зеркало из https://github.com/microsoft/clang-1.git
524 строки
21 KiB
C++
524 строки
21 KiB
C++
//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides Sema routines for C++ exception specification testing.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
|
|
namespace clang {
|
|
|
|
static const FunctionProtoType *GetUnderlyingFunction(QualType T)
|
|
{
|
|
if (const PointerType *PtrTy = T->getAs<PointerType>())
|
|
T = PtrTy->getPointeeType();
|
|
else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
|
|
T = RefTy->getPointeeType();
|
|
else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
|
|
T = MPTy->getPointeeType();
|
|
return T->getAs<FunctionProtoType>();
|
|
}
|
|
|
|
/// CheckSpecifiedExceptionType - Check if the given type is valid in an
|
|
/// exception specification. Incomplete types, or pointers to incomplete types
|
|
/// other than void are not allowed.
|
|
bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {
|
|
|
|
// This check (and the similar one below) deals with issue 437, that changes
|
|
// C++ 9.2p2 this way:
|
|
// Within the class member-specification, the class is regarded as complete
|
|
// within function bodies, default arguments, exception-specifications, and
|
|
// constructor ctor-initializers (including such things in nested classes).
|
|
if (T->isRecordType() && T->getAs<RecordType>()->isBeingDefined())
|
|
return false;
|
|
|
|
// C++ 15.4p2: A type denoted in an exception-specification shall not denote
|
|
// an incomplete type.
|
|
if (RequireCompleteType(Range.getBegin(), T,
|
|
PDiag(diag::err_incomplete_in_exception_spec) << /*direct*/0 << Range))
|
|
return true;
|
|
|
|
// C++ 15.4p2: A type denoted in an exception-specification shall not denote
|
|
// an incomplete type a pointer or reference to an incomplete type, other
|
|
// than (cv) void*.
|
|
int kind;
|
|
if (const PointerType* IT = T->getAs<PointerType>()) {
|
|
T = IT->getPointeeType();
|
|
kind = 1;
|
|
} else if (const ReferenceType* IT = T->getAs<ReferenceType>()) {
|
|
T = IT->getPointeeType();
|
|
kind = 2;
|
|
} else
|
|
return false;
|
|
|
|
// Again as before
|
|
if (T->isRecordType() && T->getAs<RecordType>()->isBeingDefined())
|
|
return false;
|
|
|
|
if (!T->isVoidType() && RequireCompleteType(Range.getBegin(), T,
|
|
PDiag(diag::err_incomplete_in_exception_spec) << kind << Range))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
|
|
/// to member to a function with an exception specification. This means that
|
|
/// it is invalid to add another level of indirection.
|
|
bool Sema::CheckDistantExceptionSpec(QualType T) {
|
|
if (const PointerType *PT = T->getAs<PointerType>())
|
|
T = PT->getPointeeType();
|
|
else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
|
|
T = PT->getPointeeType();
|
|
else
|
|
return false;
|
|
|
|
const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
|
|
if (!FnT)
|
|
return false;
|
|
|
|
return FnT->hasExceptionSpec();
|
|
}
|
|
|
|
bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
|
|
bool MissingExceptionSpecification = false;
|
|
bool MissingEmptyExceptionSpecification = false;
|
|
if (!CheckEquivalentExceptionSpec(PDiag(diag::err_mismatched_exception_spec),
|
|
PDiag(diag::note_previous_declaration),
|
|
Old->getType()->getAs<FunctionProtoType>(),
|
|
Old->getLocation(),
|
|
New->getType()->getAs<FunctionProtoType>(),
|
|
New->getLocation(),
|
|
&MissingExceptionSpecification,
|
|
&MissingEmptyExceptionSpecification))
|
|
return false;
|
|
|
|
// The failure was something other than an empty exception
|
|
// specification; return an error.
|
|
if (!MissingExceptionSpecification && !MissingEmptyExceptionSpecification)
|
|
return true;
|
|
|
|
// The new function declaration is only missing an empty exception
|
|
// specification "throw()". If the throw() specification came from a
|
|
// function in a system header that has C linkage, just add an empty
|
|
// exception specification to the "new" declaration. This is an
|
|
// egregious workaround for glibc, which adds throw() specifications
|
|
// to many libc functions as an optimization. Unfortunately, that
|
|
// optimization isn't permitted by the C++ standard, so we're forced
|
|
// to work around it here.
