clang-1/lib/Sema/SemaExprCXX.cpp

991 строка
39 KiB
C++

//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for C++ expressions.
//
//===----------------------------------------------------------------------===//
#include "SemaInherit.h"
#include "Sema.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ASTContext.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/STLExtras.h"
using namespace clang;
/// ActOnCXXConversionFunctionExpr - Parse a C++ conversion function
/// name (e.g., operator void const *) as an expression. This is
/// very similar to ActOnIdentifierExpr, except that instead of
/// providing an identifier the parser provides the type of the
/// conversion function.
Sema::OwningExprResult
Sema::ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc,
TypeTy *Ty, bool HasTrailingLParen,
const CXXScopeSpec &SS,
bool isAddressOfOperand) {
QualType ConvType = QualType::getFromOpaquePtr(Ty);
QualType ConvTypeCanon = Context.getCanonicalType(ConvType);
DeclarationName ConvName
= Context.DeclarationNames.getCXXConversionFunctionName(ConvTypeCanon);
return ActOnDeclarationNameExpr(S, OperatorLoc, ConvName, HasTrailingLParen,
&SS, isAddressOfOperand);
}
/// ActOnCXXOperatorFunctionIdExpr - Parse a C++ overloaded operator
/// name (e.g., @c operator+ ) as an expression. This is very
/// similar to ActOnIdentifierExpr, except that instead of providing
/// an identifier the parser provides the kind of overloaded
/// operator that was parsed.
Sema::OwningExprResult
Sema::ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc,
OverloadedOperatorKind Op,
bool HasTrailingLParen,
const CXXScopeSpec &SS,
bool isAddressOfOperand) {
DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op);
return ActOnDeclarationNameExpr(S, OperatorLoc, Name, HasTrailingLParen, &SS,
isAddressOfOperand);
}
/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
Action::OwningExprResult
Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
NamespaceDecl *StdNs = GetStdNamespace();
if (!StdNs)
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
Decl *TypeInfoDecl = LookupQualifiedName(StdNs, TypeInfoII, LookupTagName);
RecordDecl *TypeInfoRecordDecl = dyn_cast_or_null<RecordDecl>(TypeInfoDecl);
if (!TypeInfoRecordDecl)
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl);
return Owned(new (Context) CXXTypeidExpr(isType, TyOrExpr,
TypeInfoType.withConst(),
SourceRange(OpLoc, RParenLoc)));
}
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
Action::OwningExprResult
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
"Unknown C++ Boolean value!");
return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
Context.BoolTy, OpLoc));
}
/// ActOnCXXThrow - Parse throw expressions.
Action::OwningExprResult
Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) {
return Owned(new (Context) CXXThrowExpr((Expr*)E.release(), Context.VoidTy,
OpLoc));
}
Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
/// C++ 9.3.2: In the body of a non-static member function, the keyword this
/// is a non-lvalue expression whose value is the address of the object for
/// which the function is called.
if (!isa<FunctionDecl>(CurContext))
return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext))
if (MD->isInstance())
return Owned(new (Context) CXXThisExpr(ThisLoc,
MD->getThisType(Context)));
return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
}
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
Action::OwningExprResult
Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
SourceLocation LParenLoc,
MultiExprArg exprs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
assert(TypeRep && "Missing type!");
QualType Ty = QualType::getFromOpaquePtr(TypeRep);
unsigned NumExprs = exprs.size();
Expr **Exprs = (Expr**)exprs.get();
SourceLocation TyBeginLoc = TypeRange.getBegin();
SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
if (Ty->isDependentType() ||
CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
exprs.release();
return Owned(new (Context) CXXTemporaryObjectExpr(0, Ty, TyBeginLoc,
Exprs, NumExprs,
RParenLoc));
}
// C++ [expr.type.conv]p1:
// If the expression list is a single expression, the type conversion
// expression is equivalent (in definedness, and if defined in meaning) to the
// corresponding cast expression.
