зеркало из https://github.com/microsoft/clang-1.git
641 строка
21 KiB
C++
641 строка
21 KiB
C++
//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Expr constant evaluator.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
using namespace clang;
|
|
using llvm::APSInt;
|
|
using llvm::APFloat;
|
|
|
|
/// EvalInfo - This is a private struct used by the evaluator to capture
|
|
/// information about a subexpression as it is folded. It retains information
|
|
/// about the AST context, but also maintains information about the folded
|
|
/// expression.
|
|
///
|
|
/// If an expression could be evaluated, it is still possible it is not a C
|
|
/// "integer constant expression" or constant expression. If not, this struct
|
|
/// captures information about how and why not.
|
|
///
|
|
/// One bit of information passed *into* the request for constant folding
|
|
/// indicates whether the subexpression is "evaluated" or not according to C
|
|
/// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
|
|
/// evaluate the expression regardless of what the RHS is, but C only allows
|
|
/// certain things in certain situations.
|
|
struct EvalInfo {
|
|
ASTContext &Ctx;
|
|
|
|
/// isEvaluated - True if the subexpression is required to be evaluated, false
|
|
/// if it is short-circuited (according to C rules).
|
|
bool isEvaluated;
|
|
|
|
/// ICEDiag - If the expression is unfoldable, then ICEDiag contains the
|
|
/// error diagnostic indicating why it is not foldable and DiagLoc indicates a
|
|
/// caret position for the error. If it is foldable, but the expression is
|
|
/// not an integer constant expression, ICEDiag contains the extension
|
|
/// diagnostic to emit which describes why it isn't an integer constant
|
|
/// expression. If this expression *is* an integer-constant-expr, then
|
|
/// ICEDiag is zero.
|
|
///
|
|
/// The caller can choose to emit this diagnostic or not, depending on whether
|
|
/// they require an i-c-e or a constant or not. DiagLoc indicates the caret
|
|
/// position for the report.
|
|
///
|
|
/// If ICEDiag is zero, then this expression is an i-c-e.
|
|
unsigned ICEDiag;
|
|
SourceLocation DiagLoc;
|
|
|
|
EvalInfo(ASTContext &ctx) : Ctx(ctx), isEvaluated(true), ICEDiag(0) {}
|
|
};
|
|
|
|
|
|
static bool EvaluatePointer(const Expr *E, APValue &Result, EvalInfo &Info);
|
|
static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
|
|
static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pointer Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN PointerExprEvaluator
|
|
: public StmtVisitor<PointerExprEvaluator, APValue> {
|
|
EvalInfo &Info;
|
|
public:
|
|
|
|
PointerExprEvaluator(EvalInfo &info) : Info(info) {}
|
|
|
|
APValue VisitStmt(Stmt *S) {
|
|
// FIXME: Remove this when we support more expressions.
|
|
printf("Unhandled pointer statement\n");
|
|
S->dump();
|
|
return APValue();
|
|
}
|
|
|
|
APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
|
|
|
|
APValue VisitBinaryOperator(const BinaryOperator *E);
|
|
APValue VisitCastExpr(const CastExpr* E);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluatePointer(const Expr* E, APValue& Result, EvalInfo &Info) {
|
|
if (!E->getType()->isPointerType())
|
|
return false;
|
|
Result = PointerExprEvaluator(Info).Visit(const_cast<Expr*>(E));
|
|
return Result.isLValue();
|
|
}
|
|
|
|
APValue PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
|
|
if (E->getOpcode() != BinaryOperator::Add &&
|
|
E->getOpcode() != BinaryOperator::Sub)
|
|
return APValue();
|
|
|
|
const Expr *PExp = E->getLHS();
|
|
const Expr *IExp = E->getRHS();
|
|
if (IExp->getType()->isPointerType())
|
|
std::swap(PExp, IExp);
|
|
|
|
APValue ResultLValue;
|
|
if (!EvaluatePointer(PExp, ResultLValue, Info))
|
|
return APValue();
|
|
|
|
llvm::APSInt AdditionalOffset(32);
|
|
if (!EvaluateInteger(IExp, AdditionalOffset, Info))
|
|
return APValue();
|
|
|
|
uint64_t Offset = ResultLValue.getLValueOffset();
|
|
if (E->getOpcode() == BinaryOperator::Add)
|
|
Offset += AdditionalOffset.getZExtValue();
|
|
else
|
|
