clang-1/lib/Sema/SemaDeclCXX.cpp

2229 строки
91 KiB
C++
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for C++ declarations.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "SemaInherit.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Parse/DeclSpec.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include <algorithm> // for std::equal
#include <map>
using namespace clang;
//===----------------------------------------------------------------------===//
// CheckDefaultArgumentVisitor
//===----------------------------------------------------------------------===//
namespace {
/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
/// the default argument of a parameter to determine whether it
/// contains any ill-formed subexpressions. For example, this will
/// diagnose the use of local variables or parameters within the
/// default argument expression.
class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
: public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
Expr *DefaultArg;
Sema *S;
public:
CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
: DefaultArg(defarg), S(s) {}
bool VisitExpr(Expr *Node);
bool VisitDeclRefExpr(DeclRefExpr *DRE);
bool VisitCXXThisExpr(CXXThisExpr *ThisE);
};
/// VisitExpr - Visit all of the children of this expression.
bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
bool IsInvalid = false;
for (Stmt::child_iterator I = Node->child_begin(),
E = Node->child_end(); I != E; ++I)
IsInvalid |= Visit(*I);
return IsInvalid;
}
/// VisitDeclRefExpr - Visit a reference to a declaration, to
/// determine whether this declaration can be used in the default
/// argument expression.
bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
NamedDecl *Decl = DRE->getDecl();
if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
// C++ [dcl.fct.default]p9
// Default arguments are evaluated each time the function is
// called. The order of evaluation of function arguments is
// unspecified. Consequently, parameters of a function shall not
// be used in default argument expressions, even if they are not
// evaluated. Parameters of a function declared before a default
// argument expression are in scope and can hide namespace and
// class member names.
return S->Diag(DRE->getSourceRange().getBegin(),
diag::err_param_default_argument_references_param)
<< Param->getDeclName() << DefaultArg->getSourceRange();
} else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
// C++ [dcl.fct.default]p7
// Local variables shall not be used in default argument
// expressions.
if (VDecl->isBlockVarDecl())
return S->Diag(DRE->getSourceRange().getBegin(),
diag::err_param_default_argument_references_local)
<< VDecl->getDeclName() << DefaultArg->getSourceRange();
}
return false;
}
/// VisitCXXThisExpr - Visit a C++ "this" expression.
bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
// C++ [dcl.fct.default]p8:
// The keyword this shall not be used in a default argument of a
// member function.
return S->Diag(ThisE->getSourceRange().getBegin(),
diag::err_param_default_argument_references_this)
<< ThisE->getSourceRange();
}
}
/// ActOnParamDefaultArgument - Check whether the default argument
/// provided for a function parameter is well-formed. If so, attach it
/// to the parameter declaration.
void
Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
ExprTy *defarg) {
ParmVarDecl *Param = (ParmVarDecl *)param;
llvm::OwningPtr<Expr> DefaultArg((Expr *)defarg);
QualType ParamType = Param->getType();
// Default arguments are only permitted in C++
if (!getLangOptions().CPlusPlus) {
Diag(EqualLoc, diag::err_param_default_argument)
<< DefaultArg->getSourceRange();
Param->setInvalidDecl();
return;
}
// C++ [dcl.fct.default]p5
// A default argument expression is implicitly converted (clause
// 4) to the parameter type. The default argument expression has
// the same semantic constraints as the initializer expression in
// a declaration of a variable of the parameter type, using the
// copy-initialization semantics (8.5).
Expr *DefaultArgPtr = DefaultArg.get();
bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
EqualLoc,
Param->getDeclName(),
/*DirectInit=*/false);
if (DefaultArgPtr != DefaultArg.get()) {
DefaultArg.take();
DefaultArg.reset(DefaultArgPtr);
}
if (DefaultInitFailed) {
return;
}
// Check that the default argument is well-formed
CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
if (DefaultArgChecker.Visit(DefaultArg.get())) {
Param->setInvalidDecl();
return;
}
// Okay: add the default argument to the parameter
Param->setDefaultArg(DefaultArg.take());
}
/// ActOnParamUnparsedDefaultArgument - We've seen a default
/// argument for a function parameter, but we can't parse it yet
/// because we're inside a class definition. Note that this default
/// argument will be parsed later.
void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param,
SourceLocation EqualLoc) {
ParmVarDecl *Param = (ParmVarDecl*)param;
if (Param)
Param->setUnparsedDefaultArg();
}
/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
/// the default argument for the parameter param failed.
void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
((ParmVarDecl*)param)->setInvalidDecl();
}
/// CheckExtraCXXDefaultArguments - Check for any extra default
/// arguments in the declarator, which is not a function declaration
/// or definition and therefore is not permitted to have default
/// arguments. This routine should be invoked for every declarator
/// that is not a function declaration or definition.
void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
// C++ [dcl.fct.default]p3
// A default argument expression shall be specified only in the
// parameter-declaration-clause of a function declaration or in a
// template-parameter (14.1). It shall not be specified for a
// parameter pack. If it is specified in a
// parameter-declaration-clause, it shall not occur within a
// declarator or abstract-declarator of a parameter-declaration.
for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
DeclaratorChunk &chunk = D.getTypeObject(i);
if (chunk.Kind == DeclaratorChunk::Function) {
for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
if (Param->hasUnparsedDefaultArg()) {
CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
<< SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
delete Toks;
chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
} else if (Param->getDefaultArg()) {
Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
<< Param->getDefaultArg()->getSourceRange();
Param->setDefaultArg(0);
}
}
}
}
}
// MergeCXXFunctionDecl - Merge two declarations of the same C++
// function, once we already know that they have the same
// type. Subroutine of MergeFunctionDecl.
FunctionDecl *
Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
// C++ [dcl.fct.default]p4:
//
// For non-template functions, default arguments can be added in
// later declarations of a function in the same
// scope. Declarations in different scopes have completely
// distinct sets of default arguments. That is, declarations in
// inner scopes do not acquire default arguments from
// declarations in outer scopes, and vice versa. In a given
// function declaration, all parameters subsequent to a
// parameter with a default argument shall have default
// arguments supplied in this or previous declarations. A
// default argument shall not be redefined by a later
// declaration (not even to the same value).
for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
ParmVarDecl *OldParam = Old->getParamDecl(p);
ParmVarDecl *NewParam = New->getParamDecl(p);
if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
Diag(NewParam->getLocation(),
diag::err_param_default_argument_redefinition)
<< NewParam->getDefaultArg()->getSourceRange();
Diag(OldParam->getLocation(), diag::note_previous_definition);
} else if (OldParam->getDefaultArg()) {
// Merge the old default argument into the new parameter
NewParam->setDefaultArg(OldParam->getDefaultArg());
}
}
return New;
}
/// CheckCXXDefaultArguments - Verify that the default arguments for a
/// function declaration are well-formed according to C++
/// [dcl.fct.default].
void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
unsigned NumParams = FD->getNumParams();
unsigned p;
// Find first parameter with a default argument
for (p = 0; p < NumParams; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
if (Param->getDefaultArg())
break;
}
// C++ [dcl.fct.default]p4:
// In a given function declaration, all parameters
// subsequent to a parameter with a default argument shall
// have default arguments supplied in this or previous
// declarations. A default argument shall not be redefined
// by a later declaration (not even to the same value).
unsigned LastMissingDefaultArg = 0;
for(; p < NumParams; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
if (!Param->getDefaultArg()) {
if (Param->isInvalidDecl())
/* We already complained about this parameter. */;
else if (Param->getIdentifier())
Diag(Param->getLocation(),
diag::err_param_default_argument_missing_name)
<< Param->getIdentifier();
else
Diag(Param->getLocation(),
diag::err_param_default_argument_missing);
LastMissingDefaultArg = p;
}
}
if (LastMissingDefaultArg > 0) {
// Some default arguments were missing. Clear out all of the
// default arguments up to (and including) the last missing
// default argument, so that we leave the function parameters
// in a semantically valid state.
for (p = 0; p <= LastMissingDefaultArg; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
if (Param->getDefaultArg()) {
if (!Param->hasUnparsedDefaultArg())
Param->getDefaultArg()->Destroy(Context);
Param->setDefaultArg(0);
}
}
}
}
/// isCurrentClassName - Determine whether the identifier II is the
/// name of the class type currently being defined. In the case of
/// nested classes, this will only return true if II is the name of
/// the innermost class.
bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
const CXXScopeSpec *SS) {
CXXRecordDecl *CurDecl;
if (SS) {
DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
} else
CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
if (CurDecl)
return &II == CurDecl->getIdentifier();
else
return false;
}
/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
/// one entry in the base class list of a class specifier, for
/// example:
/// class foo : public bar, virtual private baz {
/// 'public bar' and 'virtual private baz' are each base-specifiers.
