";
|
|
S += PD->getGetterName().getAsString();
|
|
}
|
|
|
|
if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
|
|
S += ",S";
|
|
S += PD->getSetterName().getAsString();
|
|
}
|
|
|
|
if (SynthesizePID) {
|
|
const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
|
|
S += ",V";
|
|
S += OID->getNameAsString();
|
|
}
|
|
|
|
// FIXME: OBJCGC: weak & strong
|
|
}
|
|
|
|
/// getLegacyIntegralTypeEncoding -
|
|
/// Another legacy compatibility encoding: 32-bit longs are encoded as
|
|
/// 'l' or 'L' , but not always. For typedefs, we need to use
|
|
/// 'i' or 'I' instead if encoding a struct field, or a pointer!
|
|
///
|
|
void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
|
|
if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
|
|
if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
|
|
if (BT->getKind() == BuiltinType::ULong &&
|
|
((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
|
|
PointeeTy = UnsignedIntTy;
|
|
else
|
|
if (BT->getKind() == BuiltinType::Long &&
|
|
((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
|
|
PointeeTy = IntTy;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
|
|
FieldDecl *Field) const {
|
|
// We follow the behavior of gcc, expanding structures which are
|
|
// directly pointed to, and expanding embedded structures. Note that
|
|
// these rules are sufficient to prevent recursive encoding of the
|
|
// same type.
|
|
getObjCEncodingForTypeImpl(T, S, true, true, Field,
|
|
true /* outermost type */);
|
|
}
|
|
|
|
static void EncodeBitField(const ASTContext *Context, std::string& S,
|
|
FieldDecl *FD) {
|
|
const Expr *E = FD->getBitWidth();
|
|
assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
|
|
ASTContext *Ctx = const_cast<ASTContext*>(Context);
|
|
unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue();
|
|
S += 'b';
|
|
S += llvm::utostr(N);
|
|
}
|
|
|
|
void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
|
|
bool ExpandPointedToStructures,
|
|
bool ExpandStructures,
|
|
FieldDecl *FD,
|
|
bool OutermostType,
|
|
bool EncodingProperty) const {
|
|
if (const BuiltinType *BT = T->getAsBuiltinType()) {
|
|
if (FD && FD->isBitField()) {
|
|
EncodeBitField(this, S, FD);
|
|
}
|
|
else {
|
|
char encoding;
|
|
switch (BT->getKind()) {
|
|
default: assert(0 && "Unhandled builtin type kind");
|
|
case BuiltinType::Void: encoding = 'v'; break;
|
|
case BuiltinType::Bool: encoding = 'B'; break;
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::UChar: encoding = 'C'; break;
|
|
case BuiltinType::UShort: encoding = 'S'; break;
|
|
case BuiltinType::UInt: encoding = 'I'; break;
|
|
case BuiltinType::ULong:
|
|
encoding =
|
|
(const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
|
|
break;
|
|
case BuiltinType::ULongLong: encoding = 'Q'; break;
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::SChar: encoding = 'c'; break;
|
|
case BuiltinType::Short: encoding = 's'; break;
|
|
case BuiltinType::Int: encoding = 'i'; break;
|
|
case BuiltinType::Long:
|
|
encoding =
|
|
(const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
|
|
break;
|
|
case BuiltinType::LongLong: encoding = 'q'; break;
|
|
case BuiltinType::Float: encoding = 'f'; break;
|
|
case BuiltinType::Double: encoding = 'd'; break;
|
|
case BuiltinType::LongDouble: encoding = 'd'; break;
|
|
}
|
|
|
|
S += encoding;
|
|
}
|
|
}
|
|
else if (T->isObjCQualifiedIdType()) {
|
|
getObjCEncodingForTypeImpl(getObjCIdType(), S,
|
|
ExpandPointedToStructures,
|
|
ExpandStructures, FD);
|
|
if (FD || EncodingProperty) {
|
|
// Note that we do extended encoding of protocol qualifer list
|
|
// Only when doing ivar or property encoding.
|
|
const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
|
|
S += '"';
|
|
for (unsigned i =0; i < QIDT->getNumProtocols(); i++) {
|
|
ObjCProtocolDecl *Proto = QIDT->getProtocols(i);
|
|
S += '<';
|
|
S += Proto->getNameAsString();
|
|
S += '>';
|
|
}
|
|
S += '"';
|
|
}
|
|
return;
|
|
}
|
|
else if (const PointerType *PT = T->getAsPointerType()) {
|
|
QualType PointeeTy = PT->getPointeeType();
|
|
bool isReadOnly = false;
|
|
// For historical/compatibility reasons, the read-only qualifier of the
|
|
// pointee gets emitted _before_ the '^'. The read-only qualifier of
|
|
// the pointer itself gets ignored, _unless_ we are looking at a typedef!