//
if (NumExprs == 1) {
if (CheckCastTypes(TypeRange, Ty, Exprs[0]))
return ExprError();
exprs.release();
return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(),
Ty, TyBeginLoc, Exprs[0],
RParenLoc));
}
if (const RecordType *RT = Ty->getAsRecordType()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
if (NumExprs > 1 || Record->hasUserDeclaredConstructor()) {
CXXConstructorDecl *Constructor
= PerformInitializationByConstructor(Ty, Exprs, NumExprs,
TypeRange.getBegin(),
SourceRange(TypeRange.getBegin(),
RParenLoc),
DeclarationName(),
IK_Direct);
if (!Constructor)
return ExprError();
exprs.release();
return Owned(new (Context) CXXTemporaryObjectExpr(Constructor, Ty,
TyBeginLoc, Exprs,
NumExprs, RParenLoc));
}
// Fall through to value-initialize an object of class type that
// doesn't have a user-declared default constructor.
}
// C++ [expr.type.conv]p1:
// If the expression list specifies more than a single value, the type shall
// be a class with a suitably declared constructor.
//
if (NumExprs > 1)
return ExprError(Diag(CommaLocs[0],
diag::err_builtin_func_cast_more_than_one_arg)
<< FullRange);
assert(NumExprs == 0 && "Expected 0 expressions");
// C++ [expr.type.conv]p2:
// The expression T(), where T is a simple-type-specifier for a non-array
// complete object type or the (possibly cv-qualified) void type, creates an
// rvalue of the specified type, which is value-initialized.
//
if (Ty->isArrayType())
return ExprError(Diag(TyBeginLoc,
diag::err_value_init_for_array_type) << FullRange);
if (!Ty->isDependentType() && !Ty->isVoidType() &&
RequireCompleteType(TyBeginLoc, Ty,
diag::err_invalid_incomplete_type_use, FullRange))
return ExprError();
exprs.release();
return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc));
}
/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
/// @code new (memory) int[size][4] @endcode
/// or
/// @code ::new Foo(23, "hello") @endcode
/// For the interpretation of this heap of arguments, consult the base version.
Action::OwningExprResult
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
SourceLocation PlacementRParen, bool ParenTypeId,
Declarator &D, SourceLocation ConstructorLParen,
MultiExprArg ConstructorArgs,
SourceLocation ConstructorRParen)
{
Expr *ArraySize = 0;
unsigned Skip = 0;
// If the specified type is an array, unwrap it and save the expression.
if (D.getNumTypeObjects() > 0 &&
D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
DeclaratorChunk &Chunk = D.getTypeObject(0);
if (Chunk.Arr.hasStatic)
return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
<< D.getSourceRange());
if (!Chunk.Arr.NumElts)
return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
<< D.getSourceRange());
ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
Skip = 1;
}
QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, Skip);
if (D.getInvalidType())
return ExprError();
if (CheckAllocatedType(AllocType, D))
return ExprError();
QualType ResultType = AllocType->isDependentType()
? Context.DependentTy
: Context.getPointerType(AllocType);
// That every array dimension except the first is constant was already
// checked by the type check above.
// C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
// or enumeration type with a non-negative value."
if (ArraySize && !ArraySize->isTypeDependent()) {
QualType SizeType = ArraySize->getType();
if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
diag::err_array_size_not_integral)
<< SizeType << ArraySize->getSourceRange());
// Let's see if this is a constant < 0. If so, we reject it out of hand.
