clang-1/lib/Analysis/GRExprEngine.cpp

3425 строки
113 KiB
C++

//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a meta-engine for path-sensitive dataflow analysis that
// is built on GREngine, but provides the boilerplate to execute transfer
// functions and build the ExplodedGraph at the expression level.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "clang/Analysis/PathSensitive/GRExprEngineBuilders.h"
#include "clang/Analysis/PathSensitive/BugReporter.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/StmtObjC.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/PrettyStackTrace.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/ImmutableList.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#ifndef NDEBUG
#include "llvm/Support/GraphWriter.h"
#include <sstream>
#endif
using namespace clang;
using llvm::dyn_cast;
using llvm::cast;
using llvm::APSInt;
//===----------------------------------------------------------------------===//
// Engine construction and deletion.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN MappedBatchAuditor : public GRSimpleAPICheck {
typedef llvm::ImmutableList<GRSimpleAPICheck*> Checks;
typedef llvm::DenseMap<void*,Checks> MapTy;
MapTy M;
Checks::Factory F;
Checks AllStmts;
public:
MappedBatchAuditor(llvm::BumpPtrAllocator& Alloc) :
F(Alloc), AllStmts(F.GetEmptyList()) {}
virtual ~MappedBatchAuditor() {
llvm::DenseSet<GRSimpleAPICheck*> AlreadyVisited;
for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI)
for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){
GRSimpleAPICheck* check = *I;
if (AlreadyVisited.count(check))
continue;
AlreadyVisited.insert(check);
delete check;
}
}
void AddCheck(GRSimpleAPICheck *A, Stmt::StmtClass C) {
assert (A && "Check cannot be null.");
void* key = reinterpret_cast<void*>((uintptr_t) C);
MapTy::iterator I = M.find(key);
M[key] = F.Concat(A, I == M.end() ? F.GetEmptyList() : I->second);
}
void AddCheck(GRSimpleAPICheck *A) {
assert (A && "Check cannot be null.");
AllStmts = F.Concat(A, AllStmts);
}
virtual bool Audit(NodeTy* N, GRStateManager& VMgr) {
// First handle the auditors that accept all statements.
bool isSink = false;
for (Checks::iterator I = AllStmts.begin(), E = AllStmts.end(); I!=E; ++I)
isSink |= (*I)->Audit(N, VMgr);
// Next handle the auditors that accept only specific statements.
Stmt* S = cast<PostStmt>(N->getLocation()).getStmt();
void* key = reinterpret_cast<void*>((uintptr_t) S->getStmtClass());
MapTy::iterator MI = M.find(key);
if (MI != M.end()) {
for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E; ++I)
isSink |= (*I)->Audit(N, VMgr);
}
return isSink;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Engine construction and deletion.
//===----------------------------------------------------------------------===//
static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
IdentifierInfo* II = &Ctx.Idents.get(name);
return Ctx.Selectors.getSelector(0, &II);
}
GRExprEngine::GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx,
LiveVariables& L, BugReporterData& BRD,
bool purgeDead, bool eagerlyAssume,
StoreManagerCreator SMC,
ConstraintManagerCreator CMC)
: CoreEngine(cfg, CD, Ctx, *this),
G(CoreEngine.getGraph()),
Liveness(L),
Builder(NULL),
StateMgr(G.getContext(), SMC, CMC, G.getAllocator(), cfg, CD, L),
SymMgr(StateMgr.getSymbolManager()),
ValMgr(StateMgr.getValueManager()),
CurrentStmt(NULL),
NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL),
RaiseSel(GetNullarySelector("raise", G.getContext())),
PurgeDead(purgeDead),
BR(BRD, *this),
EagerlyAssume(eagerlyAssume) {}
GRExprEngine::~GRExprEngine() {
BR.FlushReports();
delete [] NSExceptionInstanceRaiseSelectors;
}
//===----------------------------------------------------------------------===//
// Utility methods.
//===----------------------------------------------------------------------===//
void GRExprEngine::setTransferFunctions(GRTransferFuncs* tf) {
StateMgr.TF = tf;
tf->RegisterChecks(getBugReporter());
tf->RegisterPrinters(getStateManager().Printers);
}
void GRExprEngine::AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) {
if (!BatchAuditor)
BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator()));
((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A, C);
}
void GRExprEngine::AddCheck(GRSimpleAPICheck *A) {
if (!BatchAuditor)
BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator()));
((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A);
}
const GRState* GRExprEngine::getInitialState() {
const GRState *state = StateMgr.getInitialState();
// Precondition: the first argument of 'main' is an integer guaranteed
// to be > 0.
// FIXME: It would be nice if we had a more general mechanism to add
// such preconditions. Some day.
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(&StateMgr.getCodeDecl()))
if (strcmp(FD->getIdentifier()->getName(), "main") == 0 &&
FD->getNumParams() > 0) {
const ParmVarDecl *PD = FD->getParamDecl(0);
QualType T = PD->getType();
if (T->isIntegerType())
if (const MemRegion *R = StateMgr.getRegion(PD)) {
SVal V = GetSVal(state, loc::MemRegionVal(R));
SVal Constraint = EvalBinOp(BinaryOperator::GT, V,
ValMgr.makeZeroVal(T),
getContext().IntTy);
bool isFeasible = false;
const GRState *newState = Assume(state, Constraint, true,
isFeasible);
if (newState) state = newState;
}
}
return state;
}
//===----------------------------------------------------------------------===//
// Top-level transfer function logic (Dispatcher).
//===----------------------------------------------------------------------===//
void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) {
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
S->getLocStart(),
"Error evaluating statement");
Builder = &builder;
EntryNode = builder.getLastNode();
// FIXME: Consolidate.
CurrentStmt = S;
StateMgr.CurrentStmt = S;
// Set up our simple checks.
if (BatchAuditor)
Builder->setAuditor(BatchAuditor.get());
// Create the cleaned state.
SymbolReaper SymReaper(Liveness, SymMgr);
CleanedState = PurgeDead ? StateMgr.RemoveDeadBindings(EntryNode->getState(),
CurrentStmt, SymReaper)
: EntryNode->getState();
// Process any special transfer function for dead symbols.
NodeSet Tmp;
if (!SymReaper.hasDeadSymbols())
Tmp.Add(EntryNode);
else {
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
SaveOr OldHasGen(Builder->HasGeneratedNode);
SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols);
Builder->PurgingDeadSymbols = true;
getTF().EvalDeadSymbols(Tmp, *this, *Builder, EntryNode, S,
CleanedState, SymReaper);
if (!Builder->BuildSinks && !Builder->HasGeneratedNode)
Tmp.Add(EntryNode);
}
bool HasAutoGenerated = false;
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
NodeSet Dst;
// Set the cleaned state.
Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I));
// Visit the statement.
Visit(S, *I, Dst);
// Do we need to auto-generate a node? We only need to do this to generate
// a node with a "cleaned" state; GRCoreEngine will actually handle
// auto-transitions for other cases.
if (Dst.size() == 1 && *Dst.begin() == EntryNode
&& !Builder->HasGeneratedNode && !HasAutoGenerated) {
HasAutoGenerated = true;
builder.generateNode(S, GetState(EntryNode), *I);
}
}
// NULL out these variables to cleanup.
CleanedState = NULL;
EntryNode = NULL;
// FIXME: Consolidate.
StateMgr.CurrentStmt = 0;
CurrentStmt = 0;
Builder = NULL;
}
void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) {
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
S->getLocStart(),
"Error evaluating statement");
// FIXME: add metadata to the CFG so that we can disable
// this check when we KNOW that there is no block-level subexpression.
// The motivation is that this check requires a hashtable lookup.
if (S != CurrentStmt && getCFG().isBlkExpr(S)) {
Dst.Add(Pred);
return;
}
switch (S->getStmtClass()) {
default:
// Cases we intentionally have "default" handle:
// AddrLabelExpr, IntegerLiteral, CharacterLiteral
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
break;
case Stmt::ArraySubscriptExprClass:
VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst, false);
break;
case Stmt::AsmStmtClass:
VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst);
break;
case Stmt::BinaryOperatorClass: {
BinaryOperator* B = cast<BinaryOperator>(S);
if (B->isLogicalOp()) {
VisitLogicalExpr(B, Pred, Dst);
break;
}
else if (B->getOpcode() == BinaryOperator::Comma) {
const GRState* state = GetState(Pred);
MakeNode(Dst, B, Pred, BindExpr(state, B, GetSVal(state, B->getRHS())));
break;
}
if (EagerlyAssume && (B->isRelationalOp() || B->isEqualityOp())) {
NodeSet Tmp;
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp);
EvalEagerlyAssume(Dst, Tmp, cast<Expr>(S));
}
else
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
}
case Stmt::CallExprClass:
case Stmt::CXXOperatorCallExprClass: {
CallExpr* C = cast<CallExpr>(S);
VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst);
break;
}
// FIXME: ChooseExpr is really a constant. We need to fix
// the CFG do not model them as explicit control-flow.
case Stmt::ChooseExprClass: { // __builtin_choose_expr
ChooseExpr* C = cast<ChooseExpr>(S);
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
break;
}
case Stmt::CompoundAssignOperatorClass:
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
case Stmt::CompoundLiteralExprClass:
VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst, false);
break;
case Stmt::ConditionalOperatorClass: { // '?' operator
ConditionalOperator* C = cast<ConditionalOperator>(S);
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
break;
}
case Stmt::DeclRefExprClass:
case Stmt::QualifiedDeclRefExprClass:
VisitDeclRefExpr(cast<DeclRefExpr>(S), Pred, Dst, false);
break;
case Stmt::DeclStmtClass:
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
break;
case Stmt::ImplicitCastExprClass:
case Stmt::CStyleCastExprClass: {
CastExpr* C = cast<CastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::InitListExprClass:
VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
break;
case Stmt::MemberExprClass:
VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst, false);
break;
case Stmt::ObjCIvarRefExprClass:
VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst, false);
break;
case Stmt::ObjCForCollectionStmtClass:
VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
break;
case Stmt::ObjCMessageExprClass: {
VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst);
break;
}
case Stmt::ObjCAtThrowStmtClass: {
// FIXME: This is not complete. We basically treat @throw as
// an abort.
