зеркало из https://github.com/microsoft/clang-1.git
2247 строки
75 KiB
C++
2247 строки
75 KiB
C++
//===--- Type.cpp - Type representation and manipulation ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements type-related functionality.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "clang/AST/TypeVisitor.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace clang;
|
|
|
|
bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
|
|
return (*this != Other) &&
|
|
// CVR qualifiers superset
|
|
(((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
|
|
// ObjC GC qualifiers superset
|
|
((getObjCGCAttr() == Other.getObjCGCAttr()) ||
|
|
(hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
|
|
// Address space superset.
|
|
((getAddressSpace() == Other.getAddressSpace()) ||
|
|
(hasAddressSpace()&& !Other.hasAddressSpace())) &&
|
|
// Lifetime qualifier superset.
|
|
((getObjCLifetime() == Other.getObjCLifetime()) ||
|
|
(hasObjCLifetime() && !Other.hasObjCLifetime()));
|
|
}
|
|
|
|
const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
|
|
const Type* ty = getTypePtr();
|
|
NamedDecl *ND = NULL;
|
|
if (ty->isPointerType() || ty->isReferenceType())
|
|
return ty->getPointeeType().getBaseTypeIdentifier();
|
|
else if (ty->isRecordType())
|
|
ND = ty->getAs<RecordType>()->getDecl();
|
|
else if (ty->isEnumeralType())
|
|
ND = ty->getAs<EnumType>()->getDecl();
|
|
else if (ty->getTypeClass() == Type::Typedef)
|
|
ND = ty->getAs<TypedefType>()->getDecl();
|
|
else if (ty->isArrayType())
|
|
return ty->castAsArrayTypeUnsafe()->
|
|
getElementType().getBaseTypeIdentifier();
|
|
|
|
if (ND)
|
|
return ND->getIdentifier();
|
|
return NULL;
|
|
}
|
|
|
|
bool QualType::isConstant(QualType T, ASTContext &Ctx) {
|
|
if (T.isConstQualified())
|
|
return true;
|
|
|
|
if (const ArrayType *AT = Ctx.getAsArrayType(T))
|
|
return AT->getElementType().isConstant(Ctx);
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
|
|
QualType ElementType,
|
|
const llvm::APInt &NumElements) {
|
|
llvm::APSInt SizeExtended(NumElements, true);
|
|
unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
|
|
SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
|
|
SizeExtended.getBitWidth()) * 2);
|
|
|
|
uint64_t ElementSize
|
|
= Context.getTypeSizeInChars(ElementType).getQuantity();
|
|
llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
|
|
TotalSize *= SizeExtended;
|
|
|
|
return TotalSize.getActiveBits();
|
|
}
|
|
|
|
unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
|
|
unsigned Bits = Context.getTypeSize(Context.getSizeType());
|
|
|
|
// GCC appears to only allow 63 bits worth of address space when compiling
|
|
// for 64-bit, so we do the same.
|
|
if (Bits == 64)
|
|
--Bits;
|
|
|
|
return Bits;
|
|
}
|
|
|
|
DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
|
|
QualType et, QualType can,
|
|
Expr *e, ArraySizeModifier sm,
|
|
unsigned tq,
|
|
SourceRange brackets)
|
|
: ArrayType(DependentSizedArray, et, can, sm, tq,
|
|
(et->containsUnexpandedParameterPack() ||
|
|
(e && e->containsUnexpandedParameterPack()))),
|
|
Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
|
|
{
|
|
}
|
|
|
|
void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
|
|
const ASTContext &Context,
|
|
QualType ET,
|
|
ArraySizeModifier SizeMod,
|
|
unsigned TypeQuals,
|
|
Expr *E) {
|
|
ID.AddPointer(ET.getAsOpaquePtr());
|
|
ID.AddInteger(SizeMod);
|
|
ID.AddInteger(TypeQuals);
|
|
E->Profile(ID, Context, true);
|
|
}
|
|
|
|
DependentSizedExtVectorType::DependentSizedExtVectorType(const
|
|
ASTContext &Context,
|
|
QualType ElementType,
|
|
QualType can,
|
|
Expr *SizeExpr,
|
|
SourceLocation loc)
|
|
: Type(DependentSizedExtVector, can, /*Dependent=*/true,
|
|
/*InstantiationDependent=*/true,
|
|
ElementType->isVariablyModifiedType(),
|
|
(ElementType->containsUnexpandedParameterPack() ||
|
|
(SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
|
|
Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
|
|
loc(loc)
|
|
{
|
|
}
|
|
|
|
void
|
|
DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
|
|
const ASTContext &Context,
|
|
QualType ElementType, Expr *SizeExpr) {
|
|
ID.AddPointer(ElementType.getAsOpaquePtr());
|
|
SizeExpr->Profile(ID, Context, true);
|
|
}
|
|
|
|
VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
|
|
VectorKind vecKind)
|
|
: Type(Vector, canonType, vecType->isDependentType(),
|
|
vecType->isInstantiationDependentType(),
|
|
vecType->isVariablyModifiedType(),
|
|
vecType->containsUnexpandedParameterPack()),
|
|
ElementType(vecType)
|
|
{
|
|
VectorTypeBits.VecKind = vecKind;
|
|
VectorTypeBits.NumElements = nElements;
|
|
}
|
|
|
|
VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
|
|
QualType canonType, VectorKind vecKind)
|
|
: Type(tc, canonType, vecType->isDependentType(),
|
|
vecType->isInstantiationDependentType(),
|
|
vecType->isVariablyModifiedType(),
|
|
vecType->containsUnexpandedParameterPack()),
|
|
ElementType(vecType)
|
|
{
|
|
VectorTypeBits.VecKind = vecKind;
|
|
VectorTypeBits.NumElements = nElements;
|
|
}
|
|
|
|
/// getArrayElementTypeNoTypeQual - If this is an array type, return the
|
|
/// element type of the array, potentially with type qualifiers missing.
|
|
/// This method should never be used when type qualifiers are meaningful.
|
|
const Type *Type::getArrayElementTypeNoTypeQual() const {
|
|
// If this is directly an array type, return it.
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
|
|
return ATy->getElementType().getTypePtr();
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (!isa<ArrayType>(CanonicalType))
|
|
return 0;
|
|
|
|
// If this is a typedef for an array type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<ArrayType>(getUnqualifiedDesugaredType())
|
|
->getElementType().getTypePtr();
|
|
}
|
|
|
|
/// getDesugaredType - Return the specified type with any "sugar" removed from
|
|
/// the type. This takes off typedefs, typeof's etc. If the outer level of
|
|
/// the type is already concrete, it returns it unmodified. This is similar
|
|
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
|
|
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
|
|
/// concrete.
|
|
QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
|
|
SplitQualType split = getSplitDesugaredType(T);
|
|
return Context.getQualifiedType(split.Ty, split.Quals);
|
|
}
|
|
|
|
QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
|
|
const ASTContext &Context) {
|
|
SplitQualType split = type.split();
|
|
QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
|
|
return Context.getQualifiedType(desugar, split.Quals);
|
|
}
|
|
|
|
QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
|
|
switch (getTypeClass()) {
|
|
#define ABSTRACT_TYPE(Class, Parent)
|
|
#define TYPE(Class, Parent) \
|
|
case Type::Class: { \
|
|
const Class##Type *ty = cast<Class##Type>(this); \
|
|
if (!ty->isSugared()) return QualType(ty, 0); \
|
|
return ty->desugar(); \
|
|
}
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
llvm_unreachable("bad type kind!");
|
|
}
|
|
|
|
SplitQualType QualType::getSplitDesugaredType(QualType T) {
|
|
QualifierCollector Qs;
|
|
|
|
QualType Cur = T;
|
|
while (true) {
|
|
const Type *CurTy = Qs.strip(Cur);
|
|
switch (CurTy->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(Class, Parent)
|
|
#define TYPE(Class, Parent) \
|
|
case Type::Class: { \
|
|
const Class##Type *Ty = cast<Class##Type>(CurTy); \
|
|
if (!Ty->isSugared()) \
|
|
return SplitQualType(Ty, Qs); \
|
|
Cur = Ty->desugar(); \
|
|
break; \
|
|
}
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
}
|
|
}
|
|
|
|
SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
|
|
SplitQualType split = type.split();
|
|
|
|
// All the qualifiers we've seen so far.
|
|
Qualifiers quals = split.Quals;
|
|
|
|
// The last type node we saw with any nodes inside it.
|
|
const Type *lastTypeWithQuals = split.Ty;
|
|
|
|
while (true) {
|
|
QualType next;
|
|
|
|
// Do a single-step desugar, aborting the loop if the type isn't
|
|
// sugared.
|
|
switch (split.Ty->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(Class, Parent)
|
|
#define TYPE(Class, Parent) \
|
|
case Type::Class: { \
|
|
const Class##Type *ty = cast<Class##Type>(split.Ty); \
|
|
if (!ty->isSugared()) goto done; \
|
|
next = ty->desugar(); \
|
|
break; \
|
|
}
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
|
|
// Otherwise, split the underlying type. If that yields qualifiers,
|
|
// update the information.
