зеркало из https://github.com/microsoft/clang-1.git
3282 строки
124 KiB
C++
3282 строки
124 KiB
C++
//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Expr nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenFunction.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CGCall.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "CGRecordLayout.h"
|
|
#include "CodeGenModule.h"
|
|
#include "TargetInfo.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/Support/ConvertUTF.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Miscellaneous Helper Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
|
|
unsigned addressSpace =
|
|
cast<llvm::PointerType>(value->getType())->getAddressSpace();
|
|
|
|
llvm::PointerType *destType = Int8PtrTy;
|
|
if (addressSpace)
|
|
destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
|
|
|
|
if (value->getType() == destType) return value;
|
|
return Builder.CreateBitCast(value, destType);
|
|
}
|
|
|
|
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
|
|
/// block.
|
|
llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
|
|
const Twine &Name) {
|
|
if (!Builder.isNamePreserving())
|
|
return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
|
|
return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
|
|
}
|
|
|
|
void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
|
|
llvm::Value *Init) {
|
|
llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
|
|
llvm::BasicBlock *Block = AllocaInsertPt->getParent();
|
|
Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
|
|
}
|
|
|
|
llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
|
|
const Twine &Name) {
|
|
llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
|
|
// FIXME: Should we prefer the preferred type alignment here?
|
|
CharUnits Align = getContext().getTypeAlignInChars(Ty);
|
|
Alloc->setAlignment(Align.getQuantity());
|
|
return Alloc;
|
|
}
|
|
|
|
llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
|
|
const Twine &Name) {
|
|
llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
|
|
// FIXME: Should we prefer the preferred type alignment here?
|
|
CharUnits Align = getContext().getTypeAlignInChars(Ty);
|
|
Alloc->setAlignment(Align.getQuantity());
|
|
return Alloc;
|
|
}
|
|
|
|
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
|
|
/// expression and compare the result against zero, returning an Int1Ty value.
|
|
llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
|
|
if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
|
|
llvm::Value *MemPtr = EmitScalarExpr(E);
|
|
return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
|
|
}
|
|
|
|
QualType BoolTy = getContext().BoolTy;
|
|
if (!E->getType()->isAnyComplexType())
|
|
return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
|
|
|
|
return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
|
|
}
|
|
|
|
/// EmitIgnoredExpr - Emit code to compute the specified expression,
|
|
/// ignoring the result.
|
|
void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
|
|
if (E->isRValue())
|
|
return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
|
|
|
|
// Just emit it as an l-value and drop the result.
|
|
EmitLValue(E);
|
|
}
|
|
|
|
/// EmitAnyExpr - Emit code to compute the specified expression which
|
|
/// can have any type. The result is returned as an RValue struct.
|
|
/// If this is an aggregate expression, AggSlot indicates where the
|
|
/// result should be returned.
|
|
RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
|
|
AggValueSlot aggSlot,
|
|
bool ignoreResult) {
|
|
switch (getEvaluationKind(E->getType())) {
|
|
case TEK_Scalar:
|
|
return RValue::get(EmitScalarExpr(E, ignoreResult));
|
|
case TEK_Complex:
|
|
return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
|
|
case TEK_Aggregate:
|
|
if (!ignoreResult && aggSlot.isIgnored())
|
|
aggSlot = CreateAggTemp(E->getType(), "agg-temp");
|
|
EmitAggExpr(E, aggSlot);
|
|
return aggSlot.asRValue();
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
|
|
/// always be accessible even if no aggregate location is provided.
|
|
RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
|
|
AggValueSlot AggSlot = AggValueSlot::ignored();
|
|
|
|
if (hasAggregateEvaluationKind(E->getType()))
|
|
AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
|
|
return EmitAnyExpr(E, AggSlot);
|
|
}
|
|
|
|
/// EmitAnyExprToMem - Evaluate an expression into a given memory
|
|
/// location.
|
|
void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
|
|
llvm::Value *Location,
|
|
Qualifiers Quals,
|
|
bool IsInit) {
|
|
// FIXME: This function should take an LValue as an argument.
|
|
switch (getEvaluationKind(E->getType())) {
|
|
case TEK_Complex:
|
|
EmitComplexExprIntoLValue(E,
|
|
MakeNaturalAlignAddrLValue(Location, E->getType()),
|
|
/*isInit*/ false);
|
|
return;
|
|
|
|
case TEK_Aggregate: {
|
|
CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
|
|
EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
|
|
AggValueSlot::IsDestructed_t(IsInit),
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsAliased_t(!IsInit)));
|
|
return;
|
|
}
|
|
|
|
case TEK_Scalar: {
|
|
RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
|
|
LValue LV = MakeAddrLValue(Location, E->getType());
|
|
EmitStoreThroughLValue(RV, LV);
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
static void
|
|
pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
|
|
const Expr *E, llvm::Value *ReferenceTemporary) {
|
|
// Objective-C++ ARC:
|
|
// If we are binding a reference to a temporary that has ownership, we
|
|
// need to perform retain/release operations on the temporary.
|
|
//
|
|
// FIXME: This should be looking at E, not M.
|
|
if (CGF.getLangOpts().ObjCAutoRefCount &&
|
|
M->getType()->isObjCLifetimeType()) {
|
|
QualType ObjCARCReferenceLifetimeType = M->getType();
|
|
switch (Qualifiers::ObjCLifetime Lifetime =
|
|
ObjCARCReferenceLifetimeType.getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
// Carry on to normal cleanup handling.
|
|
break;
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
// Nothing to do; cleaned up by an autorelease pool.
|
|
return;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Weak:
|
|
switch (StorageDuration Duration = M->getStorageDuration()) {
|
|
case SD_Static:
|
|
// Note: we intentionally do not register a cleanup to release
|
|
// the object on program termination.
|
|
return;
|
|
|
|
case SD_Thread:
|
|
// FIXME: We should probably register a cleanup in this case.
|
|
return;
|
|
|
|
case SD_Automatic:
|
|
case SD_FullExpression:
|
|
assert(!ObjCARCReferenceLifetimeType->isArrayType());
|
|
CodeGenFunction::Destroyer *Destroy;
|
|
CleanupKind CleanupKind;
|
|
if (Lifetime == Qualifiers::OCL_Strong) {
|
|
const ValueDecl *VD = M->getExtendingDecl();
|
|
bool Precise =
|
|
VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
|
|
CleanupKind = CGF.getARCCleanupKind();
|
|
Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
|
|
: &CodeGenFunction::destroyARCStrongImprecise;
|
|
} else {
|
|
// __weak objects always get EH cleanups; otherwise, exceptions
|
|
// could cause really nasty crashes instead of mere leaks.
|
|
CleanupKind = NormalAndEHCleanup;
|
|
Destroy = &CodeGenFunction::destroyARCWeak;
|
|
}
|
|
if (Duration == SD_FullExpression)
|
|
CGF.pushDestroy(CleanupKind, ReferenceTemporary,
|
|
ObjCARCReferenceLifetimeType, *Destroy,
|
|
CleanupKind & EHCleanup);
|
|
else
|
|
CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
|
|
ObjCARCReferenceLifetimeType,
|
|
*Destroy, CleanupKind & EHCleanup);
|
|
return;
|
|
|
|
case SD_Dynamic:
|
|
llvm_unreachable("temporary cannot have dynamic storage duration");
|
|
}
|
|
llvm_unreachable("unknown storage duration");
|
|
}
|
|
}
|
|
|
|
CXXDestructorDecl *ReferenceTemporaryDtor = 0;
|
|
if (const RecordType *RT =
|
|
E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
|
|
// Get the destructor for the reference temporary.
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
if (!ClassDecl->hasTrivialDestructor())
|
|
ReferenceTemporaryDtor = ClassDecl->getDestructor();
|
|
}
|
|
|
|
if (!ReferenceTemporaryDtor)
|
|
return;
|
|
|
|
// Call the destructor for the temporary.
|
|
switch (M->getStorageDuration()) {
|
|
case SD_Static:
|
|
case SD_Thread: {
|
|
llvm::Constant *CleanupFn;
|
|
llvm::Constant *CleanupArg;
|
|
if (E->getType()->isArrayType()) {
|
|
CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
|
|
cast<llvm::Constant>(ReferenceTemporary), E->getType(),
|
|
CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions);
|
|
CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
|
|
} else {
|
|
CleanupFn =
|
|
CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
|
|
CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
|
|
}
|
|
CGF.CGM.getCXXABI().registerGlobalDtor(
|
|
CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
|
|
break;
|
|
}
|
|
|
|
case SD_FullExpression:
|
|
CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
|
|
CodeGenFunction::destroyCXXObject,
|
|
CGF.getLangOpts().Exceptions);
|
|
break;
|
|
|
|
case SD_Automatic:
|
|
CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
|
|
ReferenceTemporary, E->getType(),
|
|
CodeGenFunction::destroyCXXObject,
|
|
CGF.getLangOpts().Exceptions);
|
|
break;
|
|
|
|
case SD_Dynamic:
|
|
llvm_unreachable("temporary cannot have dynamic storage duration");
|
|
}
|
|
}
|
|
|
|
static llvm::Value *
|
|
createReferenceTemporary(CodeGenFunction &CGF,
|
|
const MaterializeTemporaryExpr *M, const Expr *Inner) {
|
|
switch (M->getStorageDuration()) {
|
|
case SD_FullExpression:
|
|
case SD_Automatic:
|
|
return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
|
|
|
|
case SD_Thread:
|
|
case SD_Static:
|
|
return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
|
|
|
|
case SD_Dynamic:
|
|
llvm_unreachable("temporary can't have dynamic storage duration");
|
|
}
|
|
llvm_unreachable("unknown storage duration");
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
|
|
const MaterializeTemporaryExpr *M) {
|
|
const Expr *E = M->GetTemporaryExpr();
|
|
|
|
if (getLangOpts().ObjCAutoRefCount &&
|
|
M->getType()->isObjCLifetimeType() &&
|
|
M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
|
|
M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
|
|
// FIXME: Fold this into the general case below.
|
|
llvm::Value *Object = createReferenceTemporary(*this, M, E);
|
|
LValue RefTempDst = MakeAddrLValue(Object, M->getType());
|
|
|
|
if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
|
|
// We should not have emitted the initializer for this temporary as a
|
|
// constant.
|
|
assert(!Var->hasInitializer());
|
|
Var->setInitializer(CGM.EmitNullConstant(E->getType()));
|
|
}
|
|
|
|
EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
|
|
|
|
pushTemporaryCleanup(*this, M, E, Object);
|
|
return RefTempDst;
|
|
}
|
|
|
|
SmallVector<const Expr *, 2> CommaLHSs;
|
|
SmallVector<SubobjectAdjustment, 2> Adjustments;
|
|
E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
|
|
|
|
for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
|
|
EmitIgnoredExpr(CommaLHSs[I]);
|
|
|
|
if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
|
|
if (opaque->getType()->isRecordType()) {
|
|
assert(Adjustments.empty());
|
|
return EmitOpaqueValueLValue(opaque);
|
|
}
|
|
}
|
|
|
|
// Create and initialize the reference temporary.
|
|
llvm::Value *Object = createReferenceTemporary(*this, M, E);
|
|
if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
|
|
// If the temporary is a global and has a constant initializer, we may
|
|
// have already initialized it.
|
|
if (!Var->hasInitializer()) {
|
|
Var->setInitializer(CGM.EmitNullConstant(E->getType()));
|
|
EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
|
|
}
|
|
} else {
|
|
EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
|
|
}
|
|
pushTemporaryCleanup(*this, M, E, Object);
|
|
|
|
// Perform derived-to-base casts and/or field accesses, to get from the
|
|
// temporary object we created (and, potentially, for which we extended
|
|
// the lifetime) to the subobject we're binding the reference to.
|
|
for (unsigned I = Adjustments.size(); I != 0; --I) {
|
|
SubobjectAdjustment &Adjustment = Adjustments[I-1];
|
|
switch (Adjustment.Kind) {
|
|
case SubobjectAdjustment::DerivedToBaseAdjustment:
|
|
Object =
|
|
GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
|
|
Adjustment.DerivedToBase.BasePath->path_begin(),
|
|
Adjustment.DerivedToBase.BasePath->path_end(),
|
|
/*NullCheckValue=*/ false);
|
|
break;
|
|
|
|
case SubobjectAdjustment::FieldAdjustment: {
|
|
LValue LV = MakeAddrLValue(Object, E->getType());
|
|
LV = EmitLValueForField(LV, Adjustment.Field);
|
|
assert(LV.isSimple() &&
|
|
"materialized temporary field is not a simple lvalue");
|
|
Object = LV.getAddress();
|
|
break;
|
|
}
|
|
|
|
case SubobjectAdjustment::MemberPointerAdjustment: {
|
|
llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
|
|
Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
|
|
*this, Object, Ptr, Adjustment.Ptr.MPT);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return MakeAddrLValue(Object, M->getType());
|
|
}
|
|
|
|
RValue
|
|
CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
|
|
// Emit the expression as an lvalue.
|
|
LValue LV = EmitLValue(E);
|
|
assert(LV.isSimple());
|
|
llvm::Value *Value = LV.getAddress();
|
|
|
|
if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
|
|
// C++11 [dcl.ref]p5 (as amended by core issue 453):
|
|
// If a glvalue to which a reference is directly bound designates neither
|
|
// an existing object or function of an appropriate type nor a region of
|
|
// storage of suitable size and alignment to contain an object of the
|
|
// reference's type, the behavior is undefined.
|
|
QualType Ty = E->getType();
|
|
EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
|
|
}
|
|
|
|
return RValue::get(Value);
|
|
}
|
|
|
|
|
|
/// getAccessedFieldNo - Given an encoded value and a result number, return the
|
|
/// input field number being accessed.
|
|
unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
|
|
const llvm::Constant *Elts) {
|
|
return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
|
|
->getZExtValue();
|
|
}
|
|
|
|
/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
|
|
static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
|
|
llvm::Value *High) {
|
|
llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
|
|
llvm::Value *K47 = Builder.getInt64(47);
|
|
llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
|
|
llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
|
|
llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
|
|
llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
|
|
return Builder.CreateMul(B1, KMul);
|
|
}
|
|
|
|
void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
|
|
llvm::Value *Address,
|
|
QualType Ty, CharUnits Alignment) {
|
|
if (!SanitizePerformTypeCheck)
|
|
return;
|
|
|
|
// Don't check pointers outside the default address space. The null check
|
|
// isn't correct, the object-size check isn't supported by LLVM, and we can't
|
|
// communicate the addresses to the runtime handler for the vptr check.