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
Builder->BuildSinks = true;
MakeNode(Dst, S, Pred, GetState(Pred));
break;
}
case Stmt::ParenExprClass:
Visit(cast<ParenExpr>(S)->getSubExpr()->IgnoreParens(), Pred, Dst);
break;
case Stmt::ReturnStmtClass:
VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
break;
case Stmt::SizeOfAlignOfExprClass:
VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), Pred, Dst);
break;
case Stmt::StmtExprClass: {
StmtExpr* SE = cast<StmtExpr>(S);
if (SE->getSubStmt()->body_empty()) {
// Empty statement expression.
assert(SE->getType() == getContext().VoidTy
&& "Empty statement expression must have void type.");
Dst.Add(Pred);
break;
}
if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
const GRState* state = GetState(Pred);
MakeNode(Dst, SE, Pred, BindExpr(state, SE, GetSVal(state, LastExpr)));
}
else
Dst.Add(Pred);
break;
}
case Stmt::StringLiteralClass:
VisitLValue(cast<StringLiteral>(S), Pred, Dst);
break;
case Stmt::UnaryOperatorClass: {
UnaryOperator *U = cast<UnaryOperator>(S);
if (EagerlyAssume && (U->getOpcode() == UnaryOperator::LNot)) {
NodeSet Tmp;
VisitUnaryOperator(U, Pred, Tmp, false);
EvalEagerlyAssume(Dst, Tmp, U);
}
else
VisitUnaryOperator(U, Pred, Dst, false);
break;
}
}
}
void GRExprEngine::VisitLValue(Expr* Ex, NodeTy* Pred, NodeSet& Dst) {
Ex = Ex->IgnoreParens();
if (Ex != CurrentStmt && getCFG().isBlkExpr(Ex)) {
Dst.Add(Pred);
return;
}
switch (Ex->getStmtClass()) {
case Stmt::ArraySubscriptExprClass:
VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(Ex), Pred, Dst, true);
return;
case Stmt::DeclRefExprClass:
case Stmt::QualifiedDeclRefExprClass:
VisitDeclRefExpr(cast<DeclRefExpr>(Ex), Pred, Dst, true);
return;
case Stmt::ObjCIvarRefExprClass:
VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(Ex), Pred, Dst, true);
return;
case Stmt::UnaryOperatorClass:
VisitUnaryOperator(cast<UnaryOperator>(Ex), Pred, Dst, true);
return;
case Stmt::MemberExprClass:
VisitMemberExpr(cast<MemberExpr>(Ex), Pred, Dst, true);
return;
case Stmt::CompoundLiteralExprClass:
VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(Ex), Pred, Dst, true);
return;
case Stmt::ObjCPropertyRefExprClass:
case Stmt::ObjCKVCRefExprClass:
// FIXME: Property assignments are lvalues, but not really "locations".
// e.g.: self.x = something;
// Here the "self.x" really can translate to a method call (setter) when
// the assignment is made. Moreover, the entire assignment expression
// evaluate to whatever "something" is, not calling the "getter" for
// the property (which would make sense since it can have side effects).
// We'll probably treat this as a location, but not one that we can
// take the address of. Perhaps we need a new SVal class for cases
// like thsis?
// Note that we have a similar problem for bitfields, since they don't
// have "locations" in the sense that we can take their address.
Dst.Add(Pred);
return;
case Stmt::StringLiteralClass: {
const GRState* state = GetState(Pred);
SVal V = StateMgr.GetLValue(state, cast<StringLiteral>(Ex));
MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V));
return;
}
default:
// Arbitrary subexpressions can return aggregate temporaries that
// can be used in a lvalue context. We need to enhance our support
// of such temporaries in both the environment and the store, so right
// now we just do a regular visit.
assert ((Ex->getType()->isAggregateType()) &&
"Other kinds of expressions with non-aggregate/union types do"
" not have lvalues.");
Visit(Ex, Pred, Dst);
}
}
//===----------------------------------------------------------------------===//
// Block entrance. (Update counters).
//===----------------------------------------------------------------------===//
bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, const GRState*,
GRBlockCounter BC) {
return BC.getNumVisited(B->getBlockID()) < 3;
}
//===----------------------------------------------------------------------===//
// Generic node creation.
//===----------------------------------------------------------------------===//
GRExprEngine::NodeTy* GRExprEngine::MakeNode(NodeSet& Dst, Stmt* S,
NodeTy* Pred,
const GRState* St,
ProgramPoint::Kind K,
const void *tag) {
assert (Builder && "GRStmtNodeBuilder not present.");
SaveAndRestore<const void*> OldTag(Builder->Tag);
Builder->Tag = tag;
return Builder->MakeNode(Dst, S, Pred, St, K);
}
//===----------------------------------------------------------------------===//
// Branch processing.
//===----------------------------------------------------------------------===//
const GRState* GRExprEngine::MarkBranch(const GRState* state,
Stmt* Terminator,
bool branchTaken) {
switch (Terminator->getStmtClass()) {
default:
return state;
case Stmt::BinaryOperatorClass: { // '&&' and '||'
BinaryOperator* B = cast<BinaryOperator>(Terminator);
BinaryOperator::Opcode Op = B->getOpcode();
assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr);
// For &&, if we take the true branch, then the value of the whole
// expression is that of the RHS expression.
//
// For ||, if we take the false branch, then the value of the whole
// expression is that of the RHS expression.
Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) ||
(Op == BinaryOperator::LOr && !branchTaken)
? B->getRHS() : B->getLHS();
return BindBlkExpr(state, B, UndefinedVal(Ex));
}
case Stmt::ConditionalOperatorClass: { // ?:
ConditionalOperator* C = cast<ConditionalOperator>(Terminator);
// For ?, if branchTaken == true then the value is either the LHS or
// the condition itself. (GNU extension).
Expr* Ex;
if (branchTaken)
Ex = C->getLHS() ? C->getLHS() : C->getCond();
else
Ex = C->getRHS();
return BindBlkExpr(state, C, UndefinedVal(Ex));
}
case Stmt::ChooseExprClass: { // ?:
ChooseExpr* C = cast<ChooseExpr>(Terminator);
Expr* Ex = branchTaken ? C->getLHS() : C->getRHS();
return BindBlkExpr(state, C, UndefinedVal(Ex));
}
}
}
/// RecoverCastedSymbol - A helper function for ProcessBranch that is used
/// to try to recover some path-sensitivity for casts of symbolic
/// integers that promote their values (which are currently not tracked well).
/// This function returns the SVal bound to Condition->IgnoreCasts if all the
// cast(s) did was sign-extend the original value.
static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state,
Stmt* Condition, ASTContext& Ctx) {
Expr *Ex = dyn_cast<Expr>(Condition);
if (!Ex)
return UnknownVal();
uint64_t bits = 0;
bool bitsInit = false;
while (CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
QualType T = CE->getType();
if (!T->isIntegerType())
return UnknownVal();
uint64_t newBits = Ctx.getTypeSize(T);
if (!bitsInit || newBits < bits) {
bitsInit = true;
bits = newBits;
}
Ex = CE->getSubExpr();
}
// We reached a non-cast. Is it a symbolic value?
QualType T = Ex->getType();
if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits)
return UnknownVal();
return StateMgr.GetSVal(state, Ex);
}
void GRExprEngine::ProcessBranch(Stmt* Condition, Stmt* Term,
BranchNodeBuilder& builder) {
// Remove old bindings for subexpressions.
const GRState* PrevState =
StateMgr.RemoveSubExprBindings(builder.getState());
// Check for NULL conditions; e.g. "for(;;)"
if (!Condition) {
builder.markInfeasible(false);
return;
}
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
Condition->getLocStart(),
"Error evaluating branch");
SVal V = GetSVal(PrevState, Condition);
switch (V.getBaseKind()) {
default:
break;
case SVal::UnknownKind: {
if (Expr *Ex = dyn_cast<Expr>(Condition)) {
if (Ex->getType()->isIntegerType()) {
// Try to recover some path-sensitivity. Right now casts of symbolic
// integers that promote their values are currently not tracked well.
// If 'Condition' is such an expression, try and recover the
// underlying value and use that instead.
SVal recovered = RecoverCastedSymbol(getStateManager(),
builder.getState(), Condition,
getContext());
if (!recovered.isUnknown()) {
V = recovered;
break;
}
}
}
builder.generateNode(MarkBranch(PrevState, Term, true), true);
builder.generateNode(MarkBranch(PrevState, Term, false), false);
return;
}
case SVal::UndefinedKind: {
NodeTy* N = builder.generateNode(PrevState, true);
if (N) {
N->markAsSink();
UndefBranches.insert(N);
}
builder.markInfeasible(false);
return;
}
}
// Process the true branch.
bool isFeasible = false;
const GRState* state = Assume(PrevState, V, true, isFeasible);
if (isFeasible)
builder.generateNode(MarkBranch(state, Term, true), true);
else
builder.markInfeasible(true);
// Process the false branch.
isFeasible = false;
state = Assume(PrevState, V, false, isFeasible);
if (isFeasible)
builder.generateNode(MarkBranch(state, Term, false), false);
else
builder.markInfeasible(false);
}
/// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a computed goto jump.
void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) {
const GRState* state = builder.getState();
SVal V = GetSVal(state, builder.getTarget());
// Three possibilities:
//
// (1) We know the computed label.
// (2) The label is NULL (or some other constant), or Undefined.
// (3) We have no clue about the label. Dispatch to all targets.
//
typedef IndirectGotoNodeBuilder::iterator iterator;
if (isa<loc::GotoLabel>(V)) {
LabelStmt* L = cast<loc::GotoLabel>(V).getLabel();
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) {
if (I.getLabel() == L) {
builder.generateNode(I, state);
return;
}
}
assert (false && "No block with label.");
return;
}
if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) {
// Dispatch to the first target and mark it as a sink.
NodeTy* N = builder.generateNode(builder.begin(), state, true);
UndefBranches.insert(N);
return;
}
// This is really a catch-all. We don't support symbolics yet.
// FIXME: Implement dispatch for symbolic pointers.
