clang-1/lib/Analysis/BugReporter.cpp

1621 строка
52 KiB
C++

// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines BugReporter, a utility class for generating
// PathDiagnostics for analyses based on GRSimpleVals.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/BugReporter.h"
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CFG.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/StmtObjC.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/Analysis/PathDiagnostic.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/OwningPtr.h"
#include <queue>
using namespace clang;
BugReporterVisitor::~BugReporterVisitor() {}
BugReporterContext::~BugReporterContext() {
for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I)
if ((*I)->isOwnedByReporterContext()) delete *I;
}
//===----------------------------------------------------------------------===//
// Helper routines for walking the ExplodedGraph and fetching statements.
//===----------------------------------------------------------------------===//
static inline Stmt* GetStmt(ProgramPoint P) {
if (const PostStmt* PS = dyn_cast<PostStmt>(&P))
return PS->getStmt();
else if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P))
return BE->getSrc()->getTerminator();
return 0;
}
static inline const ExplodedNode<GRState>*
GetPredecessorNode(const ExplodedNode<GRState>* N) {
return N->pred_empty() ? NULL : *(N->pred_begin());
}
static inline const ExplodedNode<GRState>*
GetSuccessorNode(const ExplodedNode<GRState>* N) {
return N->succ_empty() ? NULL : *(N->succ_begin());
}
static Stmt* GetPreviousStmt(const ExplodedNode<GRState>* N) {
for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
if (Stmt *S = GetStmt(N->getLocation()))
return S;
return 0;
}
static Stmt* GetNextStmt(const ExplodedNode<GRState>* N) {
for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
if (Stmt *S = GetStmt(N->getLocation())) {
// Check if the statement is '?' or '&&'/'||'. These are "merges",
// not actual statement points.
switch (S->getStmtClass()) {
case Stmt::ChooseExprClass:
case Stmt::ConditionalOperatorClass: continue;
case Stmt::BinaryOperatorClass: {
BinaryOperator::Opcode Op = cast<BinaryOperator>(S)->getOpcode();
if (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr)
continue;
break;
}
default:
break;
}
return S;
}
return 0;
}
static inline Stmt* GetCurrentOrPreviousStmt(const ExplodedNode<GRState>* N) {
if (Stmt *S = GetStmt(N->getLocation()))
return S;
return GetPreviousStmt(N);
}
static inline Stmt* GetCurrentOrNextStmt(const ExplodedNode<GRState>* N) {
if (Stmt *S = GetStmt(N->getLocation()))
return S;
return GetNextStmt(N);
}
//===----------------------------------------------------------------------===//
// PathDiagnosticBuilder and its associated routines and helper objects.
//===----------------------------------------------------------------------===//
typedef llvm::DenseMap<const ExplodedNode<GRState>*,
const ExplodedNode<GRState>*> NodeBackMap;
namespace {
class VISIBILITY_HIDDEN NodeMapClosure : public BugReport::NodeResolver {
NodeBackMap& M;
public:
NodeMapClosure(NodeBackMap *m) : M(*m) {}
~NodeMapClosure() {}
const ExplodedNode<GRState>* getOriginalNode(const ExplodedNode<GRState>* N) {
NodeBackMap::iterator I = M.find(N);
return I == M.end() ? 0 : I->second;
}
};
class VISIBILITY_HIDDEN PathDiagnosticBuilder : public BugReporterContext {
BugReport *R;
PathDiagnosticClient *PDC;
llvm::OwningPtr<ParentMap> PM;
NodeMapClosure NMC;
public:
PathDiagnosticBuilder(GRBugReporter &br,
BugReport *r, NodeBackMap *Backmap,
PathDiagnosticClient *pdc)
: BugReporterContext(br),
R(r), PDC(pdc), NMC(Backmap)
{
addVisitor(R);
}
PathDiagnosticLocation ExecutionContinues(const ExplodedNode<GRState>* N);
PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream& os,
const ExplodedNode<GRState>* N);
ParentMap& getParentMap() {
if (PM.get() == 0)
PM.reset(new ParentMap(getCodeDecl().getBody(getASTContext())));
return *PM.get();
}
const Stmt *getParent(const Stmt *S) {
return getParentMap().getParent(S);
}
virtual NodeMapClosure& getNodeResolver() { return NMC; }
BugReport& getReport() { return *R; }
PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
PathDiagnosticLocation
getEnclosingStmtLocation(const PathDiagnosticLocation &L) {
if (const Stmt *S = L.asStmt())
return getEnclosingStmtLocation(S);
return L;
}
PathDiagnosticClient::PathGenerationScheme getGenerationScheme() const {
return PDC ? PDC->getGenerationScheme() : PathDiagnosticClient::Extensive;
}
bool supportsLogicalOpControlFlow() const {
return PDC ? PDC->supportsLogicalOpControlFlow() : true;
}
};
} // end anonymous namespace
PathDiagnosticLocation
PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode<GRState>* N) {
if (Stmt *S = GetNextStmt(N))
return PathDiagnosticLocation(S, getSourceManager());
return FullSourceLoc(getCodeDecl().getBodyRBrace(getASTContext()),
getSourceManager());
}
PathDiagnosticLocation
PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream& os,
const ExplodedNode<GRState>* N) {
// Slow, but probably doesn't matter.