|
|
// Also, do not emit the 'r' for anything but the outermost type!
|
|
if (dyn_cast<TypedefType>(T.getTypePtr())) {
|
|
if (OutermostType && T.isConstQualified()) {
|
|
isReadOnly = true;
|
|
S += 'r';
|
|
}
|
|
}
|
|
else if (OutermostType) {
|
|
QualType P = PointeeTy;
|
|
while (P->getAsPointerType())
|
|
P = P->getAsPointerType()->getPointeeType();
|
|
if (P.isConstQualified()) {
|
|
isReadOnly = true;
|
|
S += 'r';
|
|
}
|
|
}
|
|
if (isReadOnly) {
|
|
// Another legacy compatibility encoding. Some ObjC qualifier and type
|
|
// combinations need to be rearranged.
|
|
// Rewrite "in const" from "nr" to "rn"
|
|
const char * s = S.c_str();
|
|
int len = S.length();
|
|
if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
|
|
std::string replace = "rn";
|
|
S.replace(S.end()-2, S.end(), replace);
|
|
}
|
|
}
|
|
if (isObjCIdStructType(PointeeTy)) {
|
|
S += '@';
|
|
return;
|
|
}
|
|
else if (PointeeTy->isObjCInterfaceType()) {
|
|
if (!EncodingProperty &&
|
|
isa<TypedefType>(PointeeTy.getTypePtr())) {
|
|
// Another historical/compatibility reason.
|
|
// We encode the underlying type which comes out as
|
|
// {...};
|
|
S += '^';
|
|
getObjCEncodingForTypeImpl(PointeeTy, S,
|
|
false, ExpandPointedToStructures,
|
|
NULL);
|
|
return;
|
|
}
|
|
S += '@';
|
|
if (FD || EncodingProperty) {
|
|
const ObjCInterfaceType *OIT =
|
|
PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
|
|
ObjCInterfaceDecl *OI = OIT->getDecl();
|
|
S += '"';
|
|
S += OI->getNameAsCString();
|
|
for (unsigned i =0; i < OIT->getNumProtocols(); i++) {
|
|
ObjCProtocolDecl *Proto = OIT->getProtocol(i);
|
|
S += '<';
|
|
S += Proto->getNameAsString();
|
|
S += '>';
|
|
}
|
|
S += '"';
|
|
}
|
|
return;
|
|
} else if (isObjCClassStructType(PointeeTy)) {
|
|
S += '#';
|
|
return;
|
|
} else if (isObjCSelType(PointeeTy)) {
|
|
S += ':';
|
|
return;
|
|
}
|
|
|
|
if (PointeeTy->isCharType()) {
|
|
// char pointer types should be encoded as '*' unless it is a
|
|
// type that has been typedef'd to 'BOOL'.
|
|
if (!isTypeTypedefedAsBOOL(PointeeTy)) {
|
|
S += '*';
|
|
return;
|
|
}
|
|
}
|
|
|
|
S += '^';
|
|
getLegacyIntegralTypeEncoding(PointeeTy);
|
|
|
|
getObjCEncodingForTypeImpl(PointeeTy, S,
|
|
false, ExpandPointedToStructures,
|
|
NULL);
|
|
} else if (const ArrayType *AT =
|
|
// Ignore type qualifiers etc.
|
|
dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
|
|
if (isa<IncompleteArrayType>(AT)) {
|
|
// Incomplete arrays are encoded as a pointer to the array element.
|
|
S += '^';
|
|
|
|
getObjCEncodingForTypeImpl(AT->getElementType(), S,
|
|
false, ExpandStructures, FD);
|
|
} else {
|
|
S += '[';
|
|
|
|
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
|
|
S += llvm::utostr(CAT->getSize().getZExtValue());
|
|
else {
|
|
//Variable length arrays are encoded as a regular array with 0 elements.
