clang-1/lib/AST/ASTImporter.cpp

4674 строки
172 KiB
C++

//===--- ASTImporter.cpp - Importing ASTs from other Contexts ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTImporter class which imports AST nodes from one
// context into another context.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTImporter.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeVisitor.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/MemoryBuffer.h"
#include <deque>
namespace clang {
class ASTNodeImporter : public TypeVisitor<ASTNodeImporter, QualType>,
public DeclVisitor<ASTNodeImporter, Decl *>,
public StmtVisitor<ASTNodeImporter, Stmt *> {
ASTImporter &Importer;
public:
explicit ASTNodeImporter(ASTImporter &Importer) : Importer(Importer) { }
using TypeVisitor<ASTNodeImporter, QualType>::Visit;
using DeclVisitor<ASTNodeImporter, Decl *>::Visit;
using StmtVisitor<ASTNodeImporter, Stmt *>::Visit;
// Importing types
QualType VisitType(const Type *T);
QualType VisitBuiltinType(const BuiltinType *T);
QualType VisitComplexType(const ComplexType *T);
QualType VisitPointerType(const PointerType *T);
QualType VisitBlockPointerType(const BlockPointerType *T);
QualType VisitLValueReferenceType(const LValueReferenceType *T);
QualType VisitRValueReferenceType(const RValueReferenceType *T);
QualType VisitMemberPointerType(const MemberPointerType *T);
QualType VisitConstantArrayType(const ConstantArrayType *T);
QualType VisitIncompleteArrayType(const IncompleteArrayType *T);
QualType VisitVariableArrayType(const VariableArrayType *T);
// FIXME: DependentSizedArrayType
// FIXME: DependentSizedExtVectorType
QualType VisitVectorType(const VectorType *T);
QualType VisitExtVectorType(const ExtVectorType *T);
QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T);
QualType VisitFunctionProtoType(const FunctionProtoType *T);
// FIXME: UnresolvedUsingType
QualType VisitParenType(const ParenType *T);
QualType VisitTypedefType(const TypedefType *T);
QualType VisitTypeOfExprType(const TypeOfExprType *T);
// FIXME: DependentTypeOfExprType
QualType VisitTypeOfType(const TypeOfType *T);
QualType VisitDecltypeType(const DecltypeType *T);
QualType VisitUnaryTransformType(const UnaryTransformType *T);
QualType VisitAutoType(const AutoType *T);
// FIXME: DependentDecltypeType
QualType VisitRecordType(const RecordType *T);
QualType VisitEnumType(const EnumType *T);
// FIXME: TemplateTypeParmType
// FIXME: SubstTemplateTypeParmType
QualType VisitTemplateSpecializationType(const TemplateSpecializationType *T);
QualType VisitElaboratedType(const ElaboratedType *T);
// FIXME: DependentNameType
// FIXME: DependentTemplateSpecializationType
QualType VisitObjCInterfaceType(const ObjCInterfaceType *T);
QualType VisitObjCObjectType(const ObjCObjectType *T);
QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T);
// Importing declarations
bool ImportDeclParts(NamedDecl *D, DeclContext *&DC,
DeclContext *&LexicalDC, DeclarationName &Name,
SourceLocation &Loc);
void ImportDefinitionIfNeeded(Decl *FromD, Decl *ToD = 0);
void ImportDeclarationNameLoc(const DeclarationNameInfo &From,
DeclarationNameInfo& To);
void ImportDeclContext(DeclContext *FromDC, bool ForceImport = false);
/// \brief What we should import from the definition.
enum ImportDefinitionKind {
/// \brief Import the default subset of the definition, which might be
/// nothing (if minimal import is set) or might be everything (if minimal
/// import is not set).
IDK_Default,
/// \brief Import everything.
IDK_Everything,
/// \brief Import only the bare bones needed to establish a valid
/// DeclContext.
IDK_Basic
};
bool shouldForceImportDeclContext(ImportDefinitionKind IDK) {
return IDK == IDK_Everything ||
(IDK == IDK_Default && !Importer.isMinimalImport());
}
bool ImportDefinition(RecordDecl *From, RecordDecl *To,
ImportDefinitionKind Kind = IDK_Default);
bool ImportDefinition(EnumDecl *From, EnumDecl *To,
ImportDefinitionKind Kind = IDK_Default);
bool ImportDefinition(ObjCInterfaceDecl *From, ObjCInterfaceDecl *To,
ImportDefinitionKind Kind = IDK_Default);
bool ImportDefinition(ObjCProtocolDecl *From, ObjCProtocolDecl *To,
ImportDefinitionKind Kind = IDK_Default);
TemplateParameterList *ImportTemplateParameterList(
TemplateParameterList *Params);
TemplateArgument ImportTemplateArgument(const TemplateArgument &From);
bool ImportTemplateArguments(const TemplateArgument *FromArgs,
unsigned NumFromArgs,
SmallVectorImpl<TemplateArgument> &ToArgs);
bool IsStructuralMatch(RecordDecl *FromRecord, RecordDecl *ToRecord);
bool IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToRecord);
bool IsStructuralMatch(ClassTemplateDecl *From, ClassTemplateDecl *To);
Decl *VisitDecl(Decl *D);
Decl *VisitTranslationUnitDecl(TranslationUnitDecl *D);
Decl *VisitNamespaceDecl(NamespaceDecl *D);
Decl *VisitTypedefNameDecl(TypedefNameDecl *D, bool IsAlias);
Decl *VisitTypedefDecl(TypedefDecl *D);
Decl *VisitTypeAliasDecl(TypeAliasDecl *D);
Decl *VisitEnumDecl(EnumDecl *D);
Decl *VisitRecordDecl(RecordDecl *D);
Decl *VisitEnumConstantDecl(EnumConstantDecl *D);
Decl *VisitFunctionDecl(FunctionDecl *D);
Decl *VisitCXXMethodDecl(CXXMethodDecl *D);
Decl *VisitCXXConstructorDecl(CXXConstructorDecl *D);
Decl *VisitCXXDestructorDecl(CXXDestructorDecl *D);
Decl *VisitCXXConversionDecl(CXXConversionDecl *D);
Decl *VisitFieldDecl(FieldDecl *D);
Decl *VisitIndirectFieldDecl(IndirectFieldDecl *D);
Decl *VisitObjCIvarDecl(ObjCIvarDecl *D);
Decl *VisitVarDecl(VarDecl *D);
Decl *VisitImplicitParamDecl(ImplicitParamDecl *D);
Decl *VisitParmVarDecl(ParmVarDecl *D);
Decl *VisitObjCMethodDecl(ObjCMethodDecl *D);
Decl *VisitObjCCategoryDecl(ObjCCategoryDecl *D);
Decl *VisitObjCProtocolDecl(ObjCProtocolDecl *D);
Decl *VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
Decl *VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
Decl *VisitObjCImplementationDecl(ObjCImplementationDecl *D);
Decl *VisitObjCPropertyDecl(ObjCPropertyDecl *D);
Decl *VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D);
Decl *VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D);
Decl *VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D);
Decl *VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D);
Decl *VisitClassTemplateDecl(ClassTemplateDecl *D);
Decl *VisitClassTemplateSpecializationDecl(
ClassTemplateSpecializationDecl *D);
// Importing statements
Stmt *VisitStmt(Stmt *S);
// Importing expressions
Expr *VisitExpr(Expr *E);
Expr *VisitDeclRefExpr(DeclRefExpr *E);
Expr *VisitIntegerLiteral(IntegerLiteral *E);
Expr *VisitCharacterLiteral(CharacterLiteral *E);
Expr *VisitParenExpr(ParenExpr *E);
Expr *VisitUnaryOperator(UnaryOperator *E);
Expr *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E);
Expr *VisitBinaryOperator(BinaryOperator *E);
Expr *VisitCompoundAssignOperator(CompoundAssignOperator *E);
Expr *VisitImplicitCastExpr(ImplicitCastExpr *E);
Expr *VisitCStyleCastExpr(CStyleCastExpr *E);
};
}
using namespace clang;
//----------------------------------------------------------------------------
// Structural Equivalence
//----------------------------------------------------------------------------
namespace {
struct StructuralEquivalenceContext {
/// \brief AST contexts for which we are checking structural equivalence.
ASTContext &C1, &C2;
/// \brief The set of "tentative" equivalences between two canonical
/// declarations, mapping from a declaration in the first context to the
/// declaration in the second context that we believe to be equivalent.
llvm::DenseMap<Decl *, Decl *> TentativeEquivalences;
/// \brief Queue of declarations in the first context whose equivalence
/// with a declaration in the second context still needs to be verified.
std::deque<Decl *> DeclsToCheck;
/// \brief Declaration (from, to) pairs that are known not to be equivalent
/// (which we have already complained about).
llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls;
/// \brief Whether we're being strict about the spelling of types when
/// unifying two types.
bool StrictTypeSpelling;
StructuralEquivalenceContext(ASTContext &C1, ASTContext &C2,
llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls,
bool StrictTypeSpelling = false)
: C1(C1), C2(C2), NonEquivalentDecls(NonEquivalentDecls),
StrictTypeSpelling(StrictTypeSpelling) { }
/// \brief Determine whether the two declarations are structurally
/// equivalent.
bool IsStructurallyEquivalent(Decl *D1, Decl *D2);
/// \brief Determine whether the two types are structurally equivalent.
bool IsStructurallyEquivalent(QualType T1, QualType T2);
private:
/// \brief Finish checking all of the structural equivalences.
///
/// \returns true if an error occurred, false otherwise.
bool Finish();
public:
DiagnosticBuilder Diag1(SourceLocation Loc, unsigned DiagID) {
return C1.getDiagnostics().Report(Loc, DiagID);
}
DiagnosticBuilder Diag2(SourceLocation Loc, unsigned DiagID) {
return C2.getDiagnostics().Report(Loc, DiagID);
}
};
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
QualType T1, QualType T2);
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Decl *D1, Decl *D2);
/// \brief Determine if two APInts have the same value, after zero-extending
/// one of them (if needed!) to ensure that the bit-widths match.
static bool IsSameValue(const llvm::APInt &I1, const llvm::APInt &I2) {
if (I1.getBitWidth() == I2.getBitWidth())
return I1 == I2;
if (I1.getBitWidth() > I2.getBitWidth())
return I1 == I2.zext(I1.getBitWidth());
return I1.zext(I2.getBitWidth()) == I2;
}
/// \brief Determine if two APSInts have the same value, zero- or sign-extending
/// as needed.
static bool IsSameValue(const llvm::APSInt &I1, const llvm::APSInt &I2) {
if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
return I1 == I2;
// Check for a bit-width mismatch.
if (I1.getBitWidth() > I2.getBitWidth())
return IsSameValue(I1, I2.extend(I1.getBitWidth()));
else if (I2.getBitWidth() > I1.getBitWidth())
return IsSameValue(I1.extend(I2.getBitWidth()), I2);
// We have a signedness mismatch. Turn the signed value into an unsigned
// value.
if (I1.isSigned()) {
if (I1.isNegative())
return false;
return llvm::APSInt(I1, true) == I2;
}
if (I2.isNegative())
return false;
return I1 == llvm::APSInt(I2, true);
}
/// \brief Determine structural equivalence of two expressions.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Expr *E1, Expr *E2) {
if (!E1 || !E2)
return E1 == E2;
// FIXME: Actually perform a structural comparison!
return true;
}
/// \brief Determine whether two identifiers are equivalent.
static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
const IdentifierInfo *Name2) {
if (!Name1 || !Name2)
return Name1 == Name2;
return Name1->getName() == Name2->getName();
}
/// \brief Determine whether two nested-name-specifiers are equivalent.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
NestedNameSpecifier *NNS1,
NestedNameSpecifier *NNS2) {
// FIXME: Implement!
return true;
}
/// \brief Determine whether two template arguments are equivalent.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
const TemplateArgument &Arg1,
const TemplateArgument &Arg2) {
if (Arg1.getKind() != Arg2.getKind())
return false;
switch (Arg1.getKind()) {
case TemplateArgument::Null:
return true;
case TemplateArgument::Type:
return Context.IsStructurallyEquivalent(Arg1.getAsType(), Arg2.getAsType());
case TemplateArgument::Integral:
if (!Context.IsStructurallyEquivalent(Arg1.getIntegralType(),
Arg2.getIntegralType()))
return false;
return IsSameValue(*Arg1.getAsIntegral(), *Arg2.getAsIntegral());
case TemplateArgument::Declaration:
return Context.IsStructurallyEquivalent(Arg1.getAsDecl(), Arg2.getAsDecl());
case TemplateArgument::Template:
return IsStructurallyEquivalent(Context,
Arg1.getAsTemplate(),
Arg2.getAsTemplate());
case TemplateArgument::TemplateExpansion:
return IsStructurallyEquivalent(Context,
Arg1.getAsTemplateOrTemplatePattern(),
Arg2.getAsTemplateOrTemplatePattern());
case TemplateArgument::Expression:
return IsStructurallyEquivalent(Context,
Arg1.getAsExpr(), Arg2.getAsExpr());
case TemplateArgument::Pack:
if (Arg1.pack_size() != Arg2.pack_size())
return false;
for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I)
if (!IsStructurallyEquivalent(Context,
Arg1.pack_begin()[I],
Arg2.pack_begin()[I]))
return false;
return true;
}
llvm_unreachable("Invalid template argument kind");
}
/// \brief Determine structural equivalence for the common part of array
/// types.
static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
const ArrayType *Array1,
const ArrayType *Array2) {
if (!IsStructurallyEquivalent(Context,
Array1->getElementType(),
Array2->getElementType()))
return false;
if (Array1->getSizeModifier() != Array2->getSizeModifier())
return false;
if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
return false;
return true;
}
/// \brief Determine structural equivalence of two types.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
QualType T1, QualType T2) {
if (T1.isNull() || T2.isNull())
return T1.isNull() && T2.isNull();
if (!Context.StrictTypeSpelling) {
// We aren't being strict about token-to-token equivalence of types,
// so map down to the canonical type.
T1 = Context.C1.getCanonicalType(T1);
T2 = Context.C2.getCanonicalType(T2);
}
if (T1.getQualifiers() != T2.getQualifiers())
return false;
Type::TypeClass TC = T1->getTypeClass();
if (T1->getTypeClass() != T2->getTypeClass()) {
// Compare function types with prototypes vs. without prototypes as if
// both did not have prototypes.
if (T1->getTypeClass() == Type::FunctionProto &&
T2->getTypeClass() == Type::FunctionNoProto)
TC = Type::FunctionNoProto;
else if (T1->getTypeClass() == Type::FunctionNoProto &&
T2->getTypeClass() == Type::FunctionProto)
TC = Type::FunctionNoProto;
else
return false;
}
switch (TC) {
case Type::Builtin:
// FIXME: Deal with Char_S/Char_U.
if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
return false;
break;
case Type::Complex:
if (!IsStructurallyEquivalent(Context,
cast<ComplexType>(T1)->getElementType(),
cast<ComplexType>(T2)->getElementType()))
return false;
break;
case Type::Pointer:
if (!IsStructurallyEquivalent(Context,
cast<PointerType>(T1)->getPointeeType(),
cast<PointerType>(T2)->getPointeeType()))
return false;
break;
case Type::BlockPointer:
if (!IsStructurallyEquivalent(Context,
cast<BlockPointerType>(T1)->getPointeeType(),
cast<BlockPointerType>(T2)->getPointeeType()))
return false;
break;
case Type::LValueReference:
case Type::RValueReference: {
const ReferenceType *Ref1 = cast<ReferenceType>(T1);
const ReferenceType *Ref2 = cast<ReferenceType>(T2);
if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
return false;
if (Ref1->isInnerRef() != Ref2->isInnerRef())
return false;
if (!IsStructurallyEquivalent(Context,
Ref1->getPointeeTypeAsWritten(),
Ref2->getPointeeTypeAsWritten()))
return false;
break;
}
case Type::MemberPointer: {
const MemberPointerType *MemPtr1 = cast<MemberPointerType>(T1);
const MemberPointerType *MemPtr2 = cast<MemberPointerType>(T2);
if (!IsStructurallyEquivalent(Context,
MemPtr1->getPointeeType(),
MemPtr2->getPointeeType()))
return false;
if (!IsStructurallyEquivalent(Context,
QualType(MemPtr1->getClass(), 0),
QualType(MemPtr2->getClass(), 0)))
return false;
break;
}
case Type::ConstantArray: {
const ConstantArrayType *Array1 = cast<ConstantArrayType>(T1);
const ConstantArrayType *Array2 = cast<ConstantArrayType>(T2);
if (!IsSameValue(Array1->getSize(), Array2->getSize()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::IncompleteArray:
if (!IsArrayStructurallyEquivalent(Context,
cast<ArrayType>(T1),
cast<ArrayType>(T2)))
return false;
break;
case Type::VariableArray: {
const VariableArrayType *Array1 = cast<VariableArrayType>(T1);
const VariableArrayType *Array2 = cast<VariableArrayType>(T2);
if (!IsStructurallyEquivalent(Context,
Array1->getSizeExpr(), Array2->getSizeExpr()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::DependentSizedArray: {
const DependentSizedArrayType *Array1 = cast<DependentSizedArrayType>(T1);
const DependentSizedArrayType *Array2 = cast<DependentSizedArrayType>(T2);
if (!IsStructurallyEquivalent(Context,
Array1->getSizeExpr(), Array2->getSizeExpr()))
return false;
if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
return false;
break;
}
case Type::DependentSizedExtVector: {
const DependentSizedExtVectorType *Vec1
= cast<DependentSizedExtVectorType>(T1);
const DependentSizedExtVectorType *Vec2
= cast<DependentSizedExtVectorType>(T2);
if (!IsStructurallyEquivalent(Context,
Vec1->getSizeExpr(), Vec2->getSizeExpr()))
return false;
if (!IsStructurallyEquivalent(Context,
Vec1->getElementType(),
Vec2->getElementType()))
return false;
break;
}
case Type::Vector:
case Type::ExtVector: {
const VectorType *Vec1 = cast<VectorType>(T1);
const VectorType *Vec2 = cast<VectorType>(T2);
if (!IsStructurallyEquivalent(Context,
Vec1->getElementType(),
Vec2->getElementType()))
return false;
if (Vec1->getNumElements() != Vec2->getNumElements())
return false;
if (Vec1->getVectorKind() != Vec2->getVectorKind())
return false;
break;
}
case Type::FunctionProto: {
const FunctionProtoType *Proto1 = cast<FunctionProtoType>(T1);
const FunctionProtoType *Proto2 = cast<FunctionProtoType>(T2);
if (Proto1->getNumArgs() != Proto2->getNumArgs())
return false;
for (unsigned I = 0, N = Proto1->getNumArgs(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Proto1->getArgType(I),
Proto2->getArgType(I)))
return false;
}
if (Proto1->isVariadic() != Proto2->isVariadic())
return false;
if (Proto1->getExceptionSpecType() != Proto2->getExceptionSpecType())
return false;
if (Proto1->getExceptionSpecType() == EST_Dynamic) {
if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
return false;
for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Proto1->getExceptionType(I),
Proto2->getExceptionType(I)))
return false;
}
} else if (Proto1->getExceptionSpecType() == EST_ComputedNoexcept) {
if (!IsStructurallyEquivalent(Context,
Proto1->getNoexceptExpr(),
Proto2->getNoexceptExpr()))
return false;
}
if (Proto1->getTypeQuals() != Proto2->getTypeQuals())
return false;
// Fall through to check the bits common with FunctionNoProtoType.