if (os.str().empty())
os << ' ';
const PathDiagnosticLocation &Loc = ExecutionContinues(N);
if (Loc.asStmt())
os << "Execution continues on line "
<< getSourceManager().getInstantiationLineNumber(Loc.asLocation())
<< '.';
else
os << "Execution jumps to the end of the "
<< (isa<ObjCMethodDecl>(getCodeDecl()) ? "method" : "function") << '.';
return Loc;
}
PathDiagnosticLocation
PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
assert(S && "Null Stmt* passed to getEnclosingStmtLocation");
ParentMap &P = getParentMap();
SourceManager &SMgr = getSourceManager();
while (isa<Expr>(S) && P.isConsumedExpr(cast<Expr>(S))) {
const Stmt *Parent = P.getParent(S);
if (!Parent)
break;
switch (Parent->getStmtClass()) {
case Stmt::BinaryOperatorClass: {
const BinaryOperator *B = cast<BinaryOperator>(Parent);
if (B->isLogicalOp())
return PathDiagnosticLocation(S, SMgr);
break;
}
case Stmt::CompoundStmtClass:
case Stmt::StmtExprClass:
return PathDiagnosticLocation(S, SMgr);
case Stmt::ChooseExprClass:
// Similar to '?' if we are referring to condition, just have the edge
// point to the entire choose expression.
if (cast<ChooseExpr>(Parent)->getCond() == S)
return PathDiagnosticLocation(Parent, SMgr);
else
return PathDiagnosticLocation(S, SMgr);
case Stmt::ConditionalOperatorClass:
// For '?', if we are referring to condition, just have the edge point
// to the entire '?' expression.
if (cast<ConditionalOperator>(Parent)->getCond() == S)
return PathDiagnosticLocation(Parent, SMgr);
else
return PathDiagnosticLocation(S, SMgr);
case Stmt::DoStmtClass:
return PathDiagnosticLocation(S, SMgr);
case Stmt::ForStmtClass:
if (cast<ForStmt>(Parent)->getBody() == S)
return PathDiagnosticLocation(S, SMgr);
break;
case Stmt::IfStmtClass:
if (cast<IfStmt>(Parent)->getCond() != S)
return PathDiagnosticLocation(S, SMgr);
break;
case Stmt::ObjCForCollectionStmtClass:
if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
return PathDiagnosticLocation(S, SMgr);
break;
case Stmt::WhileStmtClass:
if (cast<WhileStmt>(Parent)->getCond() != S)
return PathDiagnosticLocation(S, SMgr);
break;
default:
break;
}
S = Parent;
}
assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
return PathDiagnosticLocation(S, SMgr);
}
//===----------------------------------------------------------------------===//
// ScanNotableSymbols: closure-like callback for scanning Store bindings.
//===----------------------------------------------------------------------===//
static const VarDecl*
GetMostRecentVarDeclBinding(const ExplodedNode<GRState>* N,
GRStateManager& VMgr, SVal X) {
for ( ; N ; N = N->pred_empty() ? 0 : *N->pred_begin()) {
ProgramPoint P = N->getLocation();
if (!isa<PostStmt>(P))
continue;
DeclRefExpr* DR = dyn_cast<DeclRefExpr>(cast<PostStmt>(P).getStmt());
if (!DR)
continue;
SVal Y = VMgr.GetSVal(N->getState(), DR);
if (X != Y)
continue;
VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl());
if (!VD)
continue;
return VD;
}
return 0;
}
namespace {
class VISIBILITY_HIDDEN NotableSymbolHandler
: public StoreManager::BindingsHandler {
SymbolRef Sym;
const GRState* PrevSt;
const Stmt* S;
GRStateManager& VMgr;
const ExplodedNode<GRState>* Pred;
PathDiagnostic& PD;
BugReporter& BR;
public:
NotableSymbolHandler(SymbolRef sym, const GRState* prevst, const Stmt* s,
GRStateManager& vmgr, const ExplodedNode<GRState>* pred,
PathDiagnostic& pd, BugReporter& br)
: Sym(sym), PrevSt(prevst), S(s), VMgr(vmgr), Pred(pred), PD(pd), BR(br) {}
bool HandleBinding(StoreManager& SMgr, Store store, const MemRegion* R,
SVal V) {
SymbolRef ScanSym = V.getAsSymbol();
if (ScanSym != Sym)
return true;
// Check if the previous state has this binding.
SVal X = VMgr.GetSVal(PrevSt, loc::MemRegionVal(R));
if (X == V) // Same binding?
return true;
// Different binding. Only handle assignments for now. We don't pull
// this check out of the loop because we will eventually handle other
// cases.
VarDecl *VD = 0;
if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
if (!B->isAssignmentOp())
return true;
// What variable did we assign to?
DeclRefExpr* DR = dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParenCasts());
if (!DR)
return true;
VD = dyn_cast<VarDecl>(DR->getDecl());
}
else if (const DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
// FIXME: Eventually CFGs won't have DeclStmts. Right now we
// assume that each DeclStmt has a single Decl. This invariant
// holds by contruction in the CFG.
VD = dyn_cast<VarDecl>(*DS->decl_begin());
}
if (!VD)
return true;
// What is the most recently referenced variable with this binding?
const VarDecl* MostRecent = GetMostRecentVarDeclBinding(Pred, VMgr, V);
if (!MostRecent)
return true;
// Create the diagnostic.
FullSourceLoc L(S->getLocStart(), BR.getSourceManager());
if (Loc::IsLocType(VD->getType())) {
std::string msg = "'" + std::string(VD->getNameAsString()) +
"' now aliases '" + MostRecent->getNameAsString() + "'";
PD.push_front(new PathDiagnosticEventPiece(L, msg));
}
return true;
}
};
}
static void HandleNotableSymbol(const ExplodedNode<GRState>* N,
const Stmt* S,
SymbolRef Sym, BugReporter& BR,
PathDiagnostic& PD) {
const ExplodedNode<GRState>* Pred = N->pred_empty() ? 0 : *N->pred_begin();
const GRState* PrevSt = Pred ? Pred->getState() : 0;
if (!PrevSt)
return;
// Look at the region bindings of the current state that map to the
// specified symbol. Are any of them not in the previous state?