|
|
assert(isa<VariableArrayType>(AT) && "Unknown array type!");
|
|
S += '0';
|
|
}
|
|
|
|
getObjCEncodingForTypeImpl(AT->getElementType(), S,
|
|
false, ExpandStructures, FD);
|
|
S += ']';
|
|
}
|
|
} else if (T->getAsFunctionType()) {
|
|
S += '?';
|
|
} else if (const RecordType *RTy = T->getAsRecordType()) {
|
|
RecordDecl *RDecl = RTy->getDecl();
|
|
S += RDecl->isUnion() ? '(' : '{';
|
|
// Anonymous structures print as '?'
|
|
if (const IdentifierInfo *II = RDecl->getIdentifier()) {
|
|
S += II->getName();
|
|
} else {
|
|
S += '?';
|
|
}
|
|
if (ExpandStructures) {
|
|
S += '=';
|
|
for (RecordDecl::field_iterator Field = RDecl->field_begin(),
|
|
FieldEnd = RDecl->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
if (FD) {
|
|
S += '"';
|
|
S += Field->getNameAsString();
|
|
S += '"';
|
|
}
|
|
|
|
// Special case bit-fields.
|
|
if (Field->isBitField()) {
|
|
getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
|
|
(*Field));
|
|
} else {
|
|
QualType qt = Field->getType();
|
|
getLegacyIntegralTypeEncoding(qt);
|
|
getObjCEncodingForTypeImpl(qt, S, false, true,
|
|
FD);
|
|
}
|
|
}
|
|
}
|
|
S += RDecl->isUnion() ? ')' : '}';
|
|
} else if (T->isEnumeralType()) {
|
|
if (FD && FD->isBitField())
|
|
EncodeBitField(this, S, FD);
|
|
else
|
|
S += 'i';
|
|
} else if (T->isBlockPointerType()) {
|
|
S += "@?"; // Unlike a pointer-to-function, which is "^?".
|
|
} else if (T->isObjCInterfaceType()) {
|
|
// @encode(class_name)
|
|
ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
|
|
S += '{';
|
|
const IdentifierInfo *II = OI->getIdentifier();
|
|
S += II->getName();
|
|
S += '=';
|
|
std::vector<FieldDecl*> RecFields;
|
|
CollectObjCIvars(OI, RecFields);
|
|
for (unsigned int i = 0; i != RecFields.size(); i++) {
|
|
if (RecFields[i]->isBitField())
|
|
getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
|
|
RecFields[i]);
|
|
else
|
|
getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
|
|
FD);
|
|
}
|
|
S += '}';
|
|
}
|
|
else
|
|
assert(0 && "@encode for type not implemented!");
|
|
}
|
|
|
|
void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
|
|
std::string& S) const {
|
|
if (QT & Decl::OBJC_TQ_In)
|
|
S += 'n';
|
|
if (QT & Decl::OBJC_TQ_Inout)
|
|
S += 'N';
|
|
if (QT & Decl::OBJC_TQ_Out)
|
|
S += 'o';
|
|
if (QT & Decl::OBJC_TQ_Bycopy)
|
|
S += 'O';
|
|
if (QT & Decl::OBJC_TQ_Byref)
|
|
S += 'R';
|
|
if (QT & Decl::OBJC_TQ_Oneway)
|
|
S += 'V';
|
|
}
|
|
|
|
void ASTContext::setBuiltinVaListType(QualType T)
|
|
{
|
|
assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
|
|
|
|
BuiltinVaListType = T;
|
|
}
|
|
|
|
void ASTContext::setObjCIdType(TypedefDecl *TD)
|
|
{
|
|
ObjCIdType = getTypedefType(TD);
|
|
|
|
// typedef struct objc_object *id;
|
|
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
|
|
// User error - caller will issue diagnostics.
|
|
if (!ptr)
|
|
return;
|
|
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
|
|
// User error - caller will issue diagnostics.