|
|
split = next.split();
|
|
if (!split.Quals.empty()) {
|
|
lastTypeWithQuals = split.Ty;
|
|
quals.addConsistentQualifiers(split.Quals);
|
|
}
|
|
}
|
|
|
|
done:
|
|
return SplitQualType(lastTypeWithQuals, quals);
|
|
}
|
|
|
|
QualType QualType::IgnoreParens(QualType T) {
|
|
// FIXME: this seems inherently un-qualifiers-safe.
|
|
while (const ParenType *PT = T->getAs<ParenType>())
|
|
T = PT->getInnerType();
|
|
return T;
|
|
}
|
|
|
|
/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
|
|
/// sugar off the given type. This should produce an object of the
|
|
/// same dynamic type as the canonical type.
|
|
const Type *Type::getUnqualifiedDesugaredType() const {
|
|
const Type *Cur = this;
|
|
|
|
while (true) {
|
|
switch (Cur->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(Class, Parent)
|
|
#define TYPE(Class, Parent) \
|
|
case Class: { \
|
|
const Class##Type *Ty = cast<Class##Type>(Cur); \
|
|
if (!Ty->isSugared()) return Cur; \
|
|
Cur = Ty->desugar().getTypePtr(); \
|
|
break; \
|
|
}
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Type::isDerivedType() const {
|
|
switch (CanonicalType->getTypeClass()) {
|
|
case Pointer:
|
|
case VariableArray:
|
|
case ConstantArray:
|
|
case IncompleteArray:
|
|
case FunctionProto:
|
|
case FunctionNoProto:
|
|
case LValueReference:
|
|
case RValueReference:
|
|
case Record:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
bool Type::isClassType() const {
|
|
if (const RecordType *RT = getAs<RecordType>())
|
|
return RT->getDecl()->isClass();
|
|
return false;
|
|
}
|
|
bool Type::isStructureType() const {
|
|
if (const RecordType *RT = getAs<RecordType>())
|
|
return RT->getDecl()->isStruct();
|
|
return false;
|
|
}
|
|
bool Type::isStructureOrClassType() const {
|
|
if (const RecordType *RT = getAs<RecordType>())
|
|
return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
|
|
return false;
|
|
}
|
|
bool Type::isVoidPointerType() const {
|
|
if (const PointerType *PT = getAs<PointerType>())
|
|
return PT->getPointeeType()->isVoidType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isUnionType() const {
|
|
if (const RecordType *RT = getAs<RecordType>())
|
|
return RT->getDecl()->isUnion();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isComplexType() const {
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
|
|
return CT->getElementType()->isFloatingType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isComplexIntegerType() const {
|
|
// Check for GCC complex integer extension.
|
|
return getAsComplexIntegerType();
|
|
}
|
|
|
|
const ComplexType *Type::getAsComplexIntegerType() const {
|
|
if (const ComplexType *Complex = getAs<ComplexType>())
|
|
if (Complex->getElementType()->isIntegerType())
|
|
return Complex;
|
|
return 0;
|
|
}
|
|
|
|
QualType Type::getPointeeType() const {
|
|
if (const PointerType *PT = getAs<PointerType>())
|
|
return PT->getPointeeType();
|
|
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
|
|
return OPT->getPointeeType();
|
|
if (const BlockPointerType *BPT = getAs<BlockPointerType>())
|
|
return BPT->getPointeeType();
|
|
if (const ReferenceType *RT = getAs<ReferenceType>())
|
|
return RT->getPointeeType();
|
|
return QualType();
|
|
}
|
|
|
|
const RecordType *Type::getAsStructureType() const {
|
|
// If this is directly a structure type, return it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
|
|
if (RT->getDecl()->isStruct())
|
|
return RT;
|
|
}
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (!RT->getDecl()->isStruct())
|
|
return 0;
|
|
|
|
// If this is a typedef for a structure type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<RecordType>(getUnqualifiedDesugaredType());
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const RecordType *Type::getAsUnionType() const {
|
|
// If this is directly a union type, return it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
|
|
if (RT->getDecl()->isUnion())
|
|
return RT;
|
|
}
|
|
|
|
// If the canonical form of this type isn't the right kind, reject it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (!RT->getDecl()->isUnion())
|
|
return 0;
|
|
|
|
// If this is a typedef for a union type, strip the typedef off without
|
|
// losing all typedef information.
|
|
return cast<RecordType>(getUnqualifiedDesugaredType());
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
|
|
ObjCProtocolDecl * const *Protocols,
|
|
unsigned NumProtocols)
|
|
: Type(ObjCObject, Canonical, false, false, false, false),
|
|
BaseType(Base)
|
|
{
|
|
ObjCObjectTypeBits.NumProtocols = NumProtocols;
|
|
assert(getNumProtocols() == NumProtocols &&
|
|
"bitfield overflow in protocol count");
|
|
if (NumProtocols)
|
|
memcpy(getProtocolStorage(), Protocols,
|
|
NumProtocols * sizeof(ObjCProtocolDecl*));
|
|
}
|
|
|
|
const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
|
|
// There is no sugar for ObjCObjectType's, just return the canonical
|
|
// type pointer if it is the right class. There is no typedef information to
|
|
// return and these cannot be Address-space qualified.
|
|
if (const ObjCObjectType *T = getAs<ObjCObjectType>())
|
|
if (T->getNumProtocols() && T->getInterface())
|
|
return T;
|
|
return 0;
|
|
}
|
|
|
|
bool Type::isObjCQualifiedInterfaceType() const {
|
|
return getAsObjCQualifiedInterfaceType() != 0;
|
|
}
|
|
|
|
const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
|
|
// There is no sugar for ObjCQualifiedIdType's, just return the canonical
|
|
// type pointer if it is the right class.
|
|
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
|
|
if (OPT->isObjCQualifiedIdType())
|
|
return OPT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
|
|
// There is no sugar for ObjCQualifiedClassType's, just return the canonical
|
|
// type pointer if it is the right class.
|
|
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
|
|
if (OPT->isObjCQualifiedClassType())
|
|
return OPT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
|
|
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
|
|
if (OPT->getInterfaceType())
|
|
return OPT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
|
|
if (const PointerType *PT = getAs<PointerType>())
|
|
if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
|
|
return dyn_cast<CXXRecordDecl>(RT->getDecl());
|
|
return 0;
|
|
}
|
|
|
|
CXXRecordDecl *Type::getAsCXXRecordDecl() const {
|
|
if (const RecordType *RT = getAs<RecordType>())
|
|
return dyn_cast<CXXRecordDecl>(RT->getDecl());
|
|
else if (const InjectedClassNameType *Injected
|
|
= getAs<InjectedClassNameType>())
|
|
return Injected->getDecl();
|
|
|
|
return 0;
|
|
}
|
|
|
|
namespace {
|
|
class GetContainedAutoVisitor :
|
|
public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
|
|
public:
|
|
using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
|
|
AutoType *Visit(QualType T) {
|
|
if (T.isNull())
|
|
return 0;
|
|
return Visit(T.getTypePtr());
|
|
}
|
|
|
|
// The 'auto' type itself.
|
|
AutoType *VisitAutoType(const AutoType *AT) {
|
|
return const_cast<AutoType*>(AT);
|
|
}
|
|
|
|
// Only these types can contain the desired 'auto' type.
|
|
AutoType *VisitPointerType(const PointerType *T) {
|
|
return Visit(T->getPointeeType());
|
|
}
|
|
AutoType *VisitBlockPointerType(const BlockPointerType *T) {
|
|
return Visit(T->getPointeeType());
|
|
}
|
|
AutoType *VisitReferenceType(const ReferenceType *T) {
|
|
return Visit(T->getPointeeTypeAsWritten());
|
|
}
|
|
AutoType *VisitMemberPointerType(const MemberPointerType *T) {
|
|
return Visit(T->getPointeeType());
|
|
}
|
|
AutoType *VisitArrayType(const ArrayType *T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
AutoType *VisitDependentSizedExtVectorType(
|
|
const DependentSizedExtVectorType *T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
AutoType *VisitVectorType(const VectorType *T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
AutoType *VisitFunctionType(const FunctionType *T) {
|
|
return Visit(T->getResultType());
|
|
}
|
|
AutoType *VisitParenType(const ParenType *T) {
|
|
return Visit(T->getInnerType());
|
|
}
|
|
AutoType *VisitAttributedType(const AttributedType *T) {
|
|
return Visit(T->getModifiedType());
|
|
}
|
|
};
|
|
}
|
|
|
|
AutoType *Type::getContainedAutoType() const {
|
|
return GetContainedAutoVisitor().Visit(this);
|
|
}
|
|
|
|
bool Type::hasIntegerRepresentation() const {
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isIntegerType();
|
|
else
|
|
return isIntegerType();
|
|
}
|
|
|
|
/// \brief Determine whether this type is an integral type.
|
|
///
|
|
/// This routine determines whether the given type is an integral type per
|
|
/// C++ [basic.fundamental]p7. Although the C standard does not define the
|
|
/// term "integral type", it has a similar term "integer type", and in C++
|
|
/// the two terms are equivalent. However, C's "integer type" includes
|
|
/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
|
|
/// parameter is used to determine whether we should be following the C or
|
|
/// C++ rules when determining whether this type is an integral/integer type.
|
|
///
|
|
/// For cases where C permits "an integer type" and C++ permits "an integral
|
|
/// type", use this routine.
|
|
///
|
|
/// For cases where C permits "an integer type" and C++ permits "an integral
|
|
/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
|
|
///
|
|
/// \param Ctx The context in which this type occurs.
|
|
///
|
|
/// \returns true if the type is considered an integral type, false otherwise.
|
|
bool Type::isIntegralType(ASTContext &Ctx) const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::Int128;
|
|
|
|
if (!Ctx.getLangOptions().CPlusPlus)
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool Type::isIntegralOrUnscopedEnumerationType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::Int128;
|
|
|
|
// Check for a complete enum type; incomplete enum types are not properly an
|
|
// enumeration type in the sense required here.
|
|
// C++0x: However, if the underlying type of the enum is fixed, it is
|
|
// considered complete.