// We don't care about special rules, so we tell the machinery it's not
// evaluated - it gives us a result in more cases.
if (!ArraySize->isValueDependent()) {
llvm::APSInt Value;
if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
if (Value < llvm::APSInt(
llvm::APInt::getNullValue(Value.getBitWidth()), false))
return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
diag::err_typecheck_negative_array_size)
<< ArraySize->getSourceRange());
}
}
}
FunctionDecl *OperatorNew = 0;
FunctionDecl *OperatorDelete = 0;
Expr **PlaceArgs = (Expr**)PlacementArgs.get();
unsigned NumPlaceArgs = PlacementArgs.size();
if (!AllocType->isDependentType() &&
!Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
FindAllocationFunctions(StartLoc,
SourceRange(PlacementLParen, PlacementRParen),
UseGlobal, AllocType, ArraySize, PlaceArgs,
NumPlaceArgs, OperatorNew, OperatorDelete))
return ExprError();
bool Init = ConstructorLParen.isValid();
// --- Choosing a constructor ---
// C++ 5.3.4p15
// 1) If T is a POD and there's no initializer (ConstructorLParen is invalid)
// the object is not initialized. If the object, or any part of it, is
// const-qualified, it's an error.
// 2) If T is a POD and there's an empty initializer, the object is value-
// initialized.
// 3) If T is a POD and there's one initializer argument, the object is copy-
// constructed.
// 4) If T is a POD and there's more initializer arguments, it's an error.
// 5) If T is not a POD, the initializer arguments are used as constructor
// arguments.
//
// Or by the C++0x formulation:
// 1) If there's no initializer, the object is default-initialized according
// to C++0x rules.
// 2) Otherwise, the object is direct-initialized.
CXXConstructorDecl *Constructor = 0;
Expr **ConsArgs = (Expr**)ConstructorArgs.get();
unsigned NumConsArgs = ConstructorArgs.size();
if (AllocType->isDependentType()) {
// Skip all the checks.
}
// FIXME: Should check for primitive/aggregate here, not record.
else if (const RecordType *RT = AllocType->getAsRecordType()) {
// FIXME: This is incorrect for when there is an empty initializer and
// no user-defined constructor. Must zero-initialize, not default-construct.
Constructor = PerformInitializationByConstructor(
AllocType, ConsArgs, NumConsArgs,
D.getSourceRange().getBegin(),
SourceRange(D.getSourceRange().getBegin(),
ConstructorRParen),
RT->getDecl()->getDeclName(),
NumConsArgs != 0 ? IK_Direct : IK_Default);
if (!Constructor)
return ExprError();
} else {
if (!Init) {
// FIXME: Check that no subpart is const.
if (AllocType.isConstQualified())
return ExprError(Diag(StartLoc, diag::err_new_uninitialized_const)
<< D.getSourceRange());
} else if (NumConsArgs == 0) {
// Object is value-initialized. Do nothing.
} else if (NumConsArgs == 1) {
// Object is direct-initialized.
// FIXME: WHAT DeclarationName do we pass in here?
if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc,
DeclarationName() /*AllocType.getAsString()*/,
/*DirectInit=*/true))
return ExprError();
} else {
return ExprError(Diag(StartLoc,
diag::err_builtin_direct_init_more_than_one_arg)
<< SourceRange(ConstructorLParen, ConstructorRParen));
}
}
// FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
PlacementArgs.release();
ConstructorArgs.release();
return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs,
NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init,
ConsArgs, NumConsArgs, OperatorDelete, ResultType,
StartLoc, Init ? ConstructorRParen : SourceLocation()));
}
/// CheckAllocatedType - Checks that a type is suitable as the allocated type
/// in a new-expression.
/// dimension off and stores the size expression in ArraySize.
bool Sema::CheckAllocatedType(QualType AllocType, const Declarator &D)
{
// C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
// abstract class type or array thereof.
// FIXME: We don't have abstract types yet.