|
|
if (MissingEmptyExceptionSpecification &&
|
|
isa<FunctionProtoType>(New->getType()) &&
|
|
(Old->getLocation().isInvalid() ||
|
|
Context.getSourceManager().isInSystemHeader(Old->getLocation())) &&
|
|
Old->isExternC()) {
|
|
const FunctionProtoType *NewProto
|
|
= cast<FunctionProtoType>(New->getType());
|
|
QualType NewType = Context.getFunctionType(NewProto->getResultType(),
|
|
NewProto->arg_type_begin(),
|
|
NewProto->getNumArgs(),
|
|
NewProto->isVariadic(),
|
|
NewProto->getTypeQuals(),
|
|
true, false, 0, 0,
|
|
NewProto->getExtInfo());
|
|
New->setType(NewType);
|
|
return false;
|
|
}
|
|
|
|
if (MissingExceptionSpecification && isa<FunctionProtoType>(New->getType())) {
|
|
const FunctionProtoType *NewProto
|
|
= cast<FunctionProtoType>(New->getType());
|
|
const FunctionProtoType *OldProto
|
|
= Old->getType()->getAs<FunctionProtoType>();
|
|
|
|
// Update the type of the function with the appropriate exception
|
|
// specification.
|
|
QualType NewType = Context.getFunctionType(NewProto->getResultType(),
|
|
NewProto->arg_type_begin(),
|
|
NewProto->getNumArgs(),
|
|
NewProto->isVariadic(),
|
|
NewProto->getTypeQuals(),
|
|
OldProto->hasExceptionSpec(),
|
|
OldProto->hasAnyExceptionSpec(),
|
|
OldProto->getNumExceptions(),
|
|
OldProto->exception_begin(),
|
|
NewProto->getExtInfo());
|
|
New->setType(NewType);
|
|
|
|
// If exceptions are disabled, suppress the warning about missing
|
|
// exception specifications for new and delete operators.
|
|
if (!getLangOptions().Exceptions) {
|
|
switch (New->getDeclName().getCXXOverloadedOperator()) {
|
|
case OO_New:
|
|
case OO_Array_New:
|
|
case OO_Delete:
|
|
case OO_Array_Delete:
|
|
if (New->getDeclContext()->isTranslationUnit())
|
|
return false;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Warn about the lack of exception specification.
|
|
llvm::SmallString<128> ExceptionSpecString;
|
|
llvm::raw_svector_ostream OS(ExceptionSpecString);
|
|
OS << "throw(";
|
|
bool OnFirstException = true;
|
|
for (FunctionProtoType::exception_iterator E = OldProto->exception_begin(),
|
|
EEnd = OldProto->exception_end();
|
|
E != EEnd;
|
|
++E) {
|
|
if (OnFirstException)
|
|
OnFirstException = false;
|
|
else
|
|
OS << ", ";
|
|
|
|
OS << E->getAsString(Context.PrintingPolicy);
|
|
}
|
|
OS << ")";
|
|
OS.flush();
|
|
|
|
SourceLocation AfterParenLoc;
|
|
if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
|
|
TypeLoc TL = TSInfo->getTypeLoc();
|
|
if (const FunctionTypeLoc *FTLoc = dyn_cast<FunctionTypeLoc>(&TL))
|
|
AfterParenLoc = PP.getLocForEndOfToken(FTLoc->getRParenLoc());
|
|
}
|
|
|
|
if (AfterParenLoc.isInvalid())
|
|
Diag(New->getLocation(), diag::warn_missing_exception_specification)
|
|
<< New << OS.str();
|
|
else {
|
|
// FIXME: This will get more complicated with C++0x
|
|
// late-specified return types.