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
bool Type::isCharType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Char_U ||
|
|
BT->getKind() == BuiltinType::UChar ||
|
|
BT->getKind() == BuiltinType::Char_S ||
|
|
BT->getKind() == BuiltinType::SChar;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isWideCharType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::WChar_S ||
|
|
BT->getKind() == BuiltinType::WChar_U;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isChar16Type() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Char16;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isChar32Type() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Char32;
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determine whether this type is any of the built-in character
|
|
/// types.
|
|
bool Type::isAnyCharacterType() const {
|
|
const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
|
|
if (BT == 0) return false;
|
|
switch (BT->getKind()) {
|
|
default: return false;
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::UChar:
|
|
case BuiltinType::WChar_U:
|
|
case BuiltinType::Char16:
|
|
case BuiltinType::Char32:
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::WChar_S:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// isSignedIntegerType - Return true if this is an integer type that is
|
|
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
|
|
/// an enum decl which has a signed representation
|
|
bool Type::isSignedIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
|
|
return BT->getKind() >= BuiltinType::Char_S &&
|
|
BT->getKind() <= BuiltinType::Int128;
|
|
}
|
|
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
|
|
// Incomplete enum types are not treated as integer types.
|
|
// FIXME: In C++, enum types are never integer types.
|
|
if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
|
|
return ET->getDecl()->getIntegerType()->isSignedIntegerType();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Type::isSignedIntegerOrEnumerationType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
|
|
return BT->getKind() >= BuiltinType::Char_S &&
|
|
BT->getKind() <= BuiltinType::Int128;
|
|
}
|
|
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
|
|
if (ET->getDecl()->isComplete())
|
|
return ET->getDecl()->getIntegerType()->isSignedIntegerType();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Type::hasSignedIntegerRepresentation() const {
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isSignedIntegerType();
|
|
else
|
|
return isSignedIntegerType();
|
|
}
|
|
|
|
/// isUnsignedIntegerType - Return true if this is an integer type that is
|
|
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
|
|
/// decl which has an unsigned representation
|
|
bool Type::isUnsignedIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::UInt128;
|
|
}
|
|
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
|
|
// Incomplete enum types are not treated as integer types.
|
|
// FIXME: In C++, enum types are never integer types.
|
|
if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
|
|
return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Type::isUnsignedIntegerOrEnumerationType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::UInt128;
|
|
}
|
|
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
|
|
if (ET->getDecl()->isComplete())
|
|
return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Type::hasUnsignedIntegerRepresentation() const {
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isUnsignedIntegerType();
|
|
else
|
|
return isUnsignedIntegerType();
|
|
}
|
|
|
|
bool Type::isFloatingType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Half &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
|
|
return CT->getElementType()->isFloatingType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::hasFloatingRepresentation() const {
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isFloatingType();
|
|
else
|
|
return isFloatingType();
|
|
}
|
|
|
|
bool Type::isRealFloatingType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->isFloatingPoint();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isRealType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isArithmeticType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
|
|
// GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
|
|
// If a body isn't seen by the time we get here, return false.
|
|
//
|
|
// C++0x: Enumerations are not arithmetic types. For now, just return
|
|
// false for scoped enumerations since that will disable any
|
|
// unwanted implicit conversions.
|
|
return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
|
|
return isa<ComplexType>(CanonicalType);
|
|
}
|
|
|
|
Type::ScalarTypeKind Type::getScalarTypeKind() const {
|
|
assert(isScalarType());
|
|
|
|
const Type *T = CanonicalType.getTypePtr();
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
|
|
if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
|
|
if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
|
|
if (BT->isInteger()) return STK_Integral;
|
|
if (BT->isFloatingPoint()) return STK_Floating;
|
|
llvm_unreachable("unknown scalar builtin type");
|
|
} else if (isa<PointerType>(T)) {
|
|
return STK_CPointer;
|
|
} else if (isa<BlockPointerType>(T)) {
|
|
return STK_BlockPointer;
|
|
} else if (isa<ObjCObjectPointerType>(T)) {
|
|
return STK_ObjCObjectPointer;
|
|
} else if (isa<MemberPointerType>(T)) {
|
|
return STK_MemberPointer;
|
|
} else if (isa<EnumType>(T)) {
|
|
assert(cast<EnumType>(T)->getDecl()->isComplete());
|
|
return STK_Integral;
|
|
} else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
|
|
if (CT->getElementType()->isRealFloatingType())
|
|
return STK_FloatingComplex;
|
|
return STK_IntegralComplex;
|
|
}
|
|
|
|
llvm_unreachable("unknown scalar type");
|
|
}
|
|
|
|
/// \brief Determines whether the type is a C++ aggregate type or C
|
|
/// aggregate or union type.
|
|
///
|
|
/// An aggregate type is an array or a class type (struct, union, or
|
|
/// class) that has no user-declared constructors, no private or
|
|
/// protected non-static data members, no base classes, and no virtual
|
|
/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
|
|
/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
|
|
/// includes union types.
|
|
bool Type::isAggregateType() const {
|
|
if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
|
|
return ClassDecl->isAggregate();
|
|
|
|
return true;
|
|
}
|
|
|
|
return isa<ArrayType>(CanonicalType);
|
|
}
|
|
|
|
/// isConstantSizeType - Return true if this is not a variable sized type,
|
|
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
|
|
/// incomplete types or dependent types.
|
|
bool Type::isConstantSizeType() const {
|
|
assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
|
|
assert(!isDependentType() && "This doesn't make sense for dependent types");
|
|
// The VAT must have a size, as it is known to be complete.
|
|
return !isa<VariableArrayType>(CanonicalType);
|
|
}
|
|
|
|
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
|
|
/// - a type that can describe objects, but which lacks information needed to
|
|
/// determine its size.
|
|
bool Type::isIncompleteType(NamedDecl **Def) const {
|
|
if (Def)
|
|
*Def = 0;
|
|
|
|
switch (CanonicalType->getTypeClass()) {
|
|
default: return false;
|
|
case Builtin:
|
|
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
|
|
// be completed.
|
|
return isVoidType();
|
|
case Enum: {
|
|
EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
|
|
if (Def)
|
|
*Def = EnumD;
|
|
|
|
// An enumeration with fixed underlying type is complete (C++0x 7.2p3).
|
|
if (EnumD->isFixed())
|
|
return false;
|
|
|
|
return !EnumD->isCompleteDefinition();
|
|
}
|
|
case Record: {
|
|
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
|
|
// forward declaration, but not a full definition (C99 6.2.5p22).
|
|
RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
|
|
if (Def)
|
|
*Def = Rec;
|
|
return !Rec->isCompleteDefinition();
|
|
}
|
|
case ConstantArray:
|
|
// An array is incomplete if its element type is incomplete
|
|
// (C++ [dcl.array]p1).
|
|
// We don't handle variable arrays (they're not allowed in C++) or
|
|
// dependent-sized arrays (dependent types are never treated as incomplete).
|
|
return cast<ArrayType>(CanonicalType)->getElementType()
|
|
->isIncompleteType(Def);
|
|
case IncompleteArray:
|
|
// An array of unknown size is an incomplete type (C99 6.2.5p22).
|
|
return true;
|
|
case ObjCObject:
|
|
return cast<ObjCObjectType>(CanonicalType)->getBaseType()
|
|
->isIncompleteType(Def);
|
|
case ObjCInterface: {
|
|
// ObjC interfaces are incomplete if they are @class, not @interface.
|
|
ObjCInterfaceDecl *Interface
|
|
= cast<ObjCInterfaceType>(CanonicalType)->getDecl();
|
|
if (Def)
|
|
*Def = Interface;
|
|
return !Interface->hasDefinition();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool QualType::isPODType(ASTContext &Context) const {
|
|
// The compiler shouldn't query this for incomplete types, but the user might.
|
|
// We return false for that case. Except for incomplete arrays of PODs, which
|
|
// are PODs according to the standard.
|
|
if (isNull())
|
|
return 0;
|
|
|
|
if ((*this)->isIncompleteArrayType())
|
|
return Context.getBaseElementType(*this).isPODType(Context);
|
|
|
|
if ((*this)->isIncompleteType())
|
|
return false;
|
|
|
|
if (Context.getLangOptions().ObjCAutoRefCount) {
|
|
switch (getObjCLifetime()) {
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
return true;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Weak:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
return false;
|
|
|
|
case Qualifiers::OCL_None:
|
|
break;
|
|
}
|
|
}
|
|
|
|
QualType CanonicalType = getTypePtr()->CanonicalType;
|
|
switch (CanonicalType->getTypeClass()) {
|
|
// Everything not explicitly mentioned is not POD.