Sema::BaseResult
Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
bool Virtual, AccessSpecifier Access,
TypeTy *basetype, SourceLocation BaseLoc) {
CXXRecordDecl *Decl = (CXXRecordDecl*)classdecl;
QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype);
// Base specifiers must be record types.
if (!BaseType->isRecordType())
return Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
// C++ [class.union]p1:
// A union shall not be used as a base class.
if (BaseType->isUnionType())
return Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
// C++ [class.union]p1:
// A union shall not have base classes.
if (Decl->isUnion())
return Diag(Decl->getLocation(), diag::err_base_clause_on_union)
<< SpecifierRange;
// C++ [class.derived]p2:
// The class-name in a base-specifier shall not be an incompletely
// defined class.
if (BaseType->isIncompleteType())
return Diag(BaseLoc, diag::err_incomplete_base_class) << SpecifierRange;
// If the base class is polymorphic, the new one is, too.
RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
assert(BaseDecl && "Record type has no declaration");
BaseDecl = BaseDecl->getDefinition(Context);
assert(BaseDecl && "Base type is not incomplete, but has no definition");
if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
Decl->setPolymorphic(true);
// C++ [dcl.init.aggr]p1:
// An aggregate is [...] a class with [...] no base classes [...].
Decl->setAggregate(false);
Decl->setPOD(false);
// Create the base specifier.
return new CXXBaseSpecifier(SpecifierRange, Virtual,
BaseType->isClassType(), Access, BaseType);
}
/// ActOnBaseSpecifiers - Attach the given base specifiers to the
/// class, after checking whether there are any duplicate base
/// classes.
void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
unsigned NumBases) {
if (NumBases == 0)
return;
// Used to keep track of which base types we have already seen, so
// that we can properly diagnose redundant direct base types. Note
// that the key is always the unqualified canonical type of the base
// class.
std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
// Copy non-redundant base specifiers into permanent storage.
CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
unsigned NumGoodBases = 0;
for (unsigned idx = 0; idx < NumBases; ++idx) {
QualType NewBaseType
= Context.getCanonicalType(BaseSpecs[idx]->getType());
NewBaseType = NewBaseType.getUnqualifiedType();
if (KnownBaseTypes[NewBaseType]) {
// C++ [class.mi]p3:
// A class shall not be specified as a direct base class of a
// derived class more than once.
Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
diag::err_duplicate_base_class)
<< KnownBaseTypes[NewBaseType]->getType()
<< BaseSpecs[idx]->getSourceRange();
// Delete the duplicate base class specifier; we're going to
// overwrite its pointer later.
delete BaseSpecs[idx];
} else {
// Okay, add this new base class.
KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
}
}
// Attach the remaining base class specifiers to the derived class.
CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
Decl->setBases(BaseSpecs, NumGoodBases);
// Delete the remaining (good) base class specifiers, since their
// data has been copied into the CXXRecordDecl.
for (unsigned idx = 0; idx < NumGoodBases; ++idx)
delete BaseSpecs[idx];
}
//===----------------------------------------------------------------------===//
// C++ class member Handling
//===----------------------------------------------------------------------===//
/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
/// bitfield width if there is one and 'InitExpr' specifies the initializer if
/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
/// declarators on it.
///
/// FIXME: The note below is out-of-date.
/// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if
/// an instance field is declared, a new CXXFieldDecl is created but the method
/// does *not* return it; it returns LastInGroup instead. The other C++ members
/// (which are all ScopedDecls) are returned after appending them to
/// LastInGroup.
Sema::DeclTy *
Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
ExprTy *BW, ExprTy *InitExpr,
DeclTy *LastInGroup) {
const DeclSpec &DS = D.getDeclSpec();
DeclarationName Name = GetNameForDeclarator(D);
Expr *BitWidth = static_cast<Expr*>(BW);
Expr *Init = static_cast<Expr*>(InitExpr);
SourceLocation Loc = D.getIdentifierLoc();
bool isFunc = D.isFunctionDeclarator();
// C++ 9.2p6: A member shall not be declared to have automatic storage
// duration (auto, register) or with the extern storage-class-specifier.
// C++ 7.1.1p8: The mutable specifier can be applied only to names of class
// data members and cannot be applied to names declared const or static,
// and cannot be applied to reference members.
switch (DS.getStorageClassSpec()) {
case DeclSpec::SCS_unspecified:
case DeclSpec::SCS_typedef:
case DeclSpec::SCS_static:
// FALL THROUGH.
break;
case DeclSpec::SCS_mutable:
if (isFunc) {
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
else
Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
// FIXME: It would be nicer if the keyword was ignored only for this
// declarator. Otherwise we could get follow-up errors.
D.getMutableDeclSpec().ClearStorageClassSpecs();
} else {
QualType T = GetTypeForDeclarator(D, S);
diag::kind err = static_cast<diag::kind>(0);
if (T->isReferenceType())
err = diag::err_mutable_reference;
else if (T.isConstQualified())
err = diag::err_mutable_const;
if (err != 0) {
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(), err);
else
Diag(DS.getThreadSpecLoc(), err);
// FIXME: It would be nicer if the keyword was ignored only for this
// declarator. Otherwise we could get follow-up errors.
D.getMutableDeclSpec().ClearStorageClassSpecs();
}
}
break;
default:
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(),
diag::err_storageclass_invalid_for_member);
else
Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
D.getMutableDeclSpec().ClearStorageClassSpecs();
}
if (!isFunc &&
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef &&
D.getNumTypeObjects() == 0) {
// Check also for this case:
//
// typedef int f();
// f a;
//
Decl *TD = static_cast<Decl *>(DS.getTypeRep());
isFunc = Context.getTypeDeclType(cast<TypeDecl>(TD))->isFunctionType();
}
bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
!isFunc);
Decl *Member;
bool InvalidDecl = false;
if (isInstField)
Member = static_cast<Decl*>(ActOnField(S, cast<CXXRecordDecl>(CurContext),
Loc, D, BitWidth));
else
Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
if (!Member) return LastInGroup;
assert((Name || isInstField) && "No identifier for non-field ?");
// set/getAccess is not part of Decl's interface to avoid bloating it with C++
// specific methods. Use a wrapper class that can be used with all C++ class
// member decls.
CXXClassMemberWrapper(Member).setAccess(AS);
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class (clause 9) with [...] no
// private or protected non-static data members (clause 11).
// A POD must be an aggregate.
if (isInstField && (AS == AS_private || AS == AS_protected)) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(CurContext);
Record->setAggregate(false);
Record->setPOD(false);
}
if (DS.isVirtualSpecified()) {
if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
InvalidDecl = true;
} else {
cast<CXXMethodDecl>(Member)->setVirtual();
CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
CurClass->setAggregate(false);
CurClass->setPOD(false);
CurClass->setPolymorphic(true);
}
}
// FIXME: The above definition of virtual is not sufficient. A function is
// also virtual if it overrides an already virtual function. This is important
// to do here because it decides the validity of a pure specifier.
if (BitWidth) {
// C++ 9.6p2: Only when declaring an unnamed bit-field may the
// constant-expression be a value equal to zero.
// FIXME: Check this.
if (D.isFunctionDeclarator()) {
// FIXME: Emit diagnostic about only constructors taking base initializers
// or something similar, when constructor support is in place.
Diag(Loc, diag::err_not_bitfield_type)
<< Name << BitWidth->getSourceRange();
InvalidDecl = true;
} else if (isInstField) {
// C++ 9.6p3: A bit-field shall have integral or enumeration type.
if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
Diag(Loc, diag::err_not_integral_type_bitfield)
<< Name << BitWidth->getSourceRange();
InvalidDecl = true;
}
} else if (isa<FunctionDecl>(Member)) {
// A function typedef ("typedef int f(); f a;").
// C++ 9.6p3: A bit-field shall have integral or enumeration type.
Diag(Loc, diag::err_not_integral_type_bitfield)
<< Name << BitWidth->getSourceRange();
InvalidDecl = true;
} else if (isa<TypedefDecl>(Member)) {
// "cannot declare 'A' to be a bit-field type"
Diag(Loc, diag::err_not_bitfield_type)
<< Name << BitWidth->getSourceRange();
InvalidDecl = true;
} else {
assert(isa<CXXClassVarDecl>(Member) &&
"Didn't we cover all member kinds?");
// C++ 9.6p3: A bit-field shall not be a static member.