Offset -= AdditionalOffset.getZExtValue();
|
|
|
|
return APValue(ResultLValue.getLValueBase(), Offset);
|
|
}
|
|
|
|
|
|
APValue PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
|
|
const Expr* SubExpr = E->getSubExpr();
|
|
|
|
// Check for pointer->pointer cast
|
|
if (SubExpr->getType()->isPointerType()) {
|
|
APValue Result;
|
|
if (EvaluatePointer(SubExpr, Result, Info))
|
|
return Result;
|
|
return APValue();
|
|
}
|
|
|
|
if (SubExpr->getType()->isIntegralType()) {
|
|
llvm::APSInt Result(32);
|
|
if (EvaluateInteger(SubExpr, Result, Info)) {
|
|
Result.extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType()));
|
|
return APValue(0, Result.getZExtValue());
|
|
}
|
|
}
|
|
|
|
assert(0 && "Unhandled cast");
|
|
return APValue();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN IntExprEvaluator
|
|
: public StmtVisitor<IntExprEvaluator, bool> {
|
|
EvalInfo &Info;
|
|
APSInt &Result;
|
|
public:
|
|
IntExprEvaluator(EvalInfo &info, APSInt &result)
|
|
: Info(info), Result(result) {}
|
|
|
|
unsigned getIntTypeSizeInBits(QualType T) const {
|
|
return (unsigned)Info.Ctx.getIntWidth(T);
|
|
}
|
|
|
|
bool Extension(SourceLocation L, diag::kind D) {
|
|
Info.DiagLoc = L;
|
|
Info.ICEDiag = D;
|
|
return true; // still a constant.
|
|
}
|
|
|
|
bool Error(SourceLocation L, diag::kind D) {
|
|
// If this is in an unevaluated portion of the subexpression, ignore the
|
|
// error.
|
|
if (!Info.isEvaluated)
|
|
return true;
|
|
|
|
Info.DiagLoc = L;
|
|
Info.ICEDiag = D;
|
|
return false;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
bool VisitStmt(Stmt *S) {
|
|
return Error(S->getLocStart(), diag::err_expr_not_constant);
|
|
}
|
|
|
|
bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
|
|
|
|
bool VisitIntegerLiteral(const IntegerLiteral *E) {
|
|
Result = E->getValue();
|
|
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
|
|
return true;
|
|
}
|
|
bool VisitCharacterLiteral(const CharacterLiteral *E) {
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
Result = E->getValue();
|
|
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
|
|
return true;
|
|
}
|
|
bool VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
Result = Info.Ctx.typesAreCompatible(E->getArgType1(), E->getArgType2());
|
|
return true;
|
|
}
|
|
bool VisitDeclRefExpr(const DeclRefExpr *E);
|
|
bool VisitCallExpr(const CallExpr *E);
|
|
bool VisitBinaryOperator(const BinaryOperator *E);
|
|
bool VisitUnaryOperator(const UnaryOperator *E);
|
|
|
|
bool VisitCastExpr(CastExpr* E) {
|
|
return HandleCast(E->getLocStart(), E->getSubExpr(), E->getType());
|
|
}
|
|
bool VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
|
|
return EvaluateSizeAlignOf(E->isSizeOf(), E->getArgumentType(),
|
|
E->getType());
|
|
}
|
|
|
|
private:
|
|
bool HandleCast(SourceLocation CastLoc, Expr *SubExpr, QualType DestType);
|
|
bool EvaluateSizeAlignOf(bool isSizeOf, QualType SrcTy, QualType DstTy);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) {
|
|
return IntExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
|
|
// Enums are integer constant exprs.
|
|
if (const EnumConstantDecl *D = dyn_cast<EnumConstantDecl>(E->getDecl())) {
|
|
Result = D->getInitVal();
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, random variable references are not constants.
|
|
return Error(E->getLocStart(), diag::err_expr_not_constant);
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
|
|
switch (E->isBuiltinCall()) {
|
|
default:
|
|
return Error(E->getLocStart(), diag::err_expr_not_constant);
|
|
case Builtin::BI__builtin_classify_type:
|
|
// __builtin_type_compatible_p is a constant. Return its value.
|
|
E->isBuiltinClassifyType(Result);
|
|
return true;
|
|
|
|
case Builtin::BI__builtin_constant_p: {
|
|
// __builtin_constant_p always has one operand: it returns true if that
|
|
// operand can be folded, false otherwise.
|
|
APValue Res;
|
|
Result = E->getArg(0)->tryEvaluate(Res, Info.Ctx);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
|
|
// The LHS of a constant expr is always evaluated and needed.