|
|
if (Address->getType()->getPointerAddressSpace())
|
|
return;
|
|
|
|
llvm::Value *Cond = 0;
|
|
llvm::BasicBlock *Done = 0;
|
|
|
|
if (SanOpts->Null) {
|
|
// The glvalue must not be an empty glvalue.
|
|
Cond = Builder.CreateICmpNE(
|
|
Address, llvm::Constant::getNullValue(Address->getType()));
|
|
|
|
if (TCK == TCK_DowncastPointer) {
|
|
// When performing a pointer downcast, it's OK if the value is null.
|
|
// Skip the remaining checks in that case.
|
|
Done = createBasicBlock("null");
|
|
llvm::BasicBlock *Rest = createBasicBlock("not.null");
|
|
Builder.CreateCondBr(Cond, Rest, Done);
|
|
EmitBlock(Rest);
|
|
Cond = 0;
|
|
}
|
|
}
|
|
|
|
if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
|
|
uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
|
|
|
|
// The glvalue must refer to a large enough storage region.
|
|
// FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
|
|
// to check this.
|
|
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
|
|
llvm::Value *Min = Builder.getFalse();
|
|
llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
|
|
llvm::Value *LargeEnough =
|
|
Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
|
|
llvm::ConstantInt::get(IntPtrTy, Size));
|
|
Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
|
|
}
|
|
|
|
uint64_t AlignVal = 0;
|
|
|
|
if (SanOpts->Alignment) {
|
|
AlignVal = Alignment.getQuantity();
|
|
if (!Ty->isIncompleteType() && !AlignVal)
|
|
AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
|
|
|
|
// The glvalue must be suitably aligned.
|
|
if (AlignVal) {
|
|
llvm::Value *Align =
|
|
Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
|
|
llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
|
|
llvm::Value *Aligned =
|
|
Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
|
|
Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
|
|
}
|
|
}
|
|
|
|
if (Cond) {
|
|
llvm::Constant *StaticData[] = {
|
|
EmitCheckSourceLocation(Loc),
|
|
EmitCheckTypeDescriptor(Ty),
|
|
llvm::ConstantInt::get(SizeTy, AlignVal),
|
|
llvm::ConstantInt::get(Int8Ty, TCK)
|
|
};
|
|
EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
|
|
}
|
|
|
|
// If possible, check that the vptr indicates that there is a subobject of
|
|
// type Ty at offset zero within this object.
|
|
//
|
|
// C++11 [basic.life]p5,6:
|
|
// [For storage which does not refer to an object within its lifetime]
|
|
// The program has undefined behavior if:
|
|
// -- the [pointer or glvalue] is used to access a non-static data member
|
|
// or call a non-static member function
|
|
CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
|
|
if (SanOpts->Vptr &&
|
|
(TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
|
|
TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
|
|
RD && RD->hasDefinition() && RD->isDynamicClass()) {
|
|
// Compute a hash of the mangled name of the type.
|
|
//
|
|
// FIXME: This is not guaranteed to be deterministic! Move to a
|
|
// fingerprinting mechanism once LLVM provides one. For the time
|
|
// being the implementation happens to be deterministic.
|
|
SmallString<64> MangledName;
|
|
llvm::raw_svector_ostream Out(MangledName);
|
|
CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
|
|
Out);
|
|
llvm::hash_code TypeHash = hash_value(Out.str());
|
|
|
|
// Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
|
|
llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
|
|
llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
|
|
llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
|
|
llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
|
|
llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
|
|
|
|
llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
|
|
Hash = Builder.CreateTrunc(Hash, IntPtrTy);
|
|
|
|
// Look the hash up in our cache.
|
|
const int CacheSize = 128;
|
|
llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
|
|
llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
|
|
"__ubsan_vptr_type_cache");
|
|
llvm::Value *Slot = Builder.CreateAnd(Hash,
|
|
llvm::ConstantInt::get(IntPtrTy,
|
|
CacheSize-1));
|
|
llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
|
|
llvm::Value *CacheVal =
|
|
Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
|
|
|
|
// If the hash isn't in the cache, call a runtime handler to perform the
|
|
// hard work of checking whether the vptr is for an object of the right
|
|
// type. This will either fill in the cache and return, or produce a
|
|
// diagnostic.
|
|
llvm::Constant *StaticData[] = {
|
|
EmitCheckSourceLocation(Loc),
|
|
EmitCheckTypeDescriptor(Ty),
|
|
CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
|
|
llvm::ConstantInt::get(Int8Ty, TCK)
|
|
};
|
|
llvm::Value *DynamicData[] = { Address, Hash };
|
|
EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
|
|
"dynamic_type_cache_miss", StaticData, DynamicData,
|
|
CRK_AlwaysRecoverable);
|
|
}
|
|
|
|
if (Done) {
|
|
Builder.CreateBr(Done);
|
|
EmitBlock(Done);
|
|
}
|
|
}
|
|
|
|
/// Determine whether this expression refers to a flexible array member in a
|
|
/// struct. We disable array bounds checks for such members.
|
|
static bool isFlexibleArrayMemberExpr(const Expr *E) {
|
|
// For compatibility with existing code, we treat arrays of length 0 or
|
|
// 1 as flexible array members.
|
|
const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
|
|
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
|
|
if (CAT->getSize().ugt(1))
|
|
return false;
|
|
} else if (!isa<IncompleteArrayType>(AT))
|
|
return false;
|
|
|
|
E = E->IgnoreParens();
|
|
|
|
// A flexible array member must be the last member in the class.
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
|
|
// FIXME: If the base type of the member expr is not FD->getParent(),
|
|
// this should not be treated as a flexible array member access.
|
|
if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
|
|
RecordDecl::field_iterator FI(
|
|
DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
|
|
return ++FI == FD->getParent()->field_end();
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// If Base is known to point to the start of an array, return the length of
|
|
/// that array. Return 0 if the length cannot be determined.
|
|
static llvm::Value *getArrayIndexingBound(
|
|
CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
|
|
// For the vector indexing extension, the bound is the number of elements.
|
|
if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
|
|
IndexedType = Base->getType();
|
|
return CGF.Builder.getInt32(VT->getNumElements());
|
|
}
|
|
|
|
Base = Base->IgnoreParens();
|
|
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
|
|
if (CE->getCastKind() == CK_ArrayToPointerDecay &&
|
|
!isFlexibleArrayMemberExpr(CE->getSubExpr())) {
|
|
IndexedType = CE->getSubExpr()->getType();
|
|
const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
|
|
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
|
|
return CGF.Builder.getInt(CAT->getSize());
|
|
else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
|
|
return CGF.getVLASize(VAT).first;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
|
|
llvm::Value *Index, QualType IndexType,
|
|
bool Accessed) {
|
|
assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
|
|
|
|
QualType IndexedType;
|
|
llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
|
|
if (!Bound)
|
|
return;
|
|
|
|
bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
|
|
llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
|
|
llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
|
|
|
|
llvm::Constant *StaticData[] = {
|
|
EmitCheckSourceLocation(E->getExprLoc()),
|
|
EmitCheckTypeDescriptor(IndexedType),
|
|
EmitCheckTypeDescriptor(IndexType)
|
|
};
|
|
llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
|
|
: Builder.CreateICmpULE(IndexVal, BoundVal);
|
|
EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
|
|
}
|
|
|
|
|
|
CodeGenFunction::ComplexPairTy CodeGenFunction::
|
|
EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre) {
|
|
ComplexPairTy InVal = EmitLoadOfComplex(LV);
|
|
|
|
llvm::Value *NextVal;
|
|
if (isa<llvm::IntegerType>(InVal.first->getType())) {
|
|
uint64_t AmountVal = isInc ? 1 : -1;
|
|
NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
|
|
|
|
// Add the inc/dec to the real part.
|
|
NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
|
|
} else {
|
|
QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
|
|
llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
|
|
if (!isInc)
|
|
FVal.changeSign();
|
|
NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
|
|
|
|
// Add the inc/dec to the real part.
|
|
NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
|
|
}
|
|
|
|
ComplexPairTy IncVal(NextVal, InVal.second);
|
|
|
|
// Store the updated result through the lvalue.
|
|
EmitStoreOfComplex(IncVal, LV, /*init*/ false);
|
|
|
|
// If this is a postinc, return the value read from memory, otherwise use the
|
|
// updated value.
|
|
return isPre ? IncVal : InVal;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LValue Expression Emission
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
|
|
if (Ty->isVoidType())
|
|
return RValue::get(0);
|
|
|
|
switch (getEvaluationKind(Ty)) {
|
|
case TEK_Complex: {
|
|
llvm::Type *EltTy =
|
|
ConvertType(Ty->castAs<ComplexType>()->getElementType());
|
|
llvm::Value *U = llvm::UndefValue::get(EltTy);
|
|
return RValue::getComplex(std::make_pair(U, U));
|
|
}
|
|
|
|
// If this is a use of an undefined aggregate type, the aggregate must have an
|
|
// identifiable address. Just because the contents of the value are undefined
|
|
// doesn't mean that the address can't be taken and compared.
|
|
case TEK_Aggregate: {
|
|
llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
|
|
return RValue::getAggregate(DestPtr);
|
|
}
|
|
|
|
case TEK_Scalar:
|
|
return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
|
|
const char *Name) {
|
|
ErrorUnsupported(E, Name);
|
|
return GetUndefRValue(E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
|
|
const char *Name) {
|
|
ErrorUnsupported(E, Name);
|
|
llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
|
|
return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
|
|
LValue LV;
|
|
if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
|
|
LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
|
|
else
|
|
LV = EmitLValue(E);
|
|
if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
|
|
EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
|
|
E->getType(), LV.getAlignment());
|
|
return LV;
|
|
}
|
|
|
|
/// EmitLValue - Emit code to compute a designator that specifies the location
|
|
/// of the expression.
|
|
///
|
|
/// This can return one of two things: a simple address or a bitfield reference.
|
|
/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
|
|
/// an LLVM pointer type.
|
|
///
|
|
/// If this returns a bitfield reference, nothing about the pointee type of the
|
|
/// LLVM value is known: For example, it may not be a pointer to an integer.
|
|
///
|
|
/// If this returns a normal address, and if the lvalue's C type is fixed size,
|
|
/// this method guarantees that the returned pointer type will point to an LLVM
|
|
/// type of the same size of the lvalue's type. If the lvalue has a variable
|
|
/// length type, this is not possible.
|
|
///
|
|
LValue CodeGenFunction::EmitLValue(const Expr *E) {
|
|
switch (E->getStmtClass()) {
|
|
default: return EmitUnsupportedLValue(E, "l-value expression");
|
|
|
|
case Expr::ObjCPropertyRefExprClass:
|
|
llvm_unreachable("cannot emit a property reference directly");
|
|
|
|
case Expr::ObjCSelectorExprClass:
|
|
return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
|
|
case Expr::ObjCIsaExprClass:
|
|
return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
|
|
case Expr::BinaryOperatorClass:
|
|
return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
|
|
case Expr::CompoundAssignOperatorClass:
|
|
if (!E->getType()->isAnyComplexType())
|
|
return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
|
|
return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
|
|
case Expr::CallExprClass:
|
|
case Expr::CXXMemberCallExprClass:
|
|
case Expr::CXXOperatorCallExprClass:
|
|
case Expr::UserDefinedLiteralClass:
|
|
return EmitCallExprLValue(cast<CallExpr>(E));
|
|
case Expr::VAArgExprClass:
|
|
return EmitVAArgExprLValue(cast<VAArgExpr>(E));
|
|
case Expr::DeclRefExprClass:
|
|
return EmitDeclRefLValue(cast<DeclRefExpr>(E));
|
|
case Expr::ParenExprClass:
|
|
return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
|
|
case Expr::GenericSelectionExprClass:
|
|
return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
|
|
case Expr::PredefinedExprClass:
|
|
return EmitPredefinedLValue(cast<PredefinedExpr>(E));
|
|
case Expr::StringLiteralClass:
|
|
return EmitStringLiteralLValue(cast<StringLiteral>(E));
|
|
case Expr::ObjCEncodeExprClass:
|
|
return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
|
|
case Expr::PseudoObjectExprClass:
|
|
return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
|
|
case Expr::InitListExprClass:
|
|
return EmitInitListLValue(cast<InitListExpr>(E));
|
|
case Expr::CXXTemporaryObjectExprClass:
|
|
case Expr::CXXConstructExprClass:
|
|
return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
|
|
case Expr::CXXBindTemporaryExprClass:
|
|
return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
|
|
case Expr::CXXUuidofExprClass:
|
|
return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
|
|
case Expr::LambdaExprClass:
|
|
return EmitLambdaLValue(cast<LambdaExpr>(E));
|
|
|
|
case Expr::ExprWithCleanupsClass: {
|
|
const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
|
|
enterFullExpression(cleanups);
|
|
RunCleanupsScope Scope(*this);
|
|
return EmitLValue(cleanups->getSubExpr());
|
|
}
|
|
|
|
case Expr::CXXScalarValueInitExprClass:
|
|
return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
|
|
case Expr::CXXDefaultArgExprClass:
|
|
return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
|
|
case Expr::CXXDefaultInitExprClass: {
|
|
CXXDefaultInitExprScope Scope(*this);
|
|
return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
|
|
}
|
|
case Expr::CXXTypeidExprClass:
|
|
return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
|
|
|
|
case Expr::ObjCMessageExprClass:
|
|
return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
|
|
case Expr::ObjCIvarRefExprClass:
|
|
return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
|
|
case Expr::StmtExprClass:
|
|
return EmitStmtExprLValue(cast<StmtExpr>(E));
|
|
case Expr::UnaryOperatorClass:
|
|
return EmitUnaryOpLValue(cast<UnaryOperator>(E));
|
|
case Expr::ArraySubscriptExprClass:
|
|
return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
|
|
case Expr::ExtVectorElementExprClass:
|
|
return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
|
|
case Expr::MemberExprClass:
|
|
return EmitMemberExpr(cast<MemberExpr>(E));
|
|
case Expr::CompoundLiteralExprClass:
|
|
return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
|
|
case Expr::ConditionalOperatorClass:
|
|
return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
|
|
case Expr::BinaryConditionalOperatorClass:
|
|
return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
|
|
case Expr::ChooseExprClass:
|
|
return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
|
|
case Expr::OpaqueValueExprClass:
|
|
return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
|
|
case Expr::SubstNonTypeTemplateParmExprClass:
|
|
return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
|
|
case Expr::ImplicitCastExprClass:
|
|
case Expr::CStyleCastExprClass:
|
|
case Expr::CXXFunctionalCastExprClass:
|
|
case Expr::CXXStaticCastExprClass:
|
|
case Expr::CXXDynamicCastExprClass:
|
|
case Expr::CXXReinterpretCastExprClass:
|
|
case Expr::CXXConstCastExprClass:
|
|
case Expr::ObjCBridgedCastExprClass:
|
|
return EmitCastLValue(cast<CastExpr>(E));
|
|
|
|
case Expr::MaterializeTemporaryExprClass:
|
|
return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
|
|
}
|
|
}
|
|
|
|
/// Given an object of the given canonical type, can we safely copy a
|
|
/// value out of it based on its initializer?