GRStateManager& VMgr = cast<GRBugReporter>(BR).getStateManager();
NotableSymbolHandler H(Sym, PrevSt, S, VMgr, Pred, PD, BR);
cast<GRBugReporter>(BR).getStateManager().iterBindings(N->getState(), H);
}
namespace {
class VISIBILITY_HIDDEN ScanNotableSymbols
: public StoreManager::BindingsHandler {
llvm::SmallSet<SymbolRef, 10> AlreadyProcessed;
const ExplodedNode<GRState>* N;
Stmt* S;
GRBugReporter& BR;
PathDiagnostic& PD;
public:
ScanNotableSymbols(const ExplodedNode<GRState>* n, Stmt* s, GRBugReporter& br,
PathDiagnostic& pd)
: N(n), S(s), BR(br), PD(pd) {}
bool HandleBinding(StoreManager& SMgr, Store store,
const MemRegion* R, SVal V) {
SymbolRef ScanSym = V.getAsSymbol();
if (!ScanSym)
return true;
if (!BR.isNotable(ScanSym))
return true;
if (AlreadyProcessed.count(ScanSym))
return true;
AlreadyProcessed.insert(ScanSym);
HandleNotableSymbol(N, S, ScanSym, BR, PD);
return true;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// "Minimal" path diagnostic generation algorithm.
//===----------------------------------------------------------------------===//
static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM);
static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
PathDiagnosticBuilder &PDB,
const ExplodedNode<GRState> *N) {
SourceManager& SMgr = PDB.getSourceManager();
const ExplodedNode<GRState>* NextNode = N->pred_empty()
? NULL : *(N->pred_begin());
while (NextNode) {
N = NextNode;
NextNode = GetPredecessorNode(N);
ProgramPoint P = N->getLocation();
if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) {
CFGBlock* Src = BE->getSrc();
CFGBlock* Dst = BE->getDst();
Stmt* T = Src->getTerminator();
if (!T)
continue;
FullSourceLoc Start(T->getLocStart(), SMgr);
switch (T->getStmtClass()) {
default:
break;
case Stmt::GotoStmtClass:
case Stmt::IndirectGotoStmtClass: {
Stmt* S = GetNextStmt(N);
if (!S)
continue;
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
os << "Control jumps to line "
<< End.asLocation().getInstantiationLineNumber();
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
break;
}
case Stmt::SwitchStmtClass: {
// Figure out what case arm we took.
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
if (Stmt* S = Dst->getLabel()) {
PathDiagnosticLocation End(S, SMgr);
switch (S->getStmtClass()) {
default:
os << "No cases match in the switch statement. "
"Control jumps to line "
<< End.asLocation().getInstantiationLineNumber();
break;
case Stmt::DefaultStmtClass:
os << "Control jumps to the 'default' case at line "
<< End.asLocation().getInstantiationLineNumber();
break;
case Stmt::CaseStmtClass: {
os << "Control jumps to 'case ";
CaseStmt* Case = cast<CaseStmt>(S);
Expr* LHS = Case->getLHS()->IgnoreParenCasts();
// Determine if it is an enum.
bool GetRawInt = true;
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS)) {
// FIXME: Maybe this should be an assertion. Are there cases
// were it is not an EnumConstantDecl?
EnumConstantDecl* D =
dyn_cast<EnumConstantDecl>(DR->getDecl());
if (D) {
GetRawInt = false;
os << D->getNameAsString();
}
}
if (GetRawInt)
os << LHS->EvaluateAsInt(PDB.getASTContext());
os << ":' at line "
<< End.asLocation().getInstantiationLineNumber();
break;
}
}
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
}
else {
os << "'Default' branch taken. ";
const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
}
break;
}
case Stmt::BreakStmtClass:
case Stmt::ContinueStmtClass: {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
break;
}
// Determine control-flow for ternary '?'.
case Stmt::ConditionalOperatorClass: {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "'?' condition is ";
if (*(Src->succ_begin()+1) == Dst)
os << "false";
else
os << "true";
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
if (const Stmt *S = End.asStmt())
End = PDB.getEnclosingStmtLocation(S);
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
break;
}
// Determine control-flow for short-circuited '&&' and '||'.