// FIXME: Under C++ semantics, an incomplete object type is still an object
// type. This code assumes the C semantics, where it's not.
if (!AllocType->isObjectType()) {
unsigned type; // For the select in the message.
if (AllocType->isFunctionType()) {
type = 0;
} else if(AllocType->isIncompleteType()) {
type = 1;
} else {
assert(AllocType->isReferenceType() && "Unhandled non-object type.");
type = 2;
}
Diag(D.getSourceRange().getBegin(), diag::err_bad_new_type)
<< AllocType << type << D.getSourceRange();
return true;
}
// Every dimension shall be of constant size.
unsigned i = 1;
while (const ArrayType *Array = Context.getAsArrayType(AllocType)) {
if (!Array->isConstantArrayType()) {
Diag(D.getTypeObject(i).Loc, diag::err_new_array_nonconst)
<< static_cast<Expr*>(D.getTypeObject(i).Arr.NumElts)->getSourceRange();
return true;
}
AllocType = Array->getElementType();
++i;
}
return false;
}
/// FindAllocationFunctions - Finds the overloads of operator new and delete
/// that are appropriate for the allocation.
bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
bool UseGlobal, QualType AllocType,
bool IsArray, Expr **PlaceArgs,
unsigned NumPlaceArgs,
FunctionDecl *&OperatorNew,
FunctionDecl *&OperatorDelete)
{
// --- Choosing an allocation function ---
// C++ 5.3.4p8 - 14 & 18
// 1) If UseGlobal is true, only look in the global scope. Else, also look
// in the scope of the allocated class.
// 2) If an array size is given, look for operator new[], else look for
// operator new.
// 3) The first argument is always size_t. Append the arguments from the
// placement form.
// FIXME: Also find the appropriate delete operator.
llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
// We don't care about the actual value of this argument.
// FIXME: Should the Sema create the expression and embed it in the syntax
// tree? Or should the consumer just recalculate the value?
AllocArgs[0] = new (Context) IntegerLiteral(llvm::APInt::getNullValue(
Context.Target.getPointerWidth(0)),
Context.getSizeType(),
SourceLocation());
std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
IsArray ? OO_Array_New : OO_New);
if (AllocType->isRecordType() && !UseGlobal) {
CXXRecordDecl *Record
= cast<CXXRecordDecl>(AllocType->getAsRecordType()->getDecl());
// FIXME: We fail to find inherited overloads.
if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
AllocArgs.size(), Record, /*AllowMissing=*/true,
OperatorNew))
return true;
}
if (!OperatorNew) {
// Didn't find a member overload. Look for a global one.
DeclareGlobalNewDelete();
DeclContext *TUDecl = Context.getTranslationUnitDecl();
if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
OperatorNew))
return true;
}
// FIXME: This is leaked on error. But so much is currently in Sema that it's
// easier to clean it in one go.
AllocArgs[0]->Destroy(Context);
return false;
}
/// FindAllocationOverload - Find an fitting overload for the allocation
/// function in the specified scope.
bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
DeclarationName Name, Expr** Args,
unsigned NumArgs, DeclContext *Ctx,
bool AllowMissing, FunctionDecl *&Operator)
{
DeclContext::lookup_iterator Alloc, AllocEnd;
llvm::tie(Alloc, AllocEnd) = Ctx->lookup(Name);
if (Alloc == AllocEnd) {
if (AllowMissing)
return false;
return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
<< Name << Range;
}
OverloadCandidateSet Candidates;
for (; Alloc != AllocEnd; ++Alloc) {
// Even member operator new/delete are implicitly treated as
// static, so don't use AddMemberCandidate.
if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*Alloc))
AddOverloadCandidate(Fn, Args, NumArgs, Candidates,
/*SuppressUserConversions=*/false);
}
// Do the resolution.
OverloadCandidateSet::iterator Best;
switch(BestViableFunction(Candidates, Best)) {
case OR_Success: {
// Got one!