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
builder.generateNode(I, state);
}
void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R,
NodeTy* Pred, NodeSet& Dst) {
assert (Ex == CurrentStmt && getCFG().isBlkExpr(Ex));
const GRState* state = GetState(Pred);
SVal X = GetBlkExprSVal(state, Ex);
assert (X.isUndef());
Expr* SE = (Expr*) cast<UndefinedVal>(X).getData();
assert (SE);
X = GetBlkExprSVal(state, SE);
// Make sure that we invalidate the previous binding.
MakeNode(Dst, Ex, Pred, StateMgr.BindExpr(state, Ex, X, true, true));
}
/// ProcessSwitch - Called by GRCoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a switch statement.
void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) {
typedef SwitchNodeBuilder::iterator iterator;
const GRState* state = builder.getState();
Expr* CondE = builder.getCondition();
SVal CondV = GetSVal(state, CondE);
if (CondV.isUndef()) {
NodeTy* N = builder.generateDefaultCaseNode(state, true);
UndefBranches.insert(N);
return;
}
const GRState* DefaultSt = state;
bool DefaultFeasible = false;
for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) {
CaseStmt* Case = cast<CaseStmt>(I.getCase());
// Evaluate the LHS of the case value.
Expr::EvalResult V1;
bool b = Case->getLHS()->Evaluate(V1, getContext());
// Sanity checks. These go away in Release builds.
assert(b && V1.Val.isInt() && !V1.HasSideEffects
&& "Case condition must evaluate to an integer constant.");
b = b; // silence unused variable warning
assert(V1.Val.getInt().getBitWidth() ==
getContext().getTypeSize(CondE->getType()));
// Get the RHS of the case, if it exists.
Expr::EvalResult V2;
if (Expr* E = Case->getRHS()) {
b = E->Evaluate(V2, getContext());
assert(b && V2.Val.isInt() && !V2.HasSideEffects
&& "Case condition must evaluate to an integer constant.");
b = b; // silence unused variable warning
}
else
V2 = V1;
// FIXME: Eventually we should replace the logic below with a range
// comparison, rather than concretize the values within the range.
// This should be easy once we have "ranges" for NonLVals.
do {
nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt()));
SVal Res = EvalBinOp(BinaryOperator::EQ, CondV, CaseVal,
getContext().IntTy);
// Now "assume" that the case matches.
bool isFeasible = false;
const GRState* StNew = Assume(state, Res, true, isFeasible);
if (isFeasible) {
builder.generateCaseStmtNode(I, StNew);
// If CondV evaluates to a constant, then we know that this
// is the *only* case that we can take, so stop evaluating the
// others.
if (isa<nonloc::ConcreteInt>(CondV))
return;
}
// Now "assume" that the case doesn't match. Add this state
// to the default state (if it is feasible).
isFeasible = false;
StNew = Assume(DefaultSt, Res, false, isFeasible);
if (isFeasible) {
DefaultFeasible = true;
DefaultSt = StNew;
}
// Concretize the next value in the range.
if (V1.Val.getInt() == V2.Val.getInt())
break;
++V1.Val.getInt();
assert (V1.Val.getInt() <= V2.Val.getInt());
} while (true);
}
// If we reach here, than we know that the default branch is
// possible.
if (DefaultFeasible) builder.generateDefaultCaseNode(DefaultSt);
}
//===----------------------------------------------------------------------===//
// Transfer functions: logical operations ('&&', '||').
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred,
NodeSet& Dst) {
assert (B->getOpcode() == BinaryOperator::LAnd ||
B->getOpcode() == BinaryOperator::LOr);
assert (B == CurrentStmt && getCFG().isBlkExpr(B));
const GRState* state = GetState(Pred);
SVal X = GetBlkExprSVal(state, B);
assert (X.isUndef());
Expr* Ex = (Expr*) cast<UndefinedVal>(X).getData();
assert (Ex);
if (Ex == B->getRHS()) {
X = GetBlkExprSVal(state, Ex);
// Handle undefined values.
if (X.isUndef()) {
MakeNode(Dst, B, Pred, BindBlkExpr(state, B, X));
return;
}
// We took the RHS. Because the value of the '&&' or '||' expression must
// evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
// or 1. Alternatively, we could take a lazy approach, and calculate this
// value later when necessary. We don't have the machinery in place for
// this right now, and since most logical expressions are used for branches,
// the payoff is not likely to be large. Instead, we do eager evaluation.
bool isFeasible = false;
const GRState* NewState = Assume(state, X, true, isFeasible);
if (isFeasible)
MakeNode(Dst, B, Pred,
BindBlkExpr(NewState, B, MakeConstantVal(1U, B)));
isFeasible = false;
NewState = Assume(state, X, false, isFeasible);
if (isFeasible)
MakeNode(Dst, B, Pred,
BindBlkExpr(NewState, B, MakeConstantVal(0U, B)));
}
else {
// We took the LHS expression. Depending on whether we are '&&' or
// '||' we know what the value of the expression is via properties of
// the short-circuiting.
X = MakeConstantVal( B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, B);
MakeNode(Dst, B, Pred, BindBlkExpr(state, B, X));
}
}
//===----------------------------------------------------------------------===//
// Transfer functions: Loads and stores.
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* Ex, NodeTy* Pred, NodeSet& Dst,
bool asLValue) {
const GRState* state = GetState(Pred);
const NamedDecl* D = Ex->getDecl();
if (const VarDecl* VD = dyn_cast<VarDecl>(D)) {
SVal V = StateMgr.GetLValue(state, VD);
if (asLValue)
MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V),
ProgramPoint::PostLValueKind);
else
EvalLoad(Dst, Ex, Pred, state, V);
return;
} else if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) {
assert(!asLValue && "EnumConstantDecl does not have lvalue.");
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
SVal V = nonloc::ConcreteInt(BasicVals.getValue(ED->getInitVal()));
MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V));
return;
} else if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) {
assert(asLValue);
SVal V = ValMgr.getFunctionPointer(FD);
MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V),
ProgramPoint::PostLValueKind);
return;
}
assert (false &&
"ValueDecl support for this ValueDecl not implemented.");
}
/// VisitArraySubscriptExpr - Transfer function for array accesses
void GRExprEngine::VisitArraySubscriptExpr(ArraySubscriptExpr* A, NodeTy* Pred,
NodeSet& Dst, bool asLValue) {
Expr* Base = A->getBase()->IgnoreParens();
Expr* Idx = A->getIdx()->IgnoreParens();
NodeSet Tmp;
if (Base->getType()->isVectorType()) {
// For vector types get its lvalue.
// FIXME: This may not be correct. Is the rvalue of a vector its location?
// In fact, I think this is just a hack. We need to get the right
// semantics.
VisitLValue(Base, Pred, Tmp);
}
else
Visit(Base, Pred, Tmp); // Get Base's rvalue, which should be an LocVal.
for (NodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) {
NodeSet Tmp2;
Visit(Idx, *I1, Tmp2); // Evaluate the index.
for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2!=E2; ++I2) {
const GRState* state = GetState(*I2);
SVal V = StateMgr.GetLValue(state, A->getType(),
GetSVal(state, Base),
GetSVal(state, Idx));
if (asLValue)
MakeNode(Dst, A, *I2, BindExpr(state, A, V),
ProgramPoint::PostLValueKind);
else
EvalLoad(Dst, A, *I2, state, V);
}
}
}
/// VisitMemberExpr - Transfer function for member expressions.
void GRExprEngine::VisitMemberExpr(MemberExpr* M, NodeTy* Pred,
NodeSet& Dst, bool asLValue) {
Expr* Base = M->getBase()->IgnoreParens();
NodeSet Tmp;
if (M->isArrow())
Visit(Base, Pred, Tmp); // p->f = ... or ... = p->f
else
VisitLValue(Base, Pred, Tmp); // x.f = ... or ... = x.f
FieldDecl *Field = dyn_cast<FieldDecl>(M->getMemberDecl());
if (!Field) // FIXME: skipping member expressions for non-fields
return;
for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) {
const GRState* state = GetState(*I);
// FIXME: Should we insert some assumption logic in here to determine
// if "Base" is a valid piece of memory? Before we put this assumption
// later when using FieldOffset lvals (which we no longer have).
SVal L = StateMgr.GetLValue(state, GetSVal(state, Base), Field);
if (asLValue)
MakeNode(Dst, M, *I, BindExpr(state, M, L),
ProgramPoint::PostLValueKind);
else
EvalLoad(Dst, M, *I, state, L);
}
}
/// EvalBind - Handle the semantics of binding a value to a specific location.
/// This method is used by EvalStore and (soon) VisitDeclStmt, and others.
void GRExprEngine::EvalBind(NodeSet& Dst, Expr* Ex, NodeTy* Pred,
const GRState* state, SVal location, SVal Val) {
const GRState* newState = 0;
if (location.isUnknown()) {
// We know that the new state will be the same as the old state since
// the location of the binding is "unknown". Consequently, there
// is no reason to just create a new node.
newState = state;
}
else {
// We are binding to a value other than 'unknown'. Perform the binding
// using the StoreManager.
newState = StateMgr.BindLoc(state, cast<Loc>(location), Val);
}
// The next thing to do is check if the GRTransferFuncs object wants to
// update the state based on the new binding. If the GRTransferFunc object
// doesn't do anything, just auto-propagate the current state.
GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, Pred, newState, Ex,
newState != state);
getTF().EvalBind(BuilderRef, location, Val);
}
/// EvalStore - Handle the semantics of a store via an assignment.
/// @param Dst The node set to store generated state nodes
/// @param Ex The expression representing the location of the store
/// @param state The current simulation state
/// @param location The location to store the value
/// @param Val The value to be stored
void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, NodeTy* Pred,
const GRState* state, SVal location, SVal Val,
const void *tag) {
assert (Builder && "GRStmtNodeBuilder must be defined.");
// Evaluate the location (checks for bad dereferences).
Pred = EvalLocation(Ex, Pred, state, location, tag);
if (!Pred)
return;
assert (!location.isUndef());
state = GetState(Pred);
// Proceed with the store.
SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind);
SaveAndRestore<const void*> OldTag(Builder->Tag);
Builder->PointKind = ProgramPoint::PostStoreKind;
Builder->Tag = tag;
EvalBind(Dst, Ex, Pred, state, location, Val);
}
void GRExprEngine::EvalLoad(NodeSet& Dst, Expr* Ex, NodeTy* Pred,
const GRState* state, SVal location,
const void *tag) {
// Evaluate the location (checks for bad dereferences).
Pred = EvalLocation(Ex, Pred, state, location, tag);
if (!Pred)
return;
state = GetState(Pred);
// Proceed with the load.
ProgramPoint::Kind K = ProgramPoint::PostLoadKind;
// FIXME: Currently symbolic analysis "generates" new symbols
// for the contents of values. We need a better approach.
if (location.isUnknown()) {
// This is important. We must nuke the old binding.
MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, UnknownVal()), K, tag);
}
else {
SVal V = GetSVal(state, cast<Loc>(location), Ex->getType());
MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V), K, tag);
}
}
void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, Expr* StoreE, NodeTy* Pred,
const GRState* state, SVal location, SVal Val,
const void *tag) {
NodeSet TmpDst;
EvalStore(TmpDst, StoreE, Pred, state, location, Val, tag);
for (NodeSet::iterator I=TmpDst.begin(), E=TmpDst.end(); I!=E; ++I)
MakeNode(Dst, Ex, *I, (*I)->getState(), ProgramPoint::PostStmtKind, tag);
}
GRExprEngine::NodeTy* GRExprEngine::EvalLocation(Stmt* Ex, NodeTy* Pred,
const GRState* state,
SVal location,
const void *tag) {
SaveAndRestore<const void*> OldTag(Builder->Tag);
Builder->Tag = tag;
// Check for loads/stores from/to undefined values.
if (location.isUndef()) {
NodeTy* N =
Builder->generateNode(Ex, state, Pred,
ProgramPoint::PostUndefLocationCheckFailedKind);
if (N) {
N->markAsSink();
UndefDeref.insert(N);
}
return 0;
}
// Check for loads/stores from/to unknown locations. Treat as No-Ops.
if (location.isUnknown())
return Pred;
// During a load, one of two possible situations arise:
// (1) A crash, because the location (pointer) was NULL.
// (2) The location (pointer) is not NULL, and the dereference works.
//
// We add these assumptions.
Loc LV = cast<Loc>(location);
// "Assume" that the pointer is not NULL.
bool isFeasibleNotNull = false;
const GRState* StNotNull = Assume(state, LV, true, isFeasibleNotNull);
// "Assume" that the pointer is NULL.
bool isFeasibleNull = false;
GRStateRef StNull = GRStateRef(Assume(state, LV, false, isFeasibleNull),
getStateManager());
if (isFeasibleNull) {
// Use the Generic Data Map to mark in the state what lval was null.
const SVal* PersistentLV = getBasicVals().getPersistentSVal(LV);
StNull = StNull.set<GRState::NullDerefTag>(PersistentLV);
// We don't use "MakeNode" here because the node will be a sink
// and we have no intention of processing it later.
NodeTy* NullNode =
Builder->generateNode(Ex, StNull, Pred,
ProgramPoint::PostNullCheckFailedKind);
if (NullNode) {
NullNode->markAsSink();
if (isFeasibleNotNull) ImplicitNullDeref.insert(NullNode);
else ExplicitNullDeref.insert(NullNode);
}
}
if (!isFeasibleNotNull)
return 0;
// Check for out-of-bound array access.
if (isa<loc::MemRegionVal>(LV)) {
const MemRegion* R = cast<loc::MemRegionVal>(LV).getRegion();
if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
// Get the index of the accessed element.
SVal Idx = ER->getIndex();
// Get the extent of the array.
SVal NumElements = getStoreManager().getSizeInElements(StNotNull,
ER->getSuperRegion());
bool isFeasibleInBound = false;
const GRState* StInBound = AssumeInBound(StNotNull, Idx, NumElements,
true, isFeasibleInBound);
bool isFeasibleOutBound = false;
const GRState* StOutBound = AssumeInBound(StNotNull, Idx, NumElements,
false, isFeasibleOutBound);
if (isFeasibleOutBound) {
// Report warning. Make sink node manually.
NodeTy* OOBNode =
Builder->generateNode(Ex, StOutBound, Pred,
ProgramPoint::PostOutOfBoundsCheckFailedKind);
if (OOBNode) {
OOBNode->markAsSink();
if (isFeasibleInBound)
ImplicitOOBMemAccesses.insert(OOBNode);
else
ExplicitOOBMemAccesses.insert(OOBNode);
}
}
if (!isFeasibleInBound)
return 0;
StNotNull = StInBound;
}
}
// Generate a new node indicating the checks succeed.
return Builder->generateNode(Ex, StNotNull, Pred,
ProgramPoint::PostLocationChecksSucceedKind);
}
//===----------------------------------------------------------------------===//
// Transfer function: OSAtomics.
//
// FIXME: Eventually refactor into a more "plugin" infrastructure.
//===----------------------------------------------------------------------===//
// Mac OS X:
// http://developer.apple.com/documentation/Darwin/Reference/Manpages/man3
// atomic.3.html
//
static bool EvalOSAtomicCompareAndSwap(ExplodedNodeSet<GRState>& Dst,
GRExprEngine& Engine,
GRStmtNodeBuilder<GRState>& Builder,
CallExpr* CE, SVal L,
ExplodedNode<GRState>* Pred) {
// Not enough arguments to match OSAtomicCompareAndSwap?
if (CE->getNumArgs() != 3)
return false;
ASTContext &C = Engine.getContext();
Expr *oldValueExpr = CE->getArg(0);
QualType oldValueType = C.getCanonicalType(oldValueExpr->getType());
Expr *newValueExpr = CE->getArg(1);
QualType newValueType = C.getCanonicalType(newValueExpr->getType());
// Do the types of 'oldValue' and 'newValue' match?
if (oldValueType != newValueType)
return false;
Expr *theValueExpr = CE->getArg(2);
const PointerType *theValueType = theValueExpr->getType()->getAsPointerType();
// theValueType not a pointer?
if (!theValueType)
return false;
QualType theValueTypePointee =
C.getCanonicalType(theValueType->getPointeeType()).getUnqualifiedType();
// The pointee must match newValueType and oldValueType.
if (theValueTypePointee != newValueType)
return false;
static unsigned magic_load = 0;
static unsigned magic_store = 0;
const void *OSAtomicLoadTag = &magic_load;
const void *OSAtomicStoreTag = &magic_store;
// Load 'theValue'.
GRStateManager &StateMgr = Engine.getStateManager();
const GRState *state = Pred->getState();
ExplodedNodeSet<GRState> Tmp;
SVal location = StateMgr.GetSVal(state, theValueExpr);
Engine.EvalLoad(Tmp, theValueExpr, Pred, state, location, OSAtomicLoadTag);
for (ExplodedNodeSet<GRState>::iterator I = Tmp.begin(), E = Tmp.end();
I != E; ++I) {
ExplodedNode<GRState> *N = *I;
const GRState *stateLoad = N->getState();
SVal theValueVal = StateMgr.GetSVal(stateLoad, theValueExpr);
SVal oldValueVal = StateMgr.GetSVal(stateLoad, oldValueExpr);
// Perform the comparison.
SVal Cmp = Engine.EvalBinOp(BinaryOperator::EQ, theValueVal, oldValueVal,
Engine.getContext().IntTy);
bool isFeasible = false;
const GRState *stateEqual = StateMgr.Assume(stateLoad, Cmp, true,
isFeasible);
// Were they equal?
if (isFeasible) {
// Perform the store.
ExplodedNodeSet<GRState> TmpStore;
Engine.EvalStore(TmpStore, theValueExpr, N, stateEqual, location,
StateMgr.GetSVal(stateEqual, newValueExpr),
OSAtomicStoreTag);
// Now bind the result of the comparison.
for (ExplodedNodeSet<GRState>::iterator I2 = TmpStore.begin(),
E2 = TmpStore.end(); I2 != E2; ++I2) {
ExplodedNode<GRState> *predNew = *I2;
const GRState *stateNew = predNew->getState();
SVal Res = Engine.getValueManager().makeTruthVal(true, CE->getType());
Engine.MakeNode(Dst, CE, predNew, Engine.BindExpr(stateNew, CE, Res));
}
}
// Were they not equal?
isFeasible = false;
const GRState *stateNotEqual = StateMgr.Assume(stateLoad, Cmp, false,
isFeasible);
if (isFeasible) {
SVal Res = Engine.getValueManager().makeTruthVal(false, CE->getType());
Engine.MakeNode(Dst, CE, N, Engine.BindExpr(stateNotEqual, CE, Res));
}
}
return true;
}
static bool EvalOSAtomic(ExplodedNodeSet<GRState>& Dst,
GRExprEngine& Engine,
GRStmtNodeBuilder<GRState>& Builder,
CallExpr* CE, SVal L,
ExplodedNode<GRState>* Pred) {
const FunctionDecl* FD = L.getAsFunctionDecl();
if (!FD)
return false;
const char *FName = FD->getNameAsCString();
// Check for compare and swap.
if (strncmp(FName, "OSAtomicCompareAndSwap", 22) == 0 ||
strncmp(FName, "objc_atomicCompareAndSwap", 25) == 0)
return EvalOSAtomicCompareAndSwap(Dst, Engine, Builder, CE, L, Pred);
// FIXME: Other atomics.
return false;
}
//===----------------------------------------------------------------------===//
// Transfer function: Function calls.