}
case Type::FunctionNoProto: {
const FunctionType *Function1 = cast<FunctionType>(T1);
const FunctionType *Function2 = cast<FunctionType>(T2);
if (!IsStructurallyEquivalent(Context,
Function1->getResultType(),
Function2->getResultType()))
return false;
if (Function1->getExtInfo() != Function2->getExtInfo())
return false;
break;
}
case Type::UnresolvedUsing:
if (!IsStructurallyEquivalent(Context,
cast<UnresolvedUsingType>(T1)->getDecl(),
cast<UnresolvedUsingType>(T2)->getDecl()))
return false;
break;
case Type::Attributed:
if (!IsStructurallyEquivalent(Context,
cast<AttributedType>(T1)->getModifiedType(),
cast<AttributedType>(T2)->getModifiedType()))
return false;
if (!IsStructurallyEquivalent(Context,
cast<AttributedType>(T1)->getEquivalentType(),
cast<AttributedType>(T2)->getEquivalentType()))
return false;
break;
case Type::Paren:
if (!IsStructurallyEquivalent(Context,
cast<ParenType>(T1)->getInnerType(),
cast<ParenType>(T2)->getInnerType()))
return false;
break;
case Type::Typedef:
if (!IsStructurallyEquivalent(Context,
cast<TypedefType>(T1)->getDecl(),
cast<TypedefType>(T2)->getDecl()))
return false;
break;
case Type::TypeOfExpr:
if (!IsStructurallyEquivalent(Context,
cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
return false;
break;
case Type::TypeOf:
if (!IsStructurallyEquivalent(Context,
cast<TypeOfType>(T1)->getUnderlyingType(),
cast<TypeOfType>(T2)->getUnderlyingType()))
return false;
break;
case Type::UnaryTransform:
if (!IsStructurallyEquivalent(Context,
cast<UnaryTransformType>(T1)->getUnderlyingType(),
cast<UnaryTransformType>(T1)->getUnderlyingType()))
return false;
break;
case Type::Decltype:
if (!IsStructurallyEquivalent(Context,
cast<DecltypeType>(T1)->getUnderlyingExpr(),
cast<DecltypeType>(T2)->getUnderlyingExpr()))
return false;
break;
case Type::Auto:
if (!IsStructurallyEquivalent(Context,
cast<AutoType>(T1)->getDeducedType(),
cast<AutoType>(T2)->getDeducedType()))
return false;
break;
case Type::Record:
case Type::Enum:
if (!IsStructurallyEquivalent(Context,
cast<TagType>(T1)->getDecl(),
cast<TagType>(T2)->getDecl()))
return false;
break;
case Type::TemplateTypeParm: {
const TemplateTypeParmType *Parm1 = cast<TemplateTypeParmType>(T1);
const TemplateTypeParmType *Parm2 = cast<TemplateTypeParmType>(T2);
if (Parm1->getDepth() != Parm2->getDepth())
return false;
if (Parm1->getIndex() != Parm2->getIndex())
return false;
if (Parm1->isParameterPack() != Parm2->isParameterPack())
return false;
// Names of template type parameters are never significant.
break;
}
case Type::SubstTemplateTypeParm: {
const SubstTemplateTypeParmType *Subst1
= cast<SubstTemplateTypeParmType>(T1);
const SubstTemplateTypeParmType *Subst2
= cast<SubstTemplateTypeParmType>(T2);
if (!IsStructurallyEquivalent(Context,
QualType(Subst1->getReplacedParameter(), 0),
QualType(Subst2->getReplacedParameter(), 0)))
return false;
if (!IsStructurallyEquivalent(Context,
Subst1->getReplacementType(),
Subst2->getReplacementType()))
return false;
break;
}
case Type::SubstTemplateTypeParmPack: {
const SubstTemplateTypeParmPackType *Subst1
= cast<SubstTemplateTypeParmPackType>(T1);
const SubstTemplateTypeParmPackType *Subst2
= cast<SubstTemplateTypeParmPackType>(T2);
if (!IsStructurallyEquivalent(Context,
QualType(Subst1->getReplacedParameter(), 0),
QualType(Subst2->getReplacedParameter(), 0)))
return false;
if (!IsStructurallyEquivalent(Context,
Subst1->getArgumentPack(),
Subst2->getArgumentPack()))
return false;
break;
}
case Type::TemplateSpecialization: {
const TemplateSpecializationType *Spec1
= cast<TemplateSpecializationType>(T1);
const TemplateSpecializationType *Spec2
= cast<TemplateSpecializationType>(T2);
if (!IsStructurallyEquivalent(Context,
Spec1->getTemplateName(),
Spec2->getTemplateName()))
return false;
if (Spec1->getNumArgs() != Spec2->getNumArgs())
return false;
for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Spec1->getArg(I), Spec2->getArg(I)))
return false;
}
break;
}
case Type::Elaborated: {
const ElaboratedType *Elab1 = cast<ElaboratedType>(T1);
const ElaboratedType *Elab2 = cast<ElaboratedType>(T2);
// CHECKME: what if a keyword is ETK_None or ETK_typename ?
if (Elab1->getKeyword() != Elab2->getKeyword())
return false;
if (!IsStructurallyEquivalent(Context,
Elab1->getQualifier(),
Elab2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Context,
Elab1->getNamedType(),
Elab2->getNamedType()))
return false;
break;
}
case Type::InjectedClassName: {
const InjectedClassNameType *Inj1 = cast<InjectedClassNameType>(T1);
const InjectedClassNameType *Inj2 = cast<InjectedClassNameType>(T2);
if (!IsStructurallyEquivalent(Context,
Inj1->getInjectedSpecializationType(),
Inj2->getInjectedSpecializationType()))
return false;
break;
}
case Type::DependentName: {
const DependentNameType *Typename1 = cast<DependentNameType>(T1);
const DependentNameType *Typename2 = cast<DependentNameType>(T2);
if (!IsStructurallyEquivalent(Context,
Typename1->getQualifier(),
Typename2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
Typename2->getIdentifier()))
return false;
break;
}
case Type::DependentTemplateSpecialization: {
const DependentTemplateSpecializationType *Spec1 =
cast<DependentTemplateSpecializationType>(T1);
const DependentTemplateSpecializationType *Spec2 =
cast<DependentTemplateSpecializationType>(T2);
if (!IsStructurallyEquivalent(Context,
Spec1->getQualifier(),
Spec2->getQualifier()))
return false;
if (!IsStructurallyEquivalent(Spec1->getIdentifier(),
Spec2->getIdentifier()))
return false;
if (Spec1->getNumArgs() != Spec2->getNumArgs())
return false;
for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Spec1->getArg(I), Spec2->getArg(I)))
return false;
}
break;
}
case Type::PackExpansion:
if (!IsStructurallyEquivalent(Context,
cast<PackExpansionType>(T1)->getPattern(),
cast<PackExpansionType>(T2)->getPattern()))
return false;
break;
case Type::ObjCInterface: {
const ObjCInterfaceType *Iface1 = cast<ObjCInterfaceType>(T1);
const ObjCInterfaceType *Iface2 = cast<ObjCInterfaceType>(T2);
if (!IsStructurallyEquivalent(Context,
Iface1->getDecl(), Iface2->getDecl()))
return false;
break;
}
case Type::ObjCObject: {
const ObjCObjectType *Obj1 = cast<ObjCObjectType>(T1);
const ObjCObjectType *Obj2 = cast<ObjCObjectType>(T2);
if (!IsStructurallyEquivalent(Context,
Obj1->getBaseType(),
Obj2->getBaseType()))
return false;
if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
return false;
for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
if (!IsStructurallyEquivalent(Context,
Obj1->getProtocol(I),
Obj2->getProtocol(I)))
return false;
}
break;
}
case Type::ObjCObjectPointer: {
const ObjCObjectPointerType *Ptr1 = cast<ObjCObjectPointerType>(T1);
const ObjCObjectPointerType *Ptr2 = cast<ObjCObjectPointerType>(T2);
if (!IsStructurallyEquivalent(Context,
Ptr1->getPointeeType(),
Ptr2->getPointeeType()))
return false;
break;
}
case Type::Atomic: {
if (!IsStructurallyEquivalent(Context,
cast<AtomicType>(T1)->getValueType(),
cast<AtomicType>(T2)->getValueType()))
return false;
break;
}
} // end switch
return true;
}
/// \brief Determine structural equivalence of two fields.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
FieldDecl *Field1, FieldDecl *Field2) {
RecordDecl *Owner2 = cast<RecordDecl>(Field2->getDeclContext());
if (!IsStructurallyEquivalent(Context,
Field1->getType(), Field2->getType())) {
Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(Owner2);
Context.Diag2(Field2->getLocation(), diag::note_odr_field)
<< Field2->getDeclName() << Field2->getType();
Context.Diag1(Field1->getLocation(), diag::note_odr_field)
<< Field1->getDeclName() << Field1->getType();
return false;
}
if (Field1->isBitField() != Field2->isBitField()) {
Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(Owner2);
if (Field1->isBitField()) {
Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
<< Field1->getDeclName() << Field1->getType()
<< Field1->getBitWidthValue(Context.C1);
Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field)
<< Field2->getDeclName();
} else {
Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
<< Field2->getDeclName() << Field2->getType()
<< Field2->getBitWidthValue(Context.C2);
Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field)
<< Field1->getDeclName();
}
return false;
}
if (Field1->isBitField()) {
// Make sure that the bit-fields are the same length.
unsigned Bits1 = Field1->getBitWidthValue(Context.C1);
unsigned Bits2 = Field2->getBitWidthValue(Context.C2);
if (Bits1 != Bits2) {
Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(Owner2);
Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
<< Field2->getDeclName() << Field2->getType() << Bits2;
Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
<< Field1->getDeclName() << Field1->getType() << Bits1;
return false;
}
}
return true;
}
/// \brief Determine structural equivalence of two records.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
RecordDecl *D1, RecordDecl *D2) {
if (D1->isUnion() != D2->isUnion()) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
<< D1->getDeclName() << (unsigned)D1->getTagKind();
return false;
}
// If both declarations are class template specializations, we know
// the ODR applies, so check the template and template arguments.
ClassTemplateSpecializationDecl *Spec1
= dyn_cast<ClassTemplateSpecializationDecl>(D1);
ClassTemplateSpecializationDecl *Spec2
= dyn_cast<ClassTemplateSpecializationDecl>(D2);
if (Spec1 && Spec2) {
// Check that the specialized templates are the same.
if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(),
Spec2->getSpecializedTemplate()))
return false;
// Check that the template arguments are the same.
if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size())
return false;
for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I)
if (!IsStructurallyEquivalent(Context,
Spec1->getTemplateArgs().get(I),
Spec2->getTemplateArgs().get(I)))
return false;
}
// If one is a class template specialization and the other is not, these
// structures are different.
else if (Spec1 || Spec2)
return false;
// Compare the definitions of these two records. If either or both are
// incomplete, we assume that they are equivalent.
D1 = D1->getDefinition();
D2 = D2->getDefinition();
if (!D1 || !D2)
return true;
if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
if (CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
<< D2CXX->getNumBases();
Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
<< D1CXX->getNumBases();
return false;
}
// Check the base classes.
for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
BaseEnd1 = D1CXX->bases_end(),
Base2 = D2CXX->bases_begin();
Base1 != BaseEnd1;
++Base1, ++Base2) {
if (!IsStructurallyEquivalent(Context,
Base1->getType(), Base2->getType())) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(Base2->getSourceRange().getBegin(), diag::note_odr_base)
<< Base2->getType()
<< Base2->getSourceRange();
Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base)
<< Base1->getType()
<< Base1->getSourceRange();
return false;
}
// Check virtual vs. non-virtual inheritance mismatch.
if (Base1->isVirtual() != Base2->isVirtual()) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(Base2->getSourceRange().getBegin(),
diag::note_odr_virtual_base)
<< Base2->isVirtual() << Base2->getSourceRange();
Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base)
<< Base1->isVirtual()
<< Base1->getSourceRange();
return false;
}
}
} else if (D1CXX->getNumBases() > 0) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base)
<< Base1->getType()
<< Base1->getSourceRange();
Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
return false;
}
}
// Check the fields for consistency.
CXXRecordDecl::field_iterator Field2 = D2->field_begin(),
Field2End = D2->field_end();
for (CXXRecordDecl::field_iterator Field1 = D1->field_begin(),
Field1End = D1->field_end();
Field1 != Field1End;
++Field1, ++Field2) {
if (Field2 == Field2End) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag1(Field1->getLocation(), diag::note_odr_field)
<< Field1->getDeclName() << Field1->getType();
Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
return false;
}
if (!IsStructurallyEquivalent(Context, *Field1, *Field2))
return false;
}
if (Field2 != Field2End) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(Field2->getLocation(), diag::note_odr_field)
<< Field2->getDeclName() << Field2->getType();
Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
return false;
}
return true;
}
/// \brief Determine structural equivalence of two enums.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
EnumDecl *D1, EnumDecl *D2) {
EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
EC2End = D2->enumerator_end();
for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
EC1End = D1->enumerator_end();
EC1 != EC1End; ++EC1, ++EC2) {
if (EC2 == EC2End) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
<< EC1->getDeclName()
<< EC1->getInitVal().toString(10);
Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
return false;
}
llvm::APSInt Val1 = EC1->getInitVal();
llvm::APSInt Val2 = EC2->getInitVal();
if (!IsSameValue(Val1, Val2) ||
!IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
<< EC2->getDeclName()
<< EC2->getInitVal().toString(10);
Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
<< EC1->getDeclName()
<< EC1->getInitVal().toString(10);
return false;
}
}
if (EC2 != EC2End) {
Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
<< Context.C2.getTypeDeclType(D2);
Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
<< EC2->getDeclName()
<< EC2->getInitVal().toString(10);
Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TemplateParameterList *Params1,
TemplateParameterList *Params2) {
if (Params1->size() != Params2->size()) {
Context.Diag2(Params2->getTemplateLoc(),
diag::err_odr_different_num_template_parameters)
<< Params1->size() << Params2->size();
Context.Diag1(Params1->getTemplateLoc(),
diag::note_odr_template_parameter_list);
return false;
}
for (unsigned I = 0, N = Params1->size(); I != N; ++I) {
if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) {
Context.Diag2(Params2->getParam(I)->getLocation(),
diag::err_odr_different_template_parameter_kind);
Context.Diag1(Params1->getParam(I)->getLocation(),
diag::note_odr_template_parameter_here);
return false;
}
if (!Context.IsStructurallyEquivalent(Params1->getParam(I),
Params2->getParam(I))) {
return false;
}
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TemplateTypeParmDecl *D1,
TemplateTypeParmDecl *D2) {
if (D1->isParameterPack() != D2->isParameterPack()) {
Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
<< D2->isParameterPack();
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
<< D1->isParameterPack();
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
NonTypeTemplateParmDecl *D1,
NonTypeTemplateParmDecl *D2) {
// FIXME: Enable once we have variadic templates.
#if 0
if (D1->isParameterPack() != D2->isParameterPack()) {
Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
<< D2->isParameterPack();
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
<< D1->isParameterPack();
return false;
}
#endif
// Check types.
if (!Context.IsStructurallyEquivalent(D1->getType(), D2->getType())) {
Context.Diag2(D2->getLocation(),
diag::err_odr_non_type_parameter_type_inconsistent)
<< D2->getType() << D1->getType();
Context.Diag1(D1->getLocation(), diag::note_odr_value_here)
<< D1->getType();
return false;
}
return true;
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
TemplateTemplateParmDecl *D1,
TemplateTemplateParmDecl *D2) {
// FIXME: Enable once we have variadic templates.
#if 0
if (D1->isParameterPack() != D2->isParameterPack()) {
Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
<< D2->isParameterPack();
Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
<< D1->isParameterPack();
return false;
}
#endif
// Check template parameter lists.
return IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
D2->getTemplateParameters());
}
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
ClassTemplateDecl *D1,
ClassTemplateDecl *D2) {
// Check template parameters.
if (!IsStructurallyEquivalent(Context,
D1->getTemplateParameters(),
D2->getTemplateParameters()))
return false;
// Check the templated declaration.
return Context.IsStructurallyEquivalent(D1->getTemplatedDecl(),
D2->getTemplatedDecl());
}
/// \brief Determine structural equivalence of two declarations.
static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
Decl *D1, Decl *D2) {
// FIXME: Check for known structural equivalences via a callback of some sort.