|
|
static bool isConstantEmittableObjectType(QualType type) {
|
|
assert(type.isCanonical());
|
|
assert(!type->isReferenceType());
|
|
|
|
// Must be const-qualified but non-volatile.
|
|
Qualifiers qs = type.getLocalQualifiers();
|
|
if (!qs.hasConst() || qs.hasVolatile()) return false;
|
|
|
|
// Otherwise, all object types satisfy this except C++ classes with
|
|
// mutable subobjects or non-trivial copy/destroy behavior.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(type))
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
|
|
if (RD->hasMutableFields() || !RD->isTrivial())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Can we constant-emit a load of a reference to a variable of the
|
|
/// given type? This is different from predicates like
|
|
/// Decl::isUsableInConstantExpressions because we do want it to apply
|
|
/// in situations that don't necessarily satisfy the language's rules
|
|
/// for this (e.g. C++'s ODR-use rules). For example, we want to able
|
|
/// to do this with const float variables even if those variables
|
|
/// aren't marked 'constexpr'.
|
|
enum ConstantEmissionKind {
|
|
CEK_None,
|
|
CEK_AsReferenceOnly,
|
|
CEK_AsValueOrReference,
|
|
CEK_AsValueOnly
|
|
};
|
|
static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
|
|
type = type.getCanonicalType();
|
|
if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
|
|
if (isConstantEmittableObjectType(ref->getPointeeType()))
|
|
return CEK_AsValueOrReference;
|
|
return CEK_AsReferenceOnly;
|
|
}
|
|
if (isConstantEmittableObjectType(type))
|
|
return CEK_AsValueOnly;
|
|
return CEK_None;
|
|
}
|
|
|
|
/// Try to emit a reference to the given value without producing it as
|
|
/// an l-value. This is actually more than an optimization: we can't
|
|
/// produce an l-value for variables that we never actually captured
|
|
/// in a block or lambda, which means const int variables or constexpr
|
|
/// literals or similar.
|
|
CodeGenFunction::ConstantEmission
|
|
CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
|
|
ValueDecl *value = refExpr->getDecl();
|
|
|
|
// The value needs to be an enum constant or a constant variable.
|
|
ConstantEmissionKind CEK;
|
|
if (isa<ParmVarDecl>(value)) {
|
|
CEK = CEK_None;
|
|
} else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
|
|
CEK = checkVarTypeForConstantEmission(var->getType());
|
|
} else if (isa<EnumConstantDecl>(value)) {
|
|
CEK = CEK_AsValueOnly;
|
|
} else {
|
|
CEK = CEK_None;
|
|
}
|
|
if (CEK == CEK_None) return ConstantEmission();
|
|
|
|
Expr::EvalResult result;
|
|
bool resultIsReference;
|
|
QualType resultType;
|
|
|
|
// It's best to evaluate all the way as an r-value if that's permitted.
|
|
if (CEK != CEK_AsReferenceOnly &&
|
|
refExpr->EvaluateAsRValue(result, getContext())) {
|
|
resultIsReference = false;
|
|
resultType = refExpr->getType();
|
|
|
|
// Otherwise, try to evaluate as an l-value.
|
|
} else if (CEK != CEK_AsValueOnly &&
|
|
refExpr->EvaluateAsLValue(result, getContext())) {
|
|
resultIsReference = true;
|
|
resultType = value->getType();
|
|
|
|
// Failure.
|
|
} else {
|
|
return ConstantEmission();
|
|
}
|
|
|
|
// In any case, if the initializer has side-effects, abandon ship.
|
|
if (result.HasSideEffects)
|
|
return ConstantEmission();
|
|
|
|
// Emit as a constant.
|
|
llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
|
|
|
|
// Make sure we emit a debug reference to the global variable.
|
|
// This should probably fire even for
|
|
if (isa<VarDecl>(value)) {
|
|
if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
|
|
EmitDeclRefExprDbgValue(refExpr, C);
|
|
} else {
|
|
assert(isa<EnumConstantDecl>(value));
|
|
EmitDeclRefExprDbgValue(refExpr, C);
|
|
}
|
|
|
|
// If we emitted a reference constant, we need to dereference that.
|
|
if (resultIsReference)
|
|
return ConstantEmission::forReference(C);
|
|
|
|
return ConstantEmission::forValue(C);
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
|
|
return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
|
|
lvalue.getAlignment().getQuantity(),
|
|
lvalue.getType(), lvalue.getTBAAInfo(),
|
|
lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
|
|
}
|
|
|
|
static bool hasBooleanRepresentation(QualType Ty) {
|
|
if (Ty->isBooleanType())
|
|
return true;
|
|
|
|
if (const EnumType *ET = Ty->getAs<EnumType>())
|
|
return ET->getDecl()->getIntegerType()->isBooleanType();
|
|
|
|
if (const AtomicType *AT = Ty->getAs<AtomicType>())
|
|
return hasBooleanRepresentation(AT->getValueType());
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
|
|
llvm::APInt &Min, llvm::APInt &End,
|
|
bool StrictEnums) {
|
|
const EnumType *ET = Ty->getAs<EnumType>();
|
|
bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
|
|
ET && !ET->getDecl()->isFixed();
|
|
bool IsBool = hasBooleanRepresentation(Ty);
|
|
if (!IsBool && !IsRegularCPlusPlusEnum)
|
|
return false;
|
|
|
|
if (IsBool) {
|
|
Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
|
|
End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
|
|
} else {
|
|
const EnumDecl *ED = ET->getDecl();
|
|
llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
|
|
unsigned Bitwidth = LTy->getScalarSizeInBits();
|
|
unsigned NumNegativeBits = ED->getNumNegativeBits();
|
|
unsigned NumPositiveBits = ED->getNumPositiveBits();
|
|
|
|
if (NumNegativeBits) {
|
|
unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
|
|
assert(NumBits <= Bitwidth);
|
|
End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
|
|
Min = -End;
|
|
} else {
|
|
assert(NumPositiveBits <= Bitwidth);
|
|
End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
|
|
Min = llvm::APInt(Bitwidth, 0);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
|
|
llvm::APInt Min, End;
|
|
if (!getRangeForType(*this, Ty, Min, End,
|
|
CGM.getCodeGenOpts().StrictEnums))
|
|
return 0;
|
|
|
|
llvm::MDBuilder MDHelper(getLLVMContext());
|
|
return MDHelper.createRange(Min, End);
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
|
|
unsigned Alignment, QualType Ty,
|
|
llvm::MDNode *TBAAInfo,
|
|
QualType TBAABaseType,
|
|
uint64_t TBAAOffset) {
|
|
// For better performance, handle vector loads differently.
|
|
if (Ty->isVectorType()) {
|
|
llvm::Value *V;
|
|
const llvm::Type *EltTy =
|
|
cast<llvm::PointerType>(Addr->getType())->getElementType();
|
|
|
|
const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
|
|
|
|
// Handle vectors of size 3, like size 4 for better performance.
|
|
if (VTy->getNumElements() == 3) {
|
|
|
|
// Bitcast to vec4 type.
|
|
llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
|
|
4);
|
|
llvm::PointerType *ptVec4Ty =
|
|
llvm::PointerType::get(vec4Ty,
|
|
(cast<llvm::PointerType>(
|
|
Addr->getType()))->getAddressSpace());
|
|
llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
|
|
"castToVec4");
|
|
// Now load value.
|
|
llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
|
|
|
|
// Shuffle vector to get vec3.
|
|
llvm::Constant *Mask[] = {
|
|
llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
|
|
llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
|
|
llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
|
|
};
|
|
|
|
llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
|
|
V = Builder.CreateShuffleVector(LoadVal,
|
|
llvm::UndefValue::get(vec4Ty),
|
|
MaskV, "extractVec");
|
|
return EmitFromMemory(V, Ty);
|
|
}
|
|
}
|
|
|
|
// Atomic operations have to be done on integral types.
|
|
if (Ty->isAtomicType()) {
|
|
LValue lvalue = LValue::MakeAddr(Addr, Ty,
|
|
CharUnits::fromQuantity(Alignment),
|
|
getContext(), TBAAInfo);
|
|
return EmitAtomicLoad(lvalue).getScalarVal();
|
|
}
|
|
|
|
llvm::LoadInst *Load = Builder.CreateLoad(Addr);
|
|
if (Volatile)
|
|
Load->setVolatile(true);
|
|
if (Alignment)
|
|
Load->setAlignment(Alignment);
|
|
if (TBAAInfo) {
|
|
llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
|
|
TBAAOffset);
|
|
CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
|
|
}
|
|
|
|
if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
|
|
(SanOpts->Enum && Ty->getAs<EnumType>())) {
|
|
llvm::APInt Min, End;
|
|
if (getRangeForType(*this, Ty, Min, End, true)) {
|
|
--End;
|
|
llvm::Value *Check;
|
|
if (!Min)
|
|
Check = Builder.CreateICmpULE(
|
|
Load, llvm::ConstantInt::get(getLLVMContext(), End));
|
|
else {
|
|
llvm::Value *Upper = Builder.CreateICmpSLE(
|
|
Load, llvm::ConstantInt::get(getLLVMContext(), End));
|
|
llvm::Value *Lower = Builder.CreateICmpSGE(
|
|
Load, llvm::ConstantInt::get(getLLVMContext(), Min));
|
|
Check = Builder.CreateAnd(Upper, Lower);
|
|
}
|
|
// FIXME: Provide a SourceLocation.
|
|
EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
|
|
EmitCheckValue(Load), CRK_Recoverable);
|
|
}
|
|
} else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
|
|
if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
|
|
Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
|
|
|
|
return EmitFromMemory(Load, Ty);
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
|
|
// Bool has a different representation in memory than in registers.
|
|
if (hasBooleanRepresentation(Ty)) {
|
|
// This should really always be an i1, but sometimes it's already
|
|
// an i8, and it's awkward to track those cases down.
|
|
if (Value->getType()->isIntegerTy(1))
|
|
return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
|
|
assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
|
|
"wrong value rep of bool");
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
|
|
// Bool has a different representation in memory than in registers.
|
|
if (hasBooleanRepresentation(Ty)) {
|
|
assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
|
|
"wrong value rep of bool");
|
|
return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
|
|
bool Volatile, unsigned Alignment,
|
|
QualType Ty,
|
|
llvm::MDNode *TBAAInfo,
|
|
bool isInit, QualType TBAABaseType,
|
|
uint64_t TBAAOffset) {
|
|
|
|
// Handle vectors differently to get better performance.
|
|
if (Ty->isVectorType()) {
|
|
llvm::Type *SrcTy = Value->getType();
|
|
llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
|
|
// Handle vec3 special.
|
|
if (VecTy->getNumElements() == 3) {
|
|
llvm::LLVMContext &VMContext = getLLVMContext();
|
|
|
|
// Our source is a vec3, do a shuffle vector to make it a vec4.
|
|
SmallVector<llvm::Constant*, 4> Mask;
|
|
Mask.push_back(llvm::ConstantInt::get(
|
|
llvm::Type::getInt32Ty(VMContext),
|
|
0));
|
|
Mask.push_back(llvm::ConstantInt::get(
|
|
llvm::Type::getInt32Ty(VMContext),
|
|
1));
|
|
Mask.push_back(llvm::ConstantInt::get(
|
|
llvm::Type::getInt32Ty(VMContext),
|
|
2));
|
|
Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
|
|
|
|
llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
|
|
Value = Builder.CreateShuffleVector(Value,
|
|
llvm::UndefValue::get(VecTy),
|
|
MaskV, "extractVec");
|
|
SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
|
|
}
|
|
llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
|
|
if (DstPtr->getElementType() != SrcTy) {
|
|
llvm::Type *MemTy =
|
|
llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
|
|
Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
|
|
}
|
|
}
|
|
|
|
Value = EmitToMemory(Value, Ty);
|
|
|
|
if (Ty->isAtomicType()) {
|
|
EmitAtomicStore(RValue::get(Value),
|
|
LValue::MakeAddr(Addr, Ty,
|
|
CharUnits::fromQuantity(Alignment),
|
|
getContext(), TBAAInfo),
|
|
isInit);
|
|
return;
|
|
}
|
|
|
|
llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
|
|
if (Alignment)
|
|
Store->setAlignment(Alignment);
|
|
if (TBAAInfo) {
|
|
llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
|
|
TBAAOffset);
|
|
CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
|
|
bool isInit) {
|
|
EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
|
|
lvalue.getAlignment().getQuantity(), lvalue.getType(),
|
|
lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
|
|
lvalue.getTBAAOffset());
|
|
}
|
|
|
|
/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
|
|
/// method emits the address of the lvalue, then loads the result as an rvalue,
|
|
/// returning the rvalue.
|
|
RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
|
|
if (LV.isObjCWeak()) {
|
|
// load of a __weak object.
|
|
llvm::Value *AddrWeakObj = LV.getAddress();
|
|
return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
|
|
AddrWeakObj));
|
|
}
|
|
if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
|
|
llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
|
|
Object = EmitObjCConsumeObject(LV.getType(), Object);
|
|
return RValue::get(Object);
|
|
}
|
|
|
|
if (LV.isSimple()) {
|
|
assert(!LV.getType()->isFunctionType());
|
|
|
|
// Everything needs a load.