|
|
if (!rec)
|
|
return;
|
|
IdStructType = rec;
|
|
}
|
|
|
|
void ASTContext::setObjCSelType(TypedefDecl *TD)
|
|
{
|
|
ObjCSelType = getTypedefType(TD);
|
|
|
|
// typedef struct objc_selector *SEL;
|
|
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
|
|
if (!ptr)
|
|
return;
|
|
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
|
|
if (!rec)
|
|
return;
|
|
SelStructType = rec;
|
|
}
|
|
|
|
void ASTContext::setObjCProtoType(QualType QT)
|
|
{
|
|
ObjCProtoType = QT;
|
|
}
|
|
|
|
void ASTContext::setObjCClassType(TypedefDecl *TD)
|
|
{
|
|
ObjCClassType = getTypedefType(TD);
|
|
|
|
// typedef struct objc_class *Class;
|
|
const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
|
|
assert(ptr && "'Class' incorrectly typed");
|
|
const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
|
|
assert(rec && "'Class' incorrectly typed");
|
|
ClassStructType = rec;
|
|
}
|
|
|
|
void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
|
|
assert(ObjCConstantStringType.isNull() &&
|
|
"'NSConstantString' type already set!");
|
|
|
|
ObjCConstantStringType = getObjCInterfaceType(Decl);
|
|
}
|
|
|
|
/// getFromTargetType - Given one of the integer types provided by
|
|
/// TargetInfo, produce the corresponding type. The unsigned @p Type
|
|
/// is actually a value of type @c TargetInfo::IntType.
|
|
QualType ASTContext::getFromTargetType(unsigned Type) const {
|
|
switch (Type) {
|
|
case TargetInfo::NoInt: return QualType();
|
|
case TargetInfo::SignedShort: return ShortTy;
|
|
case TargetInfo::UnsignedShort: return UnsignedShortTy;
|
|
case TargetInfo::SignedInt: return IntTy;
|
|
case TargetInfo::UnsignedInt: return UnsignedIntTy;
|
|
case TargetInfo::SignedLong: return LongTy;
|
|
case TargetInfo::UnsignedLong: return UnsignedLongTy;
|
|
case TargetInfo::SignedLongLong: return LongLongTy;
|
|
case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
|
|
}
|
|
|
|
assert(false && "Unhandled TargetInfo::IntType value");
|
|
return QualType();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Predicates.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isObjCNSObjectType - Return true if this is an NSObject object using
|
|
/// NSObject attribute on a c-style pointer type.
|
|
/// FIXME - Make it work directly on types.
|
|
///
|
|
bool ASTContext::isObjCNSObjectType(QualType Ty) const {
|
|
if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
|
|
if (TypedefDecl *TD = TDT->getDecl())
|
|
if (TD->getAttr<ObjCNSObjectAttr>())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
|
|
/// to an object type. This includes "id" and "Class" (two 'special' pointers
|
|
/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
|
|
/// ID type).
|
|
bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
|
|
if (Ty->isObjCQualifiedIdType() || Ty->isObjCQualifiedClassType())
|
|
return true;
|
|
|
|
// Blocks are objects.
|
|
if (Ty->isBlockPointerType())
|
|
return true;
|
|
|
|
// All other object types are pointers.
|
|
if (!Ty->isPointerType())
|
|
return false;
|
|
|
|
// Check to see if this is 'id' or 'Class', both of which are typedefs for
|
|
// pointer types. This looks for the typedef specifically, not for the
|
|
// underlying type.
|
|
if (Ty == getObjCIdType() || Ty == getObjCClassType())
|
|
return true;
|
|
|
|
// If this a pointer to an interface (e.g. NSString*), it is ok.
|
|
if (Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType())
|
|
return true;
|
|
|
|
// If is has NSObject attribute, OK as well.
|
|
return isObjCNSObjectType(Ty);
|
|
}
|
|
|
|
/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
|
|
/// garbage collection attribute.
|
|
///
|
|
QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
|
|
QualType::GCAttrTypes GCAttrs = QualType::GCNone;
|
|
if (getLangOptions().ObjC1 &&
|
|
getLangOptions().getGCMode() != LangOptions::NonGC) {
|
|
GCAttrs = Ty.getObjCGCAttr();
|
|
// Default behavious under objective-c's gc is for objective-c pointers
|
|
// (or pointers to them) be treated as though they were declared
|
|
// as __strong.
|
|
if (GCAttrs == QualType::GCNone) {
|
|
if (isObjCObjectPointerType(Ty))
|
|
GCAttrs = QualType::Strong;
|
|
else if (Ty->isPointerType())
|
|
return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
|
|
}
|
|
}
|
|
return GCAttrs;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Compatibility Testing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// typesAreBlockCompatible - This routine is called when comparing two
|
|
/// block types. Types must be strictly compatible here. For example,
|
|
/// C unfortunately doesn't produce an error for the following:
|
|
///
|
|
/// int (*emptyArgFunc)();
|
|
/// int (*intArgList)(int) = emptyArgFunc;
|
|
///
|
|
/// For blocks, we will produce an error for the following (similar to C++):
|
|
///
|
|
/// int (^emptyArgBlock)();
|
|
/// int (^intArgBlock)(int) = emptyArgBlock;
|
|
///
|
|
/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
|
|
///
|
|
bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
|
|
const FunctionType *lbase = lhs->getAsFunctionType();
|
|
const FunctionType *rbase = rhs->getAsFunctionType();
|
|
const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
|
|
const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
|
|
if (lproto && rproto)
|
|
return !mergeTypes(lhs, rhs).isNull();
|
|
return false;
|
|
}
|
|
|
|
/// areCompatVectorTypes - Return true if the two specified vector types are
|
|
/// compatible.