case Stmt::BinaryOperatorClass: {
if (!PDB.supportsLogicalOpControlFlow())
break;
BinaryOperator *B = cast<BinaryOperator>(T);
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "Left side of '";
if (B->getOpcode() == BinaryOperator::LAnd) {
os << "&&" << "' is ";
if (*(Src->succ_begin()+1) == Dst) {
os << "false";
PathDiagnosticLocation End(B->getLHS(), SMgr);
PathDiagnosticLocation Start(B->getOperatorLoc(), SMgr);
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
}
else {
os << "true";
PathDiagnosticLocation Start(B->getLHS(), SMgr);
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
}
}
else {
assert(B->getOpcode() == BinaryOperator::LOr);
os << "||" << "' is ";
if (*(Src->succ_begin()+1) == Dst) {
os << "false";
PathDiagnosticLocation Start(B->getLHS(), SMgr);
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
}
else {
os << "true";
PathDiagnosticLocation End(B->getLHS(), SMgr);
PathDiagnosticLocation Start(B->getOperatorLoc(), SMgr);
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
}
}
break;
}
case Stmt::DoStmtClass: {
if (*(Src->succ_begin()) == Dst) {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "Loop condition is true. ";
PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
if (const Stmt *S = End.asStmt())
End = PDB.getEnclosingStmtLocation(S);
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
}
else {
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
if (const Stmt *S = End.asStmt())
End = PDB.getEnclosingStmtLocation(S);
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
"Loop condition is false. Exiting loop"));
}
break;
}
case Stmt::WhileStmtClass:
case Stmt::ForStmtClass: {
if (*(Src->succ_begin()+1) == Dst) {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "Loop condition is false. ";
PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
if (const Stmt *S = End.asStmt())
End = PDB.getEnclosingStmtLocation(S);
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
os.str()));
}
else {
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
if (const Stmt *S = End.asStmt())
End = PDB.getEnclosingStmtLocation(S);
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
"Loop condition is true. Entering loop body"));
}
break;
}
case Stmt::IfStmtClass: {
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
if (const Stmt *S = End.asStmt())
End = PDB.getEnclosingStmtLocation(S);
if (*(Src->succ_begin()+1) == Dst)
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
"Taking false branch"));
else
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
"Taking true branch"));
break;
}
}
}
if (NextNode) {
for (BugReporterContext::visitor_iterator I = PDB.visitor_begin(),
E = PDB.visitor_end(); I!=E; ++I) {
if (PathDiagnosticPiece* p = (*I)->VisitNode(N, NextNode, PDB))
PD.push_front(p);
}
}
if (const PostStmt* PS = dyn_cast<PostStmt>(&P)) {
// Scan the region bindings, and see if a "notable" symbol has a new
// lval binding.
ScanNotableSymbols SNS(N, PS->getStmt(), PDB.getBugReporter(), PD);
PDB.getStateManager().iterBindings(N->getState(), SNS);
}
}
// After constructing the full PathDiagnostic, do a pass over it to compact
// PathDiagnosticPieces that occur within a macro.
CompactPathDiagnostic(PD, PDB.getSourceManager());
}
//===----------------------------------------------------------------------===//
// "Extensive" PathDiagnostic generation.
//===----------------------------------------------------------------------===//
static bool IsControlFlowExpr(const Stmt *S) {
const Expr *E = dyn_cast<Expr>(S);
if (!E)
return false;
E = E->IgnoreParenCasts();
if (isa<ConditionalOperator>(E))
return true;
if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
if (B->isLogicalOp())
return true;
return false;
}
namespace {
class VISIBILITY_HIDDEN ContextLocation : public PathDiagnosticLocation {
bool IsDead;
public:
ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
: PathDiagnosticLocation(L), IsDead(isdead) {}
void markDead() { IsDead = true; }
bool isDead() const { return IsDead; }
};
class VISIBILITY_HIDDEN EdgeBuilder {
std::vector<ContextLocation> CLocs;
typedef std::vector<ContextLocation>::iterator iterator;
PathDiagnostic &PD;
PathDiagnosticBuilder &PDB;
PathDiagnosticLocation PrevLoc;
bool IsConsumedExpr(const PathDiagnosticLocation &L);
bool containsLocation(const PathDiagnosticLocation &Container,
const PathDiagnosticLocation &Containee);
PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
void popLocation() {
if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
PathDiagnosticLocation L = CLocs.back();
if (const Stmt *S = L.asStmt()) {
while (1) {
// Adjust the location for some expressions that are best referenced
// by one of their subexpressions.
if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
S = PE->IgnoreParens();
else if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(S))
S = CO->getCond();
else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(S))
S = CE->getCond();
else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(S))
S = BE->getLHS();
else
break;
}
L = PathDiagnosticLocation(S, L.getManager());
}
// For contexts, we only one the first character as the range.
L = PathDiagnosticLocation(L.asLocation(), L.getManager());
rawAddEdge(L);
}
CLocs.pop_back();
}
PathDiagnosticLocation IgnoreParens(const PathDiagnosticLocation &L);
public:
EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
: PD(pd), PDB(pdb) {
// If the PathDiagnostic already has pieces, add the enclosing statement
// of the first piece as a context as well.
if (!PD.empty()) {
PrevLoc = PD.begin()->getLocation();
if (const Stmt *S = PrevLoc.asStmt())
addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
}
}
~EdgeBuilder() {
while (!CLocs.empty()) popLocation();
// Finally, add an initial edge from the start location of the first
// statement (if it doesn't already exist).
// FIXME: Should handle CXXTryStmt if analyser starts supporting C++.
if (const CompoundStmt *CS =
PDB.getCodeDecl().getCompoundBody(PDB.getASTContext()))
if (!CS->body_empty()) {
SourceLocation Loc = (*CS->body_begin())->getLocStart();
rawAddEdge(PathDiagnosticLocation(Loc, PDB.getSourceManager()));
}
}
void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
void addEdge(const Stmt *S, bool alwaysAdd = false) {
addEdge(PathDiagnosticLocation(S, PDB.getSourceManager()), alwaysAdd);
}
void rawAddEdge(PathDiagnosticLocation NewLoc);
void addContext(const Stmt *S);
void addExtendedContext(const Stmt *S);
};
} // end anonymous namespace
PathDiagnosticLocation
EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
if (const Stmt *S = L.asStmt()) {
if (IsControlFlowExpr(S))
return L;
return PDB.getEnclosingStmtLocation(S);
}
return L;
}
bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
const PathDiagnosticLocation &Containee) {
if (Container == Containee)
return true;
if (Container.asDecl())
return true;
if (const Stmt *S = Containee.asStmt())
if (const Stmt *ContainerS = Container.asStmt()) {
while (S) {
if (S == ContainerS)
return true;
S = PDB.getParent(S);
}
return false;
}
// Less accurate: compare using source ranges.