|
|
default: return false;
|
|
case Type::VariableArray:
|
|
case Type::ConstantArray:
|
|
// IncompleteArray is handled above.
|
|
return Context.getBaseElementType(*this).isPODType(Context);
|
|
|
|
case Type::ObjCObjectPointer:
|
|
case Type::BlockPointer:
|
|
case Type::Builtin:
|
|
case Type::Complex:
|
|
case Type::Pointer:
|
|
case Type::MemberPointer:
|
|
case Type::Vector:
|
|
case Type::ExtVector:
|
|
return true;
|
|
|
|
case Type::Enum:
|
|
return true;
|
|
|
|
case Type::Record:
|
|
if (CXXRecordDecl *ClassDecl
|
|
= dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
|
|
return ClassDecl->isPOD();
|
|
|
|
// C struct/union is POD.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool QualType::isTrivialType(ASTContext &Context) const {
|
|
// The compiler shouldn't query this for incomplete types, but the user might.
|
|
// We return false for that case. Except for incomplete arrays of PODs, which
|
|
// are PODs according to the standard.
|
|
if (isNull())
|
|
return 0;
|
|
|
|
if ((*this)->isArrayType())
|
|
return Context.getBaseElementType(*this).isTrivialType(Context);
|
|
|
|
// Return false for incomplete types after skipping any incomplete array
|
|
// types which are expressly allowed by the standard and thus our API.
|
|
if ((*this)->isIncompleteType())
|
|
return false;
|
|
|
|
if (Context.getLangOptions().ObjCAutoRefCount) {
|
|
switch (getObjCLifetime()) {
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
return true;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Weak:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
return false;
|
|
|
|
case Qualifiers::OCL_None:
|
|
if ((*this)->isObjCLifetimeType())
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
QualType CanonicalType = getTypePtr()->CanonicalType;
|
|
if (CanonicalType->isDependentType())
|
|
return false;
|
|
|
|
// C++0x [basic.types]p9:
|
|
// Scalar types, trivial class types, arrays of such types, and
|
|
// cv-qualified versions of these types are collectively called trivial
|
|
// types.
|
|
|
|
// As an extension, Clang treats vector types as Scalar types.
|
|
if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
|
|
return true;
|
|
if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
|
|
if (const CXXRecordDecl *ClassDecl =
|
|
dyn_cast<CXXRecordDecl>(RT->getDecl())) {
|
|
// C++0x [class]p5:
|
|
// A trivial class is a class that has a trivial default constructor
|
|
if (!ClassDecl->hasTrivialDefaultConstructor()) return false;
|
|
// and is trivially copyable.
|
|
if (!ClassDecl->isTriviallyCopyable()) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// No other types can match.
|
|
return false;
|
|
}
|
|
|
|
bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
|
|
if ((*this)->isArrayType())
|
|
return Context.getBaseElementType(*this).isTrivialType(Context);
|
|
|
|
if (Context.getLangOptions().ObjCAutoRefCount) {
|
|
switch (getObjCLifetime()) {
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
return true;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Weak:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
return false;
|
|
|
|
case Qualifiers::OCL_None:
|
|
if ((*this)->isObjCLifetimeType())
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// C++0x [basic.types]p9
|
|
// Scalar types, trivially copyable class types, arrays of such types, and
|
|
// cv-qualified versions of these types are collectively called trivial
|
|
// types.
|
|
|
|
QualType CanonicalType = getCanonicalType();
|
|
if (CanonicalType->isDependentType())
|
|
return false;
|
|
|
|
// Return false for incomplete types after skipping any incomplete array types
|
|
// which are expressly allowed by the standard and thus our API.
|
|
if (CanonicalType->isIncompleteType())
|
|
return false;
|
|
|
|
// As an extension, Clang treats vector types as Scalar types.
|
|
if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
|
|
return true;
|
|
|
|
if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
|
|
if (const CXXRecordDecl *ClassDecl =
|
|
dyn_cast<CXXRecordDecl>(RT->getDecl())) {
|
|
if (!ClassDecl->isTriviallyCopyable()) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// No other types can match.
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
bool Type::isLiteralType() const {
|
|
if (isDependentType())
|
|
return false;
|
|
|
|
// C++0x [basic.types]p10:
|
|
// A type is a literal type if it is:
|
|
// [...]
|
|
// -- an array of literal type.
|
|
// Extension: variable arrays cannot be literal types, since they're
|
|
// runtime-sized.
|
|
if (isVariableArrayType())
|
|
return false;
|
|
const Type *BaseTy = getBaseElementTypeUnsafe();
|
|
assert(BaseTy && "NULL element type");
|
|
|
|
// Return false for incomplete types after skipping any incomplete array
|
|
// types; those are expressly allowed by the standard and thus our API.
|
|
if (BaseTy->isIncompleteType())
|
|
return false;
|
|
|
|
// C++0x [basic.types]p10:
|
|
// A type is a literal type if it is:
|
|
// -- a scalar type; or
|
|
// As an extension, Clang treats vector types and complex types as
|
|
// literal types.
|
|
if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
|
|
BaseTy->isAnyComplexType())
|
|
return true;
|
|
// -- a reference type; or
|
|
if (BaseTy->isReferenceType())
|
|
return true;
|
|
// -- a class type that has all of the following properties:
|
|
if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
|
|
// -- a trivial destructor,
|
|
// -- every constructor call and full-expression in the
|
|
// brace-or-equal-initializers for non-static data members (if any)
|
|
// is a constant expression,
|
|
// -- it is an aggregate type or has at least one constexpr
|
|
// constructor or constructor template that is not a copy or move
|
|
// constructor, and
|
|
// -- all non-static data members and base classes of literal types
|
|
//
|
|
// We resolve DR1361 by ignoring the second bullet.
|
|
if (const CXXRecordDecl *ClassDecl =
|
|
dyn_cast<CXXRecordDecl>(RT->getDecl()))
|
|
return ClassDecl->isLiteral();
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Type::isStandardLayoutType() const {
|
|
if (isDependentType())
|
|
return false;
|
|
|
|
// C++0x [basic.types]p9:
|
|
// Scalar types, standard-layout class types, arrays of such types, and
|
|
// cv-qualified versions of these types are collectively called
|
|
// standard-layout types.
|
|
const Type *BaseTy = getBaseElementTypeUnsafe();
|
|
assert(BaseTy && "NULL element type");
|
|
|
|
// Return false for incomplete types after skipping any incomplete array
|
|
// types which are expressly allowed by the standard and thus our API.
|
|
if (BaseTy->isIncompleteType())
|
|
return false;
|
|
|
|
// As an extension, Clang treats vector types as Scalar types.
|
|
if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
|
|
if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
|
|
if (const CXXRecordDecl *ClassDecl =
|
|
dyn_cast<CXXRecordDecl>(RT->getDecl()))
|
|
if (!ClassDecl->isStandardLayout())
|
|
return false;
|
|
|
|
// Default to 'true' for non-C++ class types.
|
|
// FIXME: This is a bit dubious, but plain C structs should trivially meet
|
|
// all the requirements of standard layout classes.
|
|
return true;
|
|
}
|
|
|
|
// No other types can match.
|
|
return false;
|
|
}
|
|
|
|
// This is effectively the intersection of isTrivialType and
|
|
// isStandardLayoutType. We implement it directly to avoid redundant
|
|
// conversions from a type to a CXXRecordDecl.
|
|
bool QualType::isCXX11PODType(ASTContext &Context) const {
|
|
const Type *ty = getTypePtr();
|
|
if (ty->isDependentType())
|
|
return false;
|
|
|
|
if (Context.getLangOptions().ObjCAutoRefCount) {
|
|
switch (getObjCLifetime()) {
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
return true;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Weak:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
return false;
|
|
|
|
case Qualifiers::OCL_None:
|
|
if (ty->isObjCLifetimeType())
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// C++11 [basic.types]p9:
|
|
// Scalar types, POD classes, arrays of such types, and cv-qualified
|
|
// versions of these types are collectively called trivial types.
|
|
const Type *BaseTy = ty->getBaseElementTypeUnsafe();
|
|
assert(BaseTy && "NULL element type");
|
|
|
|
// Return false for incomplete types after skipping any incomplete array
|
|
// types which are expressly allowed by the standard and thus our API.
|
|
if (BaseTy->isIncompleteType())
|
|
return false;
|
|
|
|
// As an extension, Clang treats vector types as Scalar types.
|
|
if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
|
|
if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
|
|
if (const CXXRecordDecl *ClassDecl =
|
|
dyn_cast<CXXRecordDecl>(RT->getDecl())) {
|
|
// C++11 [class]p10:
|
|
// A POD struct is a non-union class that is both a trivial class [...]
|
|
if (!ClassDecl->isTrivial()) return false;
|
|
|
|
// C++11 [class]p10:
|
|
// A POD struct is a non-union class that is both a trivial class and
|
|
// a standard-layout class [...]
|
|
if (!ClassDecl->isStandardLayout()) return false;
|
|
|
|
// C++11 [class]p10:
|
|
// A POD struct is a non-union class that is both a trivial class and
|
|
// a standard-layout class, and has no non-static data members of type
|
|
// non-POD struct, non-POD union (or array of such types). [...]
|
|
//
|
|
// We don't directly query the recursive aspect as the requiremets for
|
|
// both standard-layout classes and trivial classes apply recursively
|
|
// already.