|
|
static bool areCompatVectorTypes(const VectorType *LHS,
|
|
const VectorType *RHS) {
|
|
assert(LHS->isCanonical() && RHS->isCanonical());
|
|
return LHS->getElementType() == RHS->getElementType() &&
|
|
LHS->getNumElements() == RHS->getNumElements();
|
|
}
|
|
|
|
/// canAssignObjCInterfaces - Return true if the two interface types are
|
|
/// compatible for assignment from RHS to LHS. This handles validation of any
|
|
/// protocol qualifiers on the LHS or RHS.
|
|
///
|
|
bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
|
|
const ObjCInterfaceType *RHS) {
|
|
// Verify that the base decls are compatible: the RHS must be a subclass of
|
|
// the LHS.
|
|
if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
|
|
return false;
|
|
|
|
// RHS must have a superset of the protocols in the LHS. If the LHS is not
|
|
// protocol qualified at all, then we are good.
|
|
if (!isa<ObjCQualifiedInterfaceType>(LHS))
|
|
return true;
|
|
|
|
// Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it
|
|
// isn't a superset.
|
|
if (!isa<ObjCQualifiedInterfaceType>(RHS))
|
|
return true; // FIXME: should return false!
|
|
|
|
// Finally, we must have two protocol-qualified interfaces.
|
|
const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
|
|
const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
|
|
ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin();
|
|
ObjCQualifiedInterfaceType::qual_iterator LHSPE = LHSP->qual_end();
|
|
ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin();
|
|
ObjCQualifiedInterfaceType::qual_iterator RHSPE = RHSP->qual_end();
|
|
|
|
// All protocols in LHS must have a presence in RHS. Since the protocol lists
|
|
// are both sorted alphabetically and have no duplicates, we can scan RHS and
|
|
// LHS in a single parallel scan until we run out of elements in LHS.
|
|
assert(LHSPI != LHSPE && "Empty LHS protocol list?");
|
|
ObjCProtocolDecl *LHSProto = *LHSPI;
|
|
|
|
while (RHSPI != RHSPE) {
|
|
ObjCProtocolDecl *RHSProto = *RHSPI++;
|
|
// If the RHS has a protocol that the LHS doesn't, ignore it.
|
|
if (RHSProto != LHSProto)
|
|
continue;
|
|
|
|
// Otherwise, the RHS does have this element.
|
|
++LHSPI;
|
|
if (LHSPI == LHSPE)
|
|
return true; // All protocols in LHS exist in RHS.
|
|
|
|
LHSProto = *LHSPI;
|
|
}
|
|
|
|
// If we got here, we didn't find one of the LHS's protocols in the RHS list.
|
|
return false;
|
|
}
|
|
|
|
bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
|
|
// get the "pointed to" types
|
|
const PointerType *LHSPT = LHS->getAsPointerType();
|
|
const PointerType *RHSPT = RHS->getAsPointerType();
|
|
|
|
if (!LHSPT || !RHSPT)
|
|
return false;
|
|
|
|
QualType lhptee = LHSPT->getPointeeType();
|
|
QualType rhptee = RHSPT->getPointeeType();
|
|
const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
|
|
const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
|
|
// ID acts sort of like void* for ObjC interfaces
|
|
if (LHSIface && isObjCIdStructType(rhptee))
|
|
return true;
|
|
if (RHSIface && isObjCIdStructType(lhptee))
|
|
return true;
|
|
if (!LHSIface || !RHSIface)
|
|
return false;
|
|
return canAssignObjCInterfaces(LHSIface, RHSIface) ||
|
|
canAssignObjCInterfaces(RHSIface, LHSIface);
|
|
}
|
|
|
|
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
|
|
/// both shall have the identically qualified version of a compatible type.
|
|
/// C99 6.2.7p1: Two types have compatible types if their types are the
|
|
/// same. See 6.7.[2,3,5] for additional rules.