SourceRange ContainerR = Container.asRange();
SourceRange ContaineeR = Containee.asRange();
SourceManager &SM = PDB.getSourceManager();
SourceLocation ContainerRBeg = SM.getInstantiationLoc(ContainerR.getBegin());
SourceLocation ContainerREnd = SM.getInstantiationLoc(ContainerR.getEnd());
SourceLocation ContaineeRBeg = SM.getInstantiationLoc(ContaineeR.getBegin());
SourceLocation ContaineeREnd = SM.getInstantiationLoc(ContaineeR.getEnd());
unsigned ContainerBegLine = SM.getInstantiationLineNumber(ContainerRBeg);
unsigned ContainerEndLine = SM.getInstantiationLineNumber(ContainerREnd);
unsigned ContaineeBegLine = SM.getInstantiationLineNumber(ContaineeRBeg);
unsigned ContaineeEndLine = SM.getInstantiationLineNumber(ContaineeREnd);
assert(ContainerBegLine <= ContainerEndLine);
assert(ContaineeBegLine <= ContaineeEndLine);
return (ContainerBegLine <= ContaineeBegLine &&
ContainerEndLine >= ContaineeEndLine &&
(ContainerBegLine != ContaineeBegLine ||
SM.getInstantiationColumnNumber(ContainerRBeg) <=
SM.getInstantiationColumnNumber(ContaineeRBeg)) &&
(ContainerEndLine != ContaineeEndLine ||
SM.getInstantiationColumnNumber(ContainerREnd) >=
SM.getInstantiationColumnNumber(ContainerREnd)));
}
PathDiagnosticLocation
EdgeBuilder::IgnoreParens(const PathDiagnosticLocation &L) {
if (const Expr* E = dyn_cast_or_null<Expr>(L.asStmt()))
return PathDiagnosticLocation(E->IgnoreParenCasts(),
PDB.getSourceManager());
return L;
}
void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
if (!PrevLoc.isValid()) {
PrevLoc = NewLoc;
return;
}
if (NewLoc.asLocation() == PrevLoc.asLocation())
return;
// FIXME: Ignore intra-macro edges for now.
if (NewLoc.asLocation().getInstantiationLoc() ==
PrevLoc.asLocation().getInstantiationLoc())
return;
PD.push_front(new PathDiagnosticControlFlowPiece(NewLoc, PrevLoc));
PrevLoc = NewLoc;
}
void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
if (!alwaysAdd && NewLoc.asLocation().isMacroID())
return;
const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
while (!CLocs.empty()) {
ContextLocation &TopContextLoc = CLocs.back();
// Is the top location context the same as the one for the new location?
if (TopContextLoc == CLoc) {
if (alwaysAdd) {
if (IsConsumedExpr(TopContextLoc) &&
!IsControlFlowExpr(TopContextLoc.asStmt()))
TopContextLoc.markDead();
rawAddEdge(NewLoc);
}
return;
}
if (containsLocation(TopContextLoc, CLoc)) {
if (alwaysAdd) {
rawAddEdge(NewLoc);
if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
CLocs.push_back(ContextLocation(CLoc, true));
return;
}
}
CLocs.push_back(CLoc);
return;
}
// Context does not contain the location. Flush it.
popLocation();
}
// If we reach here, there is no enclosing context. Just add the edge.
rawAddEdge(NewLoc);
}
bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
return false;
}
void EdgeBuilder::addExtendedContext(const Stmt *S) {
if (!S)
return;
const Stmt *Parent = PDB.getParent(S);
while (Parent) {
if (isa<CompoundStmt>(Parent))
Parent = PDB.getParent(Parent);
else
break;
}
if (Parent) {
switch (Parent->getStmtClass()) {
case Stmt::DoStmtClass:
case Stmt::ObjCAtSynchronizedStmtClass:
addContext(Parent);
default:
break;
}
}
addContext(S);
}
void EdgeBuilder::addContext(const Stmt *S) {
if (!S)
return;
PathDiagnosticLocation L(S, PDB.getSourceManager());
while (!CLocs.empty()) {
const PathDiagnosticLocation &TopContextLoc = CLocs.back();
// Is the top location context the same as the one for the new location?
if (TopContextLoc == L)
return;
if (containsLocation(TopContextLoc, L)) {
CLocs.push_back(L);
return;
}
// Context does not contain the location. Flush it.
popLocation();
}
CLocs.push_back(L);
}
static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
PathDiagnosticBuilder &PDB,
const ExplodedNode<GRState> *N) {
EdgeBuilder EB(PD, PDB);
const ExplodedNode<GRState>* NextNode = N->pred_empty()
? NULL : *(N->pred_begin());
while (NextNode) {
N = NextNode;
NextNode = GetPredecessorNode(N);
ProgramPoint P = N->getLocation();
do {
// Block edges.
if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
const CFGBlock &Blk = *BE->getSrc();
const Stmt *Term = Blk.getTerminator();
if (Term)
EB.addContext(Term);
// Are we jumping to the head of a loop? Add a special diagnostic.
if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
PathDiagnosticLocation L(Loop, PDB.getSourceManager());
PathDiagnosticEventPiece *p =
new PathDiagnosticEventPiece(L,
"Looping back to the head of the loop");
EB.addEdge(p->getLocation(), true);
PD.push_front(p);
if (!Term) {
const CompoundStmt *CS = NULL;
if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
CS = dyn_cast<CompoundStmt>(FS->getBody());
else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
CS = dyn_cast<CompoundStmt>(WS->getBody());
if (CS)
EB.rawAddEdge(PathDiagnosticLocation(CS->getRBracLoc(),
PDB.getSourceManager()));
}
}
break;
}
if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
if (const Stmt* S = BE->getFirstStmt()) {
if (IsControlFlowExpr(S)) {
// Add the proper context for '&&', '||', and '?'.