|
|
return RValue::get(EmitLoadOfScalar(LV));
|
|
}
|
|
|
|
if (LV.isVectorElt()) {
|
|
llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
|
|
LV.isVolatileQualified());
|
|
Load->setAlignment(LV.getAlignment().getQuantity());
|
|
return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
|
|
"vecext"));
|
|
}
|
|
|
|
// If this is a reference to a subset of the elements of a vector, either
|
|
// shuffle the input or extract/insert them as appropriate.
|
|
if (LV.isExtVectorElt())
|
|
return EmitLoadOfExtVectorElementLValue(LV);
|
|
|
|
assert(LV.isBitField() && "Unknown LValue type!");
|
|
return EmitLoadOfBitfieldLValue(LV);
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
|
|
const CGBitFieldInfo &Info = LV.getBitFieldInfo();
|
|
|
|
// Get the output type.
|
|
llvm::Type *ResLTy = ConvertType(LV.getType());
|
|
|
|
llvm::Value *Ptr = LV.getBitFieldAddr();
|
|
llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
|
|
"bf.load");
|
|
cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
|
|
|
|
if (Info.IsSigned) {
|
|
assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
|
|
unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
|
|
if (HighBits)
|
|
Val = Builder.CreateShl(Val, HighBits, "bf.shl");
|
|
if (Info.Offset + HighBits)
|
|
Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
|
|
} else {
|
|
if (Info.Offset)
|
|
Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
|
|
if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
|
|
Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
|
|
Info.Size),
|
|
"bf.clear");
|
|
}
|
|
Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
|
|
|
|
return RValue::get(Val);
|
|
}
|
|
|
|
// If this is a reference to a subset of the elements of a vector, create an
|
|
// appropriate shufflevector.
|
|
RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
|
|
llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
|
|
LV.isVolatileQualified());
|
|
Load->setAlignment(LV.getAlignment().getQuantity());
|
|
llvm::Value *Vec = Load;
|
|
|
|
const llvm::Constant *Elts = LV.getExtVectorElts();
|
|
|
|
// If the result of the expression is a non-vector type, we must be extracting
|
|
// a single element. Just codegen as an extractelement.
|
|
const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
|
|
if (!ExprVT) {
|
|
unsigned InIdx = getAccessedFieldNo(0, Elts);
|
|
llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
|
|
return RValue::get(Builder.CreateExtractElement(Vec, Elt));
|
|
}
|
|
|
|
// Always use shuffle vector to try to retain the original program structure
|
|
unsigned NumResultElts = ExprVT->getNumElements();
|
|
|
|
SmallVector<llvm::Constant*, 4> Mask;
|
|
for (unsigned i = 0; i != NumResultElts; ++i)
|
|
Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
|
|
|
|
llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
|
|
Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
|
|
MaskV);
|
|
return RValue::get(Vec);
|
|
}
|
|
|
|
|
|
|
|
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
|
|
/// lvalue, where both are guaranteed to the have the same type, and that type
|
|
/// is 'Ty'.
|
|
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
|
|
if (!Dst.isSimple()) {
|
|
if (Dst.isVectorElt()) {
|
|
// Read/modify/write the vector, inserting the new element.
|
|
llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
|
|
Dst.isVolatileQualified());
|
|
Load->setAlignment(Dst.getAlignment().getQuantity());
|
|
llvm::Value *Vec = Load;
|
|
Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
|
|
Dst.getVectorIdx(), "vecins");
|
|
llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
|
|
Dst.isVolatileQualified());
|
|
Store->setAlignment(Dst.getAlignment().getQuantity());
|
|
return;
|
|
}
|
|
|
|
// If this is an update of extended vector elements, insert them as
|
|
// appropriate.
|
|
if (Dst.isExtVectorElt())
|
|
return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
|
|
|
|
assert(Dst.isBitField() && "Unknown LValue type");
|
|
return EmitStoreThroughBitfieldLValue(Src, Dst);
|
|
}
|
|
|
|
// There's special magic for assigning into an ARC-qualified l-value.
|
|
if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
|
|
switch (Lifetime) {
|
|
case Qualifiers::OCL_None:
|
|
llvm_unreachable("present but none");
|
|
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
// nothing special
|
|
break;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
|
|
return;
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
|
|
return;
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
|
|
Src.getScalarVal()));
|
|
// fall into the normal path
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Dst.isObjCWeak() && !Dst.isNonGC()) {
|
|
// load of a __weak object.
|
|
llvm::Value *LvalueDst = Dst.getAddress();
|
|
llvm::Value *src = Src.getScalarVal();
|
|
CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
|
|
return;
|
|
}
|
|
|
|
if (Dst.isObjCStrong() && !Dst.isNonGC()) {
|
|
// load of a __strong object.
|
|
llvm::Value *LvalueDst = Dst.getAddress();
|
|
llvm::Value *src = Src.getScalarVal();
|
|
if (Dst.isObjCIvar()) {
|
|
assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
|
|
llvm::Type *ResultType = ConvertType(getContext().LongTy);
|
|
llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
|
|
llvm::Value *dst = RHS;
|
|
RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
|
|
llvm::Value *LHS =
|
|
Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
|
|
llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
|
|
CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
|
|
BytesBetween);
|
|
} else if (Dst.isGlobalObjCRef()) {
|
|
CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
|
|
Dst.isThreadLocalRef());
|
|
}
|
|
else
|
|
CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
|
|
return;
|
|
}
|
|
|
|
assert(Src.isScalar() && "Can't emit an agg store with this method");
|
|
EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
|
|
llvm::Value **Result) {
|
|
const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
|
|
llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
|
|
llvm::Value *Ptr = Dst.getBitFieldAddr();
|
|
|
|
// Get the source value, truncated to the width of the bit-field.
|
|
llvm::Value *SrcVal = Src.getScalarVal();
|
|
|
|
// Cast the source to the storage type and shift it into place.
|
|
SrcVal = Builder.CreateIntCast(SrcVal,
|
|
Ptr->getType()->getPointerElementType(),
|
|
/*IsSigned=*/false);
|
|
llvm::Value *MaskedVal = SrcVal;
|
|
|
|
// See if there are other bits in the bitfield's storage we'll need to load
|
|
// and mask together with source before storing.
|
|
if (Info.StorageSize != Info.Size) {
|
|
assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
|
|
llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
|
|
"bf.load");
|
|
cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
|
|
|
|
// Mask the source value as needed.
|
|
if (!hasBooleanRepresentation(Dst.getType()))
|
|
SrcVal = Builder.CreateAnd(SrcVal,
|
|
llvm::APInt::getLowBitsSet(Info.StorageSize,
|
|
Info.Size),
|
|
"bf.value");
|
|
MaskedVal = SrcVal;
|
|
if (Info.Offset)
|
|
SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
|
|
|
|
// Mask out the original value.
|
|
Val = Builder.CreateAnd(Val,
|
|
~llvm::APInt::getBitsSet(Info.StorageSize,
|
|
Info.Offset,
|
|
Info.Offset + Info.Size),
|
|
"bf.clear");
|
|
|
|
// Or together the unchanged values and the source value.
|
|
SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
|
|
} else {
|
|
assert(Info.Offset == 0);
|
|
}
|
|
|
|
// Write the new value back out.
|
|
llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
|
|
Dst.isVolatileQualified());
|
|
Store->setAlignment(Info.StorageAlignment);
|
|
|
|
// Return the new value of the bit-field, if requested.
|
|
if (Result) {
|
|
llvm::Value *ResultVal = MaskedVal;
|
|
|
|
// Sign extend the value if needed.
|
|
if (Info.IsSigned) {
|
|
assert(Info.Size <= Info.StorageSize);
|
|
unsigned HighBits = Info.StorageSize - Info.Size;
|
|
if (HighBits) {
|
|
ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
|
|
ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
|
|
}
|
|
}
|
|
|
|
ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
|
|
"bf.result.cast");
|
|
*Result = EmitFromMemory(ResultVal, Dst.getType());
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
|
|
LValue Dst) {
|
|
// This access turns into a read/modify/write of the vector. Load the input
|
|
// value now.
|
|
llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
|
|
Dst.isVolatileQualified());
|
|
Load->setAlignment(Dst.getAlignment().getQuantity());
|
|
llvm::Value *Vec = Load;
|
|
const llvm::Constant *Elts = Dst.getExtVectorElts();
|
|
|
|
llvm::Value *SrcVal = Src.getScalarVal();
|
|
|
|
if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
|
|
unsigned NumSrcElts = VTy->getNumElements();
|
|
unsigned NumDstElts =
|
|
cast<llvm::VectorType>(Vec->getType())->getNumElements();
|
|
if (NumDstElts == NumSrcElts) {
|
|
// Use shuffle vector is the src and destination are the same number of
|
|
// elements and restore the vector mask since it is on the side it will be
|
|
// stored.
|
|
SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
|
|
for (unsigned i = 0; i != NumSrcElts; ++i)
|
|
Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
|
|
|
|
llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
|
|
Vec = Builder.CreateShuffleVector(SrcVal,
|
|
llvm::UndefValue::get(Vec->getType()),
|
|
MaskV);
|
|
} else if (NumDstElts > NumSrcElts) {
|
|
// Extended the source vector to the same length and then shuffle it
|
|
// into the destination.
|
|
// FIXME: since we're shuffling with undef, can we just use the indices
|
|
// into that? This could be simpler.
|
|
SmallVector<llvm::Constant*, 4> ExtMask;
|
|
for (unsigned i = 0; i != NumSrcElts; ++i)
|
|
ExtMask.push_back(Builder.getInt32(i));
|
|
ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
|
|
llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
|
|
llvm::Value *ExtSrcVal =
|
|
Builder.CreateShuffleVector(SrcVal,
|
|
llvm::UndefValue::get(SrcVal->getType()),
|
|
ExtMaskV);
|
|
// build identity
|
|
SmallVector<llvm::Constant*, 4> Mask;
|
|
for (unsigned i = 0; i != NumDstElts; ++i)
|
|
Mask.push_back(Builder.getInt32(i));
|
|
|
|
// modify when what gets shuffled in
|
|
for (unsigned i = 0; i != NumSrcElts; ++i)
|
|
Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
|
|
llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
|
|
Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
|
|
} else {
|
|
// We should never shorten the vector
|
|
llvm_unreachable("unexpected shorten vector length");
|
|
}
|
|
} else {
|
|
// If the Src is a scalar (not a vector) it must be updating one element.
|
|
unsigned InIdx = getAccessedFieldNo(0, Elts);
|
|
llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
|
|
Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
|
|
}
|
|
|
|
llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
|
|
Dst.isVolatileQualified());
|
|
Store->setAlignment(Dst.getAlignment().getQuantity());
|
|
}
|
|
|
|
// setObjCGCLValueClass - sets class of he lvalue for the purpose of
|
|
// generating write-barries API. It is currently a global, ivar,
|
|
// or neither.
|
|
static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
|
|
LValue &LV,
|
|
bool IsMemberAccess=false) {
|
|
if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
|
|
return;
|
|
|
|
if (isa<ObjCIvarRefExpr>(E)) {
|
|
QualType ExpTy = E->getType();
|
|
if (IsMemberAccess && ExpTy->isPointerType()) {
|
|
// If ivar is a structure pointer, assigning to field of
|
|
// this struct follows gcc's behavior and makes it a non-ivar
|
|
// writer-barrier conservatively.
|
|
ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
|
|
if (ExpTy->isRecordType()) {
|
|
LV.setObjCIvar(false);
|
|
return;
|
|
}
|
|
}
|
|
LV.setObjCIvar(true);
|
|
ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
|
|
LV.setBaseIvarExp(Exp->getBase());
|
|
LV.setObjCArray(E->getType()->isArrayType());
|
|
return;
|
|
}
|
|
|
|
if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
|
|
if (VD->hasGlobalStorage()) {
|
|
LV.setGlobalObjCRef(true);
|
|
LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
|
|
}
|
|
}
|
|
LV.setObjCArray(E->getType()->isArrayType());
|
|
return;
|
|
}
|
|
|
|
if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
|
|
return;
|
|
}
|
|
|
|
if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
|
|
if (LV.isObjCIvar()) {
|
|
// If cast is to a structure pointer, follow gcc's behavior and make it
|
|
// a non-ivar write-barrier.
|
|
QualType ExpTy = E->getType();
|
|
if (ExpTy->isPointerType())
|
|
ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
|
|
if (ExpTy->isRecordType())
|
|
LV.setObjCIvar(false);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
|
|
return;
|
|
}
|
|
|
|
if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
|
|
return;
|
|
}
|
|
|
|
if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
|
|
return;
|
|
}
|
|
|
|
if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
|
|
return;
|
|
}
|
|
|
|
if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
|
|
if (LV.isObjCIvar() && !LV.isObjCArray())
|
|
// Using array syntax to assigning to what an ivar points to is not
|
|
// same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
|
|
LV.setObjCIvar(false);
|
|
else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
|
|
// Using array syntax to assigning to what global points to is not
|
|
// same as assigning to the global itself. {id *G;} G[i] = 0;
|
|
LV.setGlobalObjCRef(false);
|
|
return;
|
|
}
|
|
|
|
if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
|
|
// We don't know if member is an 'ivar', but this flag is looked at
|
|
// only in the context of LV.isObjCIvar().
|
|
LV.setObjCArray(E->getType()->isArrayType());
|
|
return;
|
|
}
|
|
}
|
|
|
|
static llvm::Value *
|
|
EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
|
|
llvm::Value *V, llvm::Type *IRType,
|
|
StringRef Name = StringRef()) {
|
|
unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
|
|
return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
|
|
}
|
|
|
|
static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
|
|
const Expr *E, const VarDecl *VD) {
|
|
llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
|
|
llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
|
|
V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
|
|
CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
|
|
QualType T = E->getType();
|
|
LValue LV;
|
|
if (VD->getType()->isReferenceType()) {
|
|
llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
|
|
LI->setAlignment(Alignment.getQuantity());
|
|
V = LI;
|
|
LV = CGF.MakeNaturalAlignAddrLValue(V, T);
|
|
} else {
|
|
LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
|
|
}
|
|
setObjCGCLValueClass(CGF.getContext(), E, LV);
|
|
return LV;
|
|
}
|
|
|
|
static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
|
|
const Expr *E, const FunctionDecl *FD) {
|
|
llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
|
|
if (!FD->hasPrototype()) {
|
|
if (const FunctionProtoType *Proto =
|
|
FD->getType()->getAs<FunctionProtoType>()) {
|
|
// Ugly case: for a K&R-style definition, the type of the definition
|
|
// isn't the same as the type of a use. Correct for this with a
|
|
// bitcast.
|
|
QualType NoProtoType =
|
|
CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
|
|
NoProtoType = CGF.getContext().getPointerType(NoProtoType);
|
|
V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
|
|
}
|
|
}
|
|
CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
|
|
return CGF.MakeAddrLValue(V, E->getType(), Alignment);
|
|
}
|
|
|
|
static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
|
|
llvm::Value *ThisValue) {
|
|
QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
|
|
LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
|
|
return CGF.EmitLValueForField(LV, FD);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
|
|
const NamedDecl *ND = E->getDecl();
|
|
CharUnits Alignment = getContext().getDeclAlign(ND);
|
|
QualType T = E->getType();
|
|
|
|
// A DeclRefExpr for a reference initialized by a constant expression can
|
|
// appear without being odr-used. Directly emit the constant initializer.