|
|
bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
|
|
return !mergeTypes(LHS, RHS).isNull();
|
|
}
|
|
|
|
QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
|
|
const FunctionType *lbase = lhs->getAsFunctionType();
|
|
const FunctionType *rbase = rhs->getAsFunctionType();
|
|
const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
|
|
const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
|
|
bool allLTypes = true;
|
|
bool allRTypes = true;
|
|
|
|
// Check return type
|
|
QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
|
|
if (retType.isNull()) return QualType();
|
|
if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
|
|
allLTypes = false;
|
|
if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
|
|
allRTypes = false;
|
|
|
|
if (lproto && rproto) { // two C99 style function prototypes
|
|
unsigned lproto_nargs = lproto->getNumArgs();
|
|
unsigned rproto_nargs = rproto->getNumArgs();
|
|
|
|
// Compatible functions must have the same number of arguments
|
|
if (lproto_nargs != rproto_nargs)
|
|
return QualType();
|
|
|
|
// Variadic and non-variadic functions aren't compatible
|
|
if (lproto->isVariadic() != rproto->isVariadic())
|
|
return QualType();
|
|
|
|
if (lproto->getTypeQuals() != rproto->getTypeQuals())
|
|
return QualType();
|
|
|
|
// Check argument compatibility
|
|
llvm::SmallVector<QualType, 10> types;
|
|
for (unsigned i = 0; i < lproto_nargs; i++) {
|
|
QualType largtype = lproto->getArgType(i).getUnqualifiedType();
|
|
QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
|
|
QualType argtype = mergeTypes(largtype, rargtype);
|
|
if (argtype.isNull()) return QualType();
|
|
types.push_back(argtype);
|
|
if (getCanonicalType(argtype) != getCanonicalType(largtype))
|
|
allLTypes = false;
|
|
if (getCanonicalType(argtype) != getCanonicalType(rargtype))
|
|
allRTypes = false;
|
|
}
|
|
if (allLTypes) return lhs;
|
|
if (allRTypes) return rhs;
|
|
return getFunctionType(retType, types.begin(), types.size(),
|
|
lproto->isVariadic(), lproto->getTypeQuals());
|
|
}
|
|
|
|
if (lproto) allRTypes = false;
|
|
if (rproto) allLTypes = false;
|
|
|
|
const FunctionTypeProto *proto = lproto ? lproto : rproto;
|
|
if (proto) {
|
|
if (proto->isVariadic()) return QualType();
|
|
// Check that the types are compatible with the types that
|
|
// would result from default argument promotions (C99 6.7.5.3p15).
|
|
// The only types actually affected are promotable integer
|
|
// types and floats, which would be passed as a different
|
|
// type depending on whether the prototype is visible.
|
|
unsigned proto_nargs = proto->getNumArgs();
|
|
for (unsigned i = 0; i < proto_nargs; ++i) {
|
|
QualType argTy = proto->getArgType(i);
|
|
if (argTy->isPromotableIntegerType() ||
|
|
getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
|
|
return QualType();
|
|
}
|
|
|
|
if (allLTypes) return lhs;
|
|
if (allRTypes) return rhs;
|
|
return getFunctionType(retType, proto->arg_type_begin(),
|
|
proto->getNumArgs(), lproto->isVariadic(),
|
|
lproto->getTypeQuals());
|
|
}
|
|
|
|
if (allLTypes) return lhs;
|
|
if (allRTypes) return rhs;
|
|
return getFunctionTypeNoProto(retType);
|
|
}
|
|
|
|
QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
|
|
// C++ [expr]: If an expression initially has the type "reference to T", the
|
|
// type is adjusted to "T" prior to any further analysis, the expression
|
|
// designates the object or function denoted by the reference, and the
|
|
// expression is an lvalue.
|
|
// FIXME: C++ shouldn't be going through here! The rules are different
|
|
// enough that they should be handled separately.
|
|
if (const ReferenceType *RT = LHS->getAsReferenceType())
|
|
LHS = RT->getPointeeType();
|
|
if (const ReferenceType *RT = RHS->getAsReferenceType())
|
|
RHS = RT->getPointeeType();
|
|
|
|
QualType LHSCan = getCanonicalType(LHS),
|
|
RHSCan = getCanonicalType(RHS);
|
|
|
|
// If two types are identical, they are compatible.