FunctionDecl *FnDecl = Best->Function;
// The first argument is size_t, and the first parameter must be size_t,
// too. This is checked on declaration and can be assumed. (It can't be
// asserted on, though, since invalid decls are left in there.)
for (unsigned i = 1; i < NumArgs; ++i) {
// FIXME: Passing word to diagnostic.
if (PerformCopyInitialization(Args[i-1],
FnDecl->getParamDecl(i)->getType(),
"passing"))
return true;
}
Operator = FnDecl;
return false;
}
case OR_No_Viable_Function:
if (AllowMissing)
return false;
Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
<< Name << Range;
PrintOverloadCandidates(Candidates, /*OnlyViable=*/false);
return true;
case OR_Ambiguous:
Diag(StartLoc, diag::err_ovl_ambiguous_call)
<< Name << Range;
PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
return true;
case OR_Deleted:
Diag(StartLoc, diag::err_ovl_deleted_call)
<< Best->Function->isDeleted()
<< Name << Range;
PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
return true;
}
assert(false && "Unreachable, bad result from BestViableFunction");
return true;
}
/// DeclareGlobalNewDelete - Declare the global forms of operator new and
/// delete. These are:
/// @code
/// void* operator new(std::size_t) throw(std::bad_alloc);
/// void* operator new[](std::size_t) throw(std::bad_alloc);
/// void operator delete(void *) throw();
/// void operator delete[](void *) throw();
/// @endcode
/// Note that the placement and nothrow forms of new are *not* implicitly
/// declared. Their use requires including \<new\>.
void Sema::DeclareGlobalNewDelete()
{
if (GlobalNewDeleteDeclared)
return;
GlobalNewDeleteDeclared = true;
QualType VoidPtr = Context.getPointerType(Context.VoidTy);
QualType SizeT = Context.getSizeType();
// FIXME: Exception specifications are not added.
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_New),
VoidPtr, SizeT);
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
VoidPtr, SizeT);
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_Delete),
Context.VoidTy, VoidPtr);
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
Context.VoidTy, VoidPtr);
}
/// DeclareGlobalAllocationFunction - Declares a single implicit global
/// allocation function if it doesn't already exist.
void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
QualType Return, QualType Argument)
{
DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
// Check if this function is already declared.
{
DeclContext::lookup_iterator Alloc, AllocEnd;
for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
Alloc != AllocEnd; ++Alloc) {
// FIXME: Do we need to check for default arguments here?
FunctionDecl *Func = cast<FunctionDecl>(*Alloc);
if (Func->getNumParams() == 1 &&
Context.getCanonicalType(Func->getParamDecl(0)->getType())==Argument)
return;
}
}
QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0);
FunctionDecl *Alloc =
FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
FnType, FunctionDecl::None, false, true,
SourceLocation());
Alloc->setImplicit();
ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
0, Argument, VarDecl::None, 0);
Alloc->setParams(Context, &Param, 1);
// FIXME: Also add this declaration to the IdentifierResolver, but
// make sure it is at the end of the chain to coincide with the
// global scope.
((DeclContext *)TUScope->getEntity())->addDecl(Alloc);
}
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
/// @code ::delete ptr; @endcode
/// or
/// @code delete [] ptr; @endcode
Action::OwningExprResult
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
bool ArrayForm, ExprArg Operand)
{
// C++ 5.3.5p1: "The operand shall have a pointer type, or a class type
// having a single conversion function to a pointer type. The result has
// type void."
// DR599 amends "pointer type" to "pointer to object type" in both cases.
Expr *Ex = (Expr *)Operand.get();
if (!Ex->isTypeDependent()) {
QualType Type = Ex->getType();
if (Type->isRecordType()) {
// FIXME: Find that one conversion function and amend the type.
}
if (!Type->isPointerType())
return ExprError(Diag(StartLoc, diag::err_delete_operand)
<< Type << Ex->getSourceRange());
QualType Pointee = Type->getAsPointerType()->getPointeeType();
if (!Pointee->isVoidType() &&
RequireCompleteType(StartLoc, Pointee, diag::warn_delete_incomplete,
Ex->getSourceRange()))
return ExprError();
else if (!Pointee->isObjectType())
return ExprError(Diag(StartLoc, diag::err_delete_operand)
<< Type << Ex->getSourceRange());
// FIXME: Look up the correct operator delete overload and pass a pointer
// along.