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// No other types can match.
|
|
return false;
|
|
}
|
|
|
|
bool Type::isPromotableIntegerType() const {
|
|
if (const BuiltinType *BT = getAs<BuiltinType>())
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Bool:
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
case BuiltinType::WChar_S:
|
|
case BuiltinType::WChar_U:
|
|
case BuiltinType::Char16:
|
|
case BuiltinType::Char32:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// Enumerated types are promotable to their compatible integer types
|
|
// (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
|
|
if (const EnumType *ET = getAs<EnumType>()){
|
|
if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
|
|
|| ET->getDecl()->isScoped())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Type::isSpecifierType() const {
|
|
// Note that this intentionally does not use the canonical type.
|
|
switch (getTypeClass()) {
|
|
case Builtin:
|
|
case Record:
|
|
case Enum:
|
|
case Typedef:
|
|
case Complex:
|
|
case TypeOfExpr:
|
|
case TypeOf:
|
|
case TemplateTypeParm:
|
|
case SubstTemplateTypeParm:
|
|
case TemplateSpecialization:
|
|
case Elaborated:
|
|
case DependentName:
|
|
case DependentTemplateSpecialization:
|
|
case ObjCInterface:
|
|
case ObjCObject:
|
|
case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ElaboratedTypeKeyword
|
|
TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
|
|
switch (TypeSpec) {
|
|
default: return ETK_None;
|
|
case TST_typename: return ETK_Typename;
|
|
case TST_class: return ETK_Class;
|
|
case TST_struct: return ETK_Struct;
|
|
case TST_union: return ETK_Union;
|
|
case TST_enum: return ETK_Enum;
|
|
}
|
|
}
|
|
|
|
TagTypeKind
|
|
TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
|
|
switch(TypeSpec) {
|
|
case TST_class: return TTK_Class;
|
|
case TST_struct: return TTK_Struct;
|
|
case TST_union: return TTK_Union;
|
|
case TST_enum: return TTK_Enum;
|
|
}
|
|
|
|
llvm_unreachable("Type specifier is not a tag type kind.");
|
|
}
|
|
|
|
ElaboratedTypeKeyword
|
|
TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
|
|
switch (Kind) {
|
|
case TTK_Class: return ETK_Class;
|
|
case TTK_Struct: return ETK_Struct;
|
|
case TTK_Union: return ETK_Union;
|
|
case TTK_Enum: return ETK_Enum;
|
|
}
|
|
llvm_unreachable("Unknown tag type kind.");
|
|
}
|
|
|
|
TagTypeKind
|
|
TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
|
|
switch (Keyword) {
|
|
case ETK_Class: return TTK_Class;
|
|
case ETK_Struct: return TTK_Struct;
|
|
case ETK_Union: return TTK_Union;
|
|
case ETK_Enum: return TTK_Enum;
|
|
case ETK_None: // Fall through.
|
|
case ETK_Typename:
|
|
llvm_unreachable("Elaborated type keyword is not a tag type kind.");
|
|
}
|
|
llvm_unreachable("Unknown elaborated type keyword.");
|
|
}
|
|
|
|
bool
|
|
TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
|
|
switch (Keyword) {
|
|
case ETK_None:
|
|
case ETK_Typename:
|
|
return false;
|
|
case ETK_Class:
|
|
case ETK_Struct:
|
|
case ETK_Union:
|
|
case ETK_Enum:
|
|
return true;
|
|
}
|
|
llvm_unreachable("Unknown elaborated type keyword.");
|
|
}
|
|
|
|
const char*
|
|
TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
|
|
switch (Keyword) {
|
|
case ETK_None: return "";
|
|
case ETK_Typename: return "typename";
|
|
case ETK_Class: return "class";
|
|
case ETK_Struct: return "struct";
|
|
case ETK_Union: return "union";
|
|
case ETK_Enum: return "enum";
|
|
}
|
|
|
|
llvm_unreachable("Unknown elaborated type keyword.");
|
|
}
|
|
|
|
DependentTemplateSpecializationType::DependentTemplateSpecializationType(
|
|
ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS, const IdentifierInfo *Name,
|
|
unsigned NumArgs, const TemplateArgument *Args,
|
|
QualType Canon)
|
|
: TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
|
|
/*VariablyModified=*/false,
|
|
NNS && NNS->containsUnexpandedParameterPack()),
|
|
NNS(NNS), Name(Name), NumArgs(NumArgs) {
|
|
assert((!NNS || NNS->isDependent()) &&
|
|
"DependentTemplateSpecializatonType requires dependent qualifier");
|
|
for (unsigned I = 0; I != NumArgs; ++I) {
|
|
if (Args[I].containsUnexpandedParameterPack())
|
|
setContainsUnexpandedParameterPack();
|
|
|
|
new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
|
|
}
|
|
}
|
|
|
|
void
|
|
DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
|
|
const ASTContext &Context,
|
|
ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *Qualifier,
|
|
const IdentifierInfo *Name,
|
|
unsigned NumArgs,
|
|
const TemplateArgument *Args) {
|
|
ID.AddInteger(Keyword);
|
|
ID.AddPointer(Qualifier);
|
|
ID.AddPointer(Name);
|
|
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
|
|
Args[Idx].Profile(ID, Context);
|
|
}
|
|
|
|
bool Type::isElaboratedTypeSpecifier() const {
|
|
ElaboratedTypeKeyword Keyword;
|
|
if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
|
|
Keyword = Elab->getKeyword();
|
|
else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
|
|
Keyword = DepName->getKeyword();
|
|
else if (const DependentTemplateSpecializationType *DepTST =
|
|
dyn_cast<DependentTemplateSpecializationType>(this))
|
|
Keyword = DepTST->getKeyword();
|
|
else
|
|
return false;
|
|
|
|
return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
|
|
}
|
|
|
|
const char *Type::getTypeClassName() const {
|
|
switch (TypeBits.TC) {
|
|
#define ABSTRACT_TYPE(Derived, Base)
|
|
#define TYPE(Derived, Base) case Derived: return #Derived;
|
|
#include "clang/AST/TypeNodes.def"
|
|
}
|
|
|
|
llvm_unreachable("Invalid type class.");
|
|
}
|
|
|
|
const char *BuiltinType::getName(const PrintingPolicy &Policy) const {
|
|
switch (getKind()) {
|
|
case Void: return "void";
|
|
case Bool: return Policy.Bool ? "bool" : "_Bool";
|
|
case Char_S: return "char";
|
|
case Char_U: return "char";
|
|
case SChar: return "signed char";
|
|
case Short: return "short";
|
|
case Int: return "int";
|
|
case Long: return "long";
|
|
case LongLong: return "long long";
|
|
case Int128: return "__int128_t";
|
|
case UChar: return "unsigned char";
|
|
case UShort: return "unsigned short";
|
|
case UInt: return "unsigned int";
|
|
case ULong: return "unsigned long";
|
|
case ULongLong: return "unsigned long long";
|
|
case UInt128: return "__uint128_t";
|
|
case Half: return "half";
|
|
case Float: return "float";
|
|
case Double: return "double";
|
|
case LongDouble: return "long double";
|
|
case WChar_S:
|
|
case WChar_U: return "wchar_t";
|
|
case Char16: return "char16_t";
|
|
case Char32: return "char32_t";
|
|
case NullPtr: return "nullptr_t";
|
|
case Overload: return "<overloaded function type>";
|
|
case BoundMember: return "<bound member function type>";
|
|
case PseudoObject: return "<pseudo-object type>";
|
|
case Dependent: return "<dependent type>";
|
|
case UnknownAny: return "<unknown type>";
|
|
case ARCUnbridgedCast: return "<ARC unbridged cast type>";
|
|
case ObjCId: return "id";
|
|
case ObjCClass: return "Class";
|
|
case ObjCSel: return "SEL";
|
|
}
|
|
|
|
llvm_unreachable("Invalid builtin type.");
|
|
}
|
|
|
|
QualType QualType::getNonLValueExprType(ASTContext &Context) const {
|
|
if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
|
|
return RefType->getPointeeType();
|
|
|
|
// C++0x [basic.lval]:
|
|
// Class prvalues can have cv-qualified types; non-class prvalues always
|
|
// have cv-unqualified types.
|
|
//
|
|
// See also C99 6.3.2.1p2.
|
|
if (!Context.getLangOptions().CPlusPlus ||
|
|
(!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
|
|
return getUnqualifiedType();
|
|
|
|
return *this;
|
|
}
|
|
|
|
StringRef FunctionType::getNameForCallConv(CallingConv CC) {
|
|
switch (CC) {
|
|
case CC_Default:
|
|
llvm_unreachable("no name for default cc");
|
|
|
|
case CC_C: return "cdecl";
|
|
case CC_X86StdCall: return "stdcall";
|
|
case CC_X86FastCall: return "fastcall";
|
|
case CC_X86ThisCall: return "thiscall";
|
|
case CC_X86Pascal: return "pascal";
|
|
case CC_AAPCS: return "aapcs";
|
|
case CC_AAPCS_VFP: return "aapcs-vfp";
|
|
}
|
|
|
|
llvm_unreachable("Invalid calling convention.");
|
|
}
|
|
|
|
FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
|
|
unsigned numArgs, QualType canonical,
|
|
const ExtProtoInfo &epi)
|
|
: FunctionType(FunctionProto, result, epi.TypeQuals, epi.RefQualifier,
|
|
canonical,
|
|
result->isDependentType(),
|
|
result->isInstantiationDependentType(),
|
|
result->isVariablyModifiedType(),
|
|
result->containsUnexpandedParameterPack(),
|
|
epi.ExtInfo),
|
|
NumArgs(numArgs), NumExceptions(epi.NumExceptions),
|
|
ExceptionSpecType(epi.ExceptionSpecType),
|
|
HasAnyConsumedArgs(epi.ConsumedArguments != 0),
|
|
Variadic(epi.Variadic), HasTrailingReturn(epi.HasTrailingReturn)
|
|
{
|
|
// Fill in the trailing argument array.