//===----------------------------------------------------------------------===//
void GRExprEngine::EvalCall(NodeSet& Dst, CallExpr* CE, SVal L, NodeTy* Pred) {
assert (Builder && "GRStmtNodeBuilder must be defined.");
// FIXME: Allow us to chain together transfer functions.
if (EvalOSAtomic(Dst, *this, *Builder, CE, L, Pred))
return;
getTF().EvalCall(Dst, *this, *Builder, CE, L, Pred);
}
void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred,
CallExpr::arg_iterator AI,
CallExpr::arg_iterator AE,
NodeSet& Dst)
{
// Determine the type of function we're calling (if available).
const FunctionProtoType *Proto = NULL;
QualType FnType = CE->getCallee()->IgnoreParens()->getType();
if (const PointerType *FnTypePtr = FnType->getAsPointerType())
Proto = FnTypePtr->getPointeeType()->getAsFunctionProtoType();
VisitCallRec(CE, Pred, AI, AE, Dst, Proto, /*ParamIdx=*/0);
}
void GRExprEngine::VisitCallRec(CallExpr* CE, NodeTy* Pred,
CallExpr::arg_iterator AI,
CallExpr::arg_iterator AE,
NodeSet& Dst, const FunctionProtoType *Proto,
unsigned ParamIdx) {
// Process the arguments.
if (AI != AE) {
// If the call argument is being bound to a reference parameter,
// visit it as an lvalue, not an rvalue.
bool VisitAsLvalue = false;
if (Proto && ParamIdx < Proto->getNumArgs())
VisitAsLvalue = Proto->getArgType(ParamIdx)->isReferenceType();
NodeSet DstTmp;
if (VisitAsLvalue)
VisitLValue(*AI, Pred, DstTmp);
else
Visit(*AI, Pred, DstTmp);
++AI;
for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI)
VisitCallRec(CE, *DI, AI, AE, Dst, Proto, ParamIdx + 1);
return;
}
// If we reach here we have processed all of the arguments. Evaluate
// the callee expression.
NodeSet DstTmp;
Expr* Callee = CE->getCallee()->IgnoreParens();
Visit(Callee, Pred, DstTmp);
// Finally, evaluate the function call.
for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) {
const GRState* state = GetState(*DI);
SVal L = GetSVal(state, Callee);
// FIXME: Add support for symbolic function calls (calls involving
// function pointer values that are symbolic).
// Check for undefined control-flow or calls to NULL.
if (L.isUndef() || isa<loc::ConcreteInt>(L)) {
NodeTy* N = Builder->generateNode(CE, state, *DI);
if (N) {
N->markAsSink();
BadCalls.insert(N);
}
continue;
}
// Check for the "noreturn" attribute.
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
const FunctionDecl* FD = L.getAsFunctionDecl();
if (FD) {
if (FD->getAttr<NoReturnAttr>() || FD->getAttr<AnalyzerNoReturnAttr>())
Builder->BuildSinks = true;
else {
// HACK: Some functions are not marked noreturn, and don't return.
// Here are a few hardwired ones. If this takes too long, we can
// potentially cache these results.
const char* s = FD->getIdentifier()->getName();
unsigned n = strlen(s);
switch (n) {
default:
break;
case 4:
if (!memcmp(s, "exit", 4)) Builder->BuildSinks = true;
break;
case 5:
if (!memcmp(s, "panic", 5)) Builder->BuildSinks = true;
else if (!memcmp(s, "error", 5)) {
if (CE->getNumArgs() > 0) {
SVal X = GetSVal(state, *CE->arg_begin());
// FIXME: use Assume to inspect the possible symbolic value of
// X. Also check the specific signature of error().
nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&X);
if (CI && CI->getValue() != 0)
Builder->BuildSinks = true;
}
}
break;
case 6:
if (!memcmp(s, "Assert", 6)) {
Builder->BuildSinks = true;
break;
}
// FIXME: This is just a wrapper around throwing an exception.
// Eventually inter-procedural analysis should handle this easily.
if (!memcmp(s, "ziperr", 6)) Builder->BuildSinks = true;
break;
case 7:
if (!memcmp(s, "assfail", 7)) Builder->BuildSinks = true;
break;
case 8:
if (!memcmp(s ,"db_error", 8) ||
!memcmp(s, "__assert", 8))
Builder->BuildSinks = true;
break;
case 12:
if (!memcmp(s, "__assert_rtn", 12)) Builder->BuildSinks = true;
break;
case 13:
if (!memcmp(s, "__assert_fail", 13)) Builder->BuildSinks = true;
break;
case 14:
if (!memcmp(s, "dtrace_assfail", 14) ||
!memcmp(s, "yy_fatal_error", 14))
Builder->BuildSinks = true;
break;
case 26:
if (!memcmp(s, "_XCAssertionFailureHandler", 26) ||
!memcmp(s, "_DTAssertionFailureHandler", 26) ||
!memcmp(s, "_TSAssertionFailureHandler", 26))
Builder->BuildSinks = true;
break;
}
}
}
// Evaluate the call.
if (FD) {
if (unsigned id = FD->getBuiltinID(getContext()))
switch (id) {
case Builtin::BI__builtin_expect: {
// For __builtin_expect, just return the value of the subexpression.
assert (CE->arg_begin() != CE->arg_end());
SVal X = GetSVal(state, *(CE->arg_begin()));
MakeNode(Dst, CE, *DI, BindExpr(state, CE, X));
continue;
}
case Builtin::BI__builtin_alloca: {
// FIXME: Refactor into StoreManager itself?
MemRegionManager& RM = getStateManager().getRegionManager();
const MemRegion* R =
RM.getAllocaRegion(CE, Builder->getCurrentBlockCount());
// Set the extent of the region in bytes. This enables us to use the
// SVal of the argument directly. If we save the extent in bits, we
// cannot represent values like symbol*8.
SVal Extent = GetSVal(state, *(CE->arg_begin()));
state = getStoreManager().setExtent(state, R, Extent);
MakeNode(Dst, CE, *DI, BindExpr(state, CE, loc::MemRegionVal(R)));
continue;
}
default:
break;
}
}
// Check any arguments passed-by-value against being undefined.
bool badArg = false;
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I) {
if (GetSVal(GetState(*DI), *I).isUndef()) {
NodeTy* N = Builder->generateNode(CE, GetState(*DI), *DI);
if (N) {
N->markAsSink();
UndefArgs[N] = *I;
}
badArg = true;
break;
}
}
if (badArg)
continue;
// Dispatch to the plug-in transfer function.
unsigned size = Dst.size();
SaveOr OldHasGen(Builder->HasGeneratedNode);
EvalCall(Dst, CE, L, *DI);
// Handle the case where no nodes where generated. Auto-generate that
// contains the updated state if we aren't generating sinks.
if (!Builder->BuildSinks && Dst.size() == size &&
!Builder->HasGeneratedNode)
MakeNode(Dst, CE, *DI, state);
}
}
//===----------------------------------------------------------------------===//
// Transfer function: Objective-C ivar references.
//===----------------------------------------------------------------------===//
static std::pair<const void*,const void*> EagerlyAssumeTag
= std::pair<const void*,const void*>(&EagerlyAssumeTag,0);
void GRExprEngine::EvalEagerlyAssume(NodeSet &Dst, NodeSet &Src, Expr *Ex) {
for (NodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) {
NodeTy *Pred = *I;
// Test if the previous node was as the same expression. This can happen
// when the expression fails to evaluate to anything meaningful and
// (as an optimization) we don't generate a node.
ProgramPoint P = Pred->getLocation();
if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) {
Dst.Add(Pred);
continue;
}
const GRState* state = Pred->getState();
SVal V = GetSVal(state, Ex);
if (isa<nonloc::SymExprVal>(V)) {
// First assume that the condition is true.
bool isFeasible = false;
const GRState *stateTrue = Assume(state, V, true, isFeasible);
if (isFeasible) {
stateTrue = BindExpr(stateTrue, Ex, MakeConstantVal(1U, Ex));
Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag),
stateTrue, Pred));
}
// Next, assume that the condition is false.
isFeasible = false;
const GRState *stateFalse = Assume(state, V, false, isFeasible);
if (isFeasible) {
stateFalse = BindExpr(stateFalse, Ex, MakeConstantVal(0U, Ex));
Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag),
stateFalse, Pred));
}
}
else
Dst.Add(Pred);
}
}
//===----------------------------------------------------------------------===//
// Transfer function: Objective-C ivar references.
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitObjCIvarRefExpr(ObjCIvarRefExpr* Ex,
NodeTy* Pred, NodeSet& Dst,
bool asLValue) {
Expr* Base = cast<Expr>(Ex->getBase());
NodeSet Tmp;
Visit(Base, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
SVal BaseVal = GetSVal(state, Base);
SVal location = StateMgr.GetLValue(state, Ex->getDecl(), BaseVal);
if (asLValue)
MakeNode(Dst, Ex, *I, BindExpr(state, Ex, location));
else
EvalLoad(Dst, Ex, *I, state, location);
}
}
//===----------------------------------------------------------------------===//
// Transfer function: Objective-C fast enumeration 'for' statements.
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S,
NodeTy* Pred, NodeSet& Dst) {
// ObjCForCollectionStmts are processed in two places. This method
// handles the case where an ObjCForCollectionStmt* occurs as one of the
// statements within a basic block. This transfer function does two things:
//
// (1) binds the next container value to 'element'. This creates a new
// node in the ExplodedGraph.
//
// (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating
// whether or not the container has any more elements. This value
// will be tested in ProcessBranch. We need to explicitly bind
// this value because a container can contain nil elements.
//
// FIXME: Eventually this logic should actually do dispatches to
// 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration).
// This will require simulating a temporary NSFastEnumerationState, either
// through an SVal or through the use of MemRegions. This value can
// be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop
// terminates we reclaim the temporary (it goes out of scope) and we
// we can test if the SVal is 0 or if the MemRegion is null (depending
// on what approach we take).
//
// For now: simulate (1) by assigning either a symbol or nil if the
// container is empty. Thus this transfer function will by default
// result in state splitting.
Stmt* elem = S->getElement();
SVal ElementV;
if (DeclStmt* DS = dyn_cast<DeclStmt>(elem)) {
VarDecl* ElemD = cast<VarDecl>(DS->getSingleDecl());
assert (ElemD->getInit() == 0);
ElementV = getStateManager().GetLValue(GetState(Pred), ElemD);
VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV);
return;
}
NodeSet Tmp;
VisitLValue(cast<Expr>(elem), Pred, Tmp);
for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
VisitObjCForCollectionStmtAux(S, *I, Dst, GetSVal(state, elem));
}
}
void GRExprEngine::VisitObjCForCollectionStmtAux(ObjCForCollectionStmt* S,
NodeTy* Pred, NodeSet& Dst,
SVal ElementV) {
// Get the current state. Use 'EvalLocation' to determine if it is a null
// pointer, etc.