|
|
llvm::APSInt RHS(32);
|
|
if (!Visit(E->getLHS()))
|
|
return false; // error in subexpression.
|
|
|
|
bool OldEval = Info.isEvaluated;
|
|
|
|
// The short-circuiting &&/|| operators don't necessarily evaluate their
|
|
// RHS. Make sure to pass isEvaluated down correctly.
|
|
if ((E->getOpcode() == BinaryOperator::LAnd && Result == 0) ||
|
|
(E->getOpcode() == BinaryOperator::LOr && Result != 0))
|
|
Info.isEvaluated = false;
|
|
|
|
// FIXME: Handle pointer subtraction
|
|
|
|
// FIXME Maybe we want to succeed even where we can't evaluate the
|
|
// right side of LAnd/LOr?
|
|
// For example, see http://llvm.org/bugs/show_bug.cgi?id=2525
|
|
if (!EvaluateInteger(E->getRHS(), RHS, Info))
|
|
return false;
|
|
Info.isEvaluated = OldEval;
|
|
|
|
switch (E->getOpcode()) {
|
|
default: return Error(E->getOperatorLoc(), diag::err_expr_not_constant);
|
|
case BinaryOperator::Mul: Result *= RHS; return true;
|
|
case BinaryOperator::Add: Result += RHS; return true;
|
|
case BinaryOperator::Sub: Result -= RHS; return true;
|
|
case BinaryOperator::And: Result &= RHS; return true;
|
|
case BinaryOperator::Xor: Result ^= RHS; return true;
|
|
case BinaryOperator::Or: Result |= RHS; return true;
|
|
case BinaryOperator::Div:
|
|
if (RHS == 0)
|
|
return Error(E->getOperatorLoc(), diag::err_expr_divide_by_zero);
|
|
Result /= RHS;
|
|
return true;
|
|
case BinaryOperator::Rem:
|
|
if (RHS == 0)
|
|
return Error(E->getOperatorLoc(), diag::err_expr_divide_by_zero);
|
|
Result %= RHS;
|
|
return true;
|
|
case BinaryOperator::Shl:
|
|
// FIXME: Warn about out of range shift amounts!
|
|
Result <<= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1);
|
|
break;
|
|
case BinaryOperator::Shr:
|
|
Result >>= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1);
|
|
break;
|
|
|
|
case BinaryOperator::LT:
|
|
Result = Result < RHS;
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
break;
|
|
case BinaryOperator::GT:
|
|
Result = Result > RHS;
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
break;
|
|
case BinaryOperator::LE:
|
|
Result = Result <= RHS;
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
break;
|
|
case BinaryOperator::GE:
|
|
Result = Result >= RHS;
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
break;
|
|
case BinaryOperator::EQ:
|
|
Result = Result == RHS;
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
break;
|
|
case BinaryOperator::NE:
|
|
Result = Result != RHS;
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
break;
|
|
case BinaryOperator::LAnd:
|
|
Result = Result != 0 && RHS != 0;
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
break;
|
|
case BinaryOperator::LOr:
|
|
Result = Result != 0 || RHS != 0;
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
break;
|
|
|
|
|
|
case BinaryOperator::Comma:
|
|
// Result of the comma is just the result of the RHS.
|
|
Result = RHS;
|
|
|
|
// C99 6.6p3: "shall not contain assignment, ..., or comma operators,
|
|
// *except* when they are contained within a subexpression that is not
|
|
// evaluated". Note that Assignment can never happen due to constraints
|
|
// on the LHS subexpr, so we don't need to check it here.
|
|
if (!Info.isEvaluated)
|
|
return true;
|
|
|
|
// If the value is evaluated, we can accept it as an extension.
|
|
return Extension(E->getOperatorLoc(), diag::ext_comma_in_constant_expr);
|
|
}
|
|
|
|
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
|
|
return true;
|
|
}
|
|
|
|
/// EvaluateSizeAlignOf - Evaluate sizeof(SrcTy) or alignof(SrcTy) with a result
|
|
/// as a DstTy type.
|
|
bool IntExprEvaluator::EvaluateSizeAlignOf(bool isSizeOf, QualType SrcTy,
|
|
QualType DstTy) {
|
|
// Return the result in the right width.