|
|
if (LHSCan == RHSCan)
|
|
return LHS;
|
|
|
|
// If the qualifiers are different, the types aren't compatible
|
|
if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers() ||
|
|
LHSCan.getAddressSpace() != RHSCan.getAddressSpace())
|
|
return QualType();
|
|
|
|
Type::TypeClass LHSClass = LHSCan->getTypeClass();
|
|
Type::TypeClass RHSClass = RHSCan->getTypeClass();
|
|
|
|
// We want to consider the two function types to be the same for these
|
|
// comparisons, just force one to the other.
|
|
if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
|
|
if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
|
|
|
|
// Same as above for arrays
|
|
if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
|
|
LHSClass = Type::ConstantArray;
|
|
if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
|
|
RHSClass = Type::ConstantArray;
|
|
|
|
// Canonicalize ExtVector -> Vector.
|
|
if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
|
|
if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
|
|
|
|
// Consider qualified interfaces and interfaces the same.
|
|
if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
|
|
if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
|
|
|
|
// If the canonical type classes don't match.
|
|
if (LHSClass != RHSClass) {
|
|
const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
|
|
const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
|
|
|
|
// ID acts sort of like void* for ObjC interfaces
|
|
if (LHSIface && isObjCIdStructType(RHS))
|
|
return LHS;
|
|
if (RHSIface && isObjCIdStructType(LHS))
|
|
return RHS;
|
|
|
|
// ID is compatible with all qualified id types.
|
|
if (LHS->isObjCQualifiedIdType()) {
|
|
if (const PointerType *PT = RHS->getAsPointerType()) {
|
|
QualType pType = PT->getPointeeType();
|
|
if (isObjCIdStructType(pType))
|
|
return LHS;
|
|
// FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
|
|
// Unfortunately, this API is part of Sema (which we don't have access
|
|
// to. Need to refactor. The following check is insufficient, since we
|
|
// need to make sure the class implements the protocol.
|
|
if (pType->isObjCInterfaceType())
|
|
return LHS;
|
|
}
|
|
}
|
|
if (RHS->isObjCQualifiedIdType()) {
|
|
if (const PointerType *PT = LHS->getAsPointerType()) {
|
|
QualType pType = PT->getPointeeType();
|
|
if (isObjCIdStructType(pType))
|
|
return RHS;
|
|
// FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
|
|
// Unfortunately, this API is part of Sema (which we don't have access
|
|
// to. Need to refactor. The following check is insufficient, since we
|
|
// need to make sure the class implements the protocol.
|
|
if (pType->isObjCInterfaceType())
|
|
return RHS;
|
|
}
|
|
}
|
|
// C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
|
|
// a signed integer type, or an unsigned integer type.
|
|
if (const EnumType* ETy = LHS->getAsEnumType()) {
|
|
if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
|
|
return RHS;
|
|
}
|
|
if (const EnumType* ETy = RHS->getAsEnumType()) {
|
|
if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
|
|
return LHS;
|
|
}
|
|
|
|
return QualType();
|
|
}
|
|
|
|
// The canonical type classes match.
|
|
switch (LHSClass) {
|
|
case Type::Pointer:
|
|
{
|
|
// Merge two pointer types, while trying to preserve typedef info
|
|
QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
|
|
QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
|
|
QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
|
|
if (ResultType.isNull()) return QualType();
|
|
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
return getPointerType(ResultType);
|
|
}
|
|
case Type::BlockPointer:
|
|
{
|
|
// Merge two block pointer types, while trying to preserve typedef info
|
|
QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
|
|
QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
|
|
QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
|
|
if (ResultType.isNull()) return QualType();
|
|
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
return getBlockPointerType(ResultType);
|
|
}
|
|
case Type::ConstantArray:
|
|
{
|
|
const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
|
|
const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
|
|
if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
|
|
return QualType();
|
|
|
|
QualType LHSElem = getAsArrayType(LHS)->getElementType();
|
|
QualType RHSElem = getAsArrayType(RHS)->getElementType();
|
|
QualType ResultType = mergeTypes(LHSElem, RHSElem);
|
|
if (ResultType.isNull()) return QualType();
|
|
if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
|
|
ArrayType::ArraySizeModifier(), 0);
|
|
if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
|
|
ArrayType::ArraySizeModifier(), 0);
|
|
const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
|
|
const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
|
|
if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
|
|
return LHS;
|
|
if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
|
|
return RHS;
|
|
if (LVAT) {
|
|
// FIXME: This isn't correct! But tricky to implement because
|
|
// the array's size has to be the size of LHS, but the type
|
|
// has to be different.