|
|
Diag(New->getLocation(), diag::warn_missing_exception_specification)
|
|
<< New << OS.str()
|
|
<< FixItHint::CreateInsertion(AfterParenLoc, " " + OS.str().str());
|
|
}
|
|
|
|
if (!Old->getLocation().isInvalid())
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
|
|
return false;
|
|
}
|
|
|
|
Diag(New->getLocation(), diag::err_mismatched_exception_spec);
|
|
Diag(Old->getLocation(), diag::note_previous_declaration);
|
|
return true;
|
|
}
|
|
|
|
/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
|
|
/// exception specifications. Exception specifications are equivalent if
|
|
/// they allow exactly the same set of exception types. It does not matter how
|
|
/// that is achieved. See C++ [except.spec]p2.
|
|
bool Sema::CheckEquivalentExceptionSpec(
|
|
const FunctionProtoType *Old, SourceLocation OldLoc,
|
|
const FunctionProtoType *New, SourceLocation NewLoc) {
|
|
return CheckEquivalentExceptionSpec(
|
|
PDiag(diag::err_mismatched_exception_spec),
|
|
PDiag(diag::note_previous_declaration),
|
|
Old, OldLoc, New, NewLoc);
|
|
}
|
|
|
|
/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
|
|
/// exception specifications. Exception specifications are equivalent if
|
|
/// they allow exactly the same set of exception types. It does not matter how
|
|
/// that is achieved. See C++ [except.spec]p2.
|
|
bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
|
|
const PartialDiagnostic & NoteID,
|
|
const FunctionProtoType *Old,
|
|
SourceLocation OldLoc,
|
|
const FunctionProtoType *New,
|
|
SourceLocation NewLoc,
|
|
bool *MissingExceptionSpecification,
|
|
bool *MissingEmptyExceptionSpecification) {
|
|
// Just completely ignore this under -fno-exceptions.
|
|
if (!getLangOptions().Exceptions)
|
|
return false;
|
|
|
|
if (MissingExceptionSpecification)
|
|
*MissingExceptionSpecification = false;
|
|
|
|
if (MissingEmptyExceptionSpecification)
|
|
*MissingEmptyExceptionSpecification = false;
|
|
|
|
bool OldAny = !Old->hasExceptionSpec() || Old->hasAnyExceptionSpec();
|
|
bool NewAny = !New->hasExceptionSpec() || New->hasAnyExceptionSpec();
|
|
if (getLangOptions().Microsoft) {
|
|
// Treat throw(whatever) as throw(...) to be compatible with MS headers.
|
|
if (New->hasExceptionSpec() && New->getNumExceptions() > 0)
|
|
NewAny = true;
|
|
if (Old->hasExceptionSpec() && Old->getNumExceptions() > 0)
|
|
OldAny = true;
|
|
}
|
|
|
|
if (OldAny && NewAny)
|
|
return false;
|
|
if (OldAny || NewAny) {
|
|
if (MissingExceptionSpecification && Old->hasExceptionSpec() &&
|
|
!New->hasExceptionSpec()) {
|
|
// The old type has an exception specification of some sort, but
|
|
// the new type does not.
|
|
*MissingExceptionSpecification = true;
|
|
|
|
if (MissingEmptyExceptionSpecification &&
|
|
!Old->hasAnyExceptionSpec() && Old->getNumExceptions() == 0) {
|
|
// The old type has a throw() exception specification and the
|
|
// new type has no exception specification, and the caller asked
|
|
// to handle this itself.
|
|
*MissingEmptyExceptionSpecification = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Diag(NewLoc, DiagID);
|
|
if (NoteID.getDiagID() != 0)
|
|
Diag(OldLoc, NoteID);
|
|
return true;
|
|
}
|
|
|
|
bool Success = true;
|
|
// Both have a definite exception spec. Collect the first set, then compare
|
|
// to the second.