// Check whether we already know that these two declarations are not
// structurally equivalent.
if (Context.NonEquivalentDecls.count(std::make_pair(D1->getCanonicalDecl(),
D2->getCanonicalDecl())))
return false;
// Determine whether we've already produced a tentative equivalence for D1.
Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()];
if (EquivToD1)
return EquivToD1 == D2->getCanonicalDecl();
// Produce a tentative equivalence D1 <-> D2, which will be checked later.
EquivToD1 = D2->getCanonicalDecl();
Context.DeclsToCheck.push_back(D1->getCanonicalDecl());
return true;
}
bool StructuralEquivalenceContext::IsStructurallyEquivalent(Decl *D1,
Decl *D2) {
if (!::IsStructurallyEquivalent(*this, D1, D2))
return false;
return !Finish();
}
bool StructuralEquivalenceContext::IsStructurallyEquivalent(QualType T1,
QualType T2) {
if (!::IsStructurallyEquivalent(*this, T1, T2))
return false;
return !Finish();
}
bool StructuralEquivalenceContext::Finish() {
while (!DeclsToCheck.empty()) {
// Check the next declaration.
Decl *D1 = DeclsToCheck.front();
DeclsToCheck.pop_front();
Decl *D2 = TentativeEquivalences[D1];
assert(D2 && "Unrecorded tentative equivalence?");
bool Equivalent = true;
// FIXME: Switch on all declaration kinds. For now, we're just going to
// check the obvious ones.
if (RecordDecl *Record1 = dyn_cast<RecordDecl>(D1)) {
if (RecordDecl *Record2 = dyn_cast<RecordDecl>(D2)) {
// Check for equivalent structure names.
IdentifierInfo *Name1 = Record1->getIdentifier();
if (!Name1 && Record1->getTypedefNameForAnonDecl())
Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier();
IdentifierInfo *Name2 = Record2->getIdentifier();
if (!Name2 && Record2->getTypedefNameForAnonDecl())
Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2) ||
!::IsStructurallyEquivalent(*this, Record1, Record2))
Equivalent = false;
} else {
// Record/non-record mismatch.
Equivalent = false;
}
} else if (EnumDecl *Enum1 = dyn_cast<EnumDecl>(D1)) {
if (EnumDecl *Enum2 = dyn_cast<EnumDecl>(D2)) {
// Check for equivalent enum names.
IdentifierInfo *Name1 = Enum1->getIdentifier();
if (!Name1 && Enum1->getTypedefNameForAnonDecl())
Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier();
IdentifierInfo *Name2 = Enum2->getIdentifier();
if (!Name2 && Enum2->getTypedefNameForAnonDecl())
Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier();
if (!::IsStructurallyEquivalent(Name1, Name2) ||
!::IsStructurallyEquivalent(*this, Enum1, Enum2))
Equivalent = false;
} else {
// Enum/non-enum mismatch
Equivalent = false;
}
} else if (TypedefNameDecl *Typedef1 = dyn_cast<TypedefNameDecl>(D1)) {
if (TypedefNameDecl *Typedef2 = dyn_cast<TypedefNameDecl>(D2)) {
if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(),
Typedef2->getIdentifier()) ||
!::IsStructurallyEquivalent(*this,
Typedef1->getUnderlyingType(),
Typedef2->getUnderlyingType()))
Equivalent = false;
} else {
// Typedef/non-typedef mismatch.
Equivalent = false;
}
} else if (ClassTemplateDecl *ClassTemplate1
= dyn_cast<ClassTemplateDecl>(D1)) {
if (ClassTemplateDecl *ClassTemplate2 = dyn_cast<ClassTemplateDecl>(D2)) {
if (!::IsStructurallyEquivalent(ClassTemplate1->getIdentifier(),
ClassTemplate2->getIdentifier()) ||
!::IsStructurallyEquivalent(*this, ClassTemplate1, ClassTemplate2))
Equivalent = false;
} else {
// Class template/non-class-template mismatch.
Equivalent = false;
}
} else if (TemplateTypeParmDecl *TTP1= dyn_cast<TemplateTypeParmDecl>(D1)) {
if (TemplateTypeParmDecl *TTP2 = dyn_cast<TemplateTypeParmDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
Equivalent = false;
} else {
// Kind mismatch.
Equivalent = false;
}
} else if (NonTypeTemplateParmDecl *NTTP1
= dyn_cast<NonTypeTemplateParmDecl>(D1)) {
if (NonTypeTemplateParmDecl *NTTP2
= dyn_cast<NonTypeTemplateParmDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2))
Equivalent = false;
} else {
// Kind mismatch.
Equivalent = false;
}
} else if (TemplateTemplateParmDecl *TTP1
= dyn_cast<TemplateTemplateParmDecl>(D1)) {
if (TemplateTemplateParmDecl *TTP2
= dyn_cast<TemplateTemplateParmDecl>(D2)) {
if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
Equivalent = false;
} else {
// Kind mismatch.
Equivalent = false;
}
}
if (!Equivalent) {
// Note that these two declarations are not equivalent (and we already
// know about it).
NonEquivalentDecls.insert(std::make_pair(D1->getCanonicalDecl(),
D2->getCanonicalDecl()));
return true;
}
// FIXME: Check other declaration kinds!
}
return false;
}
//----------------------------------------------------------------------------
// Import Types
//----------------------------------------------------------------------------
QualType ASTNodeImporter::VisitType(const Type *T) {
Importer.FromDiag(SourceLocation(), diag::err_unsupported_ast_node)
<< T->getTypeClassName();
return QualType();
}
QualType ASTNodeImporter::VisitBuiltinType(const BuiltinType *T) {
switch (T->getKind()) {
#define SHARED_SINGLETON_TYPE(Expansion)
#define BUILTIN_TYPE(Id, SingletonId) \
case BuiltinType::Id: return Importer.getToContext().SingletonId;
#include "clang/AST/BuiltinTypes.def"
// FIXME: for Char16, Char32, and NullPtr, make sure that the "to"
// context supports C++.
// FIXME: for ObjCId, ObjCClass, and ObjCSel, make sure that the "to"
// context supports ObjC.
case BuiltinType::Char_U:
// The context we're importing from has an unsigned 'char'. If we're
// importing into a context with a signed 'char', translate to
// 'unsigned char' instead.
if (Importer.getToContext().getLangOptions().CharIsSigned)
return Importer.getToContext().UnsignedCharTy;
return Importer.getToContext().CharTy;
case BuiltinType::Char_S:
// The context we're importing from has an unsigned 'char'. If we're
// importing into a context with a signed 'char', translate to
// 'unsigned char' instead.
if (!Importer.getToContext().getLangOptions().CharIsSigned)
return Importer.getToContext().SignedCharTy;
return Importer.getToContext().CharTy;
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
// FIXME: If not in C++, shall we translate to the C equivalent of
// wchar_t?
return Importer.getToContext().WCharTy;
}
llvm_unreachable("Invalid BuiltinType Kind!");
}
QualType ASTNodeImporter::VisitComplexType(const ComplexType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getComplexType(ToElementType);
}
QualType ASTNodeImporter::VisitPointerType(const PointerType *T) {
QualType ToPointeeType = Importer.Import(T->getPointeeType());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getPointerType(ToPointeeType);
}
QualType ASTNodeImporter::VisitBlockPointerType(const BlockPointerType *T) {
// FIXME: Check for blocks support in "to" context.
QualType ToPointeeType = Importer.Import(T->getPointeeType());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getBlockPointerType(ToPointeeType);
}
QualType
ASTNodeImporter::VisitLValueReferenceType(const LValueReferenceType *T) {
// FIXME: Check for C++ support in "to" context.
QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getLValueReferenceType(ToPointeeType);
}
QualType
ASTNodeImporter::VisitRValueReferenceType(const RValueReferenceType *T) {
// FIXME: Check for C++0x support in "to" context.
QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getRValueReferenceType(ToPointeeType);
}
QualType ASTNodeImporter::VisitMemberPointerType(const MemberPointerType *T) {
// FIXME: Check for C++ support in "to" context.
QualType ToPointeeType = Importer.Import(T->getPointeeType());
if (ToPointeeType.isNull())
return QualType();
QualType ClassType = Importer.Import(QualType(T->getClass(), 0));
return Importer.getToContext().getMemberPointerType(ToPointeeType,
ClassType.getTypePtr());
}
QualType ASTNodeImporter::VisitConstantArrayType(const ConstantArrayType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getConstantArrayType(ToElementType,
T->getSize(),
T->getSizeModifier(),
T->getIndexTypeCVRQualifiers());
}
QualType
ASTNodeImporter::VisitIncompleteArrayType(const IncompleteArrayType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getIncompleteArrayType(ToElementType,
T->getSizeModifier(),
T->getIndexTypeCVRQualifiers());
}
QualType ASTNodeImporter::VisitVariableArrayType(const VariableArrayType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
Expr *Size = Importer.Import(T->getSizeExpr());
if (!Size)
return QualType();
SourceRange Brackets = Importer.Import(T->getBracketsRange());
return Importer.getToContext().getVariableArrayType(ToElementType, Size,
T->getSizeModifier(),
T->getIndexTypeCVRQualifiers(),
Brackets);
}
QualType ASTNodeImporter::VisitVectorType(const VectorType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getVectorType(ToElementType,
T->getNumElements(),
T->getVectorKind());
}
QualType ASTNodeImporter::VisitExtVectorType(const ExtVectorType *T) {
QualType ToElementType = Importer.Import(T->getElementType());
if (ToElementType.isNull())
return QualType();
return Importer.getToContext().getExtVectorType(ToElementType,
T->getNumElements());
}
QualType
ASTNodeImporter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
// FIXME: What happens if we're importing a function without a prototype
// into C++? Should we make it variadic?
QualType ToResultType = Importer.Import(T->getResultType());
if (ToResultType.isNull())
return QualType();
return Importer.getToContext().getFunctionNoProtoType(ToResultType,
T->getExtInfo());
}
QualType ASTNodeImporter::VisitFunctionProtoType(const FunctionProtoType *T) {
QualType ToResultType = Importer.Import(T->getResultType());
if (ToResultType.isNull())
return QualType();
// Import argument types
SmallVector<QualType, 4> ArgTypes;
for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
AEnd = T->arg_type_end();
A != AEnd; ++A) {
QualType ArgType = Importer.Import(*A);
if (ArgType.isNull())
return QualType();
ArgTypes.push_back(ArgType);
}
// Import exception types
SmallVector<QualType, 4> ExceptionTypes;
for (FunctionProtoType::exception_iterator E = T->exception_begin(),
EEnd = T->exception_end();
E != EEnd; ++E) {
QualType ExceptionType = Importer.Import(*E);
if (ExceptionType.isNull())
return QualType();
ExceptionTypes.push_back(ExceptionType);
}
FunctionProtoType::ExtProtoInfo EPI = T->getExtProtoInfo();
EPI.Exceptions = ExceptionTypes.data();
return Importer.getToContext().getFunctionType(ToResultType, ArgTypes.data(),
ArgTypes.size(), EPI);
}
QualType ASTNodeImporter::VisitParenType(const ParenType *T) {
QualType ToInnerType = Importer.Import(T->getInnerType());
if (ToInnerType.isNull())
return QualType();
return Importer.getToContext().getParenType(ToInnerType);
}
QualType ASTNodeImporter::VisitTypedefType(const TypedefType *T) {
TypedefNameDecl *ToDecl
= dyn_cast_or_null<TypedefNameDecl>(Importer.Import(T->getDecl()));
if (!ToDecl)
return QualType();
return Importer.getToContext().getTypeDeclType(ToDecl);
}
QualType ASTNodeImporter::VisitTypeOfExprType(const TypeOfExprType *T) {
Expr *ToExpr = Importer.Import(T->getUnderlyingExpr());
if (!ToExpr)
return QualType();
return Importer.getToContext().getTypeOfExprType(ToExpr);
}
QualType ASTNodeImporter::VisitTypeOfType(const TypeOfType *T) {
QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType());
if (ToUnderlyingType.isNull())
return QualType();
return Importer.getToContext().getTypeOfType(ToUnderlyingType);
}
QualType ASTNodeImporter::VisitDecltypeType(const DecltypeType *T) {
// FIXME: Make sure that the "to" context supports C++0x!
Expr *ToExpr = Importer.Import(T->getUnderlyingExpr());
if (!ToExpr)
return QualType();
QualType UnderlyingType = Importer.Import(T->getUnderlyingType());
if (UnderlyingType.isNull())
return QualType();
return Importer.getToContext().getDecltypeType(ToExpr, UnderlyingType);
}
QualType ASTNodeImporter::VisitUnaryTransformType(const UnaryTransformType *T) {
QualType ToBaseType = Importer.Import(T->getBaseType());
QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType());
if (ToBaseType.isNull() || ToUnderlyingType.isNull())
return QualType();
return Importer.getToContext().getUnaryTransformType(ToBaseType,
ToUnderlyingType,
T->getUTTKind());
}
QualType ASTNodeImporter::VisitAutoType(const AutoType *T) {
// FIXME: Make sure that the "to" context supports C++0x!
QualType FromDeduced = T->getDeducedType();
QualType ToDeduced;
if (!FromDeduced.isNull()) {
ToDeduced = Importer.Import(FromDeduced);
if (ToDeduced.isNull())
return QualType();
}
return Importer.getToContext().getAutoType(ToDeduced);
}
QualType ASTNodeImporter::VisitRecordType(const RecordType *T) {
RecordDecl *ToDecl
= dyn_cast_or_null<RecordDecl>(Importer.Import(T->getDecl()));
if (!ToDecl)
return QualType();
return Importer.getToContext().getTagDeclType(ToDecl);
}
QualType ASTNodeImporter::VisitEnumType(const EnumType *T) {
EnumDecl *ToDecl
= dyn_cast_or_null<EnumDecl>(Importer.Import(T->getDecl()));
if (!ToDecl)
return QualType();
return Importer.getToContext().getTagDeclType(ToDecl);
}
QualType ASTNodeImporter::VisitTemplateSpecializationType(
const TemplateSpecializationType *T) {
TemplateName ToTemplate = Importer.Import(T->getTemplateName());
if (ToTemplate.isNull())
return QualType();
SmallVector<TemplateArgument, 2> ToTemplateArgs;
if (ImportTemplateArguments(T->getArgs(), T->getNumArgs(), ToTemplateArgs))
return QualType();
QualType ToCanonType;
if (!QualType(T, 0).isCanonical()) {
QualType FromCanonType
= Importer.getFromContext().getCanonicalType(QualType(T, 0));
ToCanonType =Importer.Import(FromCanonType);
if (ToCanonType.isNull())
return QualType();
}
return Importer.getToContext().getTemplateSpecializationType(ToTemplate,
ToTemplateArgs.data(),
ToTemplateArgs.size(),
ToCanonType);
}
QualType ASTNodeImporter::VisitElaboratedType(const ElaboratedType *T) {
NestedNameSpecifier *ToQualifier = 0;
// Note: the qualifier in an ElaboratedType is optional.
if (T->getQualifier()) {
ToQualifier = Importer.Import(T->getQualifier());
if (!ToQualifier)
return QualType();
}
QualType ToNamedType = Importer.Import(T->getNamedType());
if (ToNamedType.isNull())
return QualType();
return Importer.getToContext().getElaboratedType(T->getKeyword(),
ToQualifier, ToNamedType);
}
QualType ASTNodeImporter::VisitObjCInterfaceType(const ObjCInterfaceType *T) {
ObjCInterfaceDecl *Class
= dyn_cast_or_null<ObjCInterfaceDecl>(Importer.Import(T->getDecl()));
if (!Class)
return QualType();
return Importer.getToContext().getObjCInterfaceType(Class);
}
QualType ASTNodeImporter::VisitObjCObjectType(const ObjCObjectType *T) {
QualType ToBaseType = Importer.Import(T->getBaseType());
if (ToBaseType.isNull())
return QualType();
SmallVector<ObjCProtocolDecl *, 4> Protocols;
for (ObjCObjectType::qual_iterator P = T->qual_begin(),
PEnd = T->qual_end();
P != PEnd; ++P) {
ObjCProtocolDecl *Protocol
= dyn_cast_or_null<ObjCProtocolDecl>(Importer.Import(*P));
if (!Protocol)
return QualType();
Protocols.push_back(Protocol);
}
return Importer.getToContext().getObjCObjectType(ToBaseType,
Protocols.data(),
Protocols.size());
}
QualType
ASTNodeImporter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
QualType ToPointeeType = Importer.Import(T->getPointeeType());
if (ToPointeeType.isNull())
return QualType();
return Importer.getToContext().getObjCObjectPointerType(ToPointeeType);
}
//----------------------------------------------------------------------------
// Import Declarations
//----------------------------------------------------------------------------
bool ASTNodeImporter::ImportDeclParts(NamedDecl *D, DeclContext *&DC,
DeclContext *&LexicalDC,
DeclarationName &Name,
SourceLocation &Loc) {
// Import the context of this declaration.
DC = Importer.ImportContext(D->getDeclContext());
if (!DC)
return true;
LexicalDC = DC;
if (D->getDeclContext() != D->getLexicalDeclContext()) {
LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return true;
}
// Import the name of this declaration.
Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return true;
// Import the location of this declaration.
Loc = Importer.Import(D->getLocation());
return false;
}
void ASTNodeImporter::ImportDefinitionIfNeeded(Decl *FromD, Decl *ToD) {
if (!FromD)
return;
if (!ToD) {
ToD = Importer.Import(FromD);
if (!ToD)
return;
}
if (RecordDecl *FromRecord = dyn_cast<RecordDecl>(FromD)) {
if (RecordDecl *ToRecord = cast_or_null<RecordDecl>(ToD)) {
if (FromRecord->getDefinition() && !ToRecord->getDefinition()) {
ImportDefinition(FromRecord, ToRecord);
}
}
return;
}
if (EnumDecl *FromEnum = dyn_cast<EnumDecl>(FromD)) {
if (EnumDecl *ToEnum = cast_or_null<EnumDecl>(ToD)) {
if (FromEnum->getDefinition() && !ToEnum->getDefinition()) {
ImportDefinition(FromEnum, ToEnum);
}
}
return;
}
}
void
ASTNodeImporter::ImportDeclarationNameLoc(const DeclarationNameInfo &From,
DeclarationNameInfo& To) {
// NOTE: To.Name and To.Loc are already imported.