|
|
QualType *argSlot = reinterpret_cast<QualType*>(this+1);
|
|
for (unsigned i = 0; i != numArgs; ++i) {
|
|
if (args[i]->isDependentType())
|
|
setDependent();
|
|
else if (args[i]->isInstantiationDependentType())
|
|
setInstantiationDependent();
|
|
|
|
if (args[i]->containsUnexpandedParameterPack())
|
|
setContainsUnexpandedParameterPack();
|
|
|
|
argSlot[i] = args[i];
|
|
}
|
|
|
|
if (getExceptionSpecType() == EST_Dynamic) {
|
|
// Fill in the exception array.
|
|
QualType *exnSlot = argSlot + numArgs;
|
|
for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
|
|
if (epi.Exceptions[i]->isDependentType())
|
|
setDependent();
|
|
else if (epi.Exceptions[i]->isInstantiationDependentType())
|
|
setInstantiationDependent();
|
|
|
|
if (epi.Exceptions[i]->containsUnexpandedParameterPack())
|
|
setContainsUnexpandedParameterPack();
|
|
|
|
exnSlot[i] = epi.Exceptions[i];
|
|
}
|
|
} else if (getExceptionSpecType() == EST_ComputedNoexcept) {
|
|
// Store the noexcept expression and context.
|
|
Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
|
|
*noexSlot = epi.NoexceptExpr;
|
|
|
|
if (epi.NoexceptExpr) {
|
|
if (epi.NoexceptExpr->isValueDependent()
|
|
|| epi.NoexceptExpr->isTypeDependent())
|
|
setDependent();
|
|
else if (epi.NoexceptExpr->isInstantiationDependent())
|
|
setInstantiationDependent();
|
|
}
|
|
}
|
|
|
|
if (epi.ConsumedArguments) {
|
|
bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
|
|
for (unsigned i = 0; i != numArgs; ++i)
|
|
consumedArgs[i] = epi.ConsumedArguments[i];
|
|
}
|
|
}
|
|
|
|
FunctionProtoType::NoexceptResult
|
|
FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
|
|
ExceptionSpecificationType est = getExceptionSpecType();
|
|
if (est == EST_BasicNoexcept)
|
|
return NR_Nothrow;
|
|
|
|
if (est != EST_ComputedNoexcept)
|
|
return NR_NoNoexcept;
|
|
|
|
Expr *noexceptExpr = getNoexceptExpr();
|
|
if (!noexceptExpr)
|
|
return NR_BadNoexcept;
|
|
if (noexceptExpr->isValueDependent())
|
|
return NR_Dependent;
|
|
|
|
llvm::APSInt value;
|
|
bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
|
|
/*evaluated*/false);
|
|
(void)isICE;
|
|
assert(isICE && "AST should not contain bad noexcept expressions.");
|
|
|
|
return value.getBoolValue() ? NR_Nothrow : NR_Throw;
|
|
}
|
|
|
|
bool FunctionProtoType::isTemplateVariadic() const {
|
|
for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
|
|
if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
|
|
const QualType *ArgTys, unsigned NumArgs,
|
|
const ExtProtoInfo &epi,
|
|
const ASTContext &Context) {
|
|
|
|
// We have to be careful not to get ambiguous profile encodings.
|
|
// Note that valid type pointers are never ambiguous with anything else.
|
|
//
|
|
// The encoding grammar begins:
|
|
// type type* bool int bool
|
|
// If that final bool is true, then there is a section for the EH spec:
|
|
// bool type*
|
|
// This is followed by an optional "consumed argument" section of the
|
|
// same length as the first type sequence:
|
|
// bool*
|
|
// Finally, we have the ext info and trailing return type flag:
|
|
// int bool
|
|
//
|
|
// There is no ambiguity between the consumed arguments and an empty EH
|
|
// spec because of the leading 'bool' which unambiguously indicates
|
|
// whether the following bool is the EH spec or part of the arguments.
|
|
|
|
ID.AddPointer(Result.getAsOpaquePtr());
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
|
|
// This method is relatively performance sensitive, so as a performance
|
|
// shortcut, use one AddInteger call instead of four for the next four
|
|
// fields.
|
|
assert(!(unsigned(epi.Variadic) & ~1) &&
|
|
!(unsigned(epi.TypeQuals) & ~255) &&
|
|
!(unsigned(epi.RefQualifier) & ~3) &&
|
|
!(unsigned(epi.ExceptionSpecType) & ~7) &&
|
|
"Values larger than expected.");
|
|
ID.AddInteger(unsigned(epi.Variadic) +
|
|
(epi.TypeQuals << 1) +
|
|
(epi.RefQualifier << 9) +
|
|
(epi.ExceptionSpecType << 11));
|
|
if (epi.ExceptionSpecType == EST_Dynamic) {
|
|
for (unsigned i = 0; i != epi.NumExceptions; ++i)
|
|
ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
|
|
} else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
|
|
epi.NoexceptExpr->Profile(ID, Context, false);
|
|
}
|
|
if (epi.ConsumedArguments) {
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
ID.AddBoolean(epi.ConsumedArguments[i]);
|
|
}
|
|
epi.ExtInfo.Profile(ID);
|
|
ID.AddBoolean(epi.HasTrailingReturn);
|
|
}
|
|
|
|
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
|
|
const ASTContext &Ctx) {
|
|
Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
|
|
Ctx);
|
|
}
|
|
|
|
QualType TypedefType::desugar() const {
|
|
return getDecl()->getUnderlyingType();
|
|
}
|
|
|
|
TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
|
|
: Type(TypeOfExpr, can, E->isTypeDependent(),
|
|
E->isInstantiationDependent(),
|
|
E->getType()->isVariablyModifiedType(),
|
|
E->containsUnexpandedParameterPack()),
|
|
TOExpr(E) {
|
|
}
|
|
|
|
bool TypeOfExprType::isSugared() const {
|
|
return !TOExpr->isTypeDependent();
|
|
}
|
|
|
|
QualType TypeOfExprType::desugar() const {
|
|
if (isSugared())
|
|
return getUnderlyingExpr()->getType();
|
|
|
|
return QualType(this, 0);
|
|
}
|
|
|
|
void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
|
|
const ASTContext &Context, Expr *E) {
|
|
E->Profile(ID, Context, true);
|
|
}
|
|
|
|
DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
|
|
// C++11 [temp.type]p2: "If an expression e involves a template parameter,
|
|
// decltype(e) denotes a unique dependent type." Hence a decltype type is
|
|
// type-dependent even if its expression is only instantiation-dependent.
|
|
: Type(Decltype, can, E->isInstantiationDependent(),
|
|
E->isInstantiationDependent(),
|
|
E->getType()->isVariablyModifiedType(),
|
|
E->containsUnexpandedParameterPack()),
|
|
E(E),
|
|
UnderlyingType(underlyingType) {
|
|
}
|
|
|
|
bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
|
|
|
|
QualType DecltypeType::desugar() const {
|
|
if (isSugared())
|
|
return getUnderlyingType();
|
|
|
|
return QualType(this, 0);
|
|
}
|
|
|
|
DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
|
|
: DecltypeType(E, Context.DependentTy), Context(Context) { }
|
|
|
|
void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
|
|
const ASTContext &Context, Expr *E) {
|
|
E->Profile(ID, Context, true);
|
|
}
|
|
|
|
TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
|
|
: Type(TC, can, D->isDependentType(),
|
|
/*InstantiationDependent=*/D->isDependentType(),
|
|
/*VariablyModified=*/false,
|
|
/*ContainsUnexpandedParameterPack=*/false),
|
|
decl(const_cast<TagDecl*>(D)) {}
|
|
|
|
static TagDecl *getInterestingTagDecl(TagDecl *decl) {
|
|
for (TagDecl::redecl_iterator I = decl->redecls_begin(),
|
|
E = decl->redecls_end();
|
|
I != E; ++I) {
|
|
if (I->isCompleteDefinition() || I->isBeingDefined())
|
|
return *I;
|
|
}
|
|
// If there's no definition (not even in progress), return what we have.