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
|
|
const Expr *Init = VD->getAnyInitializer(VD);
|
|
if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
|
|
VD->isUsableInConstantExpressions(getContext()) &&
|
|
VD->checkInitIsICE()) {
|
|
llvm::Constant *Val =
|
|
CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
|
|
assert(Val && "failed to emit reference constant expression");
|
|
// FIXME: Eventually we will want to emit vector element references.
|
|
return MakeAddrLValue(Val, T, Alignment);
|
|
}
|
|
}
|
|
|
|
// FIXME: We should be able to assert this for FunctionDecls as well!
|
|
// FIXME: We should be able to assert this for all DeclRefExprs, not just
|
|
// those with a valid source location.
|
|
assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
|
|
!E->getLocation().isValid()) &&
|
|
"Should not use decl without marking it used!");
|
|
|
|
if (ND->hasAttr<WeakRefAttr>()) {
|
|
const ValueDecl *VD = cast<ValueDecl>(ND);
|
|
llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
|
|
return MakeAddrLValue(Aliasee, T, Alignment);
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
|
|
// Check if this is a global variable.
|
|
if (VD->hasLinkage() || VD->isStaticDataMember()) {
|
|
// If it's thread_local, emit a call to its wrapper function instead.
|
|
if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
|
|
return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
|
|
return EmitGlobalVarDeclLValue(*this, E, VD);
|
|
}
|
|
|
|
bool isBlockVariable = VD->hasAttr<BlocksAttr>();
|
|
|
|
llvm::Value *V = LocalDeclMap.lookup(VD);
|
|
if (!V && VD->isStaticLocal())
|
|
V = CGM.getStaticLocalDeclAddress(VD);
|
|
|
|
// Use special handling for lambdas.
|
|
if (!V) {
|
|
if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
|
|
return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
|
|
} else if (CapturedStmtInfo) {
|
|
if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
|
|
return EmitCapturedFieldLValue(*this, FD,
|
|
CapturedStmtInfo->getContextValue());
|
|
}
|
|
|
|
assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
|
|
return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
|
|
T, Alignment);
|
|
}
|
|
|
|
assert(V && "DeclRefExpr not entered in LocalDeclMap?");
|
|
|
|
if (isBlockVariable)
|
|
V = BuildBlockByrefAddress(V, VD);
|
|
|
|
LValue LV;
|
|
if (VD->getType()->isReferenceType()) {
|
|
llvm::LoadInst *LI = Builder.CreateLoad(V);
|
|
LI->setAlignment(Alignment.getQuantity());
|
|
V = LI;
|
|
LV = MakeNaturalAlignAddrLValue(V, T);
|
|
} else {
|
|
LV = MakeAddrLValue(V, T, Alignment);
|
|
}
|
|
|
|
bool isLocalStorage = VD->hasLocalStorage();
|
|
|
|
bool NonGCable = isLocalStorage &&
|
|
!VD->getType()->isReferenceType() &&
|
|
!isBlockVariable;
|
|
if (NonGCable) {
|
|
LV.getQuals().removeObjCGCAttr();
|
|
LV.setNonGC(true);
|
|
}
|
|
|
|
bool isImpreciseLifetime =
|
|
(isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
|
|
if (isImpreciseLifetime)
|
|
LV.setARCPreciseLifetime(ARCImpreciseLifetime);
|
|
setObjCGCLValueClass(getContext(), E, LV);
|
|
return LV;
|
|
}
|
|
|
|
if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
|
|
return EmitFunctionDeclLValue(*this, E, fn);
|
|
|
|
llvm_unreachable("Unhandled DeclRefExpr");
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
|
|
// __extension__ doesn't affect lvalue-ness.
|
|
if (E->getOpcode() == UO_Extension)
|
|
return EmitLValue(E->getSubExpr());
|
|
|
|
QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
|
|
switch (E->getOpcode()) {
|
|
default: llvm_unreachable("Unknown unary operator lvalue!");
|
|
case UO_Deref: {
|
|
QualType T = E->getSubExpr()->getType()->getPointeeType();
|
|
assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
|
|
|
|
LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
|
|
LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
|
|
|
|
// We should not generate __weak write barrier on indirect reference
|
|
// of a pointer to object; as in void foo (__weak id *param); *param = 0;
|
|
// But, we continue to generate __strong write barrier on indirect write
|
|
// into a pointer to object.
|
|
if (getLangOpts().ObjC1 &&
|
|
getLangOpts().getGC() != LangOptions::NonGC &&
|
|
LV.isObjCWeak())
|
|
LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
|
|
return LV;
|
|
}
|
|
case UO_Real:
|
|
case UO_Imag: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
assert(LV.isSimple() && "real/imag on non-ordinary l-value");
|
|
llvm::Value *Addr = LV.getAddress();
|
|
|
|
// __real is valid on scalars. This is a faster way of testing that.
|
|
// __imag can only produce an rvalue on scalars.
|
|
if (E->getOpcode() == UO_Real &&
|
|
!cast<llvm::PointerType>(Addr->getType())
|
|
->getElementType()->isStructTy()) {
|
|
assert(E->getSubExpr()->getType()->isArithmeticType());
|
|
return LV;
|
|
}
|
|
|
|
assert(E->getSubExpr()->getType()->isAnyComplexType());
|
|
|
|
unsigned Idx = E->getOpcode() == UO_Imag;
|
|
return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
|
|
Idx, "idx"),
|
|
ExprTy);
|
|
}
|
|
case UO_PreInc:
|
|
case UO_PreDec: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
bool isInc = E->getOpcode() == UO_PreInc;
|
|
|
|
if (E->getType()->isAnyComplexType())
|
|
EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
|
|
else
|
|
EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
|
|
return LV;
|
|
}
|
|
}
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
|
|
return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
|
|
E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
|
|
return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
|
|
E->getType());
|
|
}
|
|
|
|
static llvm::Constant*
|
|
GetAddrOfConstantWideString(StringRef Str,
|
|
const char *GlobalName,
|
|
ASTContext &Context,
|
|
QualType Ty, SourceLocation Loc,
|
|
CodeGenModule &CGM) {
|
|
|
|
StringLiteral *SL = StringLiteral::Create(Context,
|
|
Str,
|
|
StringLiteral::Wide,
|
|
/*Pascal = */false,
|
|
Ty, Loc);
|
|
llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(CGM.getModule(), C->getType(),
|
|
!CGM.getLangOpts().WritableStrings,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
C, GlobalName);
|
|
const unsigned WideAlignment =
|
|
Context.getTypeAlignInChars(Ty).getQuantity();
|
|
GV->setAlignment(WideAlignment);
|
|
return GV;
|
|
}
|
|
|
|
static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
|
|
SmallString<32>& Target) {
|
|
Target.resize(CharByteWidth * (Source.size() + 1));
|
|
char *ResultPtr = &Target[0];
|
|
const UTF8 *ErrorPtr;
|
|
bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
|
|
(void)success;
|
|
assert(success);
|
|
Target.resize(ResultPtr - &Target[0]);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
|
|
switch (E->getIdentType()) {
|
|
default:
|
|
return EmitUnsupportedLValue(E, "predefined expression");
|
|
|
|
case PredefinedExpr::Func:
|
|
case PredefinedExpr::Function:
|
|
case PredefinedExpr::LFunction:
|
|
case PredefinedExpr::PrettyFunction: {
|
|
unsigned IdentType = E->getIdentType();
|
|
std::string GlobalVarName;
|
|
|
|
switch (IdentType) {
|
|
default: llvm_unreachable("Invalid type");
|
|
case PredefinedExpr::Func:
|
|
GlobalVarName = "__func__.";
|
|
break;
|
|
case PredefinedExpr::Function:
|
|
GlobalVarName = "__FUNCTION__.";
|
|
break;
|
|
case PredefinedExpr::LFunction:
|
|
GlobalVarName = "L__FUNCTION__.";
|
|
break;
|
|
case PredefinedExpr::PrettyFunction:
|
|
GlobalVarName = "__PRETTY_FUNCTION__.";
|
|
break;
|
|
}
|
|
|
|
StringRef FnName = CurFn->getName();
|
|
if (FnName.startswith("\01"))
|
|
FnName = FnName.substr(1);
|
|
GlobalVarName += FnName;
|
|
|
|
const Decl *CurDecl = CurCodeDecl;
|
|
if (CurDecl == 0)
|
|
CurDecl = getContext().getTranslationUnitDecl();
|
|
|
|
std::string FunctionName =
|
|
(isa<BlockDecl>(CurDecl)
|
|
? FnName.str()
|
|
: PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
|
|
CurDecl));
|
|
|
|
const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
|
|
llvm::Constant *C;
|
|
if (ElemType->isWideCharType()) {
|
|
SmallString<32> RawChars;
|
|
ConvertUTF8ToWideString(
|
|
getContext().getTypeSizeInChars(ElemType).getQuantity(),
|
|
FunctionName, RawChars);
|
|
C = GetAddrOfConstantWideString(RawChars,
|
|
GlobalVarName.c_str(),
|
|
getContext(),
|
|
E->getType(),
|
|
E->getLocation(),
|
|
CGM);
|
|
} else {
|
|
C = CGM.GetAddrOfConstantCString(FunctionName,
|
|
GlobalVarName.c_str(),
|
|
1);
|
|
}
|
|
return MakeAddrLValue(C, E->getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emit a type description suitable for use by a runtime sanitizer library. The
|
|
/// format of a type descriptor is
|
|
///
|
|
/// \code
|
|
/// { i16 TypeKind, i16 TypeInfo }
|
|
/// \endcode
|
|
///
|
|
/// followed by an array of i8 containing the type name. TypeKind is 0 for an
|
|
/// integer, 1 for a floating point value, and -1 for anything else.
|
|
llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
|
|
// FIXME: Only emit each type's descriptor once.
|
|
uint16_t TypeKind = -1;
|
|
uint16_t TypeInfo = 0;
|
|
|
|
if (T->isIntegerType()) {
|
|
TypeKind = 0;
|
|
TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
|
|
(T->isSignedIntegerType() ? 1 : 0);
|
|
} else if (T->isFloatingType()) {
|
|
TypeKind = 1;
|
|
TypeInfo = getContext().getTypeSize(T);
|
|
}
|
|
|
|
// Format the type name as if for a diagnostic, including quotes and
|
|
// optionally an 'aka'.
|
|
SmallString<32> Buffer;
|
|
CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
|
|
(intptr_t)T.getAsOpaquePtr(),
|
|
0, 0, 0, 0, 0, 0, Buffer,
|
|
ArrayRef<intptr_t>());
|
|
|
|
llvm::Constant *Components[] = {
|
|
Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
|
|
llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
|
|
};
|
|
llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
|
|
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
|
|
/*isConstant=*/true,
|
|
llvm::GlobalVariable::PrivateLinkage,
|
|
Descriptor);
|
|
GV->setUnnamedAddr(true);
|
|
return GV;
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
|
|
llvm::Type *TargetTy = IntPtrTy;
|
|
|
|
// Floating-point types which fit into intptr_t are bitcast to integers
|
|
// and then passed directly (after zero-extension, if necessary).
|
|
if (V->getType()->isFloatingPointTy()) {
|
|
unsigned Bits = V->getType()->getPrimitiveSizeInBits();
|
|
if (Bits <= TargetTy->getIntegerBitWidth())
|
|
V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
|
|
Bits));
|
|
}
|
|
|
|
// Integers which fit in intptr_t are zero-extended and passed directly.
|
|
if (V->getType()->isIntegerTy() &&
|
|
V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
|
|
return Builder.CreateZExt(V, TargetTy);
|
|
|
|
// Pointers are passed directly, everything else is passed by address.
|
|
if (!V->getType()->isPointerTy()) {
|
|
llvm::Value *Ptr = CreateTempAlloca(V->getType());
|
|
Builder.CreateStore(V, Ptr);
|
|
V = Ptr;
|
|
}
|
|
return Builder.CreatePtrToInt(V, TargetTy);
|
|
}
|
|
|
|
/// \brief Emit a representation of a SourceLocation for passing to a handler
|
|
/// in a sanitizer runtime library. The format for this data is:
|
|
/// \code
|
|
/// struct SourceLocation {
|
|
/// const char *Filename;
|
|
/// int32_t Line, Column;
|
|
/// };
|
|
/// \endcode
|
|
/// For an invalid SourceLocation, the Filename pointer is null.
|
|
llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
|
|
PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
|
|
|
|
llvm::Constant *Data[] = {
|
|
// FIXME: Only emit each file name once.