// We only have to import To.LocInfo.
switch (To.getName().getNameKind()) {
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXUsingDirective:
return;
case DeclarationName::CXXOperatorName: {
SourceRange Range = From.getCXXOperatorNameRange();
To.setCXXOperatorNameRange(Importer.Import(Range));
return;
}
case DeclarationName::CXXLiteralOperatorName: {
SourceLocation Loc = From.getCXXLiteralOperatorNameLoc();
To.setCXXLiteralOperatorNameLoc(Importer.Import(Loc));
return;
}
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName: {
TypeSourceInfo *FromTInfo = From.getNamedTypeInfo();
To.setNamedTypeInfo(Importer.Import(FromTInfo));
return;
}
}
llvm_unreachable("Unknown name kind.");
}
void ASTNodeImporter::ImportDeclContext(DeclContext *FromDC, bool ForceImport) {
if (Importer.isMinimalImport() && !ForceImport) {
Importer.ImportContext(FromDC);
return;
}
for (DeclContext::decl_iterator From = FromDC->decls_begin(),
FromEnd = FromDC->decls_end();
From != FromEnd;
++From)
Importer.Import(*From);
}
bool ASTNodeImporter::ImportDefinition(RecordDecl *From, RecordDecl *To,
ImportDefinitionKind Kind) {
if (To->getDefinition() || To->isBeingDefined()) {
if (Kind == IDK_Everything)
ImportDeclContext(From, /*ForceImport=*/true);
return false;
}
To->startDefinition();
// Add base classes.
if (CXXRecordDecl *ToCXX = dyn_cast<CXXRecordDecl>(To)) {
CXXRecordDecl *FromCXX = cast<CXXRecordDecl>(From);
struct CXXRecordDecl::DefinitionData &ToData = ToCXX->data();
struct CXXRecordDecl::DefinitionData &FromData = FromCXX->data();
ToData.UserDeclaredConstructor = FromData.UserDeclaredConstructor;
ToData.UserDeclaredCopyConstructor = FromData.UserDeclaredCopyConstructor;
ToData.UserDeclaredMoveConstructor = FromData.UserDeclaredMoveConstructor;
ToData.UserDeclaredCopyAssignment = FromData.UserDeclaredCopyAssignment;
ToData.UserDeclaredMoveAssignment = FromData.UserDeclaredMoveAssignment;
ToData.UserDeclaredDestructor = FromData.UserDeclaredDestructor;
ToData.Aggregate = FromData.Aggregate;
ToData.PlainOldData = FromData.PlainOldData;
ToData.Empty = FromData.Empty;
ToData.Polymorphic = FromData.Polymorphic;
ToData.Abstract = FromData.Abstract;
ToData.IsStandardLayout = FromData.IsStandardLayout;
ToData.HasNoNonEmptyBases = FromData.HasNoNonEmptyBases;
ToData.HasPrivateFields = FromData.HasPrivateFields;
ToData.HasProtectedFields = FromData.HasProtectedFields;
ToData.HasPublicFields = FromData.HasPublicFields;
ToData.HasMutableFields = FromData.HasMutableFields;
ToData.HasOnlyCMembers = FromData.HasOnlyCMembers;
ToData.HasTrivialDefaultConstructor = FromData.HasTrivialDefaultConstructor;
ToData.HasConstexprNonCopyMoveConstructor
= FromData.HasConstexprNonCopyMoveConstructor;
ToData.DefaultedDefaultConstructorIsConstexpr
= FromData.DefaultedDefaultConstructorIsConstexpr;
ToData.DefaultedCopyConstructorIsConstexpr
= FromData.DefaultedCopyConstructorIsConstexpr;
ToData.DefaultedMoveConstructorIsConstexpr
= FromData.DefaultedMoveConstructorIsConstexpr;
ToData.HasConstexprDefaultConstructor
= FromData.HasConstexprDefaultConstructor;
ToData.HasConstexprCopyConstructor = FromData.HasConstexprCopyConstructor;
ToData.HasConstexprMoveConstructor = FromData.HasConstexprMoveConstructor;
ToData.HasTrivialCopyConstructor = FromData.HasTrivialCopyConstructor;
ToData.HasTrivialMoveConstructor = FromData.HasTrivialMoveConstructor;
ToData.HasTrivialCopyAssignment = FromData.HasTrivialCopyAssignment;
ToData.HasTrivialMoveAssignment = FromData.HasTrivialMoveAssignment;
ToData.HasTrivialDestructor = FromData.HasTrivialDestructor;
ToData.HasIrrelevantDestructor = FromData.HasIrrelevantDestructor;
ToData.HasNonLiteralTypeFieldsOrBases
= FromData.HasNonLiteralTypeFieldsOrBases;
// ComputedVisibleConversions not imported.
ToData.UserProvidedDefaultConstructor
= FromData.UserProvidedDefaultConstructor;
ToData.DeclaredDefaultConstructor = FromData.DeclaredDefaultConstructor;
ToData.DeclaredCopyConstructor = FromData.DeclaredCopyConstructor;
ToData.DeclaredMoveConstructor = FromData.DeclaredMoveConstructor;
ToData.DeclaredCopyAssignment = FromData.DeclaredCopyAssignment;
ToData.DeclaredMoveAssignment = FromData.DeclaredMoveAssignment;
ToData.DeclaredDestructor = FromData.DeclaredDestructor;
ToData.FailedImplicitMoveConstructor
= FromData.FailedImplicitMoveConstructor;
ToData.FailedImplicitMoveAssignment = FromData.FailedImplicitMoveAssignment;
ToData.IsLambda = FromData.IsLambda;
SmallVector<CXXBaseSpecifier *, 4> Bases;
for (CXXRecordDecl::base_class_iterator
Base1 = FromCXX->bases_begin(),
FromBaseEnd = FromCXX->bases_end();
Base1 != FromBaseEnd;
++Base1) {
QualType T = Importer.Import(Base1->getType());
if (T.isNull())
return true;
SourceLocation EllipsisLoc;
if (Base1->isPackExpansion())
EllipsisLoc = Importer.Import(Base1->getEllipsisLoc());
// Ensure that we have a definition for the base.
ImportDefinitionIfNeeded(Base1->getType()->getAsCXXRecordDecl());
Bases.push_back(
new (Importer.getToContext())
CXXBaseSpecifier(Importer.Import(Base1->getSourceRange()),
Base1->isVirtual(),
Base1->isBaseOfClass(),
Base1->getAccessSpecifierAsWritten(),
Importer.Import(Base1->getTypeSourceInfo()),
EllipsisLoc));
}
if (!Bases.empty())
ToCXX->setBases(Bases.data(), Bases.size());
}
if (shouldForceImportDeclContext(Kind))
ImportDeclContext(From, /*ForceImport=*/true);
To->completeDefinition();
return false;
}
bool ASTNodeImporter::ImportDefinition(EnumDecl *From, EnumDecl *To,
ImportDefinitionKind Kind) {
if (To->getDefinition() || To->isBeingDefined()) {
if (Kind == IDK_Everything)
ImportDeclContext(From, /*ForceImport=*/true);
return false;
}
To->startDefinition();
QualType T = Importer.Import(Importer.getFromContext().getTypeDeclType(From));
if (T.isNull())
return true;
QualType ToPromotionType = Importer.Import(From->getPromotionType());
if (ToPromotionType.isNull())
return true;
if (shouldForceImportDeclContext(Kind))
ImportDeclContext(From, /*ForceImport=*/true);
// FIXME: we might need to merge the number of positive or negative bits
// if the enumerator lists don't match.
To->completeDefinition(T, ToPromotionType,
From->getNumPositiveBits(),
From->getNumNegativeBits());
return false;
}
TemplateParameterList *ASTNodeImporter::ImportTemplateParameterList(
TemplateParameterList *Params) {
SmallVector<NamedDecl *, 4> ToParams;
ToParams.reserve(Params->size());
for (TemplateParameterList::iterator P = Params->begin(),
PEnd = Params->end();
P != PEnd; ++P) {
Decl *To = Importer.Import(*P);
if (!To)
return 0;
ToParams.push_back(cast<NamedDecl>(To));
}
return TemplateParameterList::Create(Importer.getToContext(),
Importer.Import(Params->getTemplateLoc()),
Importer.Import(Params->getLAngleLoc()),
ToParams.data(), ToParams.size(),
Importer.Import(Params->getRAngleLoc()));
}
TemplateArgument
ASTNodeImporter::ImportTemplateArgument(const TemplateArgument &From) {
switch (From.getKind()) {
case TemplateArgument::Null:
return TemplateArgument();
case TemplateArgument::Type: {
QualType ToType = Importer.Import(From.getAsType());
if (ToType.isNull())
return TemplateArgument();
return TemplateArgument(ToType);
}
case TemplateArgument::Integral: {
QualType ToType = Importer.Import(From.getIntegralType());
if (ToType.isNull())
return TemplateArgument();
return TemplateArgument(*From.getAsIntegral(), ToType);
}
case TemplateArgument::Declaration:
if (Decl *To = Importer.Import(From.getAsDecl()))
return TemplateArgument(To);
return TemplateArgument();
case TemplateArgument::Template: {
TemplateName ToTemplate = Importer.Import(From.getAsTemplate());
if (ToTemplate.isNull())
return TemplateArgument();
return TemplateArgument(ToTemplate);
}
case TemplateArgument::TemplateExpansion: {
TemplateName ToTemplate
= Importer.Import(From.getAsTemplateOrTemplatePattern());
if (ToTemplate.isNull())
return TemplateArgument();
return TemplateArgument(ToTemplate, From.getNumTemplateExpansions());
}
case TemplateArgument::Expression:
if (Expr *ToExpr = Importer.Import(From.getAsExpr()))
return TemplateArgument(ToExpr);
return TemplateArgument();
case TemplateArgument::Pack: {
SmallVector<TemplateArgument, 2> ToPack;
ToPack.reserve(From.pack_size());
if (ImportTemplateArguments(From.pack_begin(), From.pack_size(), ToPack))
return TemplateArgument();
TemplateArgument *ToArgs
= new (Importer.getToContext()) TemplateArgument[ToPack.size()];
std::copy(ToPack.begin(), ToPack.end(), ToArgs);
return TemplateArgument(ToArgs, ToPack.size());
}
}
llvm_unreachable("Invalid template argument kind");
}
bool ASTNodeImporter::ImportTemplateArguments(const TemplateArgument *FromArgs,
unsigned NumFromArgs,
SmallVectorImpl<TemplateArgument> &ToArgs) {
for (unsigned I = 0; I != NumFromArgs; ++I) {
TemplateArgument To = ImportTemplateArgument(FromArgs[I]);
if (To.isNull() && !FromArgs[I].isNull())
return true;
ToArgs.push_back(To);
}
return false;
}
bool ASTNodeImporter::IsStructuralMatch(RecordDecl *FromRecord,
RecordDecl *ToRecord) {
StructuralEquivalenceContext Ctx(Importer.getFromContext(),
Importer.getToContext(),
Importer.getNonEquivalentDecls());
return Ctx.IsStructurallyEquivalent(FromRecord, ToRecord);
}
bool ASTNodeImporter::IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToEnum) {
StructuralEquivalenceContext Ctx(Importer.getFromContext(),
Importer.getToContext(),
Importer.getNonEquivalentDecls());
return Ctx.IsStructurallyEquivalent(FromEnum, ToEnum);
}
bool ASTNodeImporter::IsStructuralMatch(ClassTemplateDecl *From,
ClassTemplateDecl *To) {
StructuralEquivalenceContext Ctx(Importer.getFromContext(),
Importer.getToContext(),
Importer.getNonEquivalentDecls());
return Ctx.IsStructurallyEquivalent(From, To);
}
Decl *ASTNodeImporter::VisitDecl(Decl *D) {
Importer.FromDiag(D->getLocation(), diag::err_unsupported_ast_node)
<< D->getDeclKindName();
return 0;
}
Decl *ASTNodeImporter::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
TranslationUnitDecl *ToD =
Importer.getToContext().getTranslationUnitDecl();
Importer.Imported(D, ToD);
return ToD;
}
Decl *ASTNodeImporter::VisitNamespaceDecl(NamespaceDecl *D) {
// Import the major distinguishing characteristics of this namespace.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
NamespaceDecl *MergeWithNamespace = 0;
if (!Name) {
// This is an anonymous namespace. Adopt an existing anonymous
// namespace if we can.
// FIXME: Not testable.
if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC))
MergeWithNamespace = TU->getAnonymousNamespace();
else
MergeWithNamespace = cast<NamespaceDecl>(DC)->getAnonymousNamespace();
} else {
SmallVector<NamedDecl *, 4> ConflictingDecls;
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Namespace))
continue;
if (NamespaceDecl *FoundNS = dyn_cast<NamespaceDecl>(FoundDecls[I])) {
MergeWithNamespace = FoundNS;
ConflictingDecls.clear();
break;
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Namespace,
ConflictingDecls.data(),
ConflictingDecls.size());
}
}
// Create the "to" namespace, if needed.
NamespaceDecl *ToNamespace = MergeWithNamespace;
if (!ToNamespace) {
ToNamespace = NamespaceDecl::Create(Importer.getToContext(), DC,
D->isInline(),
Importer.Import(D->getLocStart()),
Loc, Name.getAsIdentifierInfo(),
/*PrevDecl=*/0);
ToNamespace->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToNamespace);
// If this is an anonymous namespace, register it as the anonymous
// namespace within its context.
if (!Name) {
if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC))
TU->setAnonymousNamespace(ToNamespace);
else
cast<NamespaceDecl>(DC)->setAnonymousNamespace(ToNamespace);
}
}
Importer.Imported(D, ToNamespace);
ImportDeclContext(D);
return ToNamespace;
}
Decl *ASTNodeImporter::VisitTypedefNameDecl(TypedefNameDecl *D, bool IsAlias) {
// Import the major distinguishing characteristics of this typedef.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// If this typedef is not in block scope, determine whether we've
// seen a typedef with the same name (that we can merge with) or any
// other entity by that name (which name lookup could conflict with).
if (!DC->isFunctionOrMethod()) {
SmallVector<NamedDecl *, 4> ConflictingDecls;
unsigned IDNS = Decl::IDNS_Ordinary;
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
continue;
if (TypedefNameDecl *FoundTypedef =
dyn_cast<TypedefNameDecl>(FoundDecls[I])) {
if (Importer.IsStructurallyEquivalent(D->getUnderlyingType(),
FoundTypedef->getUnderlyingType()))
return Importer.Imported(D, FoundTypedef);
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
if (!Name)
return 0;
}
}
// Import the underlying type of this typedef;
QualType T = Importer.Import(D->getUnderlyingType());
if (T.isNull())
return 0;
// Create the new typedef node.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
SourceLocation StartL = Importer.Import(D->getLocStart());
TypedefNameDecl *ToTypedef;
if (IsAlias)
ToTypedef = TypeAliasDecl::Create(Importer.getToContext(), DC,
StartL, Loc,
Name.getAsIdentifierInfo(),
TInfo);
else
ToTypedef = TypedefDecl::Create(Importer.getToContext(), DC,
StartL, Loc,
Name.getAsIdentifierInfo(),
TInfo);
ToTypedef->setAccess(D->getAccess());
ToTypedef->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToTypedef);
LexicalDC->addDeclInternal(ToTypedef);
return ToTypedef;
}
Decl *ASTNodeImporter::VisitTypedefDecl(TypedefDecl *D) {
return VisitTypedefNameDecl(D, /*IsAlias=*/false);
}
Decl *ASTNodeImporter::VisitTypeAliasDecl(TypeAliasDecl *D) {
return VisitTypedefNameDecl(D, /*IsAlias=*/true);
}
Decl *ASTNodeImporter::VisitEnumDecl(EnumDecl *D) {
// Import the major distinguishing characteristics of this enum.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Figure out what enum name we're looking for.
unsigned IDNS = Decl::IDNS_Tag;
DeclarationName SearchName = Name;
if (!SearchName && D->getTypedefNameForAnonDecl()) {
SearchName = Importer.Import(D->getTypedefNameForAnonDecl()->getDeclName());
IDNS = Decl::IDNS_Ordinary;
} else if (Importer.getToContext().getLangOptions().CPlusPlus)
IDNS |= Decl::IDNS_Ordinary;
// We may already have an enum of the same name; try to find and match it.
if (!DC->isFunctionOrMethod() && SearchName) {
SmallVector<NamedDecl *, 4> ConflictingDecls;
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(SearchName, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
continue;
Decl *Found = FoundDecls[I];
if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Found)) {
if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>())
Found = Tag->getDecl();
}
if (EnumDecl *FoundEnum = dyn_cast<EnumDecl>(Found)) {
if (IsStructuralMatch(D, FoundEnum))
return Importer.Imported(D, FoundEnum);
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
}
}
// Create the enum declaration.
EnumDecl *D2 = EnumDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getLocStart()),
Loc, Name.getAsIdentifierInfo(), 0,
D->isScoped(), D->isScopedUsingClassTag(),
D->isFixed());
// Import the qualifier, if any.
D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
D2->setAccess(D->getAccess());
D2->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, D2);
LexicalDC->addDeclInternal(D2);
// Import the integer type.
QualType ToIntegerType = Importer.Import(D->getIntegerType());
if (ToIntegerType.isNull())
return 0;
D2->setIntegerType(ToIntegerType);
// Import the definition
if (D->isCompleteDefinition() && ImportDefinition(D, D2))
return 0;
return D2;
}
Decl *ASTNodeImporter::VisitRecordDecl(RecordDecl *D) {
// If this record has a definition in the translation unit we're coming from,
// but this particular declaration is not that definition, import the
// definition and map to that.