|
|
return decl;
|
|
}
|
|
|
|
UnaryTransformType::UnaryTransformType(QualType BaseType,
|
|
QualType UnderlyingType,
|
|
UTTKind UKind,
|
|
QualType CanonicalType)
|
|
: Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
|
|
UnderlyingType->isInstantiationDependentType(),
|
|
UnderlyingType->isVariablyModifiedType(),
|
|
BaseType->containsUnexpandedParameterPack())
|
|
, BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
|
|
{}
|
|
|
|
TagDecl *TagType::getDecl() const {
|
|
return getInterestingTagDecl(decl);
|
|
}
|
|
|
|
bool TagType::isBeingDefined() const {
|
|
return getDecl()->isBeingDefined();
|
|
}
|
|
|
|
CXXRecordDecl *InjectedClassNameType::getDecl() const {
|
|
return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
|
|
}
|
|
|
|
IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
|
|
return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
|
|
}
|
|
|
|
SubstTemplateTypeParmPackType::
|
|
SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
|
|
QualType Canon,
|
|
const TemplateArgument &ArgPack)
|
|
: Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
|
|
Replaced(Param),
|
|
Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
|
|
{
|
|
}
|
|
|
|
TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
|
|
return TemplateArgument(Arguments, NumArguments);
|
|
}
|
|
|
|
void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
|
|
Profile(ID, getReplacedParameter(), getArgumentPack());
|
|
}
|
|
|
|
void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
|
|
const TemplateTypeParmType *Replaced,
|
|
const TemplateArgument &ArgPack) {
|
|
ID.AddPointer(Replaced);
|
|
ID.AddInteger(ArgPack.pack_size());
|
|
for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
|
|
PEnd = ArgPack.pack_end();
|
|
P != PEnd; ++P)
|
|
ID.AddPointer(P->getAsType().getAsOpaquePtr());
|
|
}
|
|
|
|
bool TemplateSpecializationType::
|
|
anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
|
|
bool &InstantiationDependent) {
|
|
return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
|
|
InstantiationDependent);
|
|
}
|
|
|
|
bool TemplateSpecializationType::
|
|
anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
|
|
bool &InstantiationDependent) {
|
|
for (unsigned i = 0; i != N; ++i) {
|
|
if (Args[i].getArgument().isDependent()) {
|
|
InstantiationDependent = true;
|
|
return true;
|
|
}
|
|
|
|
if (Args[i].getArgument().isInstantiationDependent())
|
|
InstantiationDependent = true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool TemplateSpecializationType::
|
|
anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
|
|
bool &InstantiationDependent) {
|
|
for (unsigned i = 0; i != N; ++i) {
|
|
if (Args[i].isDependent()) {
|
|
InstantiationDependent = true;
|
|
return true;
|
|
}
|
|
|
|
if (Args[i].isInstantiationDependent())
|
|
InstantiationDependent = true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
TemplateSpecializationType::
|
|
TemplateSpecializationType(TemplateName T,
|
|
const TemplateArgument *Args, unsigned NumArgs,
|
|
QualType Canon, QualType AliasedType)
|
|
: Type(TemplateSpecialization,
|
|
Canon.isNull()? QualType(this, 0) : Canon,
|
|
Canon.isNull()? T.isDependent() : Canon->isDependentType(),
|
|
Canon.isNull()? T.isDependent()
|
|
: Canon->isInstantiationDependentType(),
|
|
false,
|
|
Canon.isNull()? T.containsUnexpandedParameterPack()
|
|
: Canon->containsUnexpandedParameterPack()),
|
|
Template(T), NumArgs(NumArgs), TypeAlias(!AliasedType.isNull()) {
|
|
assert(!T.getAsDependentTemplateName() &&
|
|
"Use DependentTemplateSpecializationType for dependent template-name");
|
|
assert((T.getKind() == TemplateName::Template ||
|
|
T.getKind() == TemplateName::SubstTemplateTemplateParm ||
|
|
T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
|
|
"Unexpected template name for TemplateSpecializationType");
|
|
bool InstantiationDependent;
|
|
(void)InstantiationDependent;
|
|
assert((!Canon.isNull() ||
|
|
T.isDependent() ||
|
|
anyDependentTemplateArguments(Args, NumArgs,
|
|
InstantiationDependent)) &&
|
|
"No canonical type for non-dependent class template specialization");
|
|
|
|
TemplateArgument *TemplateArgs
|
|
= reinterpret_cast<TemplateArgument *>(this + 1);
|
|
for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
|
|
// Update dependent and variably-modified bits.
|
|
// If the canonical type exists and is non-dependent, the template
|
|
// specialization type can be non-dependent even if one of the type
|
|
// arguments is. Given:
|
|
// template<typename T> using U = int;
|
|
// U<T> is always non-dependent, irrespective of the type T.
|
|
if (Canon.isNull() && Args[Arg].isDependent())
|
|
setDependent();
|
|
else if (Args[Arg].isInstantiationDependent())
|
|
setInstantiationDependent();
|
|
|
|
if (Args[Arg].getKind() == TemplateArgument::Type &&
|
|
Args[Arg].getAsType()->isVariablyModifiedType())
|
|
setVariablyModified();
|
|
if (Canon.isNull() && Args[Arg].containsUnexpandedParameterPack())
|
|
setContainsUnexpandedParameterPack();
|
|
|
|
new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
|
|
}
|
|
|
|
// Store the aliased type if this is a type alias template specialization.
|
|
if (TypeAlias) {
|
|
TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
|
|
*reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
|
|
}
|
|
}
|
|
|
|
void
|
|
TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
|
|
TemplateName T,
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs,
|
|
const ASTContext &Context) {
|
|
T.Profile(ID);
|
|
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
|
|
Args[Idx].Profile(ID, Context);
|
|
}
|
|
|
|
QualType
|
|
QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
|
|
if (!hasNonFastQualifiers())
|
|
return QT.withFastQualifiers(getFastQualifiers());
|
|
|
|
return Context.getQualifiedType(QT, *this);
|
|
}
|
|
|
|
QualType
|
|
QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
|
|
if (!hasNonFastQualifiers())
|
|
return QualType(T, getFastQualifiers());
|
|
|
|
return Context.getQualifiedType(T, *this);
|
|
}
|
|
|
|
void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
|
|
QualType BaseType,
|
|
ObjCProtocolDecl * const *Protocols,
|
|
unsigned NumProtocols) {
|
|
ID.AddPointer(BaseType.getAsOpaquePtr());
|
|
for (unsigned i = 0; i != NumProtocols; i++)
|
|
ID.AddPointer(Protocols[i]);
|
|
}
|
|
|
|
void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
|
|
Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// \brief The cached properties of a type.
|
|
class CachedProperties {
|
|
NamedDecl::LinkageInfo LV;
|
|
bool local;
|
|
|
|
public:
|
|
CachedProperties(NamedDecl::LinkageInfo LV, bool local)
|
|
: LV(LV), local(local) {}
|
|
|
|
Linkage getLinkage() const { return LV.linkage(); }
|
|
Visibility getVisibility() const { return LV.visibility(); }
|
|
bool isVisibilityExplicit() const { return LV.visibilityExplicit(); }
|
|
bool hasLocalOrUnnamedType() const { return local; }
|
|
|
|
friend CachedProperties merge(CachedProperties L, CachedProperties R) {
|
|
NamedDecl::LinkageInfo MergedLV = L.LV;
|
|
MergedLV.merge(R.LV);
|
|
return CachedProperties(MergedLV,
|
|
L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
|
|
}
|
|
};
|
|
}
|
|
|
|
static CachedProperties computeCachedProperties(const Type *T);
|
|
|
|
namespace clang {
|
|
/// The type-property cache. This is templated so as to be
|
|
/// instantiated at an internal type to prevent unnecessary symbol
|
|
/// leakage.
|
|
template <class Private> class TypePropertyCache {
|
|
public:
|
|
static CachedProperties get(QualType T) {
|
|
return get(T.getTypePtr());
|
|
}
|
|
|
|
static CachedProperties get(const Type *T) {
|
|
ensure(T);
|
|
NamedDecl::LinkageInfo LV(T->TypeBits.getLinkage(),
|
|
T->TypeBits.getVisibility(),
|
|
T->TypeBits.isVisibilityExplicit());
|
|
return CachedProperties(LV, T->TypeBits.hasLocalOrUnnamedType());
|
|
}
|
|
|
|
static void ensure(const Type *T) {
|
|
// If the cache is valid, we're okay.
|
|
if (T->TypeBits.isCacheValid()) return;
|
|
|
|
// If this type is non-canonical, ask its canonical type for the
|
|
// relevant information.
|
|
if (!T->isCanonicalUnqualified()) {
|
|
const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
|
|
ensure(CT);
|
|
T->TypeBits.CacheValidAndVisibility =
|
|
CT->TypeBits.CacheValidAndVisibility;
|
|
T->TypeBits.CachedExplicitVisibility =
|
|
CT->TypeBits.CachedExplicitVisibility;
|
|
T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
|
|
T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
|
|
return;
|
|
}
|
|
|
|
// Compute the cached properties and then set the cache.
|
|
CachedProperties Result = computeCachedProperties(T);
|
|
T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
|
|
T->TypeBits.CachedExplicitVisibility = Result.isVisibilityExplicit();
|
|
assert(T->TypeBits.isCacheValid() &&
|
|
T->TypeBits.getVisibility() == Result.getVisibility());
|
|
T->TypeBits.CachedLinkage = Result.getLinkage();
|
|
T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
|
|
}
|
|
};
|
|
}
|
|
|
|
// Instantiate the friend template at a private class. In a
|
|
// reasonable implementation, these symbols will be internal.
|
|
// It is terrible that this is the best way to accomplish this.