// FIXME: Check access and ambiguity of operator delete and destructor.
}
Operand.release();
return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
0, Ex, StartLoc));
}
/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
/// C++ if/switch/while/for statement.
/// e.g: "if (int x = f()) {...}"
Action::OwningExprResult
Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc,
Declarator &D,
SourceLocation EqualLoc,
ExprArg AssignExprVal) {
assert(AssignExprVal.get() && "Null assignment expression");
// C++ 6.4p2:
// The declarator shall not specify a function or an array.
// The type-specifier-seq shall not contain typedef and shall not declare a
// new class or enumeration.
assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
"Parser allowed 'typedef' as storage class of condition decl.");
QualType Ty = GetTypeForDeclarator(D, S);
if (Ty->isFunctionType()) { // The declarator shall not specify a function...
// We exit without creating a CXXConditionDeclExpr because a FunctionDecl
// would be created and CXXConditionDeclExpr wants a VarDecl.
return ExprError(Diag(StartLoc, diag::err_invalid_use_of_function_type)
<< SourceRange(StartLoc, EqualLoc));
} else if (Ty->isArrayType()) { // ...or an array.
Diag(StartLoc, diag::err_invalid_use_of_array_type)
<< SourceRange(StartLoc, EqualLoc);
} else if (const RecordType *RT = Ty->getAsRecordType()) {
RecordDecl *RD = RT->getDecl();
// The type-specifier-seq shall not declare a new class...
if (RD->isDefinition() && (RD->getIdentifier() == 0 || S->isDeclScope(RD)))
Diag(RD->getLocation(), diag::err_type_defined_in_condition);
} else if (const EnumType *ET = Ty->getAsEnumType()) {
EnumDecl *ED = ET->getDecl();
// ...or enumeration.
if (ED->isDefinition() && (ED->getIdentifier() == 0 || S->isDeclScope(ED)))
Diag(ED->getLocation(), diag::err_type_defined_in_condition);
}
DeclTy *Dcl = ActOnDeclarator(S, D, 0);
if (!Dcl)
return ExprError();
AddInitializerToDecl(Dcl, move(AssignExprVal));
// Mark this variable as one that is declared within a conditional.
if (VarDecl *VD = dyn_cast<VarDecl>((Decl *)Dcl))
VD->setDeclaredInCondition(true);
return Owned(new (Context) CXXConditionDeclExpr(StartLoc, EqualLoc,
cast<VarDecl>(static_cast<Decl *>(Dcl))));
}
/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
// C++ 6.4p4:
// The value of a condition that is an initialized declaration in a statement
// other than a switch statement is the value of the declared variable
// implicitly converted to type bool. If that conversion is ill-formed, the
// program is ill-formed.
// The value of a condition that is an expression is the value of the
// expression, implicitly converted to bool.
//
return PerformContextuallyConvertToBool(CondExpr);
}
/// Helper function to determine whether this is the (deprecated) C++
/// conversion from a string literal to a pointer to non-const char or
/// non-const wchar_t (for narrow and wide string literals,
/// respectively).
bool
Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
// Look inside the implicit cast, if it exists.
if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
From = Cast->getSubExpr();
// A string literal (2.13.4) that is not a wide string literal can
// be converted to an rvalue of type "pointer to char"; a wide
// string literal can be converted to an rvalue of type "pointer
// to wchar_t" (C++ 4.2p2).
if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
if (const PointerType *ToPtrType = ToType->getAsPointerType())
if (const BuiltinType *ToPointeeType
= ToPtrType->getPointeeType()->getAsBuiltinType()) {
// This conversion is considered only when there is an
// explicit appropriate pointer target type (C++ 4.2p2).