TagDecl *Definition = D->getDefinition();
if (Definition && Definition != D) {
Decl *ImportedDef = Importer.Import(Definition);
if (!ImportedDef)
return 0;
return Importer.Imported(D, ImportedDef);
}
// Import the major distinguishing characteristics of this record.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Figure out what structure name we're looking for.
unsigned IDNS = Decl::IDNS_Tag;
DeclarationName SearchName = Name;
if (!SearchName && D->getTypedefNameForAnonDecl()) {
SearchName = Importer.Import(D->getTypedefNameForAnonDecl()->getDeclName());
IDNS = Decl::IDNS_Ordinary;
} else if (Importer.getToContext().getLangOptions().CPlusPlus)
IDNS |= Decl::IDNS_Ordinary;
// We may already have a record of the same name; try to find and match it.
RecordDecl *AdoptDecl = 0;
if (!DC->isFunctionOrMethod() && SearchName) {
SmallVector<NamedDecl *, 4> ConflictingDecls;
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(SearchName, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
continue;
Decl *Found = FoundDecls[I];
if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Found)) {
if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>())
Found = Tag->getDecl();
}
if (RecordDecl *FoundRecord = dyn_cast<RecordDecl>(Found)) {
if (RecordDecl *FoundDef = FoundRecord->getDefinition()) {
if (!D->isCompleteDefinition() || IsStructuralMatch(D, FoundDef)) {
// The record types structurally match, or the "from" translation
// unit only had a forward declaration anyway; call it the same
// function.
// FIXME: For C++, we should also merge methods here.
return Importer.Imported(D, FoundDef);
}
} else {
// We have a forward declaration of this type, so adopt that forward
// declaration rather than building a new one.
AdoptDecl = FoundRecord;
continue;
}
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
}
}
// Create the record declaration.
RecordDecl *D2 = AdoptDecl;
SourceLocation StartLoc = Importer.Import(D->getLocStart());
if (!D2) {
if (isa<CXXRecordDecl>(D)) {
CXXRecordDecl *D2CXX = CXXRecordDecl::Create(Importer.getToContext(),
D->getTagKind(),
DC, StartLoc, Loc,
Name.getAsIdentifierInfo());
D2 = D2CXX;
D2->setAccess(D->getAccess());
} else {
D2 = RecordDecl::Create(Importer.getToContext(), D->getTagKind(),
DC, StartLoc, Loc, Name.getAsIdentifierInfo());
}
D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
D2->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(D2);
}
Importer.Imported(D, D2);
if (D->isCompleteDefinition() && ImportDefinition(D, D2, IDK_Default))
return 0;
return D2;
}
Decl *ASTNodeImporter::VisitEnumConstantDecl(EnumConstantDecl *D) {
// Import the major distinguishing characteristics of this enumerator.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
// Determine whether there are any other declarations with the same name and
// in the same context.
if (!LexicalDC->isFunctionOrMethod()) {
SmallVector<NamedDecl *, 4> ConflictingDecls;
unsigned IDNS = Decl::IDNS_Ordinary;
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
continue;
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
if (!Name)
return 0;
}
}
Expr *Init = Importer.Import(D->getInitExpr());
if (D->getInitExpr() && !Init)
return 0;
EnumConstantDecl *ToEnumerator
= EnumConstantDecl::Create(Importer.getToContext(), cast<EnumDecl>(DC), Loc,
Name.getAsIdentifierInfo(), T,
Init, D->getInitVal());
ToEnumerator->setAccess(D->getAccess());
ToEnumerator->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToEnumerator);
LexicalDC->addDeclInternal(ToEnumerator);
return ToEnumerator;
}
Decl *ASTNodeImporter::VisitFunctionDecl(FunctionDecl *D) {
// Import the major distinguishing characteristics of this function.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Try to find a function in our own ("to") context with the same name, same
// type, and in the same context as the function we're importing.
if (!LexicalDC->isFunctionOrMethod()) {
SmallVector<NamedDecl *, 4> ConflictingDecls;
unsigned IDNS = Decl::IDNS_Ordinary;
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
continue;
if (FunctionDecl *FoundFunction = dyn_cast<FunctionDecl>(FoundDecls[I])) {
if (isExternalLinkage(FoundFunction->getLinkage()) &&
isExternalLinkage(D->getLinkage())) {
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundFunction->getType())) {
// FIXME: Actually try to merge the body and other attributes.
return Importer.Imported(D, FoundFunction);
}
// FIXME: Check for overloading more carefully, e.g., by boosting
// Sema::IsOverload out to the AST library.
// Function overloading is okay in C++.
if (Importer.getToContext().getLangOptions().CPlusPlus)
continue;
// Complain about inconsistent function types.
Importer.ToDiag(Loc, diag::err_odr_function_type_inconsistent)
<< Name << D->getType() << FoundFunction->getType();
Importer.ToDiag(FoundFunction->getLocation(),
diag::note_odr_value_here)
<< FoundFunction->getType();
}
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
if (!Name)
return 0;
}
}
DeclarationNameInfo NameInfo(Name, Loc);
// Import additional name location/type info.
ImportDeclarationNameLoc(D->getNameInfo(), NameInfo);
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
// Import the function parameters.
SmallVector<ParmVarDecl *, 8> Parameters;
for (FunctionDecl::param_iterator P = D->param_begin(), PEnd = D->param_end();
P != PEnd; ++P) {
ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(*P));
if (!ToP)
return 0;
Parameters.push_back(ToP);
}
// Create the imported function.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
FunctionDecl *ToFunction = 0;
if (CXXConstructorDecl *FromConstructor = dyn_cast<CXXConstructorDecl>(D)) {
ToFunction = CXXConstructorDecl::Create(Importer.getToContext(),
cast<CXXRecordDecl>(DC),
D->getInnerLocStart(),
NameInfo, T, TInfo,
FromConstructor->isExplicit(),
D->isInlineSpecified(),
D->isImplicit(),
D->isConstexpr());
} else if (isa<CXXDestructorDecl>(D)) {
ToFunction = CXXDestructorDecl::Create(Importer.getToContext(),
cast<CXXRecordDecl>(DC),
D->getInnerLocStart(),
NameInfo, T, TInfo,
D->isInlineSpecified(),
D->isImplicit());
} else if (CXXConversionDecl *FromConversion
= dyn_cast<CXXConversionDecl>(D)) {
ToFunction = CXXConversionDecl::Create(Importer.getToContext(),
cast<CXXRecordDecl>(DC),
D->getInnerLocStart(),
NameInfo, T, TInfo,
D->isInlineSpecified(),
FromConversion->isExplicit(),
D->isConstexpr(),
Importer.Import(D->getLocEnd()));
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
ToFunction = CXXMethodDecl::Create(Importer.getToContext(),
cast<CXXRecordDecl>(DC),
D->getInnerLocStart(),
NameInfo, T, TInfo,
Method->isStatic(),
Method->getStorageClassAsWritten(),
Method->isInlineSpecified(),
D->isConstexpr(),
Importer.Import(D->getLocEnd()));
} else {
ToFunction = FunctionDecl::Create(Importer.getToContext(), DC,
D->getInnerLocStart(),
NameInfo, T, TInfo, D->getStorageClass(),
D->getStorageClassAsWritten(),
D->isInlineSpecified(),
D->hasWrittenPrototype(),
D->isConstexpr());
}
// Import the qualifier, if any.
ToFunction->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
ToFunction->setAccess(D->getAccess());
ToFunction->setLexicalDeclContext(LexicalDC);
ToFunction->setVirtualAsWritten(D->isVirtualAsWritten());
ToFunction->setTrivial(D->isTrivial());
ToFunction->setPure(D->isPure());
Importer.Imported(D, ToFunction);
// Set the parameters.
for (unsigned I = 0, N = Parameters.size(); I != N; ++I) {
Parameters[I]->setOwningFunction(ToFunction);
ToFunction->addDeclInternal(Parameters[I]);
}
ToFunction->setParams(Parameters);
// FIXME: Other bits to merge?
// Add this function to the lexical context.
LexicalDC->addDeclInternal(ToFunction);
return ToFunction;
}
Decl *ASTNodeImporter::VisitCXXMethodDecl(CXXMethodDecl *D) {
return VisitFunctionDecl(D);
}
Decl *ASTNodeImporter::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
return VisitCXXMethodDecl(D);
}
Decl *ASTNodeImporter::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
return VisitCXXMethodDecl(D);
}
Decl *ASTNodeImporter::VisitCXXConversionDecl(CXXConversionDecl *D) {
return VisitCXXMethodDecl(D);
}
Decl *ASTNodeImporter::VisitFieldDecl(FieldDecl *D) {
// Import the major distinguishing characteristics of a variable.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Determine whether we've already imported this field.
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (FieldDecl *FoundField = dyn_cast<FieldDecl>(FoundDecls[I])) {
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundField->getType())) {
Importer.Imported(D, FoundField);
return FoundField;
}
Importer.ToDiag(Loc, diag::err_odr_field_type_inconsistent)
<< Name << D->getType() << FoundField->getType();
Importer.ToDiag(FoundField->getLocation(), diag::note_odr_value_here)
<< FoundField->getType();
return 0;
}
}
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
Expr *BitWidth = Importer.Import(D->getBitWidth());
if (!BitWidth && D->getBitWidth())
return 0;
FieldDecl *ToField = FieldDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getInnerLocStart()),
Loc, Name.getAsIdentifierInfo(),
T, TInfo, BitWidth, D->isMutable(),
D->hasInClassInitializer());
ToField->setAccess(D->getAccess());
ToField->setLexicalDeclContext(LexicalDC);
if (ToField->hasInClassInitializer())
ToField->setInClassInitializer(D->getInClassInitializer());
Importer.Imported(D, ToField);
LexicalDC->addDeclInternal(ToField);
return ToField;
}
Decl *ASTNodeImporter::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
// Import the major distinguishing characteristics of a variable.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Determine whether we've already imported this field.
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (IndirectFieldDecl *FoundField
= dyn_cast<IndirectFieldDecl>(FoundDecls[I])) {
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundField->getType())) {
Importer.Imported(D, FoundField);
return FoundField;
}
Importer.ToDiag(Loc, diag::err_odr_field_type_inconsistent)
<< Name << D->getType() << FoundField->getType();
Importer.ToDiag(FoundField->getLocation(), diag::note_odr_value_here)
<< FoundField->getType();
return 0;
}
}
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
NamedDecl **NamedChain =
new (Importer.getToContext())NamedDecl*[D->getChainingSize()];
unsigned i = 0;
for (IndirectFieldDecl::chain_iterator PI = D->chain_begin(),
PE = D->chain_end(); PI != PE; ++PI) {
Decl* D = Importer.Import(*PI);
if (!D)
return 0;
NamedChain[i++] = cast<NamedDecl>(D);
}
IndirectFieldDecl *ToIndirectField = IndirectFieldDecl::Create(
Importer.getToContext(), DC,
Loc, Name.getAsIdentifierInfo(), T,
NamedChain, D->getChainingSize());
ToIndirectField->setAccess(D->getAccess());
ToIndirectField->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToIndirectField);
LexicalDC->addDeclInternal(ToIndirectField);
return ToIndirectField;
}
Decl *ASTNodeImporter::VisitObjCIvarDecl(ObjCIvarDecl *D) {
// Import the major distinguishing characteristics of an ivar.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Determine whether we've already imported this ivar
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (ObjCIvarDecl *FoundIvar = dyn_cast<ObjCIvarDecl>(FoundDecls[I])) {
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundIvar->getType())) {
Importer.Imported(D, FoundIvar);
return FoundIvar;
}
Importer.ToDiag(Loc, diag::err_odr_ivar_type_inconsistent)
<< Name << D->getType() << FoundIvar->getType();
Importer.ToDiag(FoundIvar->getLocation(), diag::note_odr_value_here)
<< FoundIvar->getType();
return 0;
}
}
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
Expr *BitWidth = Importer.Import(D->getBitWidth());
if (!BitWidth && D->getBitWidth())
return 0;
ObjCIvarDecl *ToIvar = ObjCIvarDecl::Create(Importer.getToContext(),
cast<ObjCContainerDecl>(DC),
Importer.Import(D->getInnerLocStart()),
Loc, Name.getAsIdentifierInfo(),
T, TInfo, D->getAccessControl(),
BitWidth, D->getSynthesize());
ToIvar->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToIvar);
LexicalDC->addDeclInternal(ToIvar);
return ToIvar;
}
Decl *ASTNodeImporter::VisitVarDecl(VarDecl *D) {
// Import the major distinguishing characteristics of a variable.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Try to find a variable in our own ("to") context with the same name and
// in the same context as the variable we're importing.
if (D->isFileVarDecl()) {
VarDecl *MergeWithVar = 0;
SmallVector<NamedDecl *, 4> ConflictingDecls;
unsigned IDNS = Decl::IDNS_Ordinary;
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
continue;
if (VarDecl *FoundVar = dyn_cast<VarDecl>(FoundDecls[I])) {
// We have found a variable that we may need to merge with. Check it.
if (isExternalLinkage(FoundVar->getLinkage()) &&
isExternalLinkage(D->getLinkage())) {
if (Importer.IsStructurallyEquivalent(D->getType(),
FoundVar->getType())) {
MergeWithVar = FoundVar;
break;
}
const ArrayType *FoundArray
= Importer.getToContext().getAsArrayType(FoundVar->getType());
const ArrayType *TArray
= Importer.getToContext().getAsArrayType(D->getType());
if (FoundArray && TArray) {
if (isa<IncompleteArrayType>(FoundArray) &&
isa<ConstantArrayType>(TArray)) {
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
FoundVar->setType(T);
MergeWithVar = FoundVar;
break;
} else if (isa<IncompleteArrayType>(TArray) &&
isa<ConstantArrayType>(FoundArray)) {
MergeWithVar = FoundVar;
break;
}
}
Importer.ToDiag(Loc, diag::err_odr_variable_type_inconsistent)
<< Name << D->getType() << FoundVar->getType();
Importer.ToDiag(FoundVar->getLocation(), diag::note_odr_value_here)
<< FoundVar->getType();
}
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (MergeWithVar) {
// An equivalent variable with external linkage has been found. Link
// the two declarations, then merge them.
Importer.Imported(D, MergeWithVar);
if (VarDecl *DDef = D->getDefinition()) {
if (VarDecl *ExistingDef = MergeWithVar->getDefinition()) {
Importer.ToDiag(ExistingDef->getLocation(),
diag::err_odr_variable_multiple_def)
<< Name;
Importer.FromDiag(DDef->getLocation(), diag::note_odr_defined_here);
} else {
Expr *Init = Importer.Import(DDef->getInit());
MergeWithVar->setInit(Init);
if (DDef->isInitKnownICE()) {
EvaluatedStmt *Eval = MergeWithVar->ensureEvaluatedStmt();
Eval->CheckedICE = true;
Eval->IsICE = DDef->isInitICE();
}
}
}
return MergeWithVar;
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, IDNS,
ConflictingDecls.data(),
ConflictingDecls.size());
if (!Name)
return 0;
}
}
// Import the type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
// Create the imported variable.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
VarDecl *ToVar = VarDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getInnerLocStart()),
Loc, Name.getAsIdentifierInfo(),
T, TInfo,
D->getStorageClass(),
D->getStorageClassAsWritten());
ToVar->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
ToVar->setAccess(D->getAccess());
ToVar->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToVar);
LexicalDC->addDeclInternal(ToVar);
// Merge the initializer.
// FIXME: Can we really import any initializer? Alternatively, we could force
// ourselves to import every declaration of a variable and then only use
// getInit() here.
ToVar->setInit(Importer.Import(const_cast<Expr *>(D->getAnyInitializer())));
// FIXME: Other bits to merge?
return ToVar;
}
Decl *ASTNodeImporter::VisitImplicitParamDecl(ImplicitParamDecl *D) {
// Parameters are created in the translation unit's context, then moved
// into the function declaration's context afterward.
DeclContext *DC = Importer.getToContext().getTranslationUnitDecl();
// Import the name of this declaration.
DeclarationName Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return 0;
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
// Import the parameter's type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
// Create the imported parameter.
ImplicitParamDecl *ToParm
= ImplicitParamDecl::Create(Importer.getToContext(), DC,
Loc, Name.getAsIdentifierInfo(),
T);
return Importer.Imported(D, ToParm);
}
Decl *ASTNodeImporter::VisitParmVarDecl(ParmVarDecl *D) {
// Parameters are created in the translation unit's context, then moved
// into the function declaration's context afterward.
DeclContext *DC = Importer.getToContext().getTranslationUnitDecl();
// Import the name of this declaration.
DeclarationName Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return 0;
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
// Import the parameter's type.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
// Create the imported parameter.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
ParmVarDecl *ToParm = ParmVarDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getInnerLocStart()),
Loc, Name.getAsIdentifierInfo(),
T, TInfo, D->getStorageClass(),
D->getStorageClassAsWritten(),
/*FIXME: Default argument*/ 0);
ToParm->setHasInheritedDefaultArg(D->hasInheritedDefaultArg());
return Importer.Imported(D, ToParm);
}
Decl *ASTNodeImporter::VisitObjCMethodDecl(ObjCMethodDecl *D) {
// Import the major distinguishing characteristics of a method.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (ObjCMethodDecl *FoundMethod = dyn_cast<ObjCMethodDecl>(FoundDecls[I])) {
if (FoundMethod->isInstanceMethod() != D->isInstanceMethod())
continue;
// Check return types.
if (!Importer.IsStructurallyEquivalent(D->getResultType(),
FoundMethod->getResultType())) {
Importer.ToDiag(Loc, diag::err_odr_objc_method_result_type_inconsistent)
<< D->isInstanceMethod() << Name
<< D->getResultType() << FoundMethod->getResultType();
Importer.ToDiag(FoundMethod->getLocation(),
diag::note_odr_objc_method_here)
<< D->isInstanceMethod() << Name;
return 0;
}
// Check the number of parameters.
if (D->param_size() != FoundMethod->param_size()) {
Importer.ToDiag(Loc, diag::err_odr_objc_method_num_params_inconsistent)
<< D->isInstanceMethod() << Name
<< D->param_size() << FoundMethod->param_size();
Importer.ToDiag(FoundMethod->getLocation(),
diag::note_odr_objc_method_here)
<< D->isInstanceMethod() << Name;
return 0;
}
// Check parameter types.
for (ObjCMethodDecl::param_iterator P = D->param_begin(),
PEnd = D->param_end(), FoundP = FoundMethod->param_begin();
P != PEnd; ++P, ++FoundP) {
if (!Importer.IsStructurallyEquivalent((*P)->getType(),
(*FoundP)->getType())) {
Importer.FromDiag((*P)->getLocation(),
diag::err_odr_objc_method_param_type_inconsistent)
<< D->isInstanceMethod() << Name
<< (*P)->getType() << (*FoundP)->getType();
Importer.ToDiag((*FoundP)->getLocation(), diag::note_odr_value_here)
<< (*FoundP)->getType();
return 0;
}
}
// Check variadic/non-variadic.