Stmt* elem = S->getElement();
Pred = EvalLocation(elem, Pred, GetState(Pred), ElementV);
if (!Pred)
return;
GRStateRef state = GRStateRef(GetState(Pred), getStateManager());
// Handle the case where the container still has elements.
QualType IntTy = getContext().IntTy;
SVal TrueV = NonLoc::MakeVal(getBasicVals(), 1, IntTy);
GRStateRef hasElems = state.BindExpr(S, TrueV);
// Handle the case where the container has no elements.
SVal FalseV = NonLoc::MakeVal(getBasicVals(), 0, IntTy);
GRStateRef noElems = state.BindExpr(S, FalseV);
if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV))
if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) {
// FIXME: The proper thing to do is to really iterate over the
// container. We will do this with dispatch logic to the store.
// For now, just 'conjure' up a symbolic value.
QualType T = R->getObjectType(getContext());
assert (Loc::IsLocType(T));
unsigned Count = Builder->getCurrentBlockCount();
SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count);
SVal V = Loc::MakeVal(getStoreManager().getRegionManager().getSymbolicRegion(Sym));
hasElems = hasElems.BindLoc(ElementV, V);
// Bind the location to 'nil' on the false branch.
SVal nilV = loc::ConcreteInt(getBasicVals().getValue(0, T));
noElems = noElems.BindLoc(ElementV, nilV);
}
// Create the new nodes.
MakeNode(Dst, S, Pred, hasElems);
MakeNode(Dst, S, Pred, noElems);
}
//===----------------------------------------------------------------------===//
// Transfer function: Objective-C message expressions.
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred,
NodeSet& Dst){
VisitObjCMessageExprArgHelper(ME, ME->arg_begin(), ME->arg_end(),
Pred, Dst);
}
void GRExprEngine::VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME,
ObjCMessageExpr::arg_iterator AI,
ObjCMessageExpr::arg_iterator AE,
NodeTy* Pred, NodeSet& Dst) {
if (AI == AE) {
// Process the receiver.
if (Expr* Receiver = ME->getReceiver()) {
NodeSet Tmp;
Visit(Receiver, Pred, Tmp);
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitObjCMessageExprDispatchHelper(ME, *NI, Dst);
return;
}
VisitObjCMessageExprDispatchHelper(ME, Pred, Dst);
return;
}
NodeSet Tmp;
Visit(*AI, Pred, Tmp);
++AI;
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitObjCMessageExprArgHelper(ME, AI, AE, *NI, Dst);
}
void GRExprEngine::VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME,
NodeTy* Pred,
NodeSet& Dst) {
// FIXME: More logic for the processing the method call.
const GRState* state = GetState(Pred);
bool RaisesException = false;
if (Expr* Receiver = ME->getReceiver()) {
SVal L = GetSVal(state, Receiver);
// Check for undefined control-flow.
if (L.isUndef()) {
NodeTy* N = Builder->generateNode(ME, state, Pred);
if (N) {
N->markAsSink();
UndefReceivers.insert(N);
}
return;
}
// "Assume" that the receiver is not NULL.
bool isFeasibleNotNull = false;
const GRState *StNotNull = Assume(state, L, true, isFeasibleNotNull);
// "Assume" that the receiver is NULL.
bool isFeasibleNull = false;
const GRState *StNull = Assume(state, L, false, isFeasibleNull);
if (isFeasibleNull) {
QualType RetTy = ME->getType();
// Check if the receiver was nil and the return value a struct.
if(RetTy->isRecordType()) {
if (BR.getParentMap().isConsumedExpr(ME)) {
// The [0 ...] expressions will return garbage. Flag either an
// explicit or implicit error. Because of the structure of this
// function we currently do not bifurfacte the state graph at
// this point.
// FIXME: We should bifurcate and fill the returned struct with
// garbage.
if (NodeTy* N = Builder->generateNode(ME, StNull, Pred)) {
N->markAsSink();
if (isFeasibleNotNull)
NilReceiverStructRetImplicit.insert(N);
else
NilReceiverStructRetExplicit.insert(N);
}
}
}
else {
ASTContext& Ctx = getContext();
if (RetTy != Ctx.VoidTy) {
if (BR.getParentMap().isConsumedExpr(ME)) {
// sizeof(void *)
const uint64_t voidPtrSize = Ctx.getTypeSize(Ctx.VoidPtrTy);
// sizeof(return type)
const uint64_t returnTypeSize = Ctx.getTypeSize(ME->getType());
if(voidPtrSize < returnTypeSize) {
if (NodeTy* N = Builder->generateNode(ME, StNull, Pred)) {
N->markAsSink();
if(isFeasibleNotNull)
NilReceiverLargerThanVoidPtrRetImplicit.insert(N);
else
NilReceiverLargerThanVoidPtrRetExplicit.insert(N);
}
}
else if (!isFeasibleNotNull) {
// Handle the safe cases where the return value is 0 if the
// receiver is nil.
//
// FIXME: For now take the conservative approach that we only
// return null values if we *know* that the receiver is nil.
// This is because we can have surprises like:
//
// ... = [[NSScreens screens] objectAtIndex:0];
//
// What can happen is that [... screens] could return nil, but
// it most likely isn't nil. We should assume the semantics
// of this case unless we have *a lot* more knowledge.
//
SVal V = ValMgr.makeZeroVal(ME->getType());
MakeNode(Dst, ME, Pred, BindExpr(StNull, ME, V));
return;
}
}
}
}
// We have handled the cases where the receiver is nil. The remainder
// of this method should assume that the receiver is not nil.
if (!StNotNull)
return;
state = StNotNull;
}
// Check if the "raise" message was sent.
if (ME->getSelector() == RaiseSel)
RaisesException = true;
}
else {
IdentifierInfo* ClsName = ME->getClassName();
Selector S = ME->getSelector();
// Check for special instance methods.
if (!NSExceptionII) {
ASTContext& Ctx = getContext();
NSExceptionII = &Ctx.Idents.get("NSException");
}
if (ClsName == NSExceptionII) {
enum { NUM_RAISE_SELECTORS = 2 };
// Lazily create a cache of the selectors.
if (!NSExceptionInstanceRaiseSelectors) {
ASTContext& Ctx = getContext();
NSExceptionInstanceRaiseSelectors = new Selector[NUM_RAISE_SELECTORS];
llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II;
unsigned idx = 0;
// raise:format:
II.push_back(&Ctx.Idents.get("raise"));
II.push_back(&Ctx.Idents.get("format"));
NSExceptionInstanceRaiseSelectors[idx++] =
Ctx.Selectors.getSelector(II.size(), &II[0]);
// raise:format::arguments:
II.push_back(&Ctx.Idents.get("arguments"));
NSExceptionInstanceRaiseSelectors[idx++] =
Ctx.Selectors.getSelector(II.size(), &II[0]);
}
for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i)
if (S == NSExceptionInstanceRaiseSelectors[i]) {
RaisesException = true; break;
}
}
}
// Check for any arguments that are uninitialized/undefined.
for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end();
I != E; ++I) {
if (GetSVal(state, *I).isUndef()) {
// Generate an error node for passing an uninitialized/undefined value
// as an argument to a message expression. This node is a sink.
NodeTy* N = Builder->generateNode(ME, state, Pred);
if (N) {
N->markAsSink();
MsgExprUndefArgs[N] = *I;
}
return;
}
}
// Check if we raise an exception. For now treat these as sinks. Eventually
// we will want to handle exceptions properly.
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
if (RaisesException)
Builder->BuildSinks = true;
// Dispatch to plug-in transfer function.
unsigned size = Dst.size();
SaveOr OldHasGen(Builder->HasGeneratedNode);
EvalObjCMessageExpr(Dst, ME, Pred);
// Handle the case where no nodes where generated. Auto-generate that
// contains the updated state if we aren't generating sinks.
if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode)
MakeNode(Dst, ME, Pred, state);
}
//===----------------------------------------------------------------------===//
// Transfer functions: Miscellaneous statements.
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitCastPointerToInteger(SVal V, const GRState* state,
QualType PtrTy,
Expr* CastE, NodeTy* Pred,
NodeSet& Dst) {
if (!V.isUnknownOrUndef()) {
// FIXME: Determine if the number of bits of the target type is
// equal or exceeds the number of bits to store the pointer value.
// If not, flag an error.
MakeNode(Dst, CastE, Pred, BindExpr(state, CastE, EvalCast(cast<Loc>(V),
CastE->getType())));
}
else
MakeNode(Dst, CastE, Pred, BindExpr(state, CastE, V));
}
void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){
NodeSet S1;
QualType T = CastE->getType();
QualType ExTy = Ex->getType();
if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
T = ExCast->getTypeAsWritten();
if (ExTy->isArrayType() || ExTy->isFunctionType() || T->isReferenceType())
VisitLValue(Ex, Pred, S1);
else
Visit(Ex, Pred, S1);
// Check for casting to "void".
if (T->isVoidType()) {
for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1)
Dst.Add(*I1);
return;
}
// FIXME: The rest of this should probably just go into EvalCall, and
// let the transfer function object be responsible for constructing
// nodes.
for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) {
NodeTy* N = *I1;
const GRState* state = GetState(N);
SVal V = GetSVal(state, Ex);
ASTContext& C = getContext();
// Unknown?
if (V.isUnknown()) {
Dst.Add(N);
continue;
}
// Undefined?
if (V.isUndef())
goto PassThrough;
// For const casts, just propagate the value.
if (C.getCanonicalType(T).getUnqualifiedType() ==
C.getCanonicalType(ExTy).getUnqualifiedType())
goto PassThrough;
// Check for casts from pointers to integers.
if (T->isIntegerType() && Loc::IsLocType(ExTy)) {
VisitCastPointerToInteger(V, state, ExTy, CastE, N, Dst);
continue;
}
// Check for casts from integers to pointers.
if (Loc::IsLocType(T) && ExTy->isIntegerType()) {
if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&V)) {
// Just unpackage the lval and return it.