if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 &&
((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
(!StrLit->isWide() &&
(ToPointeeType->getKind() == BuiltinType::Char_U ||
ToPointeeType->getKind() == BuiltinType::Char_S))))
return true;
}
return false;
}
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType. Returns true if there was an
/// error, false otherwise. The expression From is replaced with the
/// converted expression. Flavor is the kind of conversion we're
/// performing, used in the error message. If @p AllowExplicit,
/// explicit user-defined conversions are permitted.
bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
const char *Flavor, bool AllowExplicit)
{
ImplicitConversionSequence ICS = TryImplicitConversion(From, ToType, false,
AllowExplicit);
return PerformImplicitConversion(From, ToType, ICS, Flavor);
}
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType using the pre-computed implicit
/// conversion sequence ICS. Returns true if there was an error, false
/// otherwise. The expression From is replaced with the converted
/// expression. Flavor is the kind of conversion we're performing,
/// used in the error message.
bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
const ImplicitConversionSequence &ICS,
const char* Flavor) {
switch (ICS.ConversionKind) {
case ImplicitConversionSequence::StandardConversion:
if (PerformImplicitConversion(From, ToType, ICS.Standard, Flavor))
return true;
break;
case ImplicitConversionSequence::UserDefinedConversion:
// FIXME: This is, of course, wrong. We'll need to actually call
// the constructor or conversion operator, and then cope with the
// standard conversions.
ImpCastExprToType(From, ToType.getNonReferenceType(),
ToType->isReferenceType());
return false;
case ImplicitConversionSequence::EllipsisConversion:
assert(false && "Cannot perform an ellipsis conversion");
return false;
case ImplicitConversionSequence::BadConversion:
return true;
}
// Everything went well.
return false;
}
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType by following the standard
/// conversion sequence SCS. Returns true if there was an error, false
/// otherwise. The expression From is replaced with the converted
/// expression. Flavor is the context in which we're performing this
/// conversion, for use in error messages.
bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
const StandardConversionSequence& SCS,
const char *Flavor) {
// Overall FIXME: we are recomputing too many types here and doing
// far too much extra work. What this means is that we need to keep
// track of more information that is computed when we try the
// implicit conversion initially, so that we don't need to recompute
// anything here.
QualType FromType = From->getType();
if (SCS.CopyConstructor) {
// FIXME: Create a temporary object by calling the copy
// constructor.
ImpCastExprToType(From, ToType.getNonReferenceType(),
ToType->isReferenceType());
return false;
}
// Perform the first implicit conversion.
switch (SCS.First) {
case ICK_Identity:
case ICK_Lvalue_To_Rvalue:
// Nothing to do.
break;
case ICK_Array_To_Pointer:
FromType = Context.getArrayDecayedType(FromType);
ImpCastExprToType(From, FromType);
break;
case ICK_Function_To_Pointer:
if (Context.getCanonicalType(FromType) == Context.OverloadTy) {
FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true);
if (!Fn)
return true;
if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
return true;
FixOverloadedFunctionReference(From, Fn);
FromType = From->getType();
}
FromType = Context.getPointerType(FromType);
ImpCastExprToType(From, FromType);
break;
default:
assert(false && "Improper first standard conversion");
break;
}
// Perform the second implicit conversion
switch (SCS.Second) {
case ICK_Identity:
// Nothing to do.
break;
case ICK_Integral_Promotion:
case ICK_Floating_Promotion:
case ICK_Complex_Promotion:
case ICK_Integral_Conversion:
case ICK_Floating_Conversion:
case ICK_Complex_Conversion:
case ICK_Floating_Integral:
case ICK_Complex_Real:
case ICK_Compatible_Conversion:
// FIXME: Go deeper to get the unqualified type!