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(DstTy));
|
|
Result.setIsUnsigned(DstTy->isUnsignedIntegerType());
|
|
|
|
// sizeof(void) and __alignof__(void) = 1 as a gcc extension.
|
|
if (SrcTy->isVoidType())
|
|
Result = 1;
|
|
|
|
// sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
|
|
if (!SrcTy->isConstantSizeType()) {
|
|
// FIXME: Should we attempt to evaluate this?
|
|
return false;
|
|
}
|
|
|
|
// GCC extension: sizeof(function) = 1.
|
|
if (SrcTy->isFunctionType()) {
|
|
// FIXME: AlignOf shouldn't be unconditionally 4!
|
|
Result = isSizeOf ? 1 : 4;
|
|
return true;
|
|
}
|
|
|
|
// Get information about the size or align.
|
|
unsigned CharSize = Info.Ctx.Target.getCharWidth();
|
|
if (isSizeOf)
|
|
Result = getIntTypeSizeInBits(SrcTy) / CharSize;
|
|
else
|
|
Result = Info.Ctx.getTypeAlign(SrcTy) / CharSize;
|
|
return true;
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
|
|
// Special case unary operators that do not need their subexpression
|
|
// evaluated. offsetof/sizeof/alignof are all special.
|
|
if (E->isOffsetOfOp()) {
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
Result = E->evaluateOffsetOf(Info.Ctx);
|
|
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
|
|
return true;
|
|
}
|
|
|
|
if (E->isSizeOfAlignOfOp())
|
|
return EvaluateSizeAlignOf(E->getOpcode() == UnaryOperator::SizeOf,
|
|
E->getSubExpr()->getType(), E->getType());
|
|
|
|
// Get the operand value into 'Result'.
|
|
if (!Visit(E->getSubExpr()))
|
|
return false;
|
|
|
|
switch (E->getOpcode()) {
|
|
default:
|
|
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
|
|
// See C99 6.6p3.
|
|
return Error(E->getOperatorLoc(), diag::err_expr_not_constant);
|
|
case UnaryOperator::LNot: {
|
|
bool Val = Result == 0;
|
|
Result.zextOrTrunc(getIntTypeSizeInBits(E->getType()));
|
|
Result = Val;
|
|
break;
|
|
}
|
|
case UnaryOperator::Extension:
|
|
// FIXME: Should extension allow i-c-e extension expressions in its scope?
|
|
// If so, we could clear the diagnostic ID.
|
|
case UnaryOperator::Plus:
|
|
// The result is always just the subexpr.
|
|
break;
|
|
case UnaryOperator::Minus:
|
|
Result = -Result;
|
|
break;
|
|
case UnaryOperator::Not:
|
|
Result = ~Result;
|
|
break;
|
|
}
|
|
|
|
Result.setIsUnsigned(E->getType()->isUnsignedIntegerType());
|
|
return true;
|
|
}
|
|
|
|
/// HandleCast - This is used to evaluate implicit or explicit casts where the
|
|
/// result type is integer.
|
|
bool IntExprEvaluator::HandleCast(SourceLocation CastLoc,
|
|
Expr *SubExpr, QualType DestType) {
|
|
unsigned DestWidth = getIntTypeSizeInBits(DestType);
|
|
|
|
// Handle simple integer->integer casts.
|
|
if (SubExpr->getType()->isIntegerType()) {
|
|
if (!Visit(SubExpr))
|
|
return false;
|
|
|
|
// Figure out if this is a truncate, extend or noop cast.
|
|
// If the input is signed, do a sign extend, noop, or truncate.
|
|
if (DestType->isBooleanType()) {
|
|
// Conversion to bool compares against zero.
|
|
Result = Result != 0;
|
|
Result.zextOrTrunc(DestWidth);
|
|
} else
|
|
Result.extOrTrunc(DestWidth);
|
|
Result.setIsUnsigned(DestType->isUnsignedIntegerType());
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Clean this up!
|
|
if (SubExpr->getType()->isPointerType()) {
|
|
APValue LV;
|
|
if (!EvaluatePointer(SubExpr, LV, Info))
|
|
return false;
|
|
if (LV.getLValueBase())
|
|
return false;
|
|
|
|
Result.extOrTrunc(DestWidth);
|
|
Result = LV.getLValueOffset();
|
|
Result.setIsUnsigned(DestType->isUnsignedIntegerType());
|
|
return true;
|
|
}
|
|
|
|
if (!SubExpr->getType()->isRealFloatingType())
|
|
return Error(CastLoc, diag::err_expr_not_constant);
|
|
|
|
APFloat F(0.0);
|
|
if (!EvaluateFloat(SubExpr, F, Info))
|
|
return Error(CastLoc, diag::err_expr_not_constant);
|
|
|
|
// If the destination is boolean, compare against zero.