|
|
PLoc.isValid() ? cast<llvm::Constant>(
|
|
Builder.CreateGlobalStringPtr(PLoc.getFilename()))
|
|
: llvm::Constant::getNullValue(Int8PtrTy),
|
|
Builder.getInt32(PLoc.getLine()),
|
|
Builder.getInt32(PLoc.getColumn())
|
|
};
|
|
|
|
return llvm::ConstantStruct::getAnon(Data);
|
|
}
|
|
|
|
void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
|
|
ArrayRef<llvm::Constant *> StaticArgs,
|
|
ArrayRef<llvm::Value *> DynamicArgs,
|
|
CheckRecoverableKind RecoverKind) {
|
|
assert(SanOpts != &SanitizerOptions::Disabled);
|
|
|
|
if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
|
|
assert (RecoverKind != CRK_AlwaysRecoverable &&
|
|
"Runtime call required for AlwaysRecoverable kind!");
|
|
return EmitTrapCheck(Checked);
|
|
}
|
|
|
|
llvm::BasicBlock *Cont = createBasicBlock("cont");
|
|
|
|
llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
|
|
|
|
llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
|
|
|
|
// Give hint that we very much don't expect to execute the handler
|
|
// Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
|
|
llvm::MDBuilder MDHelper(getLLVMContext());
|
|
llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
|
|
Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
|
|
|
|
EmitBlock(Handler);
|
|
|
|
llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
|
|
llvm::GlobalValue *InfoPtr =
|
|
new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
|
|
llvm::GlobalVariable::PrivateLinkage, Info);
|
|
InfoPtr->setUnnamedAddr(true);
|
|
|
|
SmallVector<llvm::Value *, 4> Args;
|
|
SmallVector<llvm::Type *, 4> ArgTypes;
|
|
Args.reserve(DynamicArgs.size() + 1);
|
|
ArgTypes.reserve(DynamicArgs.size() + 1);
|
|
|
|
// Handler functions take an i8* pointing to the (handler-specific) static
|
|
// information block, followed by a sequence of intptr_t arguments
|
|
// representing operand values.
|
|
Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
|
|
ArgTypes.push_back(Int8PtrTy);
|
|
for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
|
|
Args.push_back(EmitCheckValue(DynamicArgs[i]));
|
|
ArgTypes.push_back(IntPtrTy);
|
|
}
|
|
|
|
bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
|
|
((RecoverKind == CRK_Recoverable) &&
|
|
CGM.getCodeGenOpts().SanitizeRecover);
|
|
|
|
llvm::FunctionType *FnType =
|
|
llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
|
|
llvm::AttrBuilder B;
|
|
if (!Recover) {
|
|
B.addAttribute(llvm::Attribute::NoReturn)
|
|
.addAttribute(llvm::Attribute::NoUnwind);
|
|
}
|
|
B.addAttribute(llvm::Attribute::UWTable);
|
|
|
|
// Checks that have two variants use a suffix to differentiate them
|
|
bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
|
|
!CGM.getCodeGenOpts().SanitizeRecover;
|
|
std::string FunctionName = ("__ubsan_handle_" + CheckName +
|
|
(NeedsAbortSuffix? "_abort" : "")).str();
|
|
llvm::Value *Fn =
|
|
CGM.CreateRuntimeFunction(FnType, FunctionName,
|
|
llvm::AttributeSet::get(getLLVMContext(),
|
|
llvm::AttributeSet::FunctionIndex,
|
|
B));
|
|
llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
|
|
if (Recover) {
|
|
Builder.CreateBr(Cont);
|
|
} else {
|
|
HandlerCall->setDoesNotReturn();
|
|
Builder.CreateUnreachable();
|
|
}
|
|
|
|
EmitBlock(Cont);
|
|
}
|
|
|
|
void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
|
|
llvm::BasicBlock *Cont = createBasicBlock("cont");
|
|
|
|
// If we're optimizing, collapse all calls to trap down to just one per
|
|
// function to save on code size.
|
|
if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
|
|
TrapBB = createBasicBlock("trap");
|
|
Builder.CreateCondBr(Checked, Cont, TrapBB);
|
|
EmitBlock(TrapBB);
|
|
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
|
|
llvm::CallInst *TrapCall = Builder.CreateCall(F);
|
|
TrapCall->setDoesNotReturn();
|
|
TrapCall->setDoesNotThrow();
|
|
Builder.CreateUnreachable();
|
|
} else {
|
|
Builder.CreateCondBr(Checked, Cont, TrapBB);
|
|
}
|
|
|
|
EmitBlock(Cont);
|
|
}
|
|
|
|
/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
|
|
/// array to pointer, return the array subexpression.
|
|
static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
|
|
// If this isn't just an array->pointer decay, bail out.
|
|
const CastExpr *CE = dyn_cast<CastExpr>(E);
|
|
if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
|
|
return 0;
|
|
|
|
// If this is a decay from variable width array, bail out.
|
|
const Expr *SubExpr = CE->getSubExpr();
|
|
if (SubExpr->getType()->isVariableArrayType())
|
|
return 0;
|
|
|
|
return SubExpr;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
|
|
bool Accessed) {
|
|
// The index must always be an integer, which is not an aggregate. Emit it.
|
|
llvm::Value *Idx = EmitScalarExpr(E->getIdx());
|
|
QualType IdxTy = E->getIdx()->getType();
|
|
bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
|
|
|
|
if (SanOpts->Bounds)
|
|
EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
|
|
|
|
// If the base is a vector type, then we are forming a vector element lvalue
|
|
// with this subscript.
|
|
if (E->getBase()->getType()->isVectorType()) {
|
|
// Emit the vector as an lvalue to get its address.
|
|
LValue LHS = EmitLValue(E->getBase());
|
|
assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
|
|
Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
|
|
return LValue::MakeVectorElt(LHS.getAddress(), Idx,
|
|
E->getBase()->getType(), LHS.getAlignment());
|
|
}
|
|
|
|
// Extend or truncate the index type to 32 or 64-bits.
|
|
if (Idx->getType() != IntPtrTy)
|
|
Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
|
|
|
|
// We know that the pointer points to a type of the correct size, unless the
|
|
// size is a VLA or Objective-C interface.
|
|
llvm::Value *Address = 0;
|
|
CharUnits ArrayAlignment;
|
|
if (const VariableArrayType *vla =
|
|
getContext().getAsVariableArrayType(E->getType())) {
|
|
// The base must be a pointer, which is not an aggregate. Emit
|
|
// it. It needs to be emitted first in case it's what captures
|
|
// the VLA bounds.
|
|
Address = EmitScalarExpr(E->getBase());
|
|
|
|
// The element count here is the total number of non-VLA elements.
|
|
llvm::Value *numElements = getVLASize(vla).first;
|
|
|
|
// Effectively, the multiply by the VLA size is part of the GEP.
|
|
// GEP indexes are signed, and scaling an index isn't permitted to
|
|
// signed-overflow, so we use the same semantics for our explicit
|
|
// multiply. We suppress this if overflow is not undefined behavior.
|
|
if (getLangOpts().isSignedOverflowDefined()) {
|
|
Idx = Builder.CreateMul(Idx, numElements);
|
|
Address = Builder.CreateGEP(Address, Idx, "arrayidx");
|
|
} else {
|
|
Idx = Builder.CreateNSWMul(Idx, numElements);
|
|
Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
|
|
}
|
|
} else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
|
|
// Indexing over an interface, as in "NSString *P; P[4];"
|
|
llvm::Value *InterfaceSize =
|
|
llvm::ConstantInt::get(Idx->getType(),
|
|
getContext().getTypeSizeInChars(OIT).getQuantity());
|
|
|
|
Idx = Builder.CreateMul(Idx, InterfaceSize);
|
|
|
|
// The base must be a pointer, which is not an aggregate. Emit it.
|
|
llvm::Value *Base = EmitScalarExpr(E->getBase());
|
|
Address = EmitCastToVoidPtr(Base);
|
|
Address = Builder.CreateGEP(Address, Idx, "arrayidx");
|
|
Address = Builder.CreateBitCast(Address, Base->getType());
|
|
} else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
|
|
// If this is A[i] where A is an array, the frontend will have decayed the
|
|
// base to be a ArrayToPointerDecay implicit cast. While correct, it is
|
|
// inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
|
|
// "gep x, i" here. Emit one "gep A, 0, i".
|
|
assert(Array->getType()->isArrayType() &&
|
|
"Array to pointer decay must have array source type!");
|
|
LValue ArrayLV;
|
|
// For simple multidimensional array indexing, set the 'accessed' flag for
|
|
// better bounds-checking of the base expression.
|
|
if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
|
|
ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
|
|
else
|
|
ArrayLV = EmitLValue(Array);
|
|
llvm::Value *ArrayPtr = ArrayLV.getAddress();
|
|
llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
|
|
llvm::Value *Args[] = { Zero, Idx };
|
|
|
|
// Propagate the alignment from the array itself to the result.
|
|
ArrayAlignment = ArrayLV.getAlignment();
|
|
|
|
if (getLangOpts().isSignedOverflowDefined())
|
|
Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
|
|
else
|
|
Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
|
|
} else {
|
|
// The base must be a pointer, which is not an aggregate. Emit it.
|
|
llvm::Value *Base = EmitScalarExpr(E->getBase());
|
|
if (getLangOpts().isSignedOverflowDefined())
|
|
Address = Builder.CreateGEP(Base, Idx, "arrayidx");
|
|
else
|
|
Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
|
|
}
|
|
|
|
QualType T = E->getBase()->getType()->getPointeeType();
|
|
assert(!T.isNull() &&
|
|
"CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
|
|
|
|
|
|
// Limit the alignment to that of the result type.
|
|
LValue LV;
|
|
if (!ArrayAlignment.isZero()) {
|
|
CharUnits Align = getContext().getTypeAlignInChars(T);
|
|
ArrayAlignment = std::min(Align, ArrayAlignment);
|
|
LV = MakeAddrLValue(Address, T, ArrayAlignment);
|
|
} else {
|
|
LV = MakeNaturalAlignAddrLValue(Address, T);
|
|
}
|
|
|
|
LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
|
|
|
|
if (getLangOpts().ObjC1 &&
|
|
getLangOpts().getGC() != LangOptions::NonGC) {
|
|
LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
|
|
setObjCGCLValueClass(getContext(), E, LV);
|
|
}
|
|
return LV;
|
|
}
|
|
|
|
static
|
|
llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
|
|
SmallVector<unsigned, 4> &Elts) {
|
|
SmallVector<llvm::Constant*, 4> CElts;
|
|
for (unsigned i = 0, e = Elts.size(); i != e; ++i)
|
|
CElts.push_back(Builder.getInt32(Elts[i]));
|
|
|
|
return llvm::ConstantVector::get(CElts);
|
|
}
|
|
|
|
LValue CodeGenFunction::
|
|
EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
|
|
// Emit the base vector as an l-value.
|
|
LValue Base;
|
|
|
|
// ExtVectorElementExpr's base can either be a vector or pointer to vector.
|
|
if (E->isArrow()) {
|
|
// If it is a pointer to a vector, emit the address and form an lvalue with
|
|
// it.
|
|
llvm::Value *Ptr = EmitScalarExpr(E->getBase());
|
|
const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
|
|
Base = MakeAddrLValue(Ptr, PT->getPointeeType());
|
|
Base.getQuals().removeObjCGCAttr();
|
|
} else if (E->getBase()->isGLValue()) {
|
|
// Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
|
|
// emit the base as an lvalue.
|
|
assert(E->getBase()->getType()->isVectorType());
|
|
Base = EmitLValue(E->getBase());
|
|
} else {
|
|
// Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
|
|
assert(E->getBase()->getType()->isVectorType() &&
|
|
"Result must be a vector");
|
|
llvm::Value *Vec = EmitScalarExpr(E->getBase());
|
|
|
|
// Store the vector to memory (because LValue wants an address).
|
|
llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
|
|
Builder.CreateStore(Vec, VecMem);
|
|
Base = MakeAddrLValue(VecMem, E->getBase()->getType());
|
|
}
|
|
|
|
QualType type =
|
|
E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
|
|
|
|
// Encode the element access list into a vector of unsigned indices.
|
|
SmallVector<unsigned, 4> Indices;
|
|
E->getEncodedElementAccess(Indices);
|
|
|
|
if (Base.isSimple()) {
|
|
llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
|
|
return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
|
|
Base.getAlignment());
|
|
}
|
|
assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
|
|
|
|
llvm::Constant *BaseElts = Base.getExtVectorElts();
|
|
SmallVector<llvm::Constant *, 4> CElts;
|
|
|
|
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
|
|
CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
|
|
llvm::Constant *CV = llvm::ConstantVector::get(CElts);
|
|
return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
|
|
Base.getAlignment());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
|
|
Expr *BaseExpr = E->getBase();
|
|
|
|
// If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
|
|
LValue BaseLV;
|
|
if (E->isArrow()) {
|
|
llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
|
|
QualType PtrTy = BaseExpr->getType()->getPointeeType();
|
|
EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
|
|
BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
|
|
} else
|
|
BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
|
|
|
|
NamedDecl *ND = E->getMemberDecl();
|
|
if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
|
|
LValue LV = EmitLValueForField(BaseLV, Field);
|
|
setObjCGCLValueClass(getContext(), E, LV);
|
|
return LV;
|
|
}
|
|
|
|
if (VarDecl *VD = dyn_cast<VarDecl>(ND))
|
|
return EmitGlobalVarDeclLValue(*this, E, VD);
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
|
|
return EmitFunctionDeclLValue(*this, E, FD);
|
|
|
|
llvm_unreachable("Unhandled member declaration!");
|
|
}
|
|
|
|
/// Given that we are currently emitting a lambda, emit an l-value for
|
|
/// one of its members.
|
|
LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
|
|
assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
|
|
assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
|
|
QualType LambdaTagType =
|
|
getContext().getTagDeclType(Field->getParent());
|
|
LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
|
|
return EmitLValueForField(LambdaLV, Field);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitLValueForField(LValue base,
|
|
const FieldDecl *field) {
|
|
if (field->isBitField()) {
|
|
const CGRecordLayout &RL =
|
|
CGM.getTypes().getCGRecordLayout(field->getParent());
|
|
const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
|
|
llvm::Value *Addr = base.getAddress();
|
|
unsigned Idx = RL.getLLVMFieldNo(field);
|
|
if (Idx != 0)
|
|
// For structs, we GEP to the field that the record layout suggests.
|
|
Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
|
|
// Get the access type.
