clang-1/lib/Serialization/ModuleManager.cpp

398 строки
13 KiB
C++

//===--- ModuleManager.cpp - Module Manager ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ModuleManager class, which manages a set of loaded
// modules for the ASTReader.
//
//===----------------------------------------------------------------------===//
#include "clang/Serialization/ModuleManager.h"
#include "clang/Serialization/GlobalModuleIndex.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#ifndef NDEBUG
#include "llvm/Support/GraphWriter.h"
#endif
using namespace clang;
using namespace serialization;
ModuleFile *ModuleManager::lookup(StringRef Name) {
const FileEntry *Entry = FileMgr.getFile(Name);
return Modules[Entry];
}
llvm::MemoryBuffer *ModuleManager::lookupBuffer(StringRef Name) {
const FileEntry *Entry = FileMgr.getFile(Name);
return InMemoryBuffers[Entry];
}
std::pair<ModuleFile *, bool>
ModuleManager::addModule(StringRef FileName, ModuleKind Type,
SourceLocation ImportLoc, ModuleFile *ImportedBy,
unsigned Generation, std::string &ErrorStr) {
const FileEntry *Entry = FileMgr.getFile(FileName);
if (!Entry && FileName != "-") {
ErrorStr = "file not found";
return std::make_pair(static_cast<ModuleFile*>(0), false);
}
// Check whether we already loaded this module, before
ModuleFile *&ModuleEntry = Modules[Entry];
bool NewModule = false;
if (!ModuleEntry) {
// Allocate a new module.
ModuleFile *New = new ModuleFile(Type, Generation);
New->Index = Chain.size();
New->FileName = FileName.str();
New->File = Entry;
New->ImportLoc = ImportLoc;
Chain.push_back(New);
NewModule = true;
ModuleEntry = New;
// Load the contents of the module
if (llvm::MemoryBuffer *Buffer = lookupBuffer(FileName)) {
// The buffer was already provided for us.
assert(Buffer && "Passed null buffer");
New->Buffer.reset(Buffer);
} else {
// Open the AST file.
llvm::error_code ec;
if (FileName == "-") {
ec = llvm::MemoryBuffer::getSTDIN(New->Buffer);
if (ec)
ErrorStr = ec.message();
} else
New->Buffer.reset(FileMgr.getBufferForFile(FileName, &ErrorStr));
if (!New->Buffer)
return std::make_pair(static_cast<ModuleFile*>(0), false);
}
// Initialize the stream
New->StreamFile.init((const unsigned char *)New->Buffer->getBufferStart(),
(const unsigned char *)New->Buffer->getBufferEnd()); }
if (ImportedBy) {
ModuleEntry->ImportedBy.insert(ImportedBy);
ImportedBy->Imports.insert(ModuleEntry);
} else {
if (!ModuleEntry->DirectlyImported)
ModuleEntry->ImportLoc = ImportLoc;
ModuleEntry->DirectlyImported = true;
}
return std::make_pair(ModuleEntry, NewModule);
}
namespace {
/// \brief Predicate that checks whether a module file occurs within
/// the given set.
class IsInModuleFileSet : public std::unary_function<ModuleFile *, bool> {
llvm::SmallPtrSet<ModuleFile *, 4> &Removed;
public:
IsInModuleFileSet(llvm::SmallPtrSet<ModuleFile *, 4> &Removed)
: Removed(Removed) { }
bool operator()(ModuleFile *MF) const {
return Removed.count(MF);
}
};
}
void ModuleManager::removeModules(ModuleIterator first, ModuleIterator last) {
if (first == last)
return;
// Collect the set of module file pointers that we'll be removing.
llvm::SmallPtrSet<ModuleFile *, 4> victimSet(first, last);
// Remove any references to the now-destroyed modules.
IsInModuleFileSet checkInSet(victimSet);
for (unsigned i = 0, n = Chain.size(); i != n; ++i) {
Chain[i]->ImportedBy.remove_if(checkInSet);
}
// Delete the modules and erase them from the various structures.
for (ModuleIterator victim = first; victim != last; ++victim) {
Modules.erase((*victim)->File);
delete *victim;
}
// Remove the modules from the chain.