// "static member 'A' cannot be a bit-field"
Diag(Loc, diag::err_static_not_bitfield)
<< Name << BitWidth->getSourceRange();
InvalidDecl = true;
}
}
if (Init) {
// C++ 9.2p4: A member-declarator can contain a constant-initializer only
// if it declares a static member of const integral or const enumeration
// type.
if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
// ...static member of...
CVD->setInit(Init);
// ...const integral or const enumeration type.
if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
CVD->getType()->isIntegralType()) {
// constant-initializer
if (CheckForConstantInitializer(Init, CVD->getType()))
InvalidDecl = true;
} else {
// not const integral.
Diag(Loc, diag::err_member_initialization)
<< Name << Init->getSourceRange();
InvalidDecl = true;
}
} else {
// not static member. perhaps virtual function?
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) {
// With declarators parsed the way they are, the parser cannot
// distinguish between a normal initializer and a pure-specifier.
// Thus this grotesque test.
IntegerLiteral *IL;
if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
Context.getCanonicalType(IL->getType()) == Context.IntTy) {
if (MD->isVirtual())
MD->setPure();
else {
Diag(Loc, diag::err_non_virtual_pure)
<< Name << Init->getSourceRange();
InvalidDecl = true;
}
} else {
Diag(Loc, diag::err_member_function_initialization)
<< Name << Init->getSourceRange();
InvalidDecl = true;
}
} else {
Diag(Loc, diag::err_member_initialization)
<< Name << Init->getSourceRange();
InvalidDecl = true;
}
}
}
if (InvalidDecl)
Member->setInvalidDecl();
if (isInstField) {
FieldCollector->Add(cast<FieldDecl>(Member));
return LastInGroup;
}
return Member;
}
/// ActOnMemInitializer - Handle a C++ member initializer.
Sema::MemInitResult
Sema::ActOnMemInitializer(DeclTy *ConstructorD,
Scope *S,
IdentifierInfo *MemberOrBase,
SourceLocation IdLoc,
SourceLocation LParenLoc,
ExprTy **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
CXXConstructorDecl *Constructor
= dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
if (!Constructor) {
// The user wrote a constructor initializer on a function that is
// not a C++ constructor. Ignore the error for now, because we may
// have more member initializers coming; we'll diagnose it just
// once in ActOnMemInitializers.
return true;
}
CXXRecordDecl *ClassDecl = Constructor->getParent();
// C++ [class.base.init]p2:
// Names in a mem-initializer-id are looked up in the scope of the
// constructors class and, if not found in that scope, are looked
// up in the scope containing the constructors
// definition. [Note: if the constructors class contains a member
// with the same name as a direct or virtual base class of the
// class, a mem-initializer-id naming the member or base class and
// composed of a single identifier refers to the class member. A
// mem-initializer-id for the hidden base class may be specified
// using a qualified name. ]
// Look for a member, first.
FieldDecl *Member = 0;
DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
if (Result.first != Result.second)
Member = dyn_cast<FieldDecl>(*Result.first);
// FIXME: Handle members of an anonymous union.
if (Member) {
// FIXME: Perform direct initialization of the member.
return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
}
// It didn't name a member, so see if it names a class.
TypeTy *BaseTy = isTypeName(*MemberOrBase, S, 0/*SS*/);
if (!BaseTy)
return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
<< MemberOrBase << SourceRange(IdLoc, RParenLoc);
QualType BaseType = Context.getTypeDeclType((TypeDecl *)BaseTy);
if (!BaseType->isRecordType())
return Diag(IdLoc, diag::err_base_init_does_not_name_class)
<< BaseType << SourceRange(IdLoc, RParenLoc);
// C++ [class.base.init]p2:
// [...] Unless the mem-initializer-id names a nonstatic data
// member of the constructors class or a direct or virtual base
// of that class, the mem-initializer is ill-formed. A
// mem-initializer-list can initialize a base class using any
// name that denotes that base class type.
// First, check for a direct base class.
const CXXBaseSpecifier *DirectBaseSpec = 0;
for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
Base != ClassDecl->bases_end(); ++Base) {
if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
// We found a direct base of this type. That's what we're
// initializing.
DirectBaseSpec = &*Base;
break;
}
}
// Check for a virtual base class.
// FIXME: We might be able to short-circuit this if we know in
// advance that there are no virtual bases.
const CXXBaseSpecifier *VirtualBaseSpec = 0;
if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
// We haven't found a base yet; search the class hierarchy for a
// virtual base class.
BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
for (BasePaths::paths_iterator Path = Paths.begin();
Path != Paths.end(); ++Path) {
if (Path->back().Base->isVirtual()) {
VirtualBaseSpec = Path->back().Base;
break;
}
}
}
}
// C++ [base.class.init]p2:
// If a mem-initializer-id is ambiguous because it designates both
// a direct non-virtual base class and an inherited virtual base
// class, the mem-initializer is ill-formed.
if (DirectBaseSpec && VirtualBaseSpec)
return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
<< MemberOrBase << SourceRange(IdLoc, RParenLoc);
return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
}
void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
DeclTy *TagDecl,
SourceLocation LBrac,
SourceLocation RBrac) {
ActOnFields(S, RLoc, TagDecl,
(DeclTy**)FieldCollector->getCurFields(),
FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
AddImplicitlyDeclaredMembersToClass(cast<CXXRecordDecl>((Decl*)TagDecl));
}
/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
/// special functions, such as the default constructor, copy
/// constructor, or destructor, to the given C++ class (C++
/// [special]p1). This routine can only be executed just before the
/// definition of the class is complete.
void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
QualType ClassType = Context.getTypeDeclType(ClassDecl);
ClassType = Context.getCanonicalType(ClassType);
if (!ClassDecl->hasUserDeclaredConstructor()) {
// C++ [class.ctor]p5:
// A default constructor for a class X is a constructor of class X
// that can be called without an argument. If there is no
// user-declared constructor for class X, a default constructor is
// implicitly declared. An implicitly-declared default constructor
// is an inline public member of its class.
DeclarationName Name
= Context.DeclarationNames.getCXXConstructorName(ClassType);
CXXConstructorDecl *DefaultCon =
CXXConstructorDecl::Create(Context, ClassDecl,
ClassDecl->getLocation(), Name,
Context.getFunctionType(Context.VoidTy,
0, 0, false, 0),
/*isExplicit=*/false,
/*isInline=*/true,
/*isImplicitlyDeclared=*/true);
DefaultCon->setAccess(AS_public);
DefaultCon->setImplicit();
ClassDecl->addDecl(DefaultCon);
// Notify the class that we've added a constructor.
ClassDecl->addedConstructor(Context, DefaultCon);
}
if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
// C++ [class.copy]p4:
// If the class definition does not explicitly declare a copy
// constructor, one is declared implicitly.
// C++ [class.copy]p5:
// The implicitly-declared copy constructor for a class X will
// have the form
//
// X::X(const X&)
//
// if
bool HasConstCopyConstructor = true;
// -- each direct or virtual base class B of X has a copy
// constructor whose first parameter is of type const B& or
// const volatile B&, and
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
const CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
HasConstCopyConstructor
= BaseClassDecl->hasConstCopyConstructor(Context);
}
// -- for all the nonstatic data members of X that are of a
// class type M (or array thereof), each such class type
// has a copy constructor whose first parameter is of type
// const M& or const volatile M&.
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
QualType FieldType = (*Field)->getType();
if (const ArrayType *Array = Context.getAsArrayType(FieldType))
FieldType = Array->getElementType();
if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
const CXXRecordDecl *FieldClassDecl
= cast<CXXRecordDecl>(FieldClassType->getDecl());
HasConstCopyConstructor
= FieldClassDecl->hasConstCopyConstructor(Context);
}
}
// Otherwise, the implicitly declared copy constructor will have
// the form
//
// X::X(X&)
QualType ArgType = ClassType;
if (HasConstCopyConstructor)
ArgType = ArgType.withConst();
ArgType = Context.getReferenceType(ArgType);
// An implicitly-declared copy constructor is an inline public
// member of its class.
DeclarationName Name
= Context.DeclarationNames.getCXXConstructorName(ClassType);
CXXConstructorDecl *CopyConstructor
= CXXConstructorDecl::Create(Context, ClassDecl,
ClassDecl->getLocation(), Name,
Context.getFunctionType(Context.VoidTy,
&ArgType, 1,
false, 0),
/*isExplicit=*/false,
/*isInline=*/true,
/*isImplicitlyDeclared=*/true);
CopyConstructor->setAccess(AS_public);
CopyConstructor->setImplicit();
// Add the parameter to the constructor.
ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
ClassDecl->getLocation(),
/*IdentifierInfo=*/0,
ArgType, VarDecl::None, 0, 0);
CopyConstructor->setParams(Context, &FromParam, 1);
ClassDecl->addedConstructor(Context, CopyConstructor);
ClassDecl->addDecl(CopyConstructor);
}
if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
// Note: The following rules are largely analoguous to the copy
// constructor rules. Note that virtual bases are not taken into account
// for determining the argument type of the operator. Note also that
// operators taking an object instead of a reference are allowed.
//
// C++ [class.copy]p10:
// If the class definition does not explicitly declare a copy
// assignment operator, one is declared implicitly.
// The implicitly-defined copy assignment operator for a class X
// will have the form
//
// X& X::operator=(const X&)
//
// if
bool HasConstCopyAssignment = true;
// -- each direct base class B of X has a copy assignment operator
// whose parameter is of type const B&, const volatile B& or B,
// and
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
const CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
}
// -- for all the nonstatic data members of X that are of a class
// type M (or array thereof), each such class type has a copy
// assignment operator whose parameter is of type const M&,
// const volatile M& or M.
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
QualType FieldType = (*Field)->getType();
if (const ArrayType *Array = Context.getAsArrayType(FieldType))
FieldType = Array->getElementType();
if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
const CXXRecordDecl *FieldClassDecl
= cast<CXXRecordDecl>(FieldClassType->getDecl());
HasConstCopyAssignment
= FieldClassDecl->hasConstCopyAssignment(Context);
}
}
// Otherwise, the implicitly declared copy assignment operator will
// have the form
//
// X& X::operator=(X&)
QualType ArgType = ClassType;
QualType RetType = Context.getReferenceType(ArgType);
if (HasConstCopyAssignment)
ArgType = ArgType.withConst();
ArgType = Context.getReferenceType(ArgType);
// An implicitly-declared copy assignment operator is an inline public
// member of its class.
DeclarationName Name =
Context.DeclarationNames.getCXXOperatorName(OO_Equal);
CXXMethodDecl *CopyAssignment =
CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
Context.getFunctionType(RetType, &ArgType, 1,
false, 0),
/*isStatic=*/false, /*isInline=*/true, 0);
CopyAssignment->setAccess(AS_public);
CopyAssignment->setImplicit();
// Add the parameter to the operator.
ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
ClassDecl->getLocation(),
/*IdentifierInfo=*/0,
ArgType, VarDecl::None, 0, 0);
CopyAssignment->setParams(Context, &FromParam, 1);
// Don't call addedAssignmentOperator. There is no way to distinguish an
// implicit from an explicit assignment operator.
ClassDecl->addDecl(CopyAssignment);
}
if (!ClassDecl->hasUserDeclaredDestructor()) {
// C++ [class.dtor]p2:
// If a class has no user-declared destructor, a destructor is
// declared implicitly. An implicitly-declared destructor is an
// inline public member of its class.
DeclarationName Name
= Context.DeclarationNames.getCXXDestructorName(ClassType);
CXXDestructorDecl *Destructor
= CXXDestructorDecl::Create(Context, ClassDecl,
ClassDecl->getLocation(), Name,
Context.getFunctionType(Context.VoidTy,
0, 0, false, 0),
/*isInline=*/true,
/*isImplicitlyDeclared=*/true);
Destructor->setAccess(AS_public);
Destructor->setImplicit();
ClassDecl->addDecl(Destructor);
}
}
/// ActOnStartDelayedCXXMethodDeclaration - We have completed
/// parsing a top-level (non-nested) C++ class, and we are now
/// parsing those parts of the given Method declaration that could
/// not be parsed earlier (C++ [class.mem]p2), such as default
/// arguments. This action should enter the scope of the given
/// Method declaration as if we had just parsed the qualified method
/// name. However, it should not bring the parameters into scope;
/// that will be performed by ActOnDelayedCXXMethodParameter.
void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) {
CXXScopeSpec SS;
SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext());
ActOnCXXEnterDeclaratorScope(S, SS);
}
/// ActOnDelayedCXXMethodParameter - We've already started a delayed
/// C++ method declaration. We're (re-)introducing the given
/// function parameter into scope for use in parsing later parts of
/// the method declaration. For example, we could see an
/// ActOnParamDefaultArgument event for this parameter.
void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
ParmVarDecl *Param = (ParmVarDecl*)ParamD;
// If this parameter has an unparsed default argument, clear it out
// to make way for the parsed default argument.
if (Param->hasUnparsedDefaultArg())
Param->setDefaultArg(0);
S->AddDecl(Param);
if (Param->getDeclName())
IdResolver.AddDecl(Param);
}
/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
/// processing the delayed method declaration for Method. The method
/// declaration is now considered finished. There may be a separate
/// ActOnStartOfFunctionDef action later (not necessarily
/// immediately!) for this method, if it was also defined inside the
/// class body.
void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
FunctionDecl *Method = (FunctionDecl*)MethodD;
CXXScopeSpec SS;
SS.setScopeRep(Method->getDeclContext());
ActOnCXXExitDeclaratorScope(S, SS);
// Now that we have our default arguments, check the constructor
// again. It could produce additional diagnostics or affect whether
// the class has implicitly-declared destructors, among other
// things.
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
if (CheckConstructor(Constructor))
Constructor->setInvalidDecl();
}
// Check the default arguments, which we may have added.
if (!Method->isInvalidDecl())
CheckCXXDefaultArguments(Method);
}
/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
/// the well-formedness of the constructor declarator @p D with type @p
/// R. If there are any errors in the declarator, this routine will
/// emit diagnostics and return true. Otherwise, it will return
/// false. Either way, the type @p R will be updated to reflect a
/// well-formed type for the constructor.
bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
FunctionDecl::StorageClass& SC) {
bool isVirtual = D.getDeclSpec().isVirtualSpecified();
bool isInvalid = false;
// C++ [class.ctor]p3:
// A constructor shall not be virtual (10.3) or static (9.4). A
// constructor can be invoked for a const, volatile or const
// volatile object. A constructor shall not be declared const,
// volatile, or const volatile (9.3.2).
if (isVirtual) {
Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
<< "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
<< SourceRange(D.getIdentifierLoc());
isInvalid = true;
}
if (SC == FunctionDecl::Static) {
Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
<< SourceRange(D.getIdentifierLoc());
isInvalid = true;
SC = FunctionDecl::None;
}
if (D.getDeclSpec().hasTypeSpecifier()) {
// Constructors don't have return types, but the parser will
// happily parse something like:
//
// class X {
// float X(float);
// };
//
// The return type will be eliminated later.
Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
<< SourceRange(D.getIdentifierLoc());
}
if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
if (FTI.TypeQuals & QualType::Const)
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
<< "const" << SourceRange(D.getIdentifierLoc());
if (FTI.TypeQuals & QualType::Volatile)
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
<< "volatile" << SourceRange(D.getIdentifierLoc());
if (FTI.TypeQuals & QualType::Restrict)
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
<< "restrict" << SourceRange(D.getIdentifierLoc());
}
// Rebuild the function type "R" without any type qualifiers (in
// case any of the errors above fired) and with "void" as the
// return type, since constructors don't have return types. We
// *always* have to do this, because GetTypeForDeclarator will
// put in a result type of "int" when none was specified.
const FunctionTypeProto *Proto = R->getAsFunctionTypeProto();
R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
Proto->getNumArgs(),
Proto->isVariadic(),
0);
return isInvalid;
}
/// CheckConstructor - Checks a fully-formed constructor for
/// well-formedness, issuing any diagnostics required. Returns true if
/// the constructor declarator is invalid.
bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
if (Constructor->isInvalidDecl())
return true;
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
bool Invalid = false;
// C++ [class.copy]p3:
// A declaration of a constructor for a class X is ill-formed if
// its first parameter is of type (optionally cv-qualified) X and
// either there are no other parameters or else all other
// parameters have default arguments.
if ((Constructor->getNumParams() == 1) ||
(Constructor->getNumParams() > 1 &&
Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
QualType ParamType = Constructor->getParamDecl(0)->getType();
QualType ClassTy = Context.getTagDeclType(ClassDecl);
if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
<< SourceRange(Constructor->getParamDecl(0)->getLocation());
Invalid = true;
}
}
// Notify the class that we've added a constructor.