V = LV->getLoc();
MakeNode(Dst, CastE, N, BindExpr(state, CastE, V));
continue;
}
goto DispatchCast;
}
// Just pass through function and block pointers.
if (ExTy->isBlockPointerType() || ExTy->isFunctionPointerType()) {
assert(Loc::IsLocType(T));
goto PassThrough;
}
// Check for casts from array type to another type.
if (ExTy->isArrayType()) {
// We will always decay to a pointer.
V = StateMgr.ArrayToPointer(cast<Loc>(V));
// Are we casting from an array to a pointer? If so just pass on
// the decayed value.
if (T->isPointerType())
goto PassThrough;
// Are we casting from an array to an integer? If so, cast the decayed
// pointer value to an integer.
assert(T->isIntegerType());
QualType ElemTy = cast<ArrayType>(ExTy)->getElementType();
QualType PointerTy = getContext().getPointerType(ElemTy);
VisitCastPointerToInteger(V, state, PointerTy, CastE, N, Dst);
continue;
}
// Check for casts from a region to a specific type.
if (loc::MemRegionVal *RV = dyn_cast<loc::MemRegionVal>(&V)) {
// FIXME: For TypedViewRegions, we should handle the case where the
// underlying symbolic pointer is a function pointer or
// block pointer.
// FIXME: We should handle the case where we strip off view layers to get
// to a desugared type.
assert(Loc::IsLocType(T));
// We get a symbolic function pointer for a dereference of a function
// pointer, but it is of function type. Example:
// struct FPRec {
// void (*my_func)(int * x);
// };
//
// int bar(int x);
//
// int f1_a(struct FPRec* foo) {
// int x;
// (*foo->my_func)(&x);
// return bar(x)+1; // no-warning
// }
assert(Loc::IsLocType(ExTy) || ExTy->isFunctionType());
const MemRegion* R = RV->getRegion();
StoreManager& StoreMgr = getStoreManager();
// Delegate to store manager to get the result of casting a region
// to a different type.
const StoreManager::CastResult& Res = StoreMgr.CastRegion(state, R, T);
// Inspect the result. If the MemRegion* returned is NULL, this
// expression evaluates to UnknownVal.
R = Res.getRegion();
if (R) { V = loc::MemRegionVal(R); } else { V = UnknownVal(); }
// Generate the new node in the ExplodedGraph.
MakeNode(Dst, CastE, N, BindExpr(Res.getState(), CastE, V));
continue;
}
// All other cases.
DispatchCast: {
MakeNode(Dst, CastE, N, BindExpr(state, CastE,
EvalCast(V, CastE->getType())));
continue;
}
PassThrough: {
MakeNode(Dst, CastE, N, BindExpr(state, CastE, V));
}
}
}
void GRExprEngine::VisitCompoundLiteralExpr(CompoundLiteralExpr* CL,
NodeTy* Pred, NodeSet& Dst,
bool asLValue) {
InitListExpr* ILE = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
NodeSet Tmp;
Visit(ILE, Pred, Tmp);
for (NodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) {
const GRState* state = GetState(*I);
SVal ILV = GetSVal(state, ILE);
state = StateMgr.BindCompoundLiteral(state, CL, ILV);
if (asLValue)
MakeNode(Dst, CL, *I, BindExpr(state, CL, StateMgr.GetLValue(state, CL)));
else
MakeNode(Dst, CL, *I, BindExpr(state, CL, ILV));
}
}
void GRExprEngine::VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst) {
// The CFG has one DeclStmt per Decl.
Decl* D = *DS->decl_begin();
if (!D || !isa<VarDecl>(D))
return;
const VarDecl* VD = dyn_cast<VarDecl>(D);
Expr* InitEx = const_cast<Expr*>(VD->getInit());
// FIXME: static variables may have an initializer, but the second
// time a function is called those values may not be current.
NodeSet Tmp;
if (InitEx)
Visit(InitEx, Pred, Tmp);
if (Tmp.empty())
Tmp.Add(Pred);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
unsigned Count = Builder->getCurrentBlockCount();
// Check if 'VD' is a VLA and if so check if has a non-zero size.
QualType T = getContext().getCanonicalType(VD->getType());
if (VariableArrayType* VLA = dyn_cast<VariableArrayType>(T)) {
// FIXME: Handle multi-dimensional VLAs.
Expr* SE = VLA->getSizeExpr();
SVal Size = GetSVal(state, SE);
if (Size.isUndef()) {
if (NodeTy* N = Builder->generateNode(DS, state, Pred)) {
N->markAsSink();
ExplicitBadSizedVLA.insert(N);
}
continue;
}
bool isFeasibleZero = false;
const GRState* ZeroSt = Assume(state, Size, false, isFeasibleZero);
bool isFeasibleNotZero = false;
state = Assume(state, Size, true, isFeasibleNotZero);
if (isFeasibleZero) {
if (NodeTy* N = Builder->generateNode(DS, ZeroSt, Pred)) {
N->markAsSink();
if (isFeasibleNotZero) ImplicitBadSizedVLA.insert(N);
else ExplicitBadSizedVLA.insert(N);
}
}
if (!isFeasibleNotZero)
continue;
}
// Decls without InitExpr are not initialized explicitly.
if (InitEx) {
SVal InitVal = GetSVal(state, InitEx);
QualType T = VD->getType();
// Recover some path-sensitivity if a scalar value evaluated to
// UnknownVal.
if (InitVal.isUnknown() ||
!getConstraintManager().canReasonAbout(InitVal)) {
InitVal = ValMgr.getConjuredSymbolVal(InitEx, Count);
}
state = StateMgr.BindDecl(state, VD, InitVal);
// The next thing to do is check if the GRTransferFuncs object wants to
// update the state based on the new binding. If the GRTransferFunc
// object doesn't do anything, just auto-propagate the current state.
GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, state, DS,true);
getTF().EvalBind(BuilderRef, loc::MemRegionVal(StateMgr.getRegion(VD)),
InitVal);
}
else {
state = StateMgr.BindDeclWithNoInit(state, VD);
MakeNode(Dst, DS, *I, state);
}
}
}
namespace {
// This class is used by VisitInitListExpr as an item in a worklist
// for processing the values contained in an InitListExpr.
class VISIBILITY_HIDDEN InitListWLItem {
public:
llvm::ImmutableList<SVal> Vals;
GRExprEngine::NodeTy* N;
InitListExpr::reverse_iterator Itr;
InitListWLItem(GRExprEngine::NodeTy* n, llvm::ImmutableList<SVal> vals,
InitListExpr::reverse_iterator itr)
: Vals(vals), N(n), Itr(itr) {}
};
}
void GRExprEngine::VisitInitListExpr(InitListExpr* E, NodeTy* Pred,
NodeSet& Dst) {
const GRState* state = GetState(Pred);
QualType T = getContext().getCanonicalType(E->getType());
unsigned NumInitElements = E->getNumInits();
if (T->isArrayType() || T->isStructureType()) {
llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList();
// Handle base case where the initializer has no elements.
// e.g: static int* myArray[] = {};
if (NumInitElements == 0) {
SVal V = NonLoc::MakeCompoundVal(T, StartVals, getBasicVals());
MakeNode(Dst, E, Pred, BindExpr(state, E, V));
return;
}
// Create a worklist to process the initializers.
llvm::SmallVector<InitListWLItem, 10> WorkList;
WorkList.reserve(NumInitElements);
WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin()));
InitListExpr::reverse_iterator ItrEnd = E->rend();
// Process the worklist until it is empty.
while (!WorkList.empty()) {
InitListWLItem X = WorkList.back();
WorkList.pop_back();
NodeSet Tmp;
Visit(*X.Itr, X.N, Tmp);
InitListExpr::reverse_iterator NewItr = X.Itr + 1;
for (NodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) {
// Get the last initializer value.
state = GetState(*NI);
SVal InitV = GetSVal(state, cast<Expr>(*X.Itr));
// Construct the new list of values by prepending the new value to
// the already constructed list.
llvm::ImmutableList<SVal> NewVals =
getBasicVals().consVals(InitV, X.Vals);
if (NewItr == ItrEnd) {
// Now we have a list holding all init values. Make CompoundValData.
SVal V = NonLoc::MakeCompoundVal(T, NewVals, getBasicVals());
// Make final state and node.
MakeNode(Dst, E, *NI, BindExpr(state, E, V));
}
else {
// Still some initializer values to go. Push them onto the worklist.
WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr));
}
}
}
return;
}
if (T->isUnionType() || T->isVectorType()) {
// FIXME: to be implemented.
// Note: That vectors can return true for T->isIntegerType()
MakeNode(Dst, E, Pred, state);
return;
}
if (Loc::IsLocType(T) || T->isIntegerType()) {
assert (E->getNumInits() == 1);
NodeSet Tmp;
Expr* Init = E->getInit(0);
Visit(Init, Pred, Tmp);
for (NodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I != EI; ++I) {
state = GetState(*I);
MakeNode(Dst, E, *I, BindExpr(state, E, GetSVal(state, Init)));
}
return;
}
printf("InitListExpr type = %s\n", T.getAsString().c_str());
assert(0 && "unprocessed InitListExpr type");
}
/// VisitSizeOfAlignOfExpr - Transfer function for sizeof(type).
void GRExprEngine::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr* Ex,
NodeTy* Pred,
NodeSet& Dst) {
QualType T = Ex->getTypeOfArgument();
uint64_t amt;
if (Ex->isSizeOf()) {
if (T == getContext().VoidTy) {
// sizeof(void) == 1 byte.
amt = 1;
}
else if (!T.getTypePtr()->isConstantSizeType()) {
// FIXME: Add support for VLAs.
return;
}
else if (T->isObjCInterfaceType()) {
// Some code tries to take the sizeof an ObjCInterfaceType, relying that
// the compiler has laid out its representation. Just report Unknown
// for these.
return;
}
else {
// All other cases.
amt = getContext().getTypeSize(T) / 8;
}
}
else // Get alignment of the type.
amt = getContext().getTypeAlign(T) / 8;
MakeNode(Dst, Ex, Pred,
BindExpr(GetState(Pred), Ex,
NonLoc::MakeVal(getBasicVals(), amt, Ex->getType())));
}
void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred,
NodeSet& Dst, bool asLValue) {
switch (U->getOpcode()) {
default:
break;
case UnaryOperator::Deref: {
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
SVal location = GetSVal(state, Ex);
if (asLValue)
MakeNode(Dst, U, *I, BindExpr(state, U, location),
ProgramPoint::PostLValueKind);
else
EvalLoad(Dst, U, *I, state, location);
}
return;
}
case UnaryOperator::Real: {
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
// FIXME: We don't have complex SValues yet.
if (Ex->getType()->isAnyComplexType()) {
// Just report "Unknown."