|
|
return LHS;
|
|
}
|
|
if (RVAT) {
|
|
// FIXME: This isn't correct! But tricky to implement because
|
|
// the array's size has to be the size of RHS, but the type
|
|
// has to be different.
|
|
return RHS;
|
|
}
|
|
if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
|
|
if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
|
|
return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
|
|
}
|
|
case Type::FunctionNoProto:
|
|
return mergeFunctionTypes(LHS, RHS);
|
|
case Type::Tagged:
|
|
// FIXME: Why are these compatible?
|
|
if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
|
|
if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
|
|
return QualType();
|
|
case Type::Builtin:
|
|
// Only exactly equal builtin types are compatible, which is tested above.
|
|
return QualType();
|
|
case Type::Complex:
|
|
// Distinct complex types are incompatible.
|
|
return QualType();
|
|
case Type::Vector:
|
|
if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
|
|
return LHS;
|
|
return QualType();
|
|
case Type::ObjCInterface: {
|
|
// Check if the interfaces are assignment compatible.
|
|
const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
|
|
const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
|
|
if (LHSIface && RHSIface &&
|
|
canAssignObjCInterfaces(LHSIface, RHSIface))
|
|
return LHS;
|
|
|
|
return QualType();
|
|
}
|
|
case Type::ObjCQualifiedId:
|
|
// Distinct qualified id's are not compatible.
|
|
return QualType();
|
|
default:
|
|
assert(0 && "unexpected type");
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer Predicates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned ASTContext::getIntWidth(QualType T) {
|
|
if (T == BoolTy)
|
|
return 1;
|
|
if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
|
|
return FWIT->getWidth();
|
|
}
|
|
// For builtin types, just use the standard type sizing method
|
|
return (unsigned)getTypeSize(T);
|
|
}
|
|
|
|
QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
|
|
assert(T->isSignedIntegerType() && "Unexpected type");
|
|
if (const EnumType* ETy = T->getAsEnumType())
|
|
T = ETy->getDecl()->getIntegerType();
|
|
const BuiltinType* BTy = T->getAsBuiltinType();
|
|
assert (BTy && "Unexpected signed integer type");
|
|
switch (BTy->getKind()) {
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::SChar:
|
|
return UnsignedCharTy;
|
|
case BuiltinType::Short:
|
|
return UnsignedShortTy;
|
|
case BuiltinType::Int:
|
|
return UnsignedIntTy;
|
|
case BuiltinType::Long:
|
|
return UnsignedLongTy;
|
|
case BuiltinType::LongLong:
|
|
return UnsignedLongLongTy;
|
|
default:
|
|
assert(0 && "Unexpected signed integer type");
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Serialization Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Emit - Serialize an ASTContext object to Bitcode.
|
|
void ASTContext::Emit(llvm::Serializer& S) const {
|
|
S.Emit(LangOpts);
|
|
S.EmitRef(SourceMgr);
|
|
S.EmitRef(Target);
|
|
S.EmitRef(Idents);
|
|
S.EmitRef(Selectors);
|
|
|
|
// Emit the size of the type vector so that we can reserve that size
|
|
// when we reconstitute the ASTContext object.
|
|
S.EmitInt(Types.size());
|
|
|
|
for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
|
|
I!=E;++I)
|
|
(*I)->Emit(S);
|
|
|
|
S.EmitOwnedPtr(TUDecl);
|
|
|
|
// FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
|
|
}
|
|
|
|
ASTContext* ASTContext::Create(llvm::Deserializer& D) {
|
|
|
|
// Read the language options.
|
|
LangOptions LOpts;
|
|
LOpts.Read(D);
|
|
|
|
SourceManager &SM = D.ReadRef<SourceManager>();
|
|
TargetInfo &t = D.ReadRef<TargetInfo>();
|
|
IdentifierTable &idents = D.ReadRef<IdentifierTable>();
|
|
SelectorTable &sels = D.ReadRef<SelectorTable>();
|
|
|
|
unsigned size_reserve = D.ReadInt();
|
|
|
|
ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels,
|
|
size_reserve);
|
|
|
|
for (unsigned i = 0; i < size_reserve; ++i)
|
|
Type::Create(*A,i,D);
|
|
|
|
A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));
|
|
|
|
// FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
|
|
|
|
return A;
|
|
}
|