FromType = ToType.getUnqualifiedType();
ImpCastExprToType(From, FromType);
break;
case ICK_Pointer_Conversion:
if (SCS.IncompatibleObjC) {
// Diagnose incompatible Objective-C conversions
Diag(From->getSourceRange().getBegin(),
diag::ext_typecheck_convert_incompatible_pointer)
<< From->getType() << ToType << Flavor
<< From->getSourceRange();
}
if (CheckPointerConversion(From, ToType))
return true;
ImpCastExprToType(From, ToType);
break;
case ICK_Pointer_Member:
if (CheckMemberPointerConversion(From, ToType))
return true;
ImpCastExprToType(From, ToType);
break;
case ICK_Boolean_Conversion:
FromType = Context.BoolTy;
ImpCastExprToType(From, FromType);
break;
default:
assert(false && "Improper second standard conversion");
break;
}
switch (SCS.Third) {
case ICK_Identity:
// Nothing to do.
break;
case ICK_Qualification:
ImpCastExprToType(From, ToType.getNonReferenceType(),
ToType->isReferenceType());
break;
default:
assert(false && "Improper second standard conversion");
break;
}
return false;
}
Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
SourceLocation KWLoc,
SourceLocation LParen,
TypeTy *Ty,
SourceLocation RParen) {
// FIXME: Some of the type traits have requirements. Interestingly, only the
// __is_base_of requirement is explicitly stated to be diagnosed. Indeed,
// G++ accepts __is_pod(Incomplete) without complaints, and claims that the
// type is indeed a POD.
// There is no point in eagerly computing the value. The traits are designed
// to be used from type trait templates, so Ty will be a template parameter
// 99% of the time.
return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT,
QualType::getFromOpaquePtr(Ty),
RParen, Context.BoolTy));
}
QualType Sema::CheckPointerToMemberOperands(
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect)
{
const char *OpSpelling = isIndirect ? "->*" : ".*";
// C++ 5.5p2
// The binary operator .* [p3: ->*] binds its second operand, which shall
// be of type "pointer to member of T" (where T is a completely-defined
// class type) [...]
QualType RType = rex->getType();
const MemberPointerType *MemPtr = RType->getAsMemberPointerType();
if (!MemPtr || MemPtr->getClass()->isIncompleteType()) {
Diag(Loc, diag::err_bad_memptr_rhs)
<< OpSpelling << RType << rex->getSourceRange();
return QualType();
}
QualType Class(MemPtr->getClass(), 0);
// C++ 5.5p2
// [...] to its first operand, which shall be of class T or of a class of
// which T is an unambiguous and accessible base class. [p3: a pointer to
// such a class]
QualType LType = lex->getType();
if (isIndirect) {
if (const PointerType *Ptr = LType->getAsPointerType())
LType = Ptr->getPointeeType().getNonReferenceType();
else {
Diag(Loc, diag::err_bad_memptr_lhs)
<< OpSpelling << 1 << LType << lex->getSourceRange();
return QualType();
}
}
if (Context.getCanonicalType(Class).getUnqualifiedType() !=
Context.getCanonicalType(LType).getUnqualifiedType()) {
BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
/*DetectVirtual=*/false);
// FIXME: Would it be useful to print full ambiguity paths,
// or is that overkill?
if (!IsDerivedFrom(LType, Class, Paths) ||
Paths.isAmbiguous(Context.getCanonicalType(Class))) {
Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
<< (int)isIndirect << lex->getType() << lex->getSourceRange();
return QualType();
}
}
// C++ 5.5p2
// The result is an object or a function of the type specified by the
// second operand.
// The cv qualifiers are the union of those in the pointer and the left side,
// in accordance with 5.5p5 and 5.2.5.
// FIXME: This returns a dereferenced member function pointer as a normal
// function type. However, the only operation valid on such functions is
// calling them. There's also a GCC extension to get a function pointer to
// the thing, which is another complication, because this type - unlike the
// type that is the result of this expression - takes the class as the first
// argument.
// We probably need a "MemberFunctionClosureType" or something like that.
QualType Result = MemPtr->getPointeeType();
if (LType.isConstQualified())
Result.addConst();
if (LType.isVolatileQualified())
Result.addVolatile();
return Result;
}