EB.addContext(S);
}
else
EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
}
break;
}
} while (0);
if (!NextNode)
continue;
for (BugReporterContext::visitor_iterator I = PDB.visitor_begin(),
E = PDB.visitor_end(); I!=E; ++I) {
if (PathDiagnosticPiece* p = (*I)->VisitNode(N, NextNode, PDB)) {
const PathDiagnosticLocation &Loc = p->getLocation();
EB.addEdge(Loc, true);
PD.push_front(p);
if (const Stmt *S = Loc.asStmt())
EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
}
}
}
}
//===----------------------------------------------------------------------===//
// Methods for BugType and subclasses.
//===----------------------------------------------------------------------===//
BugType::~BugType() {}
void BugType::FlushReports(BugReporter &BR) {}
//===----------------------------------------------------------------------===//
// Methods for BugReport and subclasses.
//===----------------------------------------------------------------------===//
BugReport::~BugReport() {}
RangedBugReport::~RangedBugReport() {}
Stmt* BugReport::getStmt(BugReporter& BR) const {
ProgramPoint ProgP = EndNode->getLocation();
Stmt *S = NULL;
if (BlockEntrance* BE = dyn_cast<BlockEntrance>(&ProgP)) {
if (BE->getBlock() == &BR.getCFG()->getExit()) S = GetPreviousStmt(EndNode);
}
if (!S) S = GetStmt(ProgP);
return S;
}
PathDiagnosticPiece*
BugReport::getEndPath(BugReporterContext& BRC,
const ExplodedNode<GRState>* EndPathNode) {
Stmt* S = getStmt(BRC.getBugReporter());
if (!S)
return NULL;
FullSourceLoc L(S->getLocStart(), BRC.getSourceManager());
PathDiagnosticPiece* P = new PathDiagnosticEventPiece(L, getDescription());
const SourceRange *Beg, *End;
getRanges(BRC.getBugReporter(), Beg, End);
for (; Beg != End; ++Beg)
P->addRange(*Beg);
return P;
}
void BugReport::getRanges(BugReporter& BR, const SourceRange*& beg,
const SourceRange*& end) {
if (Expr* E = dyn_cast_or_null<Expr>(getStmt(BR))) {
R = E->getSourceRange();
assert(R.isValid());
beg = &R;
end = beg+1;
}
else
beg = end = 0;
}
SourceLocation BugReport::getLocation() const {
if (EndNode)
if (Stmt* S = GetCurrentOrPreviousStmt(EndNode)) {
// For member expressions, return the location of the '.' or '->'.
if (MemberExpr* ME = dyn_cast<MemberExpr>(S))
return ME->getMemberLoc();
return S->getLocStart();
}
return FullSourceLoc();
}
PathDiagnosticPiece* BugReport::VisitNode(const ExplodedNode<GRState>* N,
const ExplodedNode<GRState>* PrevN,
BugReporterContext &BRC) {
return NULL;
}
//===----------------------------------------------------------------------===//
// Methods for BugReporter and subclasses.
//===----------------------------------------------------------------------===//
BugReportEquivClass::~BugReportEquivClass() {
for (iterator I=begin(), E=end(); I!=E; ++I) delete *I;
}
GRBugReporter::~GRBugReporter() { FlushReports(); }
BugReporterData::~BugReporterData() {}
ExplodedGraph<GRState>&
GRBugReporter::getGraph() { return Eng.getGraph(); }
GRStateManager&
GRBugReporter::getStateManager() { return Eng.getStateManager(); }
BugReporter::~BugReporter() { FlushReports(); }
void BugReporter::FlushReports() {
if (BugTypes.isEmpty())
return;
// First flush the warnings for each BugType. This may end up creating new
// warnings and new BugTypes. Because ImmutableSet is a functional data
// structure, we do not need to worry about the iterators being invalidated.
for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
const_cast<BugType*>(*I)->FlushReports(*this);
// Iterate through BugTypes a second time. BugTypes may have been updated
// with new BugType objects and new warnings.
for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) {
BugType *BT = const_cast<BugType*>(*I);
typedef llvm::FoldingSet<BugReportEquivClass> SetTy;
SetTy& EQClasses = BT->EQClasses;
for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){
BugReportEquivClass& EQ = *EI;
FlushReport(EQ);
}
// Delete the BugType object. This will also delete the equivalence
// classes.
delete BT;
}
// Remove all references to the BugType objects.
BugTypes = F.GetEmptySet();
}
//===----------------------------------------------------------------------===//
// PathDiagnostics generation.
//===----------------------------------------------------------------------===//
static std::pair<std::pair<ExplodedGraph<GRState>*, NodeBackMap*>,
std::pair<ExplodedNode<GRState>*, unsigned> >
MakeReportGraph(const ExplodedGraph<GRState>* G,
const ExplodedNode<GRState>** NStart,
const ExplodedNode<GRState>** NEnd) {
// Create the trimmed graph. It will contain the shortest paths from the
// error nodes to the root. In the new graph we should only have one
// error node unless there are two or more error nodes with the same minimum
// path length.