|
|
if (DestType->isBooleanType()) {
|
|
Result = !F.isZero();
|
|
Result.zextOrTrunc(DestWidth);
|
|
Result.setIsUnsigned(DestType->isUnsignedIntegerType());
|
|
return true;
|
|
}
|
|
|
|
// Determine whether we are converting to unsigned or signed.
|
|
bool DestSigned = DestType->isSignedIntegerType();
|
|
|
|
// FIXME: Warning for overflow.
|
|
uint64_t Space[4];
|
|
(void)F.convertToInteger(Space, DestWidth, DestSigned,
|
|
llvm::APFloat::rmTowardZero);
|
|
Result = llvm::APInt(DestWidth, 4, Space);
|
|
Result.setIsUnsigned(!DestSigned);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Float Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN FloatExprEvaluator
|
|
: public StmtVisitor<FloatExprEvaluator, bool> {
|
|
EvalInfo &Info;
|
|
APFloat &Result;
|
|
public:
|
|
FloatExprEvaluator(EvalInfo &info, APFloat &result)
|
|
: Info(info), Result(result) {}
|
|
|
|
bool VisitStmt(Stmt *S) {
|
|
return false;
|
|
}
|
|
|
|
bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
|
|
bool VisitCallExpr(const CallExpr *E);
|
|
|
|
bool VisitBinaryOperator(const BinaryOperator *E);
|
|
bool VisitFloatingLiteral(const FloatingLiteral *E);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
|
|
return FloatExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
|
|
const llvm::fltSemantics &Sem =
|
|
Info.Ctx.getFloatTypeSemantics(E->getType());
|
|
|
|
switch (E->isBuiltinCall()) {
|
|
default: return false;
|
|
case Builtin::BI__builtin_huge_val:
|
|
case Builtin::BI__builtin_huge_valf:
|
|
case Builtin::BI__builtin_huge_vall:
|
|
case Builtin::BI__builtin_inf:
|
|
case Builtin::BI__builtin_inff:
|
|
case Builtin::BI__builtin_infl:
|
|
Result = llvm::APFloat::getInf(Sem);
|
|
return true;
|
|
|
|
case Builtin::BI__builtin_nan:
|
|
case Builtin::BI__builtin_nanf:
|
|
case Builtin::BI__builtin_nanl:
|
|
// If this is __builtin_nan("") turn this into a simple nan, otherwise we
|
|
// can't constant fold it.
|
|
if (const StringLiteral *S =
|
|
dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts())) {
|
|
if (!S->isWide() && S->getByteLength() == 0) { // empty string.
|
|
Result = llvm::APFloat::getNaN(Sem);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
|
|
// FIXME: Diagnostics? I really don't understand how the warnings
|
|
// and errors are supposed to work.
|
|
APFloat LHS(0.0), RHS(0.0);
|
|
if (!EvaluateFloat(E->getLHS(), Result, Info))
|
|
return false;
|
|
if (!EvaluateFloat(E->getRHS(), RHS, Info))
|
|
return false;
|
|
|
|
switch (E->getOpcode()) {
|
|
default: return false;
|
|
case BinaryOperator::Mul:
|
|
Result.multiply(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
case BinaryOperator::Add:
|
|
Result.add(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
case BinaryOperator::Sub:
|
|
Result.subtract(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
case BinaryOperator::Div:
|
|
Result.divide(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
case BinaryOperator::Rem:
|
|
Result.mod(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
|
|
Result = E->getValue();
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top level TryEvaluate.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// tryEvaluate - Return true if this is a constant which we can fold using
|
|
/// any crazy technique (that has nothing to do with language standards) that
|
|
/// we want to. If this function returns true, it returns the folded constant
|
|
/// in Result.
|
|
bool Expr::tryEvaluate(APValue &Result, ASTContext &Ctx) const {
|
|
EvalInfo Info(Ctx);
|
|
if (getType()->isIntegerType()) {
|
|
llvm::APSInt sInt(32);
|
|
if (EvaluateInteger(this, sInt, Info)) {
|
|
Result = APValue(sInt);
|
|
return true;
|
|
}
|
|
} else if (getType()->isPointerType()) {
|
|
if (EvaluatePointer(this, Result, Info)) {
|
|
return true;
|
|
}
|
|
} else if (getType()->isRealFloatingType()) {
|
|
llvm::APFloat f(0.0);
|
|
if (EvaluateFloat(this, f, Info)) {
|
|
Result = APValue(f);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|