// Check the number of parameters.
if (D->isVariadic() != FoundMethod->isVariadic()) {
Importer.ToDiag(Loc, diag::err_odr_objc_method_variadic_inconsistent)
<< D->isInstanceMethod() << Name;
Importer.ToDiag(FoundMethod->getLocation(),
diag::note_odr_objc_method_here)
<< D->isInstanceMethod() << Name;
return 0;
}
// FIXME: Any other bits we need to merge?
return Importer.Imported(D, FoundMethod);
}
}
// Import the result type.
QualType ResultTy = Importer.Import(D->getResultType());
if (ResultTy.isNull())
return 0;
TypeSourceInfo *ResultTInfo = Importer.Import(D->getResultTypeSourceInfo());
ObjCMethodDecl *ToMethod
= ObjCMethodDecl::Create(Importer.getToContext(),
Loc,
Importer.Import(D->getLocEnd()),
Name.getObjCSelector(),
ResultTy, ResultTInfo, DC,
D->isInstanceMethod(),
D->isVariadic(),
D->isSynthesized(),
D->isImplicit(),
D->isDefined(),
D->getImplementationControl(),
D->hasRelatedResultType());
// FIXME: When we decide to merge method definitions, we'll need to
// deal with implicit parameters.
// Import the parameters
SmallVector<ParmVarDecl *, 5> ToParams;
for (ObjCMethodDecl::param_iterator FromP = D->param_begin(),
FromPEnd = D->param_end();
FromP != FromPEnd;
++FromP) {
ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(*FromP));
if (!ToP)
return 0;
ToParams.push_back(ToP);
}
// Set the parameters.
for (unsigned I = 0, N = ToParams.size(); I != N; ++I) {
ToParams[I]->setOwningFunction(ToMethod);
ToMethod->addDeclInternal(ToParams[I]);
}
SmallVector<SourceLocation, 12> SelLocs;
D->getSelectorLocs(SelLocs);
ToMethod->setMethodParams(Importer.getToContext(), ToParams, SelLocs);
ToMethod->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToMethod);
LexicalDC->addDeclInternal(ToMethod);
return ToMethod;
}
Decl *ASTNodeImporter::VisitObjCCategoryDecl(ObjCCategoryDecl *D) {
// Import the major distinguishing characteristics of a category.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
ObjCInterfaceDecl *ToInterface
= cast_or_null<ObjCInterfaceDecl>(Importer.Import(D->getClassInterface()));
if (!ToInterface)
return 0;
// Determine if we've already encountered this category.
ObjCCategoryDecl *MergeWithCategory
= ToInterface->FindCategoryDeclaration(Name.getAsIdentifierInfo());
ObjCCategoryDecl *ToCategory = MergeWithCategory;
if (!ToCategory) {
ToCategory = ObjCCategoryDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getAtStartLoc()),
Loc,
Importer.Import(D->getCategoryNameLoc()),
Name.getAsIdentifierInfo(),
ToInterface,
Importer.Import(D->getIvarLBraceLoc()),
Importer.Import(D->getIvarRBraceLoc()));
ToCategory->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToCategory);
Importer.Imported(D, ToCategory);
// Import protocols
SmallVector<ObjCProtocolDecl *, 4> Protocols;
SmallVector<SourceLocation, 4> ProtocolLocs;
ObjCCategoryDecl::protocol_loc_iterator FromProtoLoc
= D->protocol_loc_begin();
for (ObjCCategoryDecl::protocol_iterator FromProto = D->protocol_begin(),
FromProtoEnd = D->protocol_end();
FromProto != FromProtoEnd;
++FromProto, ++FromProtoLoc) {
ObjCProtocolDecl *ToProto
= cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
if (!ToProto)
return 0;
Protocols.push_back(ToProto);
ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
}
// FIXME: If we're merging, make sure that the protocol list is the same.
ToCategory->setProtocolList(Protocols.data(), Protocols.size(),
ProtocolLocs.data(), Importer.getToContext());
} else {
Importer.Imported(D, ToCategory);
}
// Import all of the members of this category.
ImportDeclContext(D);
// If we have an implementation, import it as well.
if (D->getImplementation()) {
ObjCCategoryImplDecl *Impl
= cast_or_null<ObjCCategoryImplDecl>(
Importer.Import(D->getImplementation()));
if (!Impl)
return 0;
ToCategory->setImplementation(Impl);
}
return ToCategory;
}
bool ASTNodeImporter::ImportDefinition(ObjCProtocolDecl *From,
ObjCProtocolDecl *To,
ImportDefinitionKind Kind) {
if (To->getDefinition()) {
if (shouldForceImportDeclContext(Kind))
ImportDeclContext(From);
return false;
}
// Start the protocol definition
To->startDefinition();
// Import protocols
SmallVector<ObjCProtocolDecl *, 4> Protocols;
SmallVector<SourceLocation, 4> ProtocolLocs;
ObjCProtocolDecl::protocol_loc_iterator
FromProtoLoc = From->protocol_loc_begin();
for (ObjCProtocolDecl::protocol_iterator FromProto = From->protocol_begin(),
FromProtoEnd = From->protocol_end();
FromProto != FromProtoEnd;
++FromProto, ++FromProtoLoc) {
ObjCProtocolDecl *ToProto
= cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
if (!ToProto)
return true;
Protocols.push_back(ToProto);
ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
}
// FIXME: If we're merging, make sure that the protocol list is the same.
To->setProtocolList(Protocols.data(), Protocols.size(),
ProtocolLocs.data(), Importer.getToContext());
if (shouldForceImportDeclContext(Kind)) {
// Import all of the members of this protocol.
ImportDeclContext(From, /*ForceImport=*/true);
}
return false;
}
Decl *ASTNodeImporter::VisitObjCProtocolDecl(ObjCProtocolDecl *D) {
// If this protocol has a definition in the translation unit we're coming
// from, but this particular declaration is not that definition, import the
// definition and map to that.
ObjCProtocolDecl *Definition = D->getDefinition();
if (Definition && Definition != D) {
Decl *ImportedDef = Importer.Import(Definition);
if (!ImportedDef)
return 0;
return Importer.Imported(D, ImportedDef);
}
// Import the major distinguishing characteristics of a protocol.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
ObjCProtocolDecl *MergeWithProtocol = 0;
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_ObjCProtocol))
continue;
if ((MergeWithProtocol = dyn_cast<ObjCProtocolDecl>(FoundDecls[I])))
break;
}
ObjCProtocolDecl *ToProto = MergeWithProtocol;
if (!ToProto) {
ToProto = ObjCProtocolDecl::Create(Importer.getToContext(), DC,
Name.getAsIdentifierInfo(), Loc,
Importer.Import(D->getAtStartLoc()),
/*PrevDecl=*/0);
ToProto->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToProto);
}
Importer.Imported(D, ToProto);
if (D->isThisDeclarationADefinition() && ImportDefinition(D, ToProto))
return 0;
return ToProto;
}
bool ASTNodeImporter::ImportDefinition(ObjCInterfaceDecl *From,
ObjCInterfaceDecl *To,
ImportDefinitionKind Kind) {
if (To->getDefinition()) {
// Check consistency of superclass.
ObjCInterfaceDecl *FromSuper = From->getSuperClass();
if (FromSuper) {
FromSuper = cast_or_null<ObjCInterfaceDecl>(Importer.Import(FromSuper));
if (!FromSuper)
return true;
}
ObjCInterfaceDecl *ToSuper = To->getSuperClass();
if ((bool)FromSuper != (bool)ToSuper ||
(FromSuper && !declaresSameEntity(FromSuper, ToSuper))) {
Importer.ToDiag(To->getLocation(),
diag::err_odr_objc_superclass_inconsistent)
<< To->getDeclName();
if (ToSuper)
Importer.ToDiag(To->getSuperClassLoc(), diag::note_odr_objc_superclass)
<< To->getSuperClass()->getDeclName();
else
Importer.ToDiag(To->getLocation(),
diag::note_odr_objc_missing_superclass);
if (From->getSuperClass())
Importer.FromDiag(From->getSuperClassLoc(),
diag::note_odr_objc_superclass)
<< From->getSuperClass()->getDeclName();
else
Importer.FromDiag(From->getLocation(),
diag::note_odr_objc_missing_superclass);
}
if (shouldForceImportDeclContext(Kind))
ImportDeclContext(From);
return false;
}
// Start the definition.
To->startDefinition();
// If this class has a superclass, import it.
if (From->getSuperClass()) {
ObjCInterfaceDecl *Super = cast_or_null<ObjCInterfaceDecl>(
Importer.Import(From->getSuperClass()));
if (!Super)
return true;
To->setSuperClass(Super);
To->setSuperClassLoc(Importer.Import(From->getSuperClassLoc()));
}
// Import protocols
SmallVector<ObjCProtocolDecl *, 4> Protocols;
SmallVector<SourceLocation, 4> ProtocolLocs;
ObjCInterfaceDecl::protocol_loc_iterator
FromProtoLoc = From->protocol_loc_begin();
for (ObjCInterfaceDecl::protocol_iterator FromProto = From->protocol_begin(),
FromProtoEnd = From->protocol_end();
FromProto != FromProtoEnd;
++FromProto, ++FromProtoLoc) {
ObjCProtocolDecl *ToProto
= cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
if (!ToProto)
return true;
Protocols.push_back(ToProto);
ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
}
// FIXME: If we're merging, make sure that the protocol list is the same.
To->setProtocolList(Protocols.data(), Protocols.size(),
ProtocolLocs.data(), Importer.getToContext());
// Import categories. When the categories themselves are imported, they'll
// hook themselves into this interface.
for (ObjCCategoryDecl *FromCat = From->getCategoryList(); FromCat;
FromCat = FromCat->getNextClassCategory())
Importer.Import(FromCat);
// If we have an @implementation, import it as well.
if (From->getImplementation()) {
ObjCImplementationDecl *Impl = cast_or_null<ObjCImplementationDecl>(
Importer.Import(From->getImplementation()));
if (!Impl)
return true;
To->setImplementation(Impl);
}
if (shouldForceImportDeclContext(Kind)) {
// Import all of the members of this class.
ImportDeclContext(From, /*ForceImport=*/true);
}
return false;
}
Decl *ASTNodeImporter::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) {
// If this class has a definition in the translation unit we're coming from,
// but this particular declaration is not that definition, import the
// definition and map to that.
ObjCInterfaceDecl *Definition = D->getDefinition();
if (Definition && Definition != D) {
Decl *ImportedDef = Importer.Import(Definition);
if (!ImportedDef)
return 0;
return Importer.Imported(D, ImportedDef);
}
// Import the major distinguishing characteristics of an @interface.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Look for an existing interface with the same name.
ObjCInterfaceDecl *MergeWithIface = 0;
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary))
continue;
if ((MergeWithIface = dyn_cast<ObjCInterfaceDecl>(FoundDecls[I])))
break;
}
// Create an interface declaration, if one does not already exist.
ObjCInterfaceDecl *ToIface = MergeWithIface;
if (!ToIface) {
ToIface = ObjCInterfaceDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getAtStartLoc()),
Name.getAsIdentifierInfo(),
/*PrevDecl=*/0,Loc,
D->isImplicitInterfaceDecl());
ToIface->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToIface);
}
Importer.Imported(D, ToIface);
if (D->isThisDeclarationADefinition() && ImportDefinition(D, ToIface))
return 0;
return ToIface;
}
Decl *ASTNodeImporter::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
ObjCCategoryDecl *Category = cast_or_null<ObjCCategoryDecl>(
Importer.Import(D->getCategoryDecl()));
if (!Category)
return 0;
ObjCCategoryImplDecl *ToImpl = Category->getImplementation();
if (!ToImpl) {
DeclContext *DC = Importer.ImportContext(D->getDeclContext());
if (!DC)
return 0;
SourceLocation CategoryNameLoc = Importer.Import(D->getCategoryNameLoc());
ToImpl = ObjCCategoryImplDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getIdentifier()),
Category->getClassInterface(),
Importer.Import(D->getLocation()),
Importer.Import(D->getAtStartLoc()),
CategoryNameLoc);
DeclContext *LexicalDC = DC;
if (D->getDeclContext() != D->getLexicalDeclContext()) {
LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return 0;
ToImpl->setLexicalDeclContext(LexicalDC);
}
LexicalDC->addDeclInternal(ToImpl);
Category->setImplementation(ToImpl);
}
Importer.Imported(D, ToImpl);
ImportDeclContext(D);
return ToImpl;
}
Decl *ASTNodeImporter::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
// Find the corresponding interface.
ObjCInterfaceDecl *Iface = cast_or_null<ObjCInterfaceDecl>(
Importer.Import(D->getClassInterface()));
if (!Iface)
return 0;
// Import the superclass, if any.
ObjCInterfaceDecl *Super = 0;
if (D->getSuperClass()) {
Super = cast_or_null<ObjCInterfaceDecl>(
Importer.Import(D->getSuperClass()));
if (!Super)
return 0;
}
ObjCImplementationDecl *Impl = Iface->getImplementation();
if (!Impl) {
// We haven't imported an implementation yet. Create a new @implementation
// now.
Impl = ObjCImplementationDecl::Create(Importer.getToContext(),
Importer.ImportContext(D->getDeclContext()),
Iface, Super,
Importer.Import(D->getLocation()),
Importer.Import(D->getAtStartLoc()),
Importer.Import(D->getIvarLBraceLoc()),
Importer.Import(D->getIvarRBraceLoc()));
if (D->getDeclContext() != D->getLexicalDeclContext()) {
DeclContext *LexicalDC
= Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return 0;
Impl->setLexicalDeclContext(LexicalDC);
}
// Associate the implementation with the class it implements.
Iface->setImplementation(Impl);
Importer.Imported(D, Iface->getImplementation());
} else {
Importer.Imported(D, Iface->getImplementation());
// Verify that the existing @implementation has the same superclass.
if ((Super && !Impl->getSuperClass()) ||
(!Super && Impl->getSuperClass()) ||
(Super && Impl->getSuperClass() &&
!declaresSameEntity(Super->getCanonicalDecl(), Impl->getSuperClass()))) {
Importer.ToDiag(Impl->getLocation(),
diag::err_odr_objc_superclass_inconsistent)
<< Iface->getDeclName();
// FIXME: It would be nice to have the location of the superclass
// below.
if (Impl->getSuperClass())
Importer.ToDiag(Impl->getLocation(),
diag::note_odr_objc_superclass)
<< Impl->getSuperClass()->getDeclName();
else
Importer.ToDiag(Impl->getLocation(),
diag::note_odr_objc_missing_superclass);
if (D->getSuperClass())
Importer.FromDiag(D->getLocation(),
diag::note_odr_objc_superclass)
<< D->getSuperClass()->getDeclName();
else
Importer.FromDiag(D->getLocation(),
diag::note_odr_objc_missing_superclass);
return 0;
}
}
// Import all of the members of this @implementation.
ImportDeclContext(D);
return Impl;
}
Decl *ASTNodeImporter::VisitObjCPropertyDecl(ObjCPropertyDecl *D) {
// Import the major distinguishing characteristics of an @property.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// Check whether we have already imported this property.
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (ObjCPropertyDecl *FoundProp
= dyn_cast<ObjCPropertyDecl>(FoundDecls[I])) {
// Check property types.
if (!Importer.IsStructurallyEquivalent(D->getType(),
FoundProp->getType())) {
Importer.ToDiag(Loc, diag::err_odr_objc_property_type_inconsistent)
<< Name << D->getType() << FoundProp->getType();
Importer.ToDiag(FoundProp->getLocation(), diag::note_odr_value_here)
<< FoundProp->getType();
return 0;
}
// FIXME: Check property attributes, getters, setters, etc.?
// Consider these properties to be equivalent.
Importer.Imported(D, FoundProp);
return FoundProp;
}
}
// Import the type.
TypeSourceInfo *T = Importer.Import(D->getTypeSourceInfo());
if (!T)
return 0;
// Create the new property.
ObjCPropertyDecl *ToProperty
= ObjCPropertyDecl::Create(Importer.getToContext(), DC, Loc,
Name.getAsIdentifierInfo(),
Importer.Import(D->getAtLoc()),
Importer.Import(D->getLParenLoc()),
T,
D->getPropertyImplementation());
Importer.Imported(D, ToProperty);
ToProperty->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(ToProperty);
ToProperty->setPropertyAttributes(D->getPropertyAttributes());
ToProperty->setPropertyAttributesAsWritten(
D->getPropertyAttributesAsWritten());
ToProperty->setGetterName(Importer.Import(D->getGetterName()));
ToProperty->setSetterName(Importer.Import(D->getSetterName()));
ToProperty->setGetterMethodDecl(
cast_or_null<ObjCMethodDecl>(Importer.Import(D->getGetterMethodDecl())));
ToProperty->setSetterMethodDecl(
cast_or_null<ObjCMethodDecl>(Importer.Import(D->getSetterMethodDecl())));
ToProperty->setPropertyIvarDecl(
cast_or_null<ObjCIvarDecl>(Importer.Import(D->getPropertyIvarDecl())));
return ToProperty;
}
Decl *ASTNodeImporter::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) {
ObjCPropertyDecl *Property = cast_or_null<ObjCPropertyDecl>(
Importer.Import(D->getPropertyDecl()));
if (!Property)
return 0;
DeclContext *DC = Importer.ImportContext(D->getDeclContext());
if (!DC)
return 0;
// Import the lexical declaration context.