ExplodedGraph<GRState>* GTrim;
InterExplodedGraphMap<GRState>* NMap;
llvm::DenseMap<const void*, const void*> InverseMap;
llvm::tie(GTrim, NMap) = G->Trim(NStart, NEnd, &InverseMap);
// Create owning pointers for GTrim and NMap just to ensure that they are
// released when this function exists.
llvm::OwningPtr<ExplodedGraph<GRState> > AutoReleaseGTrim(GTrim);
llvm::OwningPtr<InterExplodedGraphMap<GRState> > AutoReleaseNMap(NMap);
// Find the (first) error node in the trimmed graph. We just need to consult
// the node map (NMap) which maps from nodes in the original graph to nodes
// in the new graph.
const ExplodedNode<GRState>* N = 0;
unsigned NodeIndex = 0;
for (const ExplodedNode<GRState>** I = NStart; I != NEnd; ++I)
if ((N = NMap->getMappedNode(*I))) {
NodeIndex = (I - NStart) / sizeof(*I);
break;
}
assert(N && "No error node found in the trimmed graph.");
// Create a new (third!) graph with a single path. This is the graph
// that will be returned to the caller.
ExplodedGraph<GRState> *GNew =
new ExplodedGraph<GRState>(GTrim->getCFG(), GTrim->getCodeDecl(),
GTrim->getContext());
// Sometimes the trimmed graph can contain a cycle. Perform a reverse BFS
// to the root node, and then construct a new graph that contains only
// a single path.
llvm::DenseMap<const void*,unsigned> Visited;
std::queue<const ExplodedNode<GRState>*> WS;
WS.push(N);
unsigned cnt = 0;
const ExplodedNode<GRState>* Root = 0;
while (!WS.empty()) {
const ExplodedNode<GRState>* Node = WS.front();
WS.pop();
if (Visited.find(Node) != Visited.end())
continue;
Visited[Node] = cnt++;
if (Node->pred_empty()) {
Root = Node;
break;
}
for (ExplodedNode<GRState>::const_pred_iterator I=Node->pred_begin(),
E=Node->pred_end(); I!=E; ++I)
WS.push(*I);
}
assert (Root);
// Now walk from the root down the BFS path, always taking the successor
// with the lowest number.
ExplodedNode<GRState> *Last = 0, *First = 0;
NodeBackMap *BM = new NodeBackMap();
for ( N = Root ;;) {
// Lookup the number associated with the current node.
llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
assert (I != Visited.end());
// Create the equivalent node in the new graph with the same state
// and location.
ExplodedNode<GRState>* NewN =
GNew->getNode(N->getLocation(), N->getState());
// Store the mapping to the original node.
llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
assert(IMitr != InverseMap.end() && "No mapping to original node.");
(*BM)[NewN] = (const ExplodedNode<GRState>*) IMitr->second;
// Link up the new node with the previous node.
if (Last)
NewN->addPredecessor(Last);
Last = NewN;
// Are we at the final node?
if (I->second == 0) {
First = NewN;
break;
}
// Find the next successor node. We choose the node that is marked
// with the lowest DFS number.
ExplodedNode<GRState>::const_succ_iterator SI = N->succ_begin();
ExplodedNode<GRState>::const_succ_iterator SE = N->succ_end();
N = 0;
for (unsigned MinVal = 0; SI != SE; ++SI) {
I = Visited.find(*SI);
if (I == Visited.end())
continue;
if (!N || I->second < MinVal) {
N = *SI;
MinVal = I->second;
}
}
assert (N);
}
assert (First);
return std::make_pair(std::make_pair(GNew, BM),
std::make_pair(First, NodeIndex));
}
/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
/// and collapses PathDiagosticPieces that are expanded by macros.
static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM) {
typedef std::vector<std::pair<PathDiagnosticMacroPiece*, SourceLocation> >
MacroStackTy;
typedef std::vector<PathDiagnosticPiece*>
PiecesTy;
MacroStackTy MacroStack;
PiecesTy Pieces;
for (PathDiagnostic::iterator I = PD.begin(), E = PD.end(); I!=E; ++I) {
// Get the location of the PathDiagnosticPiece.
const FullSourceLoc Loc = I->getLocation().asLocation();
// Determine the instantiation location, which is the location we group
// related PathDiagnosticPieces.
SourceLocation InstantiationLoc = Loc.isMacroID() ?
SM.getInstantiationLoc(Loc) :
SourceLocation();
if (Loc.isFileID()) {
MacroStack.clear();
Pieces.push_back(&*I);
continue;
}
assert(Loc.isMacroID());
// Is the PathDiagnosticPiece within the same macro group?
if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
MacroStack.back().first->push_back(&*I);
continue;
}
// We aren't in the same group. Are we descending into a new macro
// or are part of an old one?
PathDiagnosticMacroPiece *MacroGroup = 0;
SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
SM.getInstantiationLoc(Loc) :
SourceLocation();
// Walk the entire macro stack.
while (!MacroStack.empty()) {
if (InstantiationLoc == MacroStack.back().second) {
MacroGroup = MacroStack.back().first;
break;
}
if (ParentInstantiationLoc == MacroStack.back().second) {
MacroGroup = MacroStack.back().first;
break;
}
MacroStack.pop_back();
}
if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
// Create a new macro group and add it to the stack.
PathDiagnosticMacroPiece *NewGroup = new PathDiagnosticMacroPiece(Loc);
if (MacroGroup)
MacroGroup->push_back(NewGroup);
else {
assert(InstantiationLoc.isFileID());
Pieces.push_back(NewGroup);
}
MacroGroup = NewGroup;
MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
}
// Finally, add the PathDiagnosticPiece to the group.