Chain.erase(first, last);
}
void ModuleManager::addInMemoryBuffer(StringRef FileName,
llvm::MemoryBuffer *Buffer) {
const FileEntry *Entry = FileMgr.getVirtualFile(FileName,
Buffer->getBufferSize(), 0);
InMemoryBuffers[Entry] = Buffer;
}
void ModuleManager::updateModulesInCommonWithGlobalIndex() {
ModulesInCommonWithGlobalIndex.clear();
if (!GlobalIndex)
return;
// Collect the set of modules known to the global index.
SmallVector<const FileEntry *, 16> KnownModules;
GlobalIndex->getKnownModules(KnownModules);
// Map those modules to AST files known to the module manager.
for (unsigned I = 0, N = KnownModules.size(); I != N; ++I) {
llvm::DenseMap<const FileEntry *, ModuleFile *>::iterator Known
= Modules.find(KnownModules[I]);
if (Known == Modules.end())
continue;
ModulesInCommonWithGlobalIndex.push_back(Known->second);
}
}
ModuleManager::VisitState *ModuleManager::allocateVisitState() {
// Fast path: if we have a cached state, use it.
if (FirstVisitState) {
VisitState *Result = FirstVisitState;
FirstVisitState = FirstVisitState->NextState;
Result->NextState = 0;
return Result;
}
// Allocate and return a new state.
return new VisitState(size());
}
void ModuleManager::returnVisitState(VisitState *State) {
assert(State->NextState == 0 && "Visited state is in list?");
State->NextState = FirstVisitState;
FirstVisitState = State;
}
void ModuleManager::setGlobalIndex(GlobalModuleIndex *Index) {
GlobalIndex = Index;
updateModulesInCommonWithGlobalIndex();
}
ModuleManager::ModuleManager(FileManager &FileMgr)
: FileMgr(FileMgr), GlobalIndex(), FirstVisitState(0) { }
ModuleManager::~ModuleManager() {
for (unsigned i = 0, e = Chain.size(); i != e; ++i)
delete Chain[e - i - 1];
delete FirstVisitState;
}
void
ModuleManager::visit(bool (*Visitor)(ModuleFile &M, void *UserData),
void *UserData,
llvm::SmallPtrSet<const FileEntry *, 4> *ModuleFilesHit) {
// If the visitation order vector is the wrong size, recompute the order.
if (VisitOrder.size() != Chain.size()) {
unsigned N = size();
VisitOrder.clear();
VisitOrder.reserve(N);
// Record the number of incoming edges for each module. When we
// encounter a module with no incoming edges, push it into the queue
// to seed the queue.
SmallVector<ModuleFile *, 4> Queue;
Queue.reserve(N);
llvm::SmallVector<unsigned, 4> UnusedIncomingEdges;
UnusedIncomingEdges.reserve(size());
for (ModuleIterator M = begin(), MEnd = end(); M != MEnd; ++M) {
if (unsigned Size = (*M)->ImportedBy.size())
UnusedIncomingEdges.push_back(Size);
else {
UnusedIncomingEdges.push_back(0);
Queue.push_back(*M);
}
}
// Traverse the graph, making sure to visit a module before visiting any
// of its dependencies.
unsigned QueueStart = 0;
while (QueueStart < Queue.size()) {
ModuleFile *CurrentModule = Queue[QueueStart++];
VisitOrder.push_back(CurrentModule);
// For any module that this module depends on, push it on the
// stack (if it hasn't already been marked as visited).
for (llvm::SetVector<ModuleFile *>::iterator
M = CurrentModule->Imports.begin(),
MEnd = CurrentModule->Imports.end();
M != MEnd; ++M) {
// Remove our current module as an impediment to visiting the
// module we depend on. If we were the last unvisited module
// that depends on this particular module, push it into the
// queue to be visited.
unsigned &NumUnusedEdges = UnusedIncomingEdges[(*M)->Index];
if (NumUnusedEdges && (--NumUnusedEdges == 0))
Queue.push_back(*M);
}
}
assert(VisitOrder.size() == N && "Visitation order is wrong?");
// We may need to update the set of modules we have in common with the
// global module index, since modules could have been added to the module
// manager since we loaded the global module index.
updateModulesInCommonWithGlobalIndex();
delete FirstVisitState;
FirstVisitState = 0;
}
VisitState *State = allocateVisitState();
unsigned VisitNumber = State->NextVisitNumber++;
// If the caller has provided us with a hit-set that came from the global
// module index, mark every module file in common with the global module
// index that is *not* in that set as 'visited'.