ClassDecl->addedConstructor(Context, Constructor);
return Invalid;
}
/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
/// the well-formednes of the destructor declarator @p D with type @p
/// R. If there are any errors in the declarator, this routine will
/// emit diagnostics and return true. Otherwise, it will return
/// false. Either way, the type @p R will be updated to reflect a
/// well-formed type for the destructor.
bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
FunctionDecl::StorageClass& SC) {
bool isInvalid = false;
// C++ [class.dtor]p1:
// [...] A typedef-name that names a class is a class-name
// (7.1.3); however, a typedef-name that names a class shall not
// be used as the identifier in the declarator for a destructor
// declaration.
TypeDecl *DeclaratorTypeD = (TypeDecl *)D.getDeclaratorIdType();
if (const TypedefDecl *TypedefD = dyn_cast<TypedefDecl>(DeclaratorTypeD)) {
Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
<< TypedefD->getDeclName();
isInvalid = true;
}
// C++ [class.dtor]p2:
// A destructor is used to destroy objects of its class type. A
// destructor takes no parameters, and no return type can be
// specified for it (not even void). The address of a destructor
// shall not be taken. A destructor shall not be static. A
// destructor can be invoked for a const, volatile or const
// volatile object. A destructor shall not be declared const,
// volatile or const volatile (9.3.2).
if (SC == FunctionDecl::Static) {
Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
<< SourceRange(D.getIdentifierLoc());
isInvalid = true;
SC = FunctionDecl::None;
}
if (D.getDeclSpec().hasTypeSpecifier()) {
// Destructors don't have return types, but the parser will
// happily parse something like:
//
// class X {
// float ~X();
// };
//
// The return type will be eliminated later.
Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
<< SourceRange(D.getIdentifierLoc());
}
if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
if (FTI.TypeQuals & QualType::Const)
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
<< "const" << SourceRange(D.getIdentifierLoc());
if (FTI.TypeQuals & QualType::Volatile)
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
<< "volatile" << SourceRange(D.getIdentifierLoc());
if (FTI.TypeQuals & QualType::Restrict)
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
<< "restrict" << SourceRange(D.getIdentifierLoc());
}
// Make sure we don't have any parameters.
if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
// Delete the parameters.
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
if (FTI.NumArgs) {
delete [] FTI.ArgInfo;
FTI.NumArgs = 0;
FTI.ArgInfo = 0;
}
}
// Make sure the destructor isn't variadic.
if (R->getAsFunctionTypeProto()->isVariadic())
Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
// Rebuild the function type "R" without any type qualifiers or
// parameters (in case any of the errors above fired) and with
// "void" as the return type, since destructors don't have return
// types. We *always* have to do this, because GetTypeForDeclarator
// will put in a result type of "int" when none was specified.
R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
return isInvalid;
}
/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
/// well-formednes of the conversion function declarator @p D with
/// type @p R. If there are any errors in the declarator, this routine
/// will emit diagnostics and return true. Otherwise, it will return
/// false. Either way, the type @p R will be updated to reflect a
/// well-formed type for the conversion operator.
bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
FunctionDecl::StorageClass& SC) {
bool isInvalid = false;
// C++ [class.conv.fct]p1:
// Neither parameter types nor return type can be specified. The
// type of a conversion function (8.3.5) is “function taking no
// parameter returning conversion-type-id.”
if (SC == FunctionDecl::Static) {
Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
<< SourceRange(D.getIdentifierLoc());
isInvalid = true;
SC = FunctionDecl::None;
}
if (D.getDeclSpec().hasTypeSpecifier()) {
// Conversion functions don't have return types, but the parser will
// happily parse something like:
//
// class X {
// float operator bool();
// };
//
// The return type will be changed later anyway.
Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
<< SourceRange(D.getIdentifierLoc());
}
// Make sure we don't have any parameters.
if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
// Delete the parameters.
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
if (FTI.NumArgs) {
delete [] FTI.ArgInfo;
FTI.NumArgs = 0;
FTI.ArgInfo = 0;
}
}
// Make sure the conversion function isn't variadic.
if (R->getAsFunctionTypeProto()->isVariadic())
Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
// C++ [class.conv.fct]p4:
// The conversion-type-id shall not represent a function type nor
// an array type.
QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
if (ConvType->isArrayType()) {
Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
ConvType = Context.getPointerType(ConvType);
} else if (ConvType->isFunctionType()) {
Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
ConvType = Context.getPointerType(ConvType);
}
// Rebuild the function type "R" without any parameters (in case any
// of the errors above fired) and with the conversion type as the
// return type.
R = Context.getFunctionType(ConvType, 0, 0, false,
R->getAsFunctionTypeProto()->getTypeQuals());
// C++0x explicit conversion operators.
if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
Diag(D.getDeclSpec().getExplicitSpecLoc(),
diag::warn_explicit_conversion_functions)
<< SourceRange(D.getDeclSpec().getExplicitSpecLoc());
return isInvalid;
}
/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
/// the declaration of the given C++ conversion function. This routine
/// is responsible for recording the conversion function in the C++
/// class, if possible.
Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
assert(Conversion && "Expected to receive a conversion function declaration");
// Set the lexical context of this conversion function
Conversion->setLexicalDeclContext(CurContext);
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
// Make sure we aren't redeclaring the conversion function.
QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
// C++ [class.conv.fct]p1:
// [...] A conversion function is never used to convert a
// (possibly cv-qualified) object to the (possibly cv-qualified)
// same object type (or a reference to it), to a (possibly
// cv-qualified) base class of that type (or a reference to it),
// or to (possibly cv-qualified) void.
// FIXME: Suppress this warning if the conversion function ends up
// being a virtual function that overrides a virtual function in a
// base class.
QualType ClassType
= Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
ConvType = ConvTypeRef->getPointeeType();
if (ConvType->isRecordType()) {
ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
if (ConvType == ClassType)
Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
<< ClassType;
else if (IsDerivedFrom(ClassType, ConvType))
Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
<< ClassType << ConvType;
} else if (ConvType->isVoidType()) {
Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
<< ClassType << ConvType;
}
if (Conversion->getPreviousDeclaration()) {
OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
for (OverloadedFunctionDecl::function_iterator
Conv = Conversions->function_begin(),
ConvEnd = Conversions->function_end();
Conv != ConvEnd; ++Conv) {
if (*Conv == Conversion->getPreviousDeclaration()) {
*Conv = Conversion;
return (DeclTy *)Conversion;
}
}
assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
} else
ClassDecl->addConversionFunction(Context, Conversion);
return (DeclTy *)Conversion;
}
//===----------------------------------------------------------------------===//
// Namespace Handling
//===----------------------------------------------------------------------===//
/// ActOnStartNamespaceDef - This is called at the start of a namespace
/// definition.
Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
SourceLocation IdentLoc,
IdentifierInfo *II,
SourceLocation LBrace) {
NamespaceDecl *Namespc =
NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
Namespc->setLBracLoc(LBrace);
Scope *DeclRegionScope = NamespcScope->getParent();
if (II) {
// C++ [namespace.def]p2:
// The identifier in an original-namespace-definition shall not have been
// previously defined in the declarative region in which the
// original-namespace-definition appears. The identifier in an
// original-namespace-definition is the name of the namespace. Subsequently
// in that declarative region, it is treated as an original-namespace-name.
Decl *PrevDecl =
LookupDecl(II, Decl::IDNS_Ordinary, DeclRegionScope, 0,
/*enableLazyBuiltinCreation=*/false,
/*LookupInParent=*/false);
if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
// This is an extended namespace definition.
// Attach this namespace decl to the chain of extended namespace
// definitions.
OrigNS->setNextNamespace(Namespc);
Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
// Remove the previous declaration from the scope.
if (DeclRegionScope->isDeclScope(OrigNS)) {
IdResolver.RemoveDecl(OrigNS);
DeclRegionScope->RemoveDecl(OrigNS);
}
} else if (PrevDecl) {
// This is an invalid name redefinition.
Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
<< Namespc->getDeclName();
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
Namespc->setInvalidDecl();
// Continue on to push Namespc as current DeclContext and return it.
}
PushOnScopeChains(Namespc, DeclRegionScope);
} else {
// FIXME: Handle anonymous namespaces
}
// Although we could have an invalid decl (i.e. the namespace name is a
// redefinition), push it as current DeclContext and try to continue parsing.
// FIXME: We should be able to push Namespc here, so that the
// each DeclContext for the namespace has the declarations
// that showed up in that particular namespace definition.