|
|
llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
|
|
for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
|
|
E = Old->exception_end(); I != E; ++I)
|
|
OldTypes.insert(Context.getCanonicalType(*I).getUnqualifiedType());
|
|
|
|
for (FunctionProtoType::exception_iterator I = New->exception_begin(),
|
|
E = New->exception_end(); I != E && Success; ++I) {
|
|
CanQualType TypePtr = Context.getCanonicalType(*I).getUnqualifiedType();
|
|
if(OldTypes.count(TypePtr))
|
|
NewTypes.insert(TypePtr);
|
|
else
|
|
Success = false;
|
|
}
|
|
|
|
Success = Success && OldTypes.size() == NewTypes.size();
|
|
|
|
if (Success) {
|
|
return false;
|
|
}
|
|
Diag(NewLoc, DiagID);
|
|
if (NoteID.getDiagID() != 0)
|
|
Diag(OldLoc, NoteID);
|
|
return true;
|
|
}
|
|
|
|
/// CheckExceptionSpecSubset - Check whether the second function type's
|
|
/// exception specification is a subset (or equivalent) of the first function
|
|
/// type. This is used by override and pointer assignment checks.
|
|
bool Sema::CheckExceptionSpecSubset(
|
|
const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
|
|
const FunctionProtoType *Superset, SourceLocation SuperLoc,
|
|
const FunctionProtoType *Subset, SourceLocation SubLoc) {
|
|
|
|
// Just auto-succeed under -fno-exceptions.
|
|
if (!getLangOptions().Exceptions)
|
|
return false;
|
|
|
|
// FIXME: As usual, we could be more specific in our error messages, but
|
|
// that better waits until we've got types with source locations.
|
|
|
|
if (!SubLoc.isValid())
|
|
SubLoc = SuperLoc;
|
|
|
|
// If superset contains everything, we're done.
|
|
if (!Superset->hasExceptionSpec() || Superset->hasAnyExceptionSpec())
|
|
return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
|
|
|
|
// It does not. If the subset contains everything, we've failed.
|
|
if (!Subset->hasExceptionSpec() || Subset->hasAnyExceptionSpec()) {
|
|
Diag(SubLoc, DiagID);
|
|
if (NoteID.getDiagID() != 0)
|
|
Diag(SuperLoc, NoteID);
|
|
return true;
|
|
}
|
|
|
|
// Neither contains everything. Do a proper comparison.
|
|
for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
|
|
SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
|
|
// Take one type from the subset.
|
|
QualType CanonicalSubT = Context.getCanonicalType(*SubI);
|
|
// Unwrap pointers and references so that we can do checks within a class
|
|
// hierarchy. Don't unwrap member pointers; they don't have hierarchy
|
|
// conversions on the pointee.
|
|
bool SubIsPointer = false;
|
|
if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
|
|
CanonicalSubT = RefTy->getPointeeType();
|
|
if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
|
|
CanonicalSubT = PtrTy->getPointeeType();
|
|
SubIsPointer = true;
|
|
}
|
|
bool SubIsClass = CanonicalSubT->isRecordType();
|
|
CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType();
|
|
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
|
/*DetectVirtual=*/false);
|
|
|
|
bool Contained = false;
|
|
// Make sure it's in the superset.
|
|
for (FunctionProtoType::exception_iterator SuperI =
|
|
Superset->exception_begin(), SuperE = Superset->exception_end();
|
|
SuperI != SuperE; ++SuperI) {
|
|
QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
|
|
// SubT must be SuperT or derived from it, or pointer or reference to
|
|
// such types.
|
|
if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
|
|
CanonicalSuperT = RefTy->getPointeeType();
|
|
if (SubIsPointer) {
|
|
if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
|
|
CanonicalSuperT = PtrTy->getPointeeType();
|
|
else {
|
|
continue;
|
|
}
|
|
}
|
|
CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType();
|
|
// If the types are the same, move on to the next type in the subset.
|
|
if (CanonicalSubT == CanonicalSuperT) {
|
|
Contained = true;
|
|
break;
|
|
}
|
|
|
|
// Otherwise we need to check the inheritance.
|
|
if (!SubIsClass || !CanonicalSuperT->isRecordType())
|
|
continue;
|
|
|
|
Paths.clear();
|
|
if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
|
|
continue;
|
|
|
|
if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT)))
|
|
continue;
|
|
|
|
// Do this check from a context without privileges.