if (ModuleFilesHit && !ModulesInCommonWithGlobalIndex.empty()) {
for (unsigned I = 0, N = ModulesInCommonWithGlobalIndex.size(); I != N; ++I)
{
ModuleFile *M = ModulesInCommonWithGlobalIndex[I];
if (!ModuleFilesHit->count(M->File))
State->VisitNumber[M->Index] = VisitNumber;
}
}
for (unsigned I = 0, N = VisitOrder.size(); I != N; ++I) {
ModuleFile *CurrentModule = VisitOrder[I];
// Should we skip this module file?
if (State->VisitNumber[CurrentModule->Index] == VisitNumber)
continue;
// Visit the module.
assert(State->VisitNumber[CurrentModule->Index] == VisitNumber - 1);
State->VisitNumber[CurrentModule->Index] = VisitNumber;
if (!Visitor(*CurrentModule, UserData))
continue;
// The visitor has requested that cut off visitation of any
// module that the current module depends on. To indicate this
// behavior, we mark all of the reachable modules as having been visited.
ModuleFile *NextModule = CurrentModule;
do {
// For any module that this module depends on, push it on the
// stack (if it hasn't already been marked as visited).
for (llvm::SetVector<ModuleFile *>::iterator
M = NextModule->Imports.begin(),
MEnd = NextModule->Imports.end();
M != MEnd; ++M) {
if (State->VisitNumber[(*M)->Index] != VisitNumber) {
State->Stack.push_back(*M);
State->VisitNumber[(*M)->Index] = VisitNumber;
}
}
if (State->Stack.empty())
break;
// Pop the next module off the stack.
NextModule = State->Stack.back();
State->Stack.pop_back();
} while (true);
}
returnVisitState(State);
}
/// \brief Perform a depth-first visit of the current module.
static bool visitDepthFirst(ModuleFile &M,
bool (*Visitor)(ModuleFile &M, bool Preorder,
void *UserData),
void *UserData,
SmallVectorImpl<bool> &Visited) {
// Preorder visitation
if (Visitor(M, /*Preorder=*/true, UserData))
return true;
// Visit children
for (llvm::SetVector<ModuleFile *>::iterator IM = M.Imports.begin(),
IMEnd = M.Imports.end();
IM != IMEnd; ++IM) {
if (Visited[(*IM)->Index])
continue;
Visited[(*IM)->Index] = true;
if (visitDepthFirst(**IM, Visitor, UserData, Visited))
return true;
}
// Postorder visitation
return Visitor(M, /*Preorder=*/false, UserData);
}
void ModuleManager::visitDepthFirst(bool (*Visitor)(ModuleFile &M, bool Preorder,
void *UserData),
void *UserData) {
SmallVector<bool, 16> Visited(size(), false);
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
if (Visited[Chain[I]->Index])
continue;
Visited[Chain[I]->Index] = true;
if (::visitDepthFirst(*Chain[I], Visitor, UserData, Visited))
return;
}
}
#ifndef NDEBUG
namespace llvm {
template<>
struct GraphTraits<ModuleManager> {
typedef ModuleFile NodeType;
typedef llvm::SetVector<ModuleFile *>::const_iterator ChildIteratorType;
typedef ModuleManager::ModuleConstIterator nodes_iterator;
static ChildIteratorType child_begin(NodeType *Node) {
return Node->Imports.begin();
}
static ChildIteratorType child_end(NodeType *Node) {
return Node->Imports.end();
}
static nodes_iterator nodes_begin(const ModuleManager &Manager) {
return Manager.begin();
}
static nodes_iterator nodes_end(const ModuleManager &Manager) {
return Manager.end();
}
};
template<>
struct DOTGraphTraits<ModuleManager> : public DefaultDOTGraphTraits {
explicit DOTGraphTraits(bool IsSimple = false)
: DefaultDOTGraphTraits(IsSimple) { }
static bool renderGraphFromBottomUp() {
return true;
}
std::string getNodeLabel(ModuleFile *M, const ModuleManager&) {
return llvm::sys::path::stem(M->FileName);
}
};
}
void ModuleManager::viewGraph() {
llvm::ViewGraph(*this, "Modules");
}
#endif