|
|
llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
|
|
getLLVMContext(), Info.StorageSize,
|
|
CGM.getContext().getTargetAddressSpace(base.getType()));
|
|
if (Addr->getType() != PtrTy)
|
|
Addr = Builder.CreateBitCast(Addr, PtrTy);
|
|
|
|
QualType fieldType =
|
|
field->getType().withCVRQualifiers(base.getVRQualifiers());
|
|
return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
|
|
}
|
|
|
|
const RecordDecl *rec = field->getParent();
|
|
QualType type = field->getType();
|
|
CharUnits alignment = getContext().getDeclAlign(field);
|
|
|
|
// FIXME: It should be impossible to have an LValue without alignment for a
|
|
// complete type.
|
|
if (!base.getAlignment().isZero())
|
|
alignment = std::min(alignment, base.getAlignment());
|
|
|
|
bool mayAlias = rec->hasAttr<MayAliasAttr>();
|
|
|
|
llvm::Value *addr = base.getAddress();
|
|
unsigned cvr = base.getVRQualifiers();
|
|
bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
|
|
if (rec->isUnion()) {
|
|
// For unions, there is no pointer adjustment.
|
|
assert(!type->isReferenceType() && "union has reference member");
|
|
// TODO: handle path-aware TBAA for union.
|
|
TBAAPath = false;
|
|
} else {
|
|
// For structs, we GEP to the field that the record layout suggests.
|
|
unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
|
|
addr = Builder.CreateStructGEP(addr, idx, field->getName());
|
|
|
|
// If this is a reference field, load the reference right now.
|
|
if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
|
|
llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
|
|
if (cvr & Qualifiers::Volatile) load->setVolatile(true);
|
|
load->setAlignment(alignment.getQuantity());
|
|
|
|
// Loading the reference will disable path-aware TBAA.
|
|
TBAAPath = false;
|
|
if (CGM.shouldUseTBAA()) {
|
|
llvm::MDNode *tbaa;
|
|
if (mayAlias)
|
|
tbaa = CGM.getTBAAInfo(getContext().CharTy);
|
|
else
|
|
tbaa = CGM.getTBAAInfo(type);
|
|
CGM.DecorateInstruction(load, tbaa);
|
|
}
|
|
|
|
addr = load;
|
|
mayAlias = false;
|
|
type = refType->getPointeeType();
|
|
if (type->isIncompleteType())
|
|
alignment = CharUnits();
|
|
else
|
|
alignment = getContext().getTypeAlignInChars(type);
|
|
cvr = 0; // qualifiers don't recursively apply to referencee
|
|
}
|
|
}
|
|
|
|
// Make sure that the address is pointing to the right type. This is critical
|
|
// for both unions and structs. A union needs a bitcast, a struct element
|
|
// will need a bitcast if the LLVM type laid out doesn't match the desired
|
|
// type.
|
|
addr = EmitBitCastOfLValueToProperType(*this, addr,
|
|
CGM.getTypes().ConvertTypeForMem(type),
|
|
field->getName());
|
|
|
|
if (field->hasAttr<AnnotateAttr>())
|
|
addr = EmitFieldAnnotations(field, addr);
|
|
|
|
LValue LV = MakeAddrLValue(addr, type, alignment);
|
|
LV.getQuals().addCVRQualifiers(cvr);
|
|
if (TBAAPath) {
|
|
const ASTRecordLayout &Layout =
|
|
getContext().getASTRecordLayout(field->getParent());
|
|
// Set the base type to be the base type of the base LValue and
|
|
// update offset to be relative to the base type.
|
|
LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
|
|
LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
|
|
Layout.getFieldOffset(field->getFieldIndex()) /
|
|
getContext().getCharWidth());
|
|
}
|
|
|
|
// __weak attribute on a field is ignored.
|
|
if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
|
|
LV.getQuals().removeObjCGCAttr();
|
|
|
|
// Fields of may_alias structs act like 'char' for TBAA purposes.
|
|
// FIXME: this should get propagated down through anonymous structs
|
|
// and unions.
|
|
if (mayAlias && LV.getTBAAInfo())
|
|
LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
|
|
|
|
return LV;
|
|
}
|
|
|
|
LValue
|
|
CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
|
|
const FieldDecl *Field) {
|
|
QualType FieldType = Field->getType();
|
|
|
|
if (!FieldType->isReferenceType())
|
|
return EmitLValueForField(Base, Field);
|
|
|
|
const CGRecordLayout &RL =
|
|
CGM.getTypes().getCGRecordLayout(Field->getParent());
|
|
unsigned idx = RL.getLLVMFieldNo(Field);
|
|
llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
|
|
assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
|
|
|
|
// Make sure that the address is pointing to the right type. This is critical
|
|
// for both unions and structs. A union needs a bitcast, a struct element
|
|
// will need a bitcast if the LLVM type laid out doesn't match the desired
|
|
// type.
|
|
llvm::Type *llvmType = ConvertTypeForMem(FieldType);
|
|
V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
|
|
|
|
CharUnits Alignment = getContext().getDeclAlign(Field);
|
|
|
|
// FIXME: It should be impossible to have an LValue without alignment for a
|
|
// complete type.
|
|
if (!Base.getAlignment().isZero())
|
|
Alignment = std::min(Alignment, Base.getAlignment());
|
|
|
|
return MakeAddrLValue(V, FieldType, Alignment);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
|
|
if (E->isFileScope()) {
|
|
llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
|
|
return MakeAddrLValue(GlobalPtr, E->getType());
|
|
}
|
|
if (E->getType()->isVariablyModifiedType())
|
|
// make sure to emit the VLA size.
|
|
EmitVariablyModifiedType(E->getType());
|
|
|
|
llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
|
|
const Expr *InitExpr = E->getInitializer();
|
|
LValue Result = MakeAddrLValue(DeclPtr, E->getType());
|
|
|
|
EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
|
|
/*Init*/ true);
|
|
|
|
return Result;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
|
|
if (!E->isGLValue())
|
|
// Initializing an aggregate temporary in C++11: T{...}.
|
|
return EmitAggExprToLValue(E);
|
|
|
|
// An lvalue initializer list must be initializing a reference.
|
|
assert(E->getNumInits() == 1 && "reference init with multiple values");
|
|
return EmitLValue(E->getInit(0));
|
|
}
|
|
|
|
LValue CodeGenFunction::
|
|
EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
|
|
if (!expr->isGLValue()) {
|
|
// ?: here should be an aggregate.
|
|
assert(hasAggregateEvaluationKind(expr->getType()) &&
|
|
"Unexpected conditional operator!");
|
|
return EmitAggExprToLValue(expr);
|
|
}
|
|
|
|
OpaqueValueMapping binding(*this, expr);
|
|
|
|
const Expr *condExpr = expr->getCond();
|
|
bool CondExprBool;
|
|
if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
|
|
const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
|
|
if (!CondExprBool) std::swap(live, dead);
|
|
|
|
if (!ContainsLabel(dead))
|
|
return EmitLValue(live);
|
|
}
|
|
|
|
llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
|
|
llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
|
|
llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
|
|
|
|
ConditionalEvaluation eval(*this);
|
|
EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
|
|
|
|
// Any temporaries created here are conditional.
|
|
EmitBlock(lhsBlock);
|
|
eval.begin(*this);
|
|
LValue lhs = EmitLValue(expr->getTrueExpr());
|
|
eval.end(*this);
|
|
|
|
if (!lhs.isSimple())
|
|
return EmitUnsupportedLValue(expr, "conditional operator");
|
|
|
|
lhsBlock = Builder.GetInsertBlock();
|
|
Builder.CreateBr(contBlock);
|
|
|
|
// Any temporaries created here are conditional.
|
|
EmitBlock(rhsBlock);
|
|
eval.begin(*this);
|
|
LValue rhs = EmitLValue(expr->getFalseExpr());
|
|
eval.end(*this);
|
|
if (!rhs.isSimple())
|
|
return EmitUnsupportedLValue(expr, "conditional operator");
|
|
rhsBlock = Builder.GetInsertBlock();
|
|
|
|
EmitBlock(contBlock);
|
|
|
|
llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
|
|
"cond-lvalue");
|
|
phi->addIncoming(lhs.getAddress(), lhsBlock);
|
|
phi->addIncoming(rhs.getAddress(), rhsBlock);
|
|
return MakeAddrLValue(phi, expr->getType());
|
|
}
|
|
|
|
/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
|
|
/// type. If the cast is to a reference, we can have the usual lvalue result,
|
|
/// otherwise if a cast is needed by the code generator in an lvalue context,
|
|
/// then it must mean that we need the address of an aggregate in order to
|
|
/// access one of its members. This can happen for all the reasons that casts
|
|
/// are permitted with aggregate result, including noop aggregate casts, and
|
|
/// cast from scalar to union.
|
|
LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
|
|
switch (E->getCastKind()) {
|
|
case CK_ToVoid:
|
|
return EmitUnsupportedLValue(E, "unexpected cast lvalue");
|
|
|
|
case CK_Dependent:
|
|
llvm_unreachable("dependent cast kind in IR gen!");
|
|
|
|
case CK_BuiltinFnToFnPtr:
|
|
llvm_unreachable("builtin functions are handled elsewhere");
|
|
|
|
// These two casts are currently treated as no-ops, although they could
|
|
// potentially be real operations depending on the target's ABI.
|
|
case CK_NonAtomicToAtomic:
|
|
case CK_AtomicToNonAtomic:
|
|
|
|
case CK_NoOp:
|
|
case CK_LValueToRValue:
|
|
if (!E->getSubExpr()->Classify(getContext()).isPRValue()
|
|
|| E->getType()->isRecordType())
|
|
return EmitLValue(E->getSubExpr());
|
|
// Fall through to synthesize a temporary.
|
|
|
|
case CK_BitCast:
|
|
case CK_ArrayToPointerDecay:
|
|
case CK_FunctionToPointerDecay:
|
|
case CK_NullToMemberPointer:
|
|
case CK_NullToPointer:
|
|
case CK_IntegralToPointer:
|
|
case CK_PointerToIntegral:
|
|
case CK_PointerToBoolean:
|
|
case CK_VectorSplat:
|
|
case CK_IntegralCast:
|
|
case CK_IntegralToBoolean:
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingToBoolean:
|
|
case CK_FloatingCast:
|
|
case CK_FloatingRealToComplex:
|
|
case CK_FloatingComplexToReal:
|
|
case CK_FloatingComplexToBoolean:
|
|
case CK_FloatingComplexCast:
|
|
case CK_FloatingComplexToIntegralComplex:
|
|
case CK_IntegralRealToComplex:
|
|
case CK_IntegralComplexToReal:
|
|
case CK_IntegralComplexToBoolean:
|
|
case CK_IntegralComplexCast:
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
case CK_DerivedToBaseMemberPointer:
|
|
case CK_BaseToDerivedMemberPointer:
|
|
case CK_MemberPointerToBoolean:
|
|
case CK_ReinterpretMemberPointer:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
case CK_ARCProduceObject:
|
|
case CK_ARCConsumeObject:
|
|
case CK_ARCReclaimReturnedObject:
|
|
case CK_ARCExtendBlockObject:
|
|
case CK_CopyAndAutoreleaseBlockObject: {
|
|
// These casts only produce lvalues when we're binding a reference to a
|
|
// temporary realized from a (converted) pure rvalue. Emit the expression
|
|
// as a value, copy it into a temporary, and return an lvalue referring to
|
|
// that temporary.
|
|
llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
|
|
EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
|
|
return MakeAddrLValue(V, E->getType());
|
|
}
|
|
|
|
case CK_Dynamic: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
llvm::Value *V = LV.getAddress();
|
|
const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
|
|
return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
|
|
}
|
|
|
|
case CK_ConstructorConversion:
|
|
case CK_UserDefinedConversion:
|
|
case CK_CPointerToObjCPointerCast:
|
|
case CK_BlockPointerToObjCPointerCast:
|
|
return EmitLValue(E->getSubExpr());
|
|
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_DerivedToBase: {
|
|
const RecordType *DerivedClassTy =
|
|
E->getSubExpr()->getType()->getAs<RecordType>();
|
|
CXXRecordDecl *DerivedClassDecl =
|
|
cast<CXXRecordDecl>(DerivedClassTy->getDecl());
|
|
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
llvm::Value *This = LV.getAddress();
|
|
|
|
// Perform the derived-to-base conversion
|
|
llvm::Value *Base =
|
|
GetAddressOfBaseClass(This, DerivedClassDecl,
|
|
E->path_begin(), E->path_end(),
|
|
/*NullCheckValue=*/false);
|
|
|
|
return MakeAddrLValue(Base, E->getType());
|
|
}
|
|
case CK_ToUnion:
|
|
return EmitAggExprToLValue(E);
|
|
case CK_BaseToDerived: {
|
|
const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
|
|
CXXRecordDecl *DerivedClassDecl =
|
|
cast<CXXRecordDecl>(DerivedClassTy->getDecl());
|
|
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
|
|
// C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
|
|
// performed and the object is not of the derived type.
|
|
if (SanitizePerformTypeCheck)
|
|
EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
|
|
LV.getAddress(), E->getType());
|
|
|
|
// Perform the base-to-derived conversion
|
|
llvm::Value *Derived =
|
|
GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
|
|
E->path_begin(), E->path_end(),
|
|
/*NullCheckValue=*/false);
|
|
|
|
return MakeAddrLValue(Derived, E->getType());
|
|
}
|
|
case CK_LValueBitCast: {
|
|
// This must be a reinterpret_cast (or c-style equivalent).
|
|
const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
|
|
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
|
|
ConvertType(CE->getTypeAsWritten()));
|
|
return MakeAddrLValue(V, E->getType());
|
|
}
|
|
case CK_ObjCObjectLValueCast: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
QualType ToType = getContext().getLValueReferenceType(E->getType());
|
|
llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
|
|
ConvertType(ToType));
|
|
return MakeAddrLValue(V, E->getType());
|
|
}
|
|
case CK_ZeroToOCLEvent:
|
|
llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
|
|
}
|
|
|
|
llvm_unreachable("Unhandled lvalue cast kind?");
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitNullInitializationLValue(
|
|
const CXXScalarValueInitExpr *E) {
|
|
QualType Ty = E->getType();
|
|
LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
|
|
EmitNullInitialization(LV.getAddress(), Ty);
|
|
return LV;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
|
|
assert(OpaqueValueMappingData::shouldBindAsLValue(e));
|
|
return getOpaqueLValueMapping(e);
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitRValueForField(LValue LV,
|
|
const FieldDecl *FD) {
|
|
QualType FT = FD->getType();
|
|
LValue FieldLV = EmitLValueForField(LV, FD);
|
|
switch (getEvaluationKind(FT)) {
|
|
case TEK_Complex:
|
|
return RValue::getComplex(EmitLoadOfComplex(FieldLV));
|
|
case TEK_Aggregate:
|
|
return FieldLV.asAggregateRValue();
|
|
case TEK_Scalar:
|
|
return EmitLoadOfLValue(FieldLV);
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Expression Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
|
|
ReturnValueSlot ReturnValue) {
|
|
if (CGDebugInfo *DI = getDebugInfo()) {
|
|
SourceLocation Loc = E->getLocStart();
|
|
// Force column info to be generated so we can differentiate
|
|
// multiple call sites on the same line in the debug info.