DeclContext *LexicalDC = DC;
if (D->getDeclContext() != D->getLexicalDeclContext()) {
LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return 0;
}
ObjCImplDecl *InImpl = dyn_cast<ObjCImplDecl>(LexicalDC);
if (!InImpl)
return 0;
// Import the ivar (for an @synthesize).
ObjCIvarDecl *Ivar = 0;
if (D->getPropertyIvarDecl()) {
Ivar = cast_or_null<ObjCIvarDecl>(
Importer.Import(D->getPropertyIvarDecl()));
if (!Ivar)
return 0;
}
ObjCPropertyImplDecl *ToImpl
= InImpl->FindPropertyImplDecl(Property->getIdentifier());
if (!ToImpl) {
ToImpl = ObjCPropertyImplDecl::Create(Importer.getToContext(), DC,
Importer.Import(D->getLocStart()),
Importer.Import(D->getLocation()),
Property,
D->getPropertyImplementation(),
Ivar,
Importer.Import(D->getPropertyIvarDeclLoc()));
ToImpl->setLexicalDeclContext(LexicalDC);
Importer.Imported(D, ToImpl);
LexicalDC->addDeclInternal(ToImpl);
} else {
// Check that we have the same kind of property implementation (@synthesize
// vs. @dynamic).
if (D->getPropertyImplementation() != ToImpl->getPropertyImplementation()) {
Importer.ToDiag(ToImpl->getLocation(),
diag::err_odr_objc_property_impl_kind_inconsistent)
<< Property->getDeclName()
<< (ToImpl->getPropertyImplementation()
== ObjCPropertyImplDecl::Dynamic);
Importer.FromDiag(D->getLocation(),
diag::note_odr_objc_property_impl_kind)
<< D->getPropertyDecl()->getDeclName()
<< (D->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
return 0;
}
// For @synthesize, check that we have the same
if (D->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize &&
Ivar != ToImpl->getPropertyIvarDecl()) {
Importer.ToDiag(ToImpl->getPropertyIvarDeclLoc(),
diag::err_odr_objc_synthesize_ivar_inconsistent)
<< Property->getDeclName()
<< ToImpl->getPropertyIvarDecl()->getDeclName()
<< Ivar->getDeclName();
Importer.FromDiag(D->getPropertyIvarDeclLoc(),
diag::note_odr_objc_synthesize_ivar_here)
<< D->getPropertyIvarDecl()->getDeclName();
return 0;
}
// Merge the existing implementation with the new implementation.
Importer.Imported(D, ToImpl);
}
return ToImpl;
}
Decl *ASTNodeImporter::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) {
// For template arguments, we adopt the translation unit as our declaration
// context. This context will be fixed when the actual template declaration
// is created.
// FIXME: Import default argument.
return TemplateTypeParmDecl::Create(Importer.getToContext(),
Importer.getToContext().getTranslationUnitDecl(),
Importer.Import(D->getLocStart()),
Importer.Import(D->getLocation()),
D->getDepth(),
D->getIndex(),
Importer.Import(D->getIdentifier()),
D->wasDeclaredWithTypename(),
D->isParameterPack());
}
Decl *
ASTNodeImporter::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
// Import the name of this declaration.
DeclarationName Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return 0;
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
// Import the type of this declaration.
QualType T = Importer.Import(D->getType());
if (T.isNull())
return 0;
// Import type-source information.
TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
if (D->getTypeSourceInfo() && !TInfo)
return 0;
// FIXME: Import default argument.
return NonTypeTemplateParmDecl::Create(Importer.getToContext(),
Importer.getToContext().getTranslationUnitDecl(),
Importer.Import(D->getInnerLocStart()),
Loc, D->getDepth(), D->getPosition(),
Name.getAsIdentifierInfo(),
T, D->isParameterPack(), TInfo);
}
Decl *
ASTNodeImporter::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) {
// Import the name of this declaration.
DeclarationName Name = Importer.Import(D->getDeclName());
if (D->getDeclName() && !Name)
return 0;
// Import the location of this declaration.
SourceLocation Loc = Importer.Import(D->getLocation());
// Import template parameters.
TemplateParameterList *TemplateParams
= ImportTemplateParameterList(D->getTemplateParameters());
if (!TemplateParams)
return 0;
// FIXME: Import default argument.
return TemplateTemplateParmDecl::Create(Importer.getToContext(),
Importer.getToContext().getTranslationUnitDecl(),
Loc, D->getDepth(), D->getPosition(),
D->isParameterPack(),
Name.getAsIdentifierInfo(),
TemplateParams);
}
Decl *ASTNodeImporter::VisitClassTemplateDecl(ClassTemplateDecl *D) {
// If this record has a definition in the translation unit we're coming from,
// but this particular declaration is not that definition, import the
// definition and map to that.
CXXRecordDecl *Definition
= cast_or_null<CXXRecordDecl>(D->getTemplatedDecl()->getDefinition());
if (Definition && Definition != D->getTemplatedDecl()) {
Decl *ImportedDef
= Importer.Import(Definition->getDescribedClassTemplate());
if (!ImportedDef)
return 0;
return Importer.Imported(D, ImportedDef);
}
// Import the major distinguishing characteristics of this class template.
DeclContext *DC, *LexicalDC;
DeclarationName Name;
SourceLocation Loc;
if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
return 0;
// We may already have a template of the same name; try to find and match it.
if (!DC->isFunctionOrMethod()) {
SmallVector<NamedDecl *, 4> ConflictingDecls;
llvm::SmallVector<NamedDecl *, 2> FoundDecls;
DC->localUncachedLookup(Name, FoundDecls);
for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary))
continue;
Decl *Found = FoundDecls[I];
if (ClassTemplateDecl *FoundTemplate
= dyn_cast<ClassTemplateDecl>(Found)) {
if (IsStructuralMatch(D, FoundTemplate)) {
// The class templates structurally match; call it the same template.
// FIXME: We may be filling in a forward declaration here. Handle
// this case!
Importer.Imported(D->getTemplatedDecl(),
FoundTemplate->getTemplatedDecl());
return Importer.Imported(D, FoundTemplate);
}
}
ConflictingDecls.push_back(FoundDecls[I]);
}
if (!ConflictingDecls.empty()) {
Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Ordinary,
ConflictingDecls.data(),
ConflictingDecls.size());
}
if (!Name)
return 0;
}
CXXRecordDecl *DTemplated = D->getTemplatedDecl();
// Create the declaration that is being templated.
SourceLocation StartLoc = Importer.Import(DTemplated->getLocStart());
SourceLocation IdLoc = Importer.Import(DTemplated->getLocation());
CXXRecordDecl *D2Templated = CXXRecordDecl::Create(Importer.getToContext(),
DTemplated->getTagKind(),
DC, StartLoc, IdLoc,
Name.getAsIdentifierInfo());
D2Templated->setAccess(DTemplated->getAccess());
D2Templated->setQualifierInfo(Importer.Import(DTemplated->getQualifierLoc()));
D2Templated->setLexicalDeclContext(LexicalDC);
// Create the class template declaration itself.
TemplateParameterList *TemplateParams
= ImportTemplateParameterList(D->getTemplateParameters());
if (!TemplateParams)
return 0;
ClassTemplateDecl *D2 = ClassTemplateDecl::Create(Importer.getToContext(), DC,
Loc, Name, TemplateParams,
D2Templated,
/*PrevDecl=*/0);
D2Templated->setDescribedClassTemplate(D2);
D2->setAccess(D->getAccess());
D2->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(D2);
// Note the relationship between the class templates.
Importer.Imported(D, D2);
Importer.Imported(DTemplated, D2Templated);
if (DTemplated->isCompleteDefinition() &&
!D2Templated->isCompleteDefinition()) {
// FIXME: Import definition!
}
return D2;
}
Decl *ASTNodeImporter::VisitClassTemplateSpecializationDecl(
ClassTemplateSpecializationDecl *D) {
// If this record has a definition in the translation unit we're coming from,
// but this particular declaration is not that definition, import the
// definition and map to that.
TagDecl *Definition = D->getDefinition();
if (Definition && Definition != D) {
Decl *ImportedDef = Importer.Import(Definition);
if (!ImportedDef)
return 0;
return Importer.Imported(D, ImportedDef);
}
ClassTemplateDecl *ClassTemplate
= cast_or_null<ClassTemplateDecl>(Importer.Import(
D->getSpecializedTemplate()));
if (!ClassTemplate)
return 0;
// Import the context of this declaration.
DeclContext *DC = ClassTemplate->getDeclContext();
if (!DC)
return 0;
DeclContext *LexicalDC = DC;
if (D->getDeclContext() != D->getLexicalDeclContext()) {
LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
if (!LexicalDC)
return 0;
}
// Import the location of this declaration.
SourceLocation StartLoc = Importer.Import(D->getLocStart());
SourceLocation IdLoc = Importer.Import(D->getLocation());
// Import template arguments.
SmallVector<TemplateArgument, 2> TemplateArgs;
if (ImportTemplateArguments(D->getTemplateArgs().data(),
D->getTemplateArgs().size(),
TemplateArgs))
return 0;
// Try to find an existing specialization with these template arguments.
void *InsertPos = 0;
ClassTemplateSpecializationDecl *D2
= ClassTemplate->findSpecialization(TemplateArgs.data(),
TemplateArgs.size(), InsertPos);
if (D2) {
// We already have a class template specialization with these template
// arguments.
// FIXME: Check for specialization vs. instantiation errors.
if (RecordDecl *FoundDef = D2->getDefinition()) {
if (!D->isCompleteDefinition() || IsStructuralMatch(D, FoundDef)) {
// The record types structurally match, or the "from" translation
// unit only had a forward declaration anyway; call it the same
// function.
return Importer.Imported(D, FoundDef);
}
}
} else {
// Create a new specialization.
D2 = ClassTemplateSpecializationDecl::Create(Importer.getToContext(),
D->getTagKind(), DC,
StartLoc, IdLoc,
ClassTemplate,
TemplateArgs.data(),
TemplateArgs.size(),
/*PrevDecl=*/0);
D2->setSpecializationKind(D->getSpecializationKind());
// Add this specialization to the class template.
ClassTemplate->AddSpecialization(D2, InsertPos);
// Import the qualifier, if any.
D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
// Add the specialization to this context.
D2->setLexicalDeclContext(LexicalDC);
LexicalDC->addDeclInternal(D2);
}
Importer.Imported(D, D2);
if (D->isCompleteDefinition() && ImportDefinition(D, D2))
return 0;
return D2;
}
//----------------------------------------------------------------------------
// Import Statements
//----------------------------------------------------------------------------
Stmt *ASTNodeImporter::VisitStmt(Stmt *S) {
Importer.FromDiag(S->getLocStart(), diag::err_unsupported_ast_node)
<< S->getStmtClassName();
return 0;
}
//----------------------------------------------------------------------------
// Import Expressions
//----------------------------------------------------------------------------
Expr *ASTNodeImporter::VisitExpr(Expr *E) {
Importer.FromDiag(E->getLocStart(), diag::err_unsupported_ast_node)
<< E->getStmtClassName();
return 0;
}
Expr *ASTNodeImporter::VisitDeclRefExpr(DeclRefExpr *E) {
ValueDecl *ToD = cast_or_null<ValueDecl>(Importer.Import(E->getDecl()));
if (!ToD)
return 0;
NamedDecl *FoundD = 0;
if (E->getDecl() != E->getFoundDecl()) {
FoundD = cast_or_null<NamedDecl>(Importer.Import(E->getFoundDecl()));
if (!FoundD)
return 0;
}
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
DeclRefExpr *DRE = DeclRefExpr::Create(Importer.getToContext(),
Importer.Import(E->getQualifierLoc()),
Importer.Import(E->getTemplateKeywordLoc()),
ToD,
Importer.Import(E->getLocation()),
T, E->getValueKind(),
FoundD,
/*FIXME:TemplateArgs=*/0);
if (E->hadMultipleCandidates())
DRE->setHadMultipleCandidates(true);
return DRE;
}
Expr *ASTNodeImporter::VisitIntegerLiteral(IntegerLiteral *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
return IntegerLiteral::Create(Importer.getToContext(),
E->getValue(), T,
Importer.Import(E->getLocation()));
}
Expr *ASTNodeImporter::VisitCharacterLiteral(CharacterLiteral *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
return new (Importer.getToContext()) CharacterLiteral(E->getValue(),
E->getKind(), T,
Importer.Import(E->getLocation()));
}
Expr *ASTNodeImporter::VisitParenExpr(ParenExpr *E) {
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return 0;
return new (Importer.getToContext())
ParenExpr(Importer.Import(E->getLParen()),
Importer.Import(E->getRParen()),
SubExpr);
}
Expr *ASTNodeImporter::VisitUnaryOperator(UnaryOperator *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return 0;
return new (Importer.getToContext()) UnaryOperator(SubExpr, E->getOpcode(),
T, E->getValueKind(),
E->getObjectKind(),
Importer.Import(E->getOperatorLoc()));
}
Expr *ASTNodeImporter::VisitUnaryExprOrTypeTraitExpr(
UnaryExprOrTypeTraitExpr *E) {
QualType ResultType = Importer.Import(E->getType());
if (E->isArgumentType()) {
TypeSourceInfo *TInfo = Importer.Import(E->getArgumentTypeInfo());
if (!TInfo)
return 0;
return new (Importer.getToContext()) UnaryExprOrTypeTraitExpr(E->getKind(),
TInfo, ResultType,
Importer.Import(E->getOperatorLoc()),
Importer.Import(E->getRParenLoc()));
}
Expr *SubExpr = Importer.Import(E->getArgumentExpr());
if (!SubExpr)
return 0;
return new (Importer.getToContext()) UnaryExprOrTypeTraitExpr(E->getKind(),
SubExpr, ResultType,
Importer.Import(E->getOperatorLoc()),
Importer.Import(E->getRParenLoc()));
}
Expr *ASTNodeImporter::VisitBinaryOperator(BinaryOperator *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
Expr *LHS = Importer.Import(E->getLHS());
if (!LHS)
return 0;
Expr *RHS = Importer.Import(E->getRHS());
if (!RHS)
return 0;
return new (Importer.getToContext()) BinaryOperator(LHS, RHS, E->getOpcode(),
T, E->getValueKind(),
E->getObjectKind(),
Importer.Import(E->getOperatorLoc()));
}
Expr *ASTNodeImporter::VisitCompoundAssignOperator(CompoundAssignOperator *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
QualType CompLHSType = Importer.Import(E->getComputationLHSType());
if (CompLHSType.isNull())
return 0;
QualType CompResultType = Importer.Import(E->getComputationResultType());
if (CompResultType.isNull())
return 0;
Expr *LHS = Importer.Import(E->getLHS());
if (!LHS)
return 0;
Expr *RHS = Importer.Import(E->getRHS());
if (!RHS)
return 0;
return new (Importer.getToContext())
CompoundAssignOperator(LHS, RHS, E->getOpcode(),
T, E->getValueKind(),
E->getObjectKind(),
CompLHSType, CompResultType,
Importer.Import(E->getOperatorLoc()));
}
static bool ImportCastPath(CastExpr *E, CXXCastPath &Path) {
if (E->path_empty()) return false;
// TODO: import cast paths
return true;
}
Expr *ASTNodeImporter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return 0;
CXXCastPath BasePath;
if (ImportCastPath(E, BasePath))
return 0;
return ImplicitCastExpr::Create(Importer.getToContext(), T, E->getCastKind(),
SubExpr, &BasePath, E->getValueKind());
}
Expr *ASTNodeImporter::VisitCStyleCastExpr(CStyleCastExpr *E) {
QualType T = Importer.Import(E->getType());
if (T.isNull())
return 0;
Expr *SubExpr = Importer.Import(E->getSubExpr());
if (!SubExpr)
return 0;
TypeSourceInfo *TInfo = Importer.Import(E->getTypeInfoAsWritten());
if (!TInfo && E->getTypeInfoAsWritten())
return 0;
CXXCastPath BasePath;
if (ImportCastPath(E, BasePath))
return 0;
return CStyleCastExpr::Create(Importer.getToContext(), T,
E->getValueKind(), E->getCastKind(),
SubExpr, &BasePath, TInfo,
Importer.Import(E->getLParenLoc()),
Importer.Import(E->getRParenLoc()));
}
ASTImporter::ASTImporter(ASTContext &ToContext, FileManager &ToFileManager,
ASTContext &FromContext, FileManager &FromFileManager,
bool MinimalImport)
: ToContext(ToContext), FromContext(FromContext),
ToFileManager(ToFileManager), FromFileManager(FromFileManager),
Minimal(MinimalImport)
{
ImportedDecls[FromContext.getTranslationUnitDecl()]
= ToContext.getTranslationUnitDecl();
}
ASTImporter::~ASTImporter() { }
QualType ASTImporter::Import(QualType FromT) {
if (FromT.isNull())
return QualType();
const Type *fromTy = FromT.getTypePtr();
// Check whether we've already imported this type.
llvm::DenseMap<const Type *, const Type *>::iterator Pos
= ImportedTypes.find(fromTy);
if (Pos != ImportedTypes.end())
return ToContext.getQualifiedType(Pos->second, FromT.getLocalQualifiers());
// Import the type
ASTNodeImporter Importer(*this);
QualType ToT = Importer.Visit(fromTy);
if (ToT.isNull())
return ToT;
// Record the imported type.