|
|
namespace { class Private {}; }
|
|
typedef TypePropertyCache<Private> Cache;
|
|
|
|
static CachedProperties computeCachedProperties(const Type *T) {
|
|
switch (T->getTypeClass()) {
|
|
#define TYPE(Class,Base)
|
|
#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
|
|
#include "clang/AST/TypeNodes.def"
|
|
llvm_unreachable("didn't expect a non-canonical type here");
|
|
|
|
#define TYPE(Class,Base)
|
|
#define DEPENDENT_TYPE(Class,Base) case Type::Class:
|
|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
|
|
#include "clang/AST/TypeNodes.def"
|
|
// Treat instantiation-dependent types as external.
|
|
assert(T->isInstantiationDependentType());
|
|
return CachedProperties(NamedDecl::LinkageInfo(), false);
|
|
|
|
case Type::Builtin:
|
|
// C++ [basic.link]p8:
|
|
// A type is said to have linkage if and only if:
|
|
// - it is a fundamental type (3.9.1); or
|
|
return CachedProperties(NamedDecl::LinkageInfo(), false);
|
|
|
|
case Type::Record:
|
|
case Type::Enum: {
|
|
const TagDecl *Tag = cast<TagType>(T)->getDecl();
|
|
|
|
// C++ [basic.link]p8:
|
|
// - it is a class or enumeration type that is named (or has a name
|
|
// for linkage purposes (7.1.3)) and the name has linkage; or
|
|
// - it is a specialization of a class template (14); or
|
|
NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
|
|
bool IsLocalOrUnnamed =
|
|
Tag->getDeclContext()->isFunctionOrMethod() ||
|
|
(!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
|
|
return CachedProperties(LV, IsLocalOrUnnamed);
|
|
}
|
|
|
|
// C++ [basic.link]p8:
|
|
// - it is a compound type (3.9.2) other than a class or enumeration,
|
|
// compounded exclusively from types that have linkage; or
|
|
case Type::Complex:
|
|
return Cache::get(cast<ComplexType>(T)->getElementType());
|
|
case Type::Pointer:
|
|
return Cache::get(cast<PointerType>(T)->getPointeeType());
|
|
case Type::BlockPointer:
|
|
return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
|
|
case Type::LValueReference:
|
|
case Type::RValueReference:
|
|
return Cache::get(cast<ReferenceType>(T)->getPointeeType());
|
|
case Type::MemberPointer: {
|
|
const MemberPointerType *MPT = cast<MemberPointerType>(T);
|
|
return merge(Cache::get(MPT->getClass()),
|
|
Cache::get(MPT->getPointeeType()));
|
|
}
|
|
case Type::ConstantArray:
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray:
|
|
return Cache::get(cast<ArrayType>(T)->getElementType());
|
|
case Type::Vector:
|
|
case Type::ExtVector:
|
|
return Cache::get(cast<VectorType>(T)->getElementType());
|
|
case Type::FunctionNoProto:
|
|
return Cache::get(cast<FunctionType>(T)->getResultType());
|
|
case Type::FunctionProto: {
|
|
const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
|
|
CachedProperties result = Cache::get(FPT->getResultType());
|
|
for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
|
|
ae = FPT->arg_type_end(); ai != ae; ++ai)
|
|
result = merge(result, Cache::get(*ai));
|
|
return result;
|
|
}
|
|
case Type::ObjCInterface: {
|
|
NamedDecl::LinkageInfo LV =
|
|
cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
|
|
return CachedProperties(LV, false);
|
|
}
|
|
case Type::ObjCObject:
|
|
return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
|
|
case Type::ObjCObjectPointer:
|
|
return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
|
|
case Type::Atomic:
|
|
return Cache::get(cast<AtomicType>(T)->getValueType());
|
|
}
|
|
|
|
llvm_unreachable("unhandled type class");
|
|
}
|
|
|
|
/// \brief Determine the linkage of this type.
|
|
Linkage Type::getLinkage() const {
|
|
Cache::ensure(this);
|
|
return TypeBits.getLinkage();
|
|
}
|
|
|
|
/// \brief Determine the linkage of this type.
|
|
Visibility Type::getVisibility() const {
|
|
Cache::ensure(this);
|
|
return TypeBits.getVisibility();
|
|
}
|
|
|
|
bool Type::isVisibilityExplicit() const {
|
|
Cache::ensure(this);
|
|
return TypeBits.isVisibilityExplicit();
|
|
}
|
|
|
|
bool Type::hasUnnamedOrLocalType() const {
|
|
Cache::ensure(this);
|
|
return TypeBits.hasLocalOrUnnamedType();
|
|
}
|
|
|
|
std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
|
|
Cache::ensure(this);
|
|
return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
|
|
}
|
|
|
|
void Type::ClearLinkageCache() {
|
|
TypeBits.CacheValidAndVisibility = 0;
|
|
if (QualType(this, 0) != CanonicalType)
|
|
CanonicalType->TypeBits.CacheValidAndVisibility = 0;
|
|
}
|
|
|
|
Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
|
|
if (isObjCARCImplicitlyUnretainedType())
|
|
return Qualifiers::OCL_ExplicitNone;
|
|
return Qualifiers::OCL_Strong;
|
|
}
|
|
|
|
bool Type::isObjCARCImplicitlyUnretainedType() const {
|
|
assert(isObjCLifetimeType() &&
|
|
"cannot query implicit lifetime for non-inferrable type");
|
|
|
|
const Type *canon = getCanonicalTypeInternal().getTypePtr();
|
|
|
|
// Walk down to the base type. We don't care about qualifiers for this.
|
|
while (const ArrayType *array = dyn_cast<ArrayType>(canon))
|
|
canon = array->getElementType().getTypePtr();
|
|
|
|
if (const ObjCObjectPointerType *opt
|
|
= dyn_cast<ObjCObjectPointerType>(canon)) {
|
|
// Class and Class<Protocol> don't require retension.
|
|
if (opt->getObjectType()->isObjCClass())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Type::isObjCNSObjectType() const {
|
|
if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
|
|
return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
|
|
return false;
|
|
}
|
|
bool Type::isObjCRetainableType() const {
|
|
return isObjCObjectPointerType() ||
|
|
isBlockPointerType() ||
|
|
isObjCNSObjectType();
|
|
}
|
|
bool Type::isObjCIndirectLifetimeType() const {
|
|
if (isObjCLifetimeType())
|
|
return true;
|
|
if (const PointerType *OPT = getAs<PointerType>())
|
|
return OPT->getPointeeType()->isObjCIndirectLifetimeType();
|
|
if (const ReferenceType *Ref = getAs<ReferenceType>())
|
|
return Ref->getPointeeType()->isObjCIndirectLifetimeType();
|
|
if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
|
|
return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if objects of this type have lifetime semantics under
|
|
/// ARC.
|
|
bool Type::isObjCLifetimeType() const {
|
|
const Type *type = this;
|
|
while (const ArrayType *array = type->getAsArrayTypeUnsafe())
|
|
type = array->getElementType().getTypePtr();
|
|
return type->isObjCRetainableType();
|
|
}
|
|
|
|
/// \brief Determine whether the given type T is a "bridgable" Objective-C type,
|
|
/// which is either an Objective-C object pointer type or an
|
|
bool Type::isObjCARCBridgableType() const {
|
|
return isObjCObjectPointerType() || isBlockPointerType();
|
|
}
|
|
|
|
/// \brief Determine whether the given type T is a "bridgeable" C type.
|
|
bool Type::isCARCBridgableType() const {
|
|
const PointerType *Pointer = getAs<PointerType>();
|
|
if (!Pointer)
|
|
return false;
|
|
|
|
QualType Pointee = Pointer->getPointeeType();
|
|
return Pointee->isVoidType() || Pointee->isRecordType();
|
|
}
|
|
|
|
bool Type::hasSizedVLAType() const {
|
|
if (!isVariablyModifiedType()) return false;
|
|
|
|
if (const PointerType *ptr = getAs<PointerType>())
|
|
return ptr->getPointeeType()->hasSizedVLAType();
|
|
if (const ReferenceType *ref = getAs<ReferenceType>())
|
|
return ref->getPointeeType()->hasSizedVLAType();
|
|
if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
|
|
if (isa<VariableArrayType>(arr) &&
|
|
cast<VariableArrayType>(arr)->getSizeExpr())
|
|
return true;
|
|
|
|
return arr->getElementType()->hasSizedVLAType();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
|
|
switch (type.getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
break;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
return DK_objc_strong_lifetime;
|
|
case Qualifiers::OCL_Weak:
|
|
return DK_objc_weak_lifetime;
|
|
}
|
|
|
|
/// Currently, the only destruction kind we recognize is C++ objects
|
|
/// with non-trivial destructors.
|
|
const CXXRecordDecl *record =
|
|
type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
|
|
if (record && record->hasDefinition() && !record->hasTrivialDestructor())
|
|
return DK_cxx_destructor;
|
|
|
|
return DK_none;
|
|
}
|
|
|
|
bool QualType::hasTrivialAssignment(ASTContext &Context, bool Copying) const {
|
|
switch (getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
break;
|
|
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
return true;
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Weak:
|
|
return !Context.getLangOptions().ObjCAutoRefCount;
|
|
}
|
|
|
|
if (const CXXRecordDecl *Record
|
|
= getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
|
|
return Copying ? Record->hasTrivialCopyAssignment() :
|
|
Record->hasTrivialMoveAssignment();
|
|
|
|
return true;
|
|
}
|