|
|
switch (CheckBaseClassAccess(SourceLocation(),
|
|
CanonicalSuperT, CanonicalSubT,
|
|
Paths.front(),
|
|
/*Diagnostic*/ 0,
|
|
/*ForceCheck*/ true,
|
|
/*ForceUnprivileged*/ true)) {
|
|
case AR_accessible: break;
|
|
case AR_inaccessible: continue;
|
|
case AR_dependent:
|
|
llvm_unreachable("access check dependent for unprivileged context");
|
|
break;
|
|
case AR_delayed:
|
|
llvm_unreachable("access check delayed in non-declaration");
|
|
break;
|
|
}
|
|
|
|
Contained = true;
|
|
break;
|
|
}
|
|
if (!Contained) {
|
|
Diag(SubLoc, DiagID);
|
|
if (NoteID.getDiagID() != 0)
|
|
Diag(SuperLoc, NoteID);
|
|
return true;
|
|
}
|
|
}
|
|
// We've run half the gauntlet.
|
|
return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
|
|
}
|
|
|
|
static bool CheckSpecForTypesEquivalent(Sema &S,
|
|
const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
|
|
QualType Target, SourceLocation TargetLoc,
|
|
QualType Source, SourceLocation SourceLoc)
|
|
{
|
|
const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
|
|
if (!TFunc)
|
|
return false;
|
|
const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
|
|
if (!SFunc)
|
|
return false;
|
|
|
|
return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
|
|
SFunc, SourceLoc);
|
|
}
|
|
|
|
/// CheckParamExceptionSpec - Check if the parameter and return types of the
|
|
/// two functions have equivalent exception specs. This is part of the
|
|
/// assignment and override compatibility check. We do not check the parameters
|
|
/// of parameter function pointers recursively, as no sane programmer would
|
|
/// even be able to write such a function type.
|
|
bool Sema::CheckParamExceptionSpec(const PartialDiagnostic & NoteID,
|
|
const FunctionProtoType *Target, SourceLocation TargetLoc,
|
|
const FunctionProtoType *Source, SourceLocation SourceLoc)
|
|
{
|
|
if (CheckSpecForTypesEquivalent(*this,
|
|
PDiag(diag::err_deep_exception_specs_differ) << 0,
|
|
PDiag(),
|
|
Target->getResultType(), TargetLoc,
|
|
Source->getResultType(), SourceLoc))
|
|
return true;
|
|
|
|
// We shouldn't even be testing this unless the arguments are otherwise
|
|
// compatible.
|
|
assert(Target->getNumArgs() == Source->getNumArgs() &&
|
|
"Functions have different argument counts.");
|
|
for (unsigned i = 0, E = Target->getNumArgs(); i != E; ++i) {
|
|
if (CheckSpecForTypesEquivalent(*this,
|
|
PDiag(diag::err_deep_exception_specs_differ) << 1,
|
|
PDiag(),
|
|
Target->getArgType(i), TargetLoc,
|
|
Source->getArgType(i), SourceLoc))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType)
|
|
{
|
|
// First we check for applicability.
|
|
// Target type must be a function, function pointer or function reference.
|
|
const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
|
|
if (!ToFunc)
|
|
return false;
|
|
|
|
// SourceType must be a function or function pointer.
|
|
const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
|
|
if (!FromFunc)
|
|
return false;
|
|
|
|
// Now we've got the correct types on both sides, check their compatibility.
|
|
// This means that the source of the conversion can only throw a subset of
|
|
// the exceptions of the target, and any exception specs on arguments or
|
|
// return types must be equivalent.
|
|
return CheckExceptionSpecSubset(PDiag(diag::err_incompatible_exception_specs),
|
|
PDiag(), ToFunc,
|
|
From->getSourceRange().getBegin(),
|
|
FromFunc, SourceLocation());
|
|
}
|
|
|
|
bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old) {
|
|
return CheckExceptionSpecSubset(PDiag(diag::err_override_exception_spec),
|
|
PDiag(diag::note_overridden_virtual_function),
|
|
Old->getType()->getAs<FunctionProtoType>(),
|
|
Old->getLocation(),
|
|
New->getType()->getAs<FunctionProtoType>(),
|
|
New->getLocation());
|
|
}
|
|
|
|
} // end namespace clang
|