ImportedTypes[fromTy] = ToT.getTypePtr();
return ToContext.getQualifiedType(ToT, FromT.getLocalQualifiers());
}
TypeSourceInfo *ASTImporter::Import(TypeSourceInfo *FromTSI) {
if (!FromTSI)
return FromTSI;
// FIXME: For now we just create a "trivial" type source info based
// on the type and a single location. Implement a real version of this.
QualType T = Import(FromTSI->getType());
if (T.isNull())
return 0;
return ToContext.getTrivialTypeSourceInfo(T,
FromTSI->getTypeLoc().getSourceRange().getBegin());
}
Decl *ASTImporter::Import(Decl *FromD) {
if (!FromD)
return 0;
ASTNodeImporter Importer(*this);
// Check whether we've already imported this declaration.
llvm::DenseMap<Decl *, Decl *>::iterator Pos = ImportedDecls.find(FromD);
if (Pos != ImportedDecls.end()) {
Decl *ToD = Pos->second;
Importer.ImportDefinitionIfNeeded(FromD, ToD);
return ToD;
}
// Import the type
Decl *ToD = Importer.Visit(FromD);
if (!ToD)
return 0;
// Record the imported declaration.
ImportedDecls[FromD] = ToD;
if (TagDecl *FromTag = dyn_cast<TagDecl>(FromD)) {
// Keep track of anonymous tags that have an associated typedef.
if (FromTag->getTypedefNameForAnonDecl())
AnonTagsWithPendingTypedefs.push_back(FromTag);
} else if (TypedefNameDecl *FromTypedef = dyn_cast<TypedefNameDecl>(FromD)) {
// When we've finished transforming a typedef, see whether it was the
// typedef for an anonymous tag.
for (SmallVector<TagDecl *, 4>::iterator
FromTag = AnonTagsWithPendingTypedefs.begin(),
FromTagEnd = AnonTagsWithPendingTypedefs.end();
FromTag != FromTagEnd; ++FromTag) {
if ((*FromTag)->getTypedefNameForAnonDecl() == FromTypedef) {
if (TagDecl *ToTag = cast_or_null<TagDecl>(Import(*FromTag))) {
// We found the typedef for an anonymous tag; link them.
ToTag->setTypedefNameForAnonDecl(cast<TypedefNameDecl>(ToD));
AnonTagsWithPendingTypedefs.erase(FromTag);
break;
}
}
}
}
return ToD;
}
DeclContext *ASTImporter::ImportContext(DeclContext *FromDC) {
if (!FromDC)
return FromDC;
DeclContext *ToDC = cast_or_null<DeclContext>(Import(cast<Decl>(FromDC)));
if (!ToDC)
return 0;
// When we're using a record/enum/Objective-C class/protocol as a context, we
// need it to have a definition.
if (RecordDecl *ToRecord = dyn_cast<RecordDecl>(ToDC)) {
RecordDecl *FromRecord = cast<RecordDecl>(FromDC);
if (ToRecord->isCompleteDefinition()) {
// Do nothing.
} else if (FromRecord->isCompleteDefinition()) {
ASTNodeImporter(*this).ImportDefinition(FromRecord, ToRecord,
ASTNodeImporter::IDK_Basic);
} else {
CompleteDecl(ToRecord);
}
} else if (EnumDecl *ToEnum = dyn_cast<EnumDecl>(ToDC)) {
EnumDecl *FromEnum = cast<EnumDecl>(FromDC);
if (ToEnum->isCompleteDefinition()) {
// Do nothing.
} else if (FromEnum->isCompleteDefinition()) {
ASTNodeImporter(*this).ImportDefinition(FromEnum, ToEnum,
ASTNodeImporter::IDK_Basic);
} else {
CompleteDecl(ToEnum);
}
} else if (ObjCInterfaceDecl *ToClass = dyn_cast<ObjCInterfaceDecl>(ToDC)) {
ObjCInterfaceDecl *FromClass = cast<ObjCInterfaceDecl>(FromDC);
if (ToClass->getDefinition()) {
// Do nothing.
} else if (ObjCInterfaceDecl *FromDef = FromClass->getDefinition()) {
ASTNodeImporter(*this).ImportDefinition(FromDef, ToClass,
ASTNodeImporter::IDK_Basic);
} else {
CompleteDecl(ToClass);
}
} else if (ObjCProtocolDecl *ToProto = dyn_cast<ObjCProtocolDecl>(ToDC)) {
ObjCProtocolDecl *FromProto = cast<ObjCProtocolDecl>(FromDC);
if (ToProto->getDefinition()) {
// Do nothing.
} else if (ObjCProtocolDecl *FromDef = FromProto->getDefinition()) {
ASTNodeImporter(*this).ImportDefinition(FromDef, ToProto,
ASTNodeImporter::IDK_Basic);
} else {
CompleteDecl(ToProto);
}
}
return ToDC;
}
Expr *ASTImporter::Import(Expr *FromE) {
if (!FromE)
return 0;
return cast_or_null<Expr>(Import(cast<Stmt>(FromE)));
}
Stmt *ASTImporter::Import(Stmt *FromS) {
if (!FromS)
return 0;
// Check whether we've already imported this declaration.
llvm::DenseMap<Stmt *, Stmt *>::iterator Pos = ImportedStmts.find(FromS);
if (Pos != ImportedStmts.end())
return Pos->second;
// Import the type
ASTNodeImporter Importer(*this);
Stmt *ToS = Importer.Visit(FromS);
if (!ToS)
return 0;
// Record the imported declaration.
ImportedStmts[FromS] = ToS;
return ToS;
}
NestedNameSpecifier *ASTImporter::Import(NestedNameSpecifier *FromNNS) {
if (!FromNNS)
return 0;
NestedNameSpecifier *prefix = Import(FromNNS->getPrefix());
switch (FromNNS->getKind()) {
case NestedNameSpecifier::Identifier:
if (IdentifierInfo *II = Import(FromNNS->getAsIdentifier())) {
return NestedNameSpecifier::Create(ToContext, prefix, II);
}
return 0;
case NestedNameSpecifier::Namespace:
if (NamespaceDecl *NS =
cast<NamespaceDecl>(Import(FromNNS->getAsNamespace()))) {
return NestedNameSpecifier::Create(ToContext, prefix, NS);
}
return 0;
case NestedNameSpecifier::NamespaceAlias:
if (NamespaceAliasDecl *NSAD =
cast<NamespaceAliasDecl>(Import(FromNNS->getAsNamespaceAlias()))) {
return NestedNameSpecifier::Create(ToContext, prefix, NSAD);
}
return 0;
case NestedNameSpecifier::Global:
return NestedNameSpecifier::GlobalSpecifier(ToContext);
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
QualType T = Import(QualType(FromNNS->getAsType(), 0u));
if (!T.isNull()) {
bool bTemplate = FromNNS->getKind() ==
NestedNameSpecifier::TypeSpecWithTemplate;
return NestedNameSpecifier::Create(ToContext, prefix,
bTemplate, T.getTypePtr());
}
}
return 0;
}
llvm_unreachable("Invalid nested name specifier kind");
}
NestedNameSpecifierLoc ASTImporter::Import(NestedNameSpecifierLoc FromNNS) {
// FIXME: Implement!
return NestedNameSpecifierLoc();
}
TemplateName ASTImporter::Import(TemplateName From) {
switch (From.getKind()) {
case TemplateName::Template:
if (TemplateDecl *ToTemplate
= cast_or_null<TemplateDecl>(Import(From.getAsTemplateDecl())))
return TemplateName(ToTemplate);
return TemplateName();
case TemplateName::OverloadedTemplate: {
OverloadedTemplateStorage *FromStorage = From.getAsOverloadedTemplate();
UnresolvedSet<2> ToTemplates;
for (OverloadedTemplateStorage::iterator I = FromStorage->begin(),
E = FromStorage->end();
I != E; ++I) {
if (NamedDecl *To = cast_or_null<NamedDecl>(Import(*I)))
ToTemplates.addDecl(To);
else
return TemplateName();
}
return ToContext.getOverloadedTemplateName(ToTemplates.begin(),
ToTemplates.end());
}
case TemplateName::QualifiedTemplate: {
QualifiedTemplateName *QTN = From.getAsQualifiedTemplateName();
NestedNameSpecifier *Qualifier = Import(QTN->getQualifier());
if (!Qualifier)
return TemplateName();
if (TemplateDecl *ToTemplate
= cast_or_null<TemplateDecl>(Import(From.getAsTemplateDecl())))
return ToContext.getQualifiedTemplateName(Qualifier,
QTN->hasTemplateKeyword(),
ToTemplate);
return TemplateName();
}
case TemplateName::DependentTemplate: {
DependentTemplateName *DTN = From.getAsDependentTemplateName();
NestedNameSpecifier *Qualifier = Import(DTN->getQualifier());
if (!Qualifier)
return TemplateName();
if (DTN->isIdentifier()) {
return ToContext.getDependentTemplateName(Qualifier,
Import(DTN->getIdentifier()));
}
return ToContext.getDependentTemplateName(Qualifier, DTN->getOperator());
}
case TemplateName::SubstTemplateTemplateParm: {
SubstTemplateTemplateParmStorage *subst
= From.getAsSubstTemplateTemplateParm();
TemplateTemplateParmDecl *param
= cast_or_null<TemplateTemplateParmDecl>(Import(subst->getParameter()));
if (!param)
return TemplateName();
TemplateName replacement = Import(subst->getReplacement());
if (replacement.isNull()) return TemplateName();
return ToContext.getSubstTemplateTemplateParm(param, replacement);
}
case TemplateName::SubstTemplateTemplateParmPack: {
SubstTemplateTemplateParmPackStorage *SubstPack
= From.getAsSubstTemplateTemplateParmPack();
TemplateTemplateParmDecl *Param
= cast_or_null<TemplateTemplateParmDecl>(
Import(SubstPack->getParameterPack()));
if (!Param)
return TemplateName();
ASTNodeImporter Importer(*this);
TemplateArgument ArgPack
= Importer.ImportTemplateArgument(SubstPack->getArgumentPack());
if (ArgPack.isNull())
return TemplateName();
return ToContext.getSubstTemplateTemplateParmPack(Param, ArgPack);
}
}
llvm_unreachable("Invalid template name kind");
}
SourceLocation ASTImporter::Import(SourceLocation FromLoc) {
if (FromLoc.isInvalid())
return SourceLocation();
SourceManager &FromSM = FromContext.getSourceManager();
// For now, map everything down to its spelling location, so that we
// don't have to import macro expansions.
// FIXME: Import macro expansions!
FromLoc = FromSM.getSpellingLoc(FromLoc);
std::pair<FileID, unsigned> Decomposed = FromSM.getDecomposedLoc(FromLoc);
SourceManager &ToSM = ToContext.getSourceManager();
return ToSM.getLocForStartOfFile(Import(Decomposed.first))
.getLocWithOffset(Decomposed.second);
}
SourceRange ASTImporter::Import(SourceRange FromRange) {
return SourceRange(Import(FromRange.getBegin()), Import(FromRange.getEnd()));
}
FileID ASTImporter::Import(FileID FromID) {
llvm::DenseMap<FileID, FileID>::iterator Pos
= ImportedFileIDs.find(FromID);
if (Pos != ImportedFileIDs.end())
return Pos->second;
SourceManager &FromSM = FromContext.getSourceManager();
SourceManager &ToSM = ToContext.getSourceManager();
const SrcMgr::SLocEntry &FromSLoc = FromSM.getSLocEntry(FromID);
assert(FromSLoc.isFile() && "Cannot handle macro expansions yet");
// Include location of this file.
SourceLocation ToIncludeLoc = Import(FromSLoc.getFile().getIncludeLoc());
// Map the FileID for to the "to" source manager.
FileID ToID;
const SrcMgr::ContentCache *Cache = FromSLoc.getFile().getContentCache();
if (Cache->OrigEntry) {
// FIXME: We probably want to use getVirtualFile(), so we don't hit the
// disk again
// FIXME: We definitely want to re-use the existing MemoryBuffer, rather
// than mmap the files several times.
const FileEntry *Entry = ToFileManager.getFile(Cache->OrigEntry->getName());
ToID = ToSM.createFileID(Entry, ToIncludeLoc,
FromSLoc.getFile().getFileCharacteristic());
} else {
// FIXME: We want to re-use the existing MemoryBuffer!
const llvm::MemoryBuffer *
FromBuf = Cache->getBuffer(FromContext.getDiagnostics(), FromSM);
llvm::MemoryBuffer *ToBuf
= llvm::MemoryBuffer::getMemBufferCopy(FromBuf->getBuffer(),
FromBuf->getBufferIdentifier());
ToID = ToSM.createFileIDForMemBuffer(ToBuf);
}
ImportedFileIDs[FromID] = ToID;
return ToID;
}
void ASTImporter::ImportDefinition(Decl *From) {
Decl *To = Import(From);
if (!To)
return;
if (DeclContext *FromDC = cast<DeclContext>(From)) {
ASTNodeImporter Importer(*this);
if (RecordDecl *ToRecord = dyn_cast<RecordDecl>(To)) {
if (!ToRecord->getDefinition()) {
Importer.ImportDefinition(cast<RecordDecl>(FromDC), ToRecord,
ASTNodeImporter::IDK_Everything);
return;
}
}
if (EnumDecl *ToEnum = dyn_cast<EnumDecl>(To)) {
if (!ToEnum->getDefinition()) {
Importer.ImportDefinition(cast<EnumDecl>(FromDC), ToEnum,
ASTNodeImporter::IDK_Everything);
return;
}
}
if (ObjCInterfaceDecl *ToIFace = dyn_cast<ObjCInterfaceDecl>(To)) {
if (!ToIFace->getDefinition()) {
Importer.ImportDefinition(cast<ObjCInterfaceDecl>(FromDC), ToIFace,
ASTNodeImporter::IDK_Everything);
return;
}
}
if (ObjCProtocolDecl *ToProto = dyn_cast<ObjCProtocolDecl>(To)) {
if (!ToProto->getDefinition()) {
Importer.ImportDefinition(cast<ObjCProtocolDecl>(FromDC), ToProto,
ASTNodeImporter::IDK_Everything);
return;
}
}
Importer.ImportDeclContext(FromDC, true);
}
}
DeclarationName ASTImporter::Import(DeclarationName FromName) {
if (!FromName)
return DeclarationName();
switch (FromName.getNameKind()) {
case DeclarationName::Identifier:
return Import(FromName.getAsIdentifierInfo());
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
return Import(FromName.getObjCSelector());
case DeclarationName::CXXConstructorName: {
QualType T = Import(FromName.getCXXNameType());
if (T.isNull())
return DeclarationName();
return ToContext.DeclarationNames.getCXXConstructorName(
ToContext.getCanonicalType(T));
}
case DeclarationName::CXXDestructorName: {
QualType T = Import(FromName.getCXXNameType());
if (T.isNull())
return DeclarationName();
return ToContext.DeclarationNames.getCXXDestructorName(
ToContext.getCanonicalType(T));
}
case DeclarationName::CXXConversionFunctionName: {
QualType T = Import(FromName.getCXXNameType());
if (T.isNull())
return DeclarationName();
return ToContext.DeclarationNames.getCXXConversionFunctionName(
ToContext.getCanonicalType(T));
}
case DeclarationName::CXXOperatorName:
return ToContext.DeclarationNames.getCXXOperatorName(
FromName.getCXXOverloadedOperator());
case DeclarationName::CXXLiteralOperatorName:
return ToContext.DeclarationNames.getCXXLiteralOperatorName(
Import(FromName.getCXXLiteralIdentifier()));
case DeclarationName::CXXUsingDirective:
// FIXME: STATICS!
return DeclarationName::getUsingDirectiveName();
}
llvm_unreachable("Invalid DeclarationName Kind!");
}
IdentifierInfo *ASTImporter::Import(const IdentifierInfo *FromId) {
if (!FromId)
return 0;
return &ToContext.Idents.get(FromId->getName());
}
Selector ASTImporter::Import(Selector FromSel) {
if (FromSel.isNull())
return Selector();
SmallVector<IdentifierInfo *, 4> Idents;
Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(0)));
for (unsigned I = 1, N = FromSel.getNumArgs(); I < N; ++I)
Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(I)));
return ToContext.Selectors.getSelector(FromSel.getNumArgs(), Idents.data());
}
DeclarationName ASTImporter::HandleNameConflict(DeclarationName Name,
DeclContext *DC,
unsigned IDNS,
NamedDecl **Decls,
unsigned NumDecls) {
return Name;
}
DiagnosticBuilder ASTImporter::ToDiag(SourceLocation Loc, unsigned DiagID) {
return ToContext.getDiagnostics().Report(Loc, DiagID);
}
DiagnosticBuilder ASTImporter::FromDiag(SourceLocation Loc, unsigned DiagID) {
return FromContext.getDiagnostics().Report(Loc, DiagID);
}
void ASTImporter::CompleteDecl (Decl *D) {
if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) {
if (!ID->getDefinition())
ID->startDefinition();
}
else if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) {
if (!PD->getDefinition())
PD->startDefinition();
}
else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
if (!TD->getDefinition() && !TD->isBeingDefined()) {
TD->startDefinition();
TD->setCompleteDefinition(true);
}
}
else {
assert (0 && "CompleteDecl called on a Decl that can't be completed");
}
}
Decl *ASTImporter::Imported(Decl *From, Decl *To) {
ImportedDecls[From] = To;
return To;
}
bool ASTImporter::IsStructurallyEquivalent(QualType From, QualType To) {
llvm::DenseMap<const Type *, const Type *>::iterator Pos
= ImportedTypes.find(From.getTypePtr());
if (Pos != ImportedTypes.end() && ToContext.hasSameType(Import(From), To))
return true;
StructuralEquivalenceContext Ctx(FromContext, ToContext, NonEquivalentDecls);
return Ctx.IsStructurallyEquivalent(From, To);
}