|
|
const FunctionDecl* Callee = E->getDirectCallee();
|
|
bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
|
|
DI->EmitLocation(Builder, Loc, ForceColumnInfo);
|
|
}
|
|
|
|
// Builtins never have block type.
|
|
if (E->getCallee()->getType()->isBlockPointerType())
|
|
return EmitBlockCallExpr(E, ReturnValue);
|
|
|
|
if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
|
|
return EmitCXXMemberCallExpr(CE, ReturnValue);
|
|
|
|
if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
|
|
return EmitCUDAKernelCallExpr(CE, ReturnValue);
|
|
|
|
const Decl *TargetDecl = E->getCalleeDecl();
|
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
|
|
if (unsigned builtinID = FD->getBuiltinID())
|
|
return EmitBuiltinExpr(FD, builtinID, E);
|
|
}
|
|
|
|
if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
|
|
if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
|
|
return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
|
|
|
|
if (const CXXPseudoDestructorExpr *PseudoDtor
|
|
= dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
|
|
QualType DestroyedType = PseudoDtor->getDestroyedType();
|
|
if (getLangOpts().ObjCAutoRefCount &&
|
|
DestroyedType->isObjCLifetimeType() &&
|
|
(DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
|
|
DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
|
|
// Automatic Reference Counting:
|
|
// If the pseudo-expression names a retainable object with weak or
|
|
// strong lifetime, the object shall be released.
|
|
Expr *BaseExpr = PseudoDtor->getBase();
|
|
llvm::Value *BaseValue = NULL;
|
|
Qualifiers BaseQuals;
|
|
|
|
// If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
|
|
if (PseudoDtor->isArrow()) {
|
|
BaseValue = EmitScalarExpr(BaseExpr);
|
|
const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
|
|
BaseQuals = PTy->getPointeeType().getQualifiers();
|
|
} else {
|
|
LValue BaseLV = EmitLValue(BaseExpr);
|
|
BaseValue = BaseLV.getAddress();
|
|
QualType BaseTy = BaseExpr->getType();
|
|
BaseQuals = BaseTy.getQualifiers();
|
|
}
|
|
|
|
switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
break;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
EmitARCRelease(Builder.CreateLoad(BaseValue,
|
|
PseudoDtor->getDestroyedType().isVolatileQualified()),
|
|
ARCPreciseLifetime);
|
|
break;
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
EmitARCDestroyWeak(BaseValue);
|
|
break;
|
|
}
|
|
} else {
|
|
// C++ [expr.pseudo]p1:
|
|
// The result shall only be used as the operand for the function call
|
|
// operator (), and the result of such a call has type void. The only
|
|
// effect is the evaluation of the postfix-expression before the dot or
|
|
// arrow.
|
|
EmitScalarExpr(E->getCallee());
|
|
}
|
|
|
|
return RValue::get(0);
|
|
}
|
|
|
|
llvm::Value *Callee = EmitScalarExpr(E->getCallee());
|
|
return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
|
|
E->arg_begin(), E->arg_end(), TargetDecl);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
|
|
// Comma expressions just emit their LHS then their RHS as an l-value.
|
|
if (E->getOpcode() == BO_Comma) {
|
|
EmitIgnoredExpr(E->getLHS());
|
|
EnsureInsertPoint();
|
|
return EmitLValue(E->getRHS());
|
|
}
|
|
|
|
if (E->getOpcode() == BO_PtrMemD ||
|
|
E->getOpcode() == BO_PtrMemI)
|
|
return EmitPointerToDataMemberBinaryExpr(E);
|
|
|
|
assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
|
|
|
|
// Note that in all of these cases, __block variables need the RHS
|
|
// evaluated first just in case the variable gets moved by the RHS.
|
|
|
|
switch (getEvaluationKind(E->getType())) {
|
|
case TEK_Scalar: {
|
|
switch (E->getLHS()->getType().getObjCLifetime()) {
|
|
case Qualifiers::OCL_Strong:
|
|
return EmitARCStoreStrong(E, /*ignored*/ false).first;
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
return EmitARCStoreAutoreleasing(E).first;
|
|
|
|
// No reason to do any of these differently.
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
case Qualifiers::OCL_Weak:
|
|
break;
|
|
}
|
|
|
|
RValue RV = EmitAnyExpr(E->getRHS());
|
|
LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
|
|
EmitStoreThroughLValue(RV, LV);
|
|
return LV;
|
|
}
|
|
|
|
case TEK_Complex:
|
|
return EmitComplexAssignmentLValue(E);
|
|
|
|
case TEK_Aggregate:
|
|
return EmitAggExprToLValue(E);
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
|
|
RValue RV = EmitCallExpr(E);
|
|
|
|
if (!RV.isScalar())
|
|
return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
|
|
|
|
assert(E->getCallReturnType()->isReferenceType() &&
|
|
"Can't have a scalar return unless the return type is a "
|
|
"reference type!");
|
|
|
|
return MakeAddrLValue(RV.getScalarVal(), E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
|
|
// FIXME: This shouldn't require another copy.
|
|
return EmitAggExprToLValue(E);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
|
|
assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
|
|
&& "binding l-value to type which needs a temporary");
|
|
AggValueSlot Slot = CreateAggTemp(E->getType());
|
|
EmitCXXConstructExpr(E, Slot);
|
|
return MakeAddrLValue(Slot.getAddr(), E->getType());
|
|
}
|
|
|
|
LValue
|
|
CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
|
|
return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
|
|
return CGM.GetAddrOfUuidDescriptor(E);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
|
|
return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
|
|
}
|
|
|
|
LValue
|
|
CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
|
|
AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
|
|
Slot.setExternallyDestructed();
|
|
EmitAggExpr(E->getSubExpr(), Slot);
|
|
EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
|
|
return MakeAddrLValue(Slot.getAddr(), E->getType());
|
|
}
|
|
|
|
LValue
|
|
CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
|
|
AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
|
|
EmitLambdaExpr(E, Slot);
|
|
return MakeAddrLValue(Slot.getAddr(), E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
|
|
RValue RV = EmitObjCMessageExpr(E);
|
|
|
|
if (!RV.isScalar())
|
|
return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
|
|
|
|
assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
|
|
"Can't have a scalar return unless the return type is a "
|
|
"reference type!");
|
|
|
|
return MakeAddrLValue(RV.getScalarVal(), E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
|
|
llvm::Value *V =
|
|
CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
|
|
return MakeAddrLValue(V, E->getType());
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
|
|
const ObjCIvarDecl *Ivar) {
|
|
return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
|
|
llvm::Value *BaseValue,
|
|
const ObjCIvarDecl *Ivar,
|
|
unsigned CVRQualifiers) {
|
|
return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
|
|
Ivar, CVRQualifiers);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
|
|
// FIXME: A lot of the code below could be shared with EmitMemberExpr.
|
|
llvm::Value *BaseValue = 0;
|
|
const Expr *BaseExpr = E->getBase();
|
|
Qualifiers BaseQuals;
|
|
QualType ObjectTy;
|
|
if (E->isArrow()) {
|
|
BaseValue = EmitScalarExpr(BaseExpr);
|
|
ObjectTy = BaseExpr->getType()->getPointeeType();
|
|
BaseQuals = ObjectTy.getQualifiers();
|
|
} else {
|
|
LValue BaseLV = EmitLValue(BaseExpr);
|
|
// FIXME: this isn't right for bitfields.
|
|
BaseValue = BaseLV.getAddress();
|
|
ObjectTy = BaseExpr->getType();
|
|
BaseQuals = ObjectTy.getQualifiers();
|
|
}
|
|
|
|
LValue LV =
|
|
EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
|
|
BaseQuals.getCVRQualifiers());
|
|
setObjCGCLValueClass(getContext(), E, LV);
|
|
return LV;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
|
|
// Can only get l-value for message expression returning aggregate type
|
|
RValue RV = EmitAnyExprToTemp(E);
|
|
return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
|
|
ReturnValueSlot ReturnValue,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd,
|
|
const Decl *TargetDecl) {
|
|
// Get the actual function type. The callee type will always be a pointer to
|
|
// function type or a block pointer type.
|
|
assert(CalleeType->isFunctionPointerType() &&
|
|
"Call must have function pointer type!");
|
|
|
|
CalleeType = getContext().getCanonicalType(CalleeType);
|
|
|
|
const FunctionType *FnType
|
|
= cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
|
|
|
|
CallArgList Args;
|
|
EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
|
|
|
|
const CGFunctionInfo &FnInfo =
|
|
CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
|
|
|
|
// C99 6.5.2.2p6:
|
|
// If the expression that denotes the called function has a type
|
|
// that does not include a prototype, [the default argument
|
|
// promotions are performed]. If the number of arguments does not
|
|
// equal the number of parameters, the behavior is undefined. If
|
|
// the function is defined with a type that includes a prototype,
|
|
// and either the prototype ends with an ellipsis (, ...) or the
|
|
// types of the arguments after promotion are not compatible with
|
|
// the types of the parameters, the behavior is undefined. If the
|
|
// function is defined with a type that does not include a
|
|
// prototype, and the types of the arguments after promotion are
|
|
// not compatible with those of the parameters after promotion,
|
|
// the behavior is undefined [except in some trivial cases].
|
|
// That is, in the general case, we should assume that a call
|
|
// through an unprototyped function type works like a *non-variadic*
|
|
// call. The way we make this work is to cast to the exact type
|
|
// of the promoted arguments.
|
|
if (isa<FunctionNoProtoType>(FnType)) {
|
|
llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
|
|
CalleeTy = CalleeTy->getPointerTo();
|
|
Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
|
|
}
|
|
|
|
return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
|
|
}
|
|
|
|
LValue CodeGenFunction::
|
|
EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
|
|
llvm::Value *BaseV;
|
|
if (E->getOpcode() == BO_PtrMemI)
|
|
BaseV = EmitScalarExpr(E->getLHS());
|
|
else
|
|
BaseV = EmitLValue(E->getLHS()).getAddress();
|
|
|
|
llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
|
|
|
|
const MemberPointerType *MPT
|
|
= E->getRHS()->getType()->getAs<MemberPointerType>();
|
|
|
|
llvm::Value *AddV =
|
|
CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
|
|
|
|
return MakeAddrLValue(AddV, MPT->getPointeeType());
|
|
}
|
|
|
|
/// Given the address of a temporary variable, produce an r-value of
|
|
/// its type.
|
|
RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
|
|
QualType type) {
|
|
LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
|
|
switch (getEvaluationKind(type)) {
|
|
case TEK_Complex:
|
|
return RValue::getComplex(EmitLoadOfComplex(lvalue));
|
|
case TEK_Aggregate:
|
|
return lvalue.asAggregateRValue();
|
|
case TEK_Scalar:
|
|
return RValue::get(EmitLoadOfScalar(lvalue));
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
|
|
assert(Val->getType()->isFPOrFPVectorTy());
|
|
if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
|
|
return;
|
|
|
|
llvm::MDBuilder MDHelper(getLLVMContext());
|
|
llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
|
|
|
|
cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
|
|
}
|
|
|
|
namespace {
|
|
struct LValueOrRValue {
|
|
LValue LV;
|
|
RValue RV;
|
|
};
|
|
}
|
|
|
|
static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
|
|
const PseudoObjectExpr *E,
|
|
bool forLValue,
|
|
AggValueSlot slot) {
|
|
SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
|
|
|
|
// Find the result expression, if any.
|
|
const Expr *resultExpr = E->getResultExpr();
|
|
LValueOrRValue result;
|
|
|
|
for (PseudoObjectExpr::const_semantics_iterator
|
|
i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
|
|
const Expr *semantic = *i;
|
|
|
|
// If this semantic expression is an opaque value, bind it
|
|
// to the result of its source expression.
|
|
if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
|
|
|
|
// If this is the result expression, we may need to evaluate
|
|
// directly into the slot.
|
|
typedef CodeGenFunction::OpaqueValueMappingData OVMA;
|
|
OVMA opaqueData;
|
|
if (ov == resultExpr && ov->isRValue() && !forLValue &&
|
|
CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
|
|
CGF.EmitAggExpr(ov->getSourceExpr(), slot);
|
|
|
|
LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
|
|
opaqueData = OVMA::bind(CGF, ov, LV);
|
|
result.RV = slot.asRValue();
|
|
|
|
// Otherwise, emit as normal.
|
|
} else {
|
|
opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
|
|
|
|
// If this is the result, also evaluate the result now.
|
|
if (ov == resultExpr) {
|
|
if (forLValue)
|
|
result.LV = CGF.EmitLValue(ov);
|
|
else
|
|
result.RV = CGF.EmitAnyExpr(ov, slot);
|
|
}
|
|
}
|
|
|
|
opaques.push_back(opaqueData);
|
|
|
|
// Otherwise, if the expression is the result, evaluate it
|
|
// and remember the result.
|
|
} else if (semantic == resultExpr) {
|
|
if (forLValue)
|
|
result.LV = CGF.EmitLValue(semantic);
|
|
else
|
|
result.RV = CGF.EmitAnyExpr(semantic, slot);
|
|
|
|
// Otherwise, evaluate the expression in an ignored context.
|
|
} else {
|
|
CGF.EmitIgnoredExpr(semantic);
|
|
}
|
|
}
|
|
|
|
// Unbind all the opaques now.
|
|
for (unsigned i = 0, e = opaques.size(); i != e; ++i)
|
|
opaques[i].unbind(CGF);
|
|
|
|
return result;
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
|
|
AggValueSlot slot) {
|
|
return emitPseudoObjectExpr(*this, E, false, slot).RV;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
|
|
return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
|
|
}
|