PushDeclContext(NamespcScope, Namespc);
return Namespc;
}
/// ActOnFinishNamespaceDef - This callback is called after a namespace is
/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
Decl *Dcl = static_cast<Decl *>(D);
NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
assert(Namespc && "Invalid parameter, expected NamespaceDecl");
Namespc->setRBracLoc(RBrace);
PopDeclContext();
}
Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S,
SourceLocation UsingLoc,
SourceLocation NamespcLoc,
const CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *NamespcName,
AttributeList *AttrList) {
assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
assert(NamespcName && "Invalid NamespcName.");
assert(IdentLoc.isValid() && "Invalid NamespceName location.");
// FIXME: This still requires lot more checks, and AST support.
// Lookup namespace name.
LookupCriteria Criteria(LookupCriteria::Namespace, /*RedeclarationOnly=*/false,
/*CPlusPlus=*/true);
Decl *NS = 0;
if (SS.isSet())
NS = LookupQualifiedName(static_cast<DeclContext*>(SS.getScopeRep()),
NamespcName, Criteria);
else
NS = LookupName(S, NamespcName, Criteria);
if (NS) {
assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
} else {
Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
}
// FIXME: We ignore AttrList for now, and delete it to avoid leak.
delete AttrList;
return 0;
}
/// AddCXXDirectInitializerToDecl - This action is called immediately after
/// ActOnDeclarator, when a C++ direct initializer is present.
/// e.g: "int x(1);"
void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
ExprTy **ExprTys, unsigned NumExprs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
assert(NumExprs != 0 && ExprTys && "missing expressions");
Decl *RealDecl = static_cast<Decl *>(Dcl);
// If there is no declaration, there was an error parsing it. Just ignore
// the initializer.
if (RealDecl == 0) {
for (unsigned i = 0; i != NumExprs; ++i)
delete static_cast<Expr *>(ExprTys[i]);
return;
}
VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
if (!VDecl) {
Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
RealDecl->setInvalidDecl();
return;
}
// We will treat direct-initialization as a copy-initialization:
// int x(1); -as-> int x = 1;
// ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
//
// Clients that want to distinguish between the two forms, can check for
// direct initializer using VarDecl::hasCXXDirectInitializer().
// A major benefit is that clients that don't particularly care about which
// exactly form was it (like the CodeGen) can handle both cases without
// special case code.
// C++ 8.5p11:
// The form of initialization (using parentheses or '=') is generally
// insignificant, but does matter when the entity being initialized has a
// class type.
QualType DeclInitType = VDecl->getType();
if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
DeclInitType = Array->getElementType();
if (VDecl->getType()->isRecordType()) {
CXXConstructorDecl *Constructor
= PerformInitializationByConstructor(DeclInitType,
(Expr **)ExprTys, NumExprs,
VDecl->getLocation(),
SourceRange(VDecl->getLocation(),
RParenLoc),
VDecl->getDeclName(),
IK_Direct);
if (!Constructor) {
RealDecl->setInvalidDecl();
}
// Let clients know that initialization was done with a direct
// initializer.
VDecl->setCXXDirectInitializer(true);
// FIXME: Add ExprTys and Constructor to the RealDecl as part of
// the initializer.
return;
}
if (NumExprs > 1) {
Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
<< SourceRange(VDecl->getLocation(), RParenLoc);
RealDecl->setInvalidDecl();
return;
}
// Let clients know that initialization was done with a direct initializer.
VDecl->setCXXDirectInitializer(true);
assert(NumExprs == 1 && "Expected 1 expression");
// Set the init expression, handles conversions.
AddInitializerToDecl(Dcl, ExprArg(*this, ExprTys[0]), /*DirectInit=*/true);
}
/// PerformInitializationByConstructor - Perform initialization by
/// constructor (C++ [dcl.init]p14), which may occur as part of
/// direct-initialization or copy-initialization. We are initializing
/// an object of type @p ClassType with the given arguments @p
/// Args. @p Loc is the location in the source code where the
/// initializer occurs (e.g., a declaration, member initializer,
/// functional cast, etc.) while @p Range covers the whole
/// initialization. @p InitEntity is the entity being initialized,
/// which may by the name of a declaration or a type. @p Kind is the
/// kind of initialization we're performing, which affects whether
/// explicit constructors will be considered. When successful, returns
/// the constructor that will be used to perform the initialization;
/// when the initialization fails, emits a diagnostic and returns
/// null.
CXXConstructorDecl *
Sema::PerformInitializationByConstructor(QualType ClassType,
Expr **Args, unsigned NumArgs,
SourceLocation Loc, SourceRange Range,
DeclarationName InitEntity,
InitializationKind Kind) {
const RecordType *ClassRec = ClassType->getAsRecordType();
assert(ClassRec && "Can only initialize a class type here");
// C++ [dcl.init]p14:
//
// If the initialization is direct-initialization, or if it is
// copy-initialization where the cv-unqualified version of the
// source type is the same class as, or a derived class of, the
// class of the destination, constructors are considered. The
// applicable constructors are enumerated (13.3.1.3), and the
// best one is chosen through overload resolution (13.3). The
// constructor so selected is called to initialize the object,
// with the initializer expression(s) as its argument(s). If no
// constructor applies, or the overload resolution is ambiguous,
// the initialization is ill-formed.
const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
OverloadCandidateSet CandidateSet;
// Add constructors to the overload set.
DeclarationName ConstructorName
= Context.DeclarationNames.getCXXConstructorName(
Context.getCanonicalType(ClassType.getUnqualifiedType()));
DeclContext::lookup_const_iterator Con, ConEnd;
for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
Con != ConEnd; ++Con) {
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
if ((Kind == IK_Direct) ||
(Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
(Kind == IK_Default && Constructor->isDefaultConstructor()))
AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
}
// FIXME: When we decide not to synthesize the implicitly-declared
// constructors, we'll need to make them appear here.
OverloadCandidateSet::iterator Best;
switch (BestViableFunction(CandidateSet, Best)) {
case OR_Success:
// We found a constructor. Return it.
return cast<CXXConstructorDecl>(Best->Function);
case OR_No_Viable_Function:
Diag(Loc, diag::err_ovl_no_viable_function_in_init)
<< InitEntity << (unsigned)CandidateSet.size() << Range;
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
return 0;
case OR_Ambiguous:
Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return 0;
}
return 0;
}
/// CompareReferenceRelationship - Compare the two types T1 and T2 to
/// determine whether they are reference-related,
/// reference-compatible, reference-compatible with added
/// qualification, or incompatible, for use in C++ initialization by
/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
/// type, and the first type (T1) is the pointee type of the reference
/// type being initialized.
Sema::ReferenceCompareResult
Sema::CompareReferenceRelationship(QualType T1, QualType T2,
bool& DerivedToBase) {
assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
assert(!T2->isReferenceType() && "T2 cannot be a reference type");
T1 = Context.getCanonicalType(T1);
T2 = Context.getCanonicalType(T2);
QualType UnqualT1 = T1.getUnqualifiedType();
QualType UnqualT2 = T2.getUnqualifiedType();
// C++ [dcl.init.ref]p4:
// Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
// reference-related to “cv2 T2” if T1 is the same type as T2, or
// T1 is a base class of T2.
if (UnqualT1 == UnqualT2)
DerivedToBase = false;
else if (IsDerivedFrom(UnqualT2, UnqualT1))
DerivedToBase = true;
else
return Ref_Incompatible;
// At this point, we know that T1 and T2 are reference-related (at
// least).
// C++ [dcl.init.ref]p4:
// "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
// reference-related to T2 and cv1 is the same cv-qualification
// as, or greater cv-qualification than, cv2. For purposes of
// overload resolution, cases for which cv1 is greater
// cv-qualification than cv2 are identified as
// reference-compatible with added qualification (see 13.3.3.2).
if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
return Ref_Compatible;
else if (T1.isMoreQualifiedThan(T2))
return Ref_Compatible_With_Added_Qualification;
else
return Ref_Related;
}
/// CheckReferenceInit - Check the initialization of a reference
/// variable with the given initializer (C++ [dcl.init.ref]). Init is
/// the initializer (either a simple initializer or an initializer
/// list), and DeclType is the type of the declaration. When ICS is
/// non-null, this routine will compute the implicit conversion
/// sequence according to C++ [over.ics.ref] and will not produce any
/// diagnostics; when ICS is null, it will emit diagnostics when any
/// errors are found. Either way, a return value of true indicates
/// that there was a failure, a return value of false indicates that
/// the reference initialization succeeded.