MacroGroup->push_back(&*I);
}
// Now take the pieces and construct a new PathDiagnostic.
PD.resetPath(false);
for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) {
if (PathDiagnosticMacroPiece *MP=dyn_cast<PathDiagnosticMacroPiece>(*I))
if (!MP->containsEvent()) {
delete MP;
continue;
}
PD.push_back(*I);
}
}
void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
BugReportEquivClass& EQ) {
std::vector<const ExplodedNode<GRState>*> Nodes;
for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
const ExplodedNode<GRState>* N = I->getEndNode();
if (N) Nodes.push_back(N);
}
if (Nodes.empty())
return;
// Construct a new graph that contains only a single path from the error
// node to a root.
const std::pair<std::pair<ExplodedGraph<GRState>*, NodeBackMap*>,
std::pair<ExplodedNode<GRState>*, unsigned> >&
GPair = MakeReportGraph(&getGraph(), &Nodes[0], &Nodes[0] + Nodes.size());
// Find the BugReport with the original location.
BugReport *R = 0;
unsigned i = 0;
for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I, ++i)
if (i == GPair.second.second) { R = *I; break; }
assert(R && "No original report found for sliced graph.");
llvm::OwningPtr<ExplodedGraph<GRState> > ReportGraph(GPair.first.first);
llvm::OwningPtr<NodeBackMap> BackMap(GPair.first.second);
const ExplodedNode<GRState> *N = GPair.second.first;
// Start building the path diagnostic...
PathDiagnosticBuilder PDB(*this, R, BackMap.get(), getPathDiagnosticClient());
if (PathDiagnosticPiece* Piece = R->getEndPath(PDB, N))
PD.push_back(Piece);
else
return;
R->registerInitialVisitors(PDB, N);
switch (PDB.getGenerationScheme()) {
case PathDiagnosticClient::Extensive:
GenerateExtensivePathDiagnostic(PD, PDB, N);
break;
case PathDiagnosticClient::Minimal:
GenerateMinimalPathDiagnostic(PD, PDB, N);
break;
}
}
void BugReporter::Register(BugType *BT) {
BugTypes = F.Add(BugTypes, BT);
}
void BugReporter::EmitReport(BugReport* R) {
// Compute the bug report's hash to determine its equivalence class.
llvm::FoldingSetNodeID ID;
R->Profile(ID);
// Lookup the equivance class. If there isn't one, create it.
BugType& BT = R->getBugType();
Register(&BT);
void *InsertPos;
BugReportEquivClass* EQ = BT.EQClasses.FindNodeOrInsertPos(ID, InsertPos);
if (!EQ) {
EQ = new BugReportEquivClass(R);
BT.EQClasses.InsertNode(EQ, InsertPos);
}
else
EQ->AddReport(R);
}
void BugReporter::FlushReport(BugReportEquivClass& EQ) {
assert(!EQ.Reports.empty());
BugReport &R = **EQ.begin();
PathDiagnosticClient* PD = getPathDiagnosticClient();
// FIXME: Make sure we use the 'R' for the path that was actually used.
// Probably doesn't make a difference in practice.
BugType& BT = R.getBugType();
llvm::OwningPtr<PathDiagnostic>
D(new PathDiagnostic(R.getBugType().getName(),
!PD || PD->useVerboseDescription()
? R.getDescription() : R.getShortDescription(),
BT.getCategory()));
GeneratePathDiagnostic(*D.get(), EQ);
// Get the meta data.
std::pair<const char**, const char**> Meta = R.getExtraDescriptiveText();
for (const char** s = Meta.first; s != Meta.second; ++s) D->addMeta(*s);
// Emit a summary diagnostic to the regular Diagnostics engine.
const SourceRange *Beg = 0, *End = 0;
R.getRanges(*this, Beg, End);
Diagnostic& Diag = getDiagnostic();
FullSourceLoc L(R.getLocation(), getSourceManager());
unsigned ErrorDiag = Diag.getCustomDiagID(Diagnostic::Warning,
R.getDescription().c_str());
switch (End-Beg) {
default: assert(0 && "Don't handle this many ranges yet!");
case 0: Diag.Report(L, ErrorDiag); break;
case 1: Diag.Report(L, ErrorDiag) << Beg[0]; break;
case 2: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1]; break;
case 3: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1] << Beg[2]; break;
}
// Emit a full diagnostic for the path if we have a PathDiagnosticClient.
if (!PD)
return;
if (D->empty()) {
PathDiagnosticPiece* piece =
new PathDiagnosticEventPiece(L, R.getDescription());
for ( ; Beg != End; ++Beg) piece->addRange(*Beg);
D->push_back(piece);
}
PD->HandlePathDiagnostic(D.take());
}
void BugReporter::EmitBasicReport(const char* name, const char* str,
SourceLocation Loc,
SourceRange* RBeg, unsigned NumRanges) {
EmitBasicReport(name, "", str, Loc, RBeg, NumRanges);
}
void BugReporter::EmitBasicReport(const char* name, const char* category,
const char* str, SourceLocation Loc,
SourceRange* RBeg, unsigned NumRanges) {
// 'BT' will be owned by BugReporter as soon as we call 'EmitReport'.
BugType *BT = new BugType(name, category);
FullSourceLoc L = getContext().getFullLoc(Loc);
RangedBugReport *R = new DiagBugReport(*BT, str, L);
for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
EmitReport(R);
}