///
/// When @p SuppressUserConversions, user-defined conversions are
/// suppressed.
/// When @p AllowExplicit, we also permit explicit user-defined
/// conversion functions.
bool
Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
ImplicitConversionSequence *ICS,
bool SuppressUserConversions,
bool AllowExplicit) {
assert(DeclType->isReferenceType() && "Reference init needs a reference");
QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
QualType T2 = Init->getType();
// If the initializer is the address of an overloaded function, try
// to resolve the overloaded function. If all goes well, T2 is the
// type of the resulting function.
if (T2->isOverloadType()) {
FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
ICS != 0);
if (Fn) {
// Since we're performing this reference-initialization for
// real, update the initializer with the resulting function.
if (!ICS)
FixOverloadedFunctionReference(Init, Fn);
T2 = Fn->getType();
}
}
// Compute some basic properties of the types and the initializer.
bool DerivedToBase = false;
Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
ReferenceCompareResult RefRelationship
= CompareReferenceRelationship(T1, T2, DerivedToBase);
// Most paths end in a failed conversion.
if (ICS)
ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
// C++ [dcl.init.ref]p5:
// A reference to type “cv1 T1” is initialized by an expression
// of type “cv2 T2” as follows:
// -- If the initializer expression
bool BindsDirectly = false;
// -- is an lvalue (but is not a bit-field), and “cv1 T1” is
// reference-compatible with “cv2 T2,” or
//
// Note that the bit-field check is skipped if we are just computing
// the implicit conversion sequence (C++ [over.best.ics]p2).
if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
RefRelationship >= Ref_Compatible_With_Added_Qualification) {
BindsDirectly = true;
if (ICS) {
// C++ [over.ics.ref]p1:
// When a parameter of reference type binds directly (8.5.3)
// to an argument expression, the implicit conversion sequence
// is the identity conversion, unless the argument expression
// has a type that is a derived class of the parameter type,
// in which case the implicit conversion sequence is a
// derived-to-base Conversion (13.3.3.1).
ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
ICS->Standard.First = ICK_Identity;
ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
ICS->Standard.Third = ICK_Identity;
ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
ICS->Standard.ReferenceBinding = true;
ICS->Standard.DirectBinding = true;
// Nothing more to do: the inaccessibility/ambiguity check for
// derived-to-base conversions is suppressed when we're
// computing the implicit conversion sequence (C++
// [over.best.ics]p2).
return false;
} else {
// Perform the conversion.
// FIXME: Binding to a subobject of the lvalue is going to require
// more AST annotation than this.
ImpCastExprToType(Init, T1, /*isLvalue=*/true);
}
}
// -- has a class type (i.e., T2 is a class type) and can be
// implicitly converted to an lvalue of type “cv3 T3,”
// where “cv1 T1” is reference-compatible with “cv3 T3”
// 92) (this conversion is selected by enumerating the
// applicable conversion functions (13.3.1.6) and choosing
// the best one through overload resolution (13.3)),
if (!SuppressUserConversions && T2->isRecordType()) {
// FIXME: Look for conversions in base classes!
CXXRecordDecl *T2RecordDecl
= dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
OverloadCandidateSet CandidateSet;
OverloadedFunctionDecl *Conversions
= T2RecordDecl->getConversionFunctions();
for (OverloadedFunctionDecl::function_iterator Func
= Conversions->function_begin();
Func != Conversions->function_end(); ++Func) {
CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
// If the conversion function doesn't return a reference type,
// it can't be considered for this conversion.
// FIXME: This will change when we support rvalue references.
if (Conv->getConversionType()->isReferenceType() &&
(AllowExplicit || !Conv->isExplicit()))
AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
}
OverloadCandidateSet::iterator Best;
switch (BestViableFunction(CandidateSet, Best)) {
case OR_Success:
// This is a direct binding.
BindsDirectly = true;
if (ICS) {
// C++ [over.ics.ref]p1:
//
// [...] If the parameter binds directly to the result of
// applying a conversion function to the argument
// expression, the implicit conversion sequence is a
// user-defined conversion sequence (13.3.3.1.2), with the
// second standard conversion sequence either an identity
// conversion or, if the conversion function returns an
// entity of a type that is a derived class of the parameter
// type, a derived-to-base Conversion.
ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
ICS->UserDefined.Before = Best->Conversions[0].Standard;
ICS->UserDefined.After = Best->FinalConversion;
ICS->UserDefined.ConversionFunction = Best->Function;
assert(ICS->UserDefined.After.ReferenceBinding &&
ICS->UserDefined.After.DirectBinding &&
"Expected a direct reference binding!");
return false;
} else {
// Perform the conversion.
// FIXME: Binding to a subobject of the lvalue is going to require
// more AST annotation than this.
ImpCastExprToType(Init, T1, /*isLvalue=*/true);
}
break;
case OR_Ambiguous:
assert(false && "Ambiguous reference binding conversions not implemented.");
return true;
case OR_No_Viable_Function:
// There was no suitable conversion; continue with other checks.
break;
}
}
if (BindsDirectly) {
// C++ [dcl.init.ref]p4:
// [...] In all cases where the reference-related or
// reference-compatible relationship of two types is used to
// establish the validity of a reference binding, and T1 is a
// base class of T2, a program that necessitates such a binding
// is ill-formed if T1 is an inaccessible (clause 11) or
// ambiguous (10.2) base class of T2.
//
// Note that we only check this condition when we're allowed to
// complain about errors, because we should not be checking for
// ambiguity (or inaccessibility) unless the reference binding
// actually happens.
if (DerivedToBase)
return CheckDerivedToBaseConversion(T2, T1,
Init->getSourceRange().getBegin(),
Init->getSourceRange());
else
return false;
}
// -- Otherwise, the reference shall be to a non-volatile const
// type (i.e., cv1 shall be const).
if (T1.getCVRQualifiers() != QualType::Const) {
if (!ICS)
Diag(Init->getSourceRange().getBegin(),
diag::err_not_reference_to_const_init)
<< T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
<< T2 << Init->getSourceRange();
return true;
}
// -- If the initializer expression is an rvalue, with T2 a
// class type, and “cv1 T1” is reference-compatible with
// “cv2 T2,” the reference is bound in one of the
// following ways (the choice is implementation-defined):
//
// -- The reference is bound to the object represented by
// the rvalue (see 3.10) or to a sub-object within that
// object.
//
// -- A temporary of type “cv1 T2” [sic] is created, and
// a constructor is called to copy the entire rvalue
// object into the temporary. The reference is bound to
// the temporary or to a sub-object within the
// temporary.
//
//
// The constructor that would be used to make the copy
// shall be callable whether or not the copy is actually
// done.
//
// Note that C++0x [dcl.ref.init]p5 takes away this implementation
// freedom, so we will always take the first option and never build
// a temporary in this case. FIXME: We will, however, have to check
// for the presence of a copy constructor in C++98/03 mode.
if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
RefRelationship >= Ref_Compatible_With_Added_Qualification) {
if (ICS) {
ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
ICS->Standard.First = ICK_Identity;
ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
ICS->Standard.Third = ICK_Identity;
ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
ICS->Standard.ReferenceBinding = true;
ICS->Standard.DirectBinding = false;
} else {
// FIXME: Binding to a subobject of the rvalue is going to require
// more AST annotation than this.
ImpCastExprToType(Init, T1, /*isLvalue=*/true);
}
return false;
}
// -- Otherwise, a temporary of type “cv1 T1” is created and
// initialized from the initializer expression using the
// rules for a non-reference copy initialization (8.5). The
// reference is then bound to the temporary. If T1 is
// reference-related to T2, cv1 must be the same
// cv-qualification as, or greater cv-qualification than,
// cv2; otherwise, the program is ill-formed.
if (RefRelationship == Ref_Related) {
// If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
// we would be reference-compatible or reference-compatible with
// added qualification. But that wasn't the case, so the reference
// initialization fails.
if (!ICS)
Diag(Init->getSourceRange().getBegin(),
diag::err_reference_init_drops_quals)
<< T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
<< T2 << Init->getSourceRange();
return true;
}
// Actually try to convert the initializer to T1.
if (ICS) {
/// C++ [over.ics.ref]p2:
///
/// When a parameter of reference type is not bound directly to
/// an argument expression, the conversion sequence is the one
/// required to convert the argument expression to the
/// underlying type of the reference according to
/// 13.3.3.1. Conceptually, this conversion sequence corresponds
/// to copy-initializing a temporary of the underlying type with
/// the argument expression. Any difference in top-level
/// cv-qualification is subsumed by the initialization itself
/// and does not constitute a conversion.
*ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
} else {
return PerformImplicitConversion(Init, T1, "initializing");
}
}
/// CheckOverloadedOperatorDeclaration - Check whether the declaration
/// of this overloaded operator is well-formed. If so, returns false;
/// otherwise, emits appropriate diagnostics and returns true.
bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
assert(FnDecl && FnDecl->isOverloadedOperator() &&
"Expected an overloaded operator declaration");
OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
// C++ [over.oper]p5:
// The allocation and deallocation functions, operator new,
// operator new[], operator delete and operator delete[], are
// described completely in 3.7.3. The attributes and restrictions
// found in the rest of this subclause do not apply to them unless
// explicitly stated in 3.7.3.
// FIXME: Write a separate routine for checking this. For now, just
// allow it.
if (Op == OO_New || Op == OO_Array_New ||
Op == OO_Delete || Op == OO_Array_Delete)
return false;
// C++ [over.oper]p6:
// An operator function shall either be a non-static member
// function or be a non-member function and have at least one
// parameter whose type is a class, a reference to a class, an
// enumeration, or a reference to an enumeration.
if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
if (MethodDecl->isStatic())
return Diag(FnDecl->getLocation(),
diag::err_operator_overload_static) << FnDecl->getDeclName();
} else {
bool ClassOrEnumParam = false;
for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
ParamEnd = FnDecl->param_end();
Param != ParamEnd; ++Param) {
QualType ParamType = (*Param)->getType().getNonReferenceType();
if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
ClassOrEnumParam = true;
break;
}
}
if (!ClassOrEnumParam)
return Diag(FnDecl->getLocation(),
diag::err_operator_overload_needs_class_or_enum)
<< FnDecl->getDeclName();
}
// C++ [over.oper]p8:
// An operator function cannot have default arguments (8.3.6),
// except where explicitly stated below.
//
// Only the function-call operator allows default arguments
// (C++ [over.call]p1).
if (Op != OO_Call) {
for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
Param != FnDecl->param_end(); ++Param) {
if ((*Param)->hasUnparsedDefaultArg())
return Diag((*Param)->getLocation(),
diag::err_operator_overload_default_arg)
<< FnDecl->getDeclName();
else if (Expr *DefArg = (*Param)->getDefaultArg())
return Diag((*Param)->getLocation(),
diag::err_operator_overload_default_arg)
<< FnDecl->getDeclName() << DefArg->getSourceRange();
}
}
static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
{ false, false, false }
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
, { Unary, Binary, MemberOnly }
#include "clang/Basic/OperatorKinds.def"
};
bool CanBeUnaryOperator = OperatorUses[Op][0];
bool CanBeBinaryOperator = OperatorUses[Op][1];
bool MustBeMemberOperator = OperatorUses[Op][2];
// C++ [over.oper]p8:
// [...] Operator functions cannot have more or fewer parameters
// than the number required for the corresponding operator, as
// described in the rest of this subclause.
unsigned NumParams = FnDecl->getNumParams()
+ (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
if (Op != OO_Call &&
((NumParams == 1 && !CanBeUnaryOperator) ||
(NumParams == 2 && !CanBeBinaryOperator) ||
(NumParams < 1) || (NumParams > 2))) {
// We have the wrong number of parameters.
unsigned ErrorKind;
if (CanBeUnaryOperator && CanBeBinaryOperator) {
ErrorKind = 2; // 2 -> unary or binary.
} else if (CanBeUnaryOperator) {
ErrorKind = 0; // 0 -> unary
} else {
assert(CanBeBinaryOperator &&
"All non-call overloaded operators are unary or binary!");
ErrorKind = 1; // 1 -> binary
}
return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
<< FnDecl->getDeclName() << NumParams << ErrorKind;
}
// Overloaded operators other than operator() cannot be variadic.
if (Op != OO_Call &&
FnDecl->getType()->getAsFunctionTypeProto()->isVariadic()) {
return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
<< FnDecl->getDeclName();
}
// Some operators must be non-static member functions.
if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
return Diag(FnDecl->getLocation(),
diag::err_operator_overload_must_be_member)
<< FnDecl->getDeclName();
}
// C++ [over.inc]p1:
// The user-defined function called operator++ implements the
// prefix and postfix ++ operator. If this function is a member
// function with no parameters, or a non-member function with one
// parameter of class or enumeration type, it defines the prefix
// increment operator ++ for objects of that type. If the function
// is a member function with one parameter (which shall be of type
// int) or a non-member function with two parameters (the second
// of which shall be of type int), it defines the postfix
// increment operator ++ for objects of that type.
if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
bool ParamIsInt = false;
if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
ParamIsInt = BT->getKind() == BuiltinType::Int;
if (!ParamIsInt)
return Diag(LastParam->getLocation(),
diag::err_operator_overload_post_incdec_must_be_int)
<< LastParam->getType() << (Op == OO_MinusMinus);
}
// Notify the class if it got an assignment operator.
if (Op == OO_Equal) {
// Would have returned earlier otherwise.
assert(isa<CXXMethodDecl>(FnDecl) &&
"Overloaded = not member, but not filtered.");
CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
Method->getParent()->addedAssignmentOperator(Context, Method);
}
return false;
}
/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
/// linkage specification, including the language and (if present)
/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
/// the location of the language string literal, which is provided
/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
/// the '{' brace. Otherwise, this linkage specification does not
/// have any braces.
Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S,
SourceLocation ExternLoc,
SourceLocation LangLoc,
const char *Lang,
unsigned StrSize,
SourceLocation LBraceLoc) {
LinkageSpecDecl::LanguageIDs Language;
if (strncmp(Lang, "\"C\"", StrSize) == 0)
Language = LinkageSpecDecl::lang_c;
else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
Language = LinkageSpecDecl::lang_cxx;
else {
Diag(LangLoc, diag::err_bad_language);
return 0;
}
// FIXME: Add all the various semantics of linkage specifications
LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
LangLoc, Language,
LBraceLoc.isValid());
CurContext->addDecl(D);
PushDeclContext(S, D);
return D;
}
/// ActOnFinishLinkageSpecification - Completely the definition of
/// the C++ linkage specification LinkageSpec. If RBraceLoc is
/// valid, it's the position of the closing '}' brace in a linkage
/// specification that uses braces.
Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S,
DeclTy *LinkageSpec,
SourceLocation RBraceLoc) {
if (LinkageSpec)
PopDeclContext();
return LinkageSpec;
}
/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
/// handler.
Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D)
{
QualType ExDeclType = GetTypeForDeclarator(D, S);
SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
bool Invalid = false;
// Arrays and functions decay.
if (ExDeclType->isArrayType())
ExDeclType = Context.getArrayDecayedType(ExDeclType);
else if (ExDeclType->isFunctionType())
ExDeclType = Context.getPointerType(ExDeclType);
// C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
// The exception-declaration shall not denote a pointer or reference to an
// incomplete type, other than [cv] void*.
QualType BaseType = ExDeclType;
int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
if (const PointerType *Ptr = BaseType->getAsPointerType()) {
BaseType = Ptr->getPointeeType();
Mode = 1;
} else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
BaseType = Ref->getPointeeType();
Mode = 2;
}
if ((Mode == 0 || !BaseType->isVoidType()) && BaseType->isIncompleteType()) {
Invalid = true;
Diag(Begin, diag::err_catch_incomplete) << BaseType << Mode;
}
// FIXME: Need to test for ability to copy-construct and destroy the
// exception variable.
// FIXME: Need to check for abstract classes.
IdentifierInfo *II = D.getIdentifier();
if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
// The scope should be freshly made just for us. There is just no way
// it contains any previous declaration.
assert(!S->isDeclScope(PrevDecl));
if (PrevDecl->isTemplateParameter()) {
// Maybe we will complain about the shadowed template parameter.
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
}
}
VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
II, ExDeclType, VarDecl::None, 0, Begin);
if (D.getInvalidType() || Invalid)
ExDecl->setInvalidDecl();
if (D.getCXXScopeSpec().isSet()) {
Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
<< D.getCXXScopeSpec().getRange();
ExDecl->setInvalidDecl();
}
// Add the exception declaration into this scope.
S->AddDecl(ExDecl);
if (II)
IdResolver.AddDecl(ExDecl);
ProcessDeclAttributes(ExDecl, D);
return ExDecl;
}