Dst.Add(*I);
continue;
}
// For all other types, UnaryOperator::Real is an identity operation.
assert (U->getType() == Ex->getType());
const GRState* state = GetState(*I);
MakeNode(Dst, U, *I, BindExpr(state, U, GetSVal(state, Ex)));
}
return;
}
case UnaryOperator::Imag: {
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
// FIXME: We don't have complex SValues yet.
if (Ex->getType()->isAnyComplexType()) {
// Just report "Unknown."
Dst.Add(*I);
continue;
}
// For all other types, UnaryOperator::Float returns 0.
assert (Ex->getType()->isIntegerType());
const GRState* state = GetState(*I);
SVal X = NonLoc::MakeVal(getBasicVals(), 0, Ex->getType());
MakeNode(Dst, U, *I, BindExpr(state, U, X));
}
return;
}
// FIXME: Just report "Unknown" for OffsetOf.
case UnaryOperator::OffsetOf:
Dst.Add(Pred);
return;
case UnaryOperator::Plus: assert (!asLValue); // FALL-THROUGH.
case UnaryOperator::Extension: {
// Unary "+" is a no-op, similar to a parentheses. We still have places
// where it may be a block-level expression, so we need to
// generate an extra node that just propagates the value of the
// subexpression.
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
MakeNode(Dst, U, *I, BindExpr(state, U, GetSVal(state, Ex)));
}
return;
}
case UnaryOperator::AddrOf: {
assert(!asLValue);
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
VisitLValue(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
SVal V = GetSVal(state, Ex);
state = BindExpr(state, U, V);
MakeNode(Dst, U, *I, state);
}
return;
}
case UnaryOperator::LNot:
case UnaryOperator::Minus:
case UnaryOperator::Not: {
assert (!asLValue);
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
// Get the value of the subexpression.
SVal V = GetSVal(state, Ex);
if (V.isUnknownOrUndef()) {
MakeNode(Dst, U, *I, BindExpr(state, U, V));
continue;
}
// QualType DstT = getContext().getCanonicalType(U->getType());
// QualType SrcT = getContext().getCanonicalType(Ex->getType());
//
// if (DstT != SrcT) // Perform promotions.
// V = EvalCast(V, DstT);
//
// if (V.isUnknownOrUndef()) {
// MakeNode(Dst, U, *I, BindExpr(St, U, V));
// continue;
// }
switch (U->getOpcode()) {
default:
assert(false && "Invalid Opcode.");
break;
case UnaryOperator::Not:
// FIXME: Do we need to handle promotions?
state = BindExpr(state, U, EvalComplement(cast<NonLoc>(V)));
break;
case UnaryOperator::Minus:
// FIXME: Do we need to handle promotions?
state = BindExpr(state, U, EvalMinus(U, cast<NonLoc>(V)));
break;
case UnaryOperator::LNot:
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
//
// Note: technically we do "E == 0", but this is the same in the
// transfer functions as "0 == E".
if (isa<Loc>(V)) {
Loc X = Loc::MakeNull(getBasicVals());
SVal Result = EvalBinOp(BinaryOperator::EQ, cast<Loc>(V), X,
U->getType());
state = BindExpr(state, U, Result);
}
else {
nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
#if 0
SVal Result = EvalBinOp(BinaryOperator::EQ, cast<NonLoc>(V), X);
state = SetSVal(state, U, Result);
#else
EvalBinOp(Dst, U, BinaryOperator::EQ, cast<NonLoc>(V), X, *I,
U->getType());
continue;
#endif
}
break;
}
MakeNode(Dst, U, *I, state);
}
return;
}
}
// Handle ++ and -- (both pre- and post-increment).
assert (U->isIncrementDecrementOp());
NodeSet Tmp;
Expr* Ex = U->getSubExpr()->IgnoreParens();
VisitLValue(Ex, Pred, Tmp);
for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
SVal V1 = GetSVal(state, Ex);
// Perform a load.
NodeSet Tmp2;
EvalLoad(Tmp2, Ex, *I, state, V1);
for (NodeSet::iterator I2 = Tmp2.begin(), E2 = Tmp2.end(); I2!=E2; ++I2) {
state = GetState(*I2);
SVal V2 = GetSVal(state, Ex);
// Propagate unknown and undefined values.
if (V2.isUnknownOrUndef()) {
MakeNode(Dst, U, *I2, BindExpr(state, U, V2));
continue;
}
// Handle all other values.
BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add
: BinaryOperator::Sub;
SVal Result = EvalBinOp(Op, V2, MakeConstantVal(1U, U), U->getType());
// Conjure a new symbol if necessary to recover precision.
if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){
Result = ValMgr.getConjuredSymbolVal(Ex,
Builder->getCurrentBlockCount());
// If the value is a location, ++/-- should always preserve
// non-nullness. Check if the original value was non-null, and if so propagate
// that constraint.
if (Loc::IsLocType(U->getType())) {
SVal Constraint = EvalBinOp(BinaryOperator::EQ, V2,
ValMgr.makeZeroVal(U->getType()),
getContext().IntTy);
bool isFeasible = false;
Assume(state, Constraint, true, isFeasible);
if (!isFeasible) {
// It isn't feasible for the original value to be null.
// Propagate this constraint.
Constraint = EvalBinOp(BinaryOperator::EQ, Result,
ValMgr.makeZeroVal(U->getType()),
getContext().IntTy);
bool isFeasible = false;
state = Assume(state, Constraint, false, isFeasible);
assert(isFeasible && state);
}
}
}
state = BindExpr(state, U, U->isPostfix() ? V2 : Result);
// Perform the store.
EvalStore(Dst, U, *I2, state, V1, Result);
}
}
}
void GRExprEngine::VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst) {
VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst);
}
void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A,
AsmStmt::outputs_iterator I,
AsmStmt::outputs_iterator E,
NodeTy* Pred, NodeSet& Dst) {
if (I == E) {
VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst);
return;
}
NodeSet Tmp;
VisitLValue(*I, Pred, Tmp);
++I;
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst);
}
void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A,
AsmStmt::inputs_iterator I,
AsmStmt::inputs_iterator E,
NodeTy* Pred, NodeSet& Dst) {
if (I == E) {
// We have processed both the inputs and the outputs. All of the outputs
// should evaluate to Locs. Nuke all of their values.
// FIXME: Some day in the future it would be nice to allow a "plug-in"
// which interprets the inline asm and stores proper results in the
// outputs.
const GRState* state = GetState(Pred);
for (AsmStmt::outputs_iterator OI = A->begin_outputs(),
OE = A->end_outputs(); OI != OE; ++OI) {
SVal X = GetSVal(state, *OI);
assert (!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef.
if (isa<Loc>(X))
state = BindLoc(state, cast<Loc>(X), UnknownVal());
}
MakeNode(Dst, A, Pred, state);
return;
}
NodeSet Tmp;
Visit(*I, Pred, Tmp);
++I;
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitAsmStmtHelperInputs(A, I, E, *NI, Dst);
}
void GRExprEngine::EvalReturn(NodeSet& Dst, ReturnStmt* S, NodeTy* Pred) {
assert (Builder && "GRStmtNodeBuilder must be defined.");
unsigned size = Dst.size();
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
SaveOr OldHasGen(Builder->HasGeneratedNode);
getTF().EvalReturn(Dst, *this, *Builder, S, Pred);
// Handle the case where no nodes where generated.
if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode)
MakeNode(Dst, S, Pred, GetState(Pred));
}
void GRExprEngine::VisitReturnStmt(ReturnStmt* S, NodeTy* Pred, NodeSet& Dst) {
Expr* R = S->getRetValue();
if (!R) {
EvalReturn(Dst, S, Pred);
return;
}
NodeSet Tmp;
Visit(R, Pred, Tmp);
for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) {
SVal X = GetSVal((*I)->getState(), R);
// Check if we return the address of a stack variable.
if (isa<loc::MemRegionVal>(X)) {
// Determine if the value is on the stack.
const MemRegion* R = cast<loc::MemRegionVal>(&X)->getRegion();
if (R && getStateManager().hasStackStorage(R)) {
// Create a special node representing the error.
if (NodeTy* N = Builder->generateNode(S, GetState(*I), *I)) {
N->markAsSink();
RetsStackAddr.insert(N);
}
continue;
}
}
// Check if we return an undefined value.
else if (X.isUndef()) {
if (NodeTy* N = Builder->generateNode(S, GetState(*I), *I)) {
N->markAsSink();
RetsUndef.insert(N);
}
continue;
}
EvalReturn(Dst, S, *I);
}
}
//===----------------------------------------------------------------------===//
// Transfer functions: Binary operators.
//===----------------------------------------------------------------------===//
const GRState* GRExprEngine::CheckDivideZero(Expr* Ex, const GRState* state,
NodeTy* Pred, SVal Denom) {
// Divide by undefined? (potentially zero)
if (Denom.isUndef()) {
NodeTy* DivUndef = Builder->generateNode(Ex, state, Pred);
if (DivUndef) {
DivUndef->markAsSink();
ExplicitBadDivides.insert(DivUndef);
}
return 0;
}
// Check for divide/remainder-by-zero.
// First, "assume" that the denominator is 0 or undefined.
bool isFeasibleZero = false;
const GRState* ZeroSt = Assume(state, Denom, false, isFeasibleZero);
// Second, "assume" that the denominator cannot be 0.
bool isFeasibleNotZero = false;
state = Assume(state, Denom, true, isFeasibleNotZero);
// Create the node for the divide-by-zero (if it occurred).
if (isFeasibleZero)
if (NodeTy* DivZeroNode = Builder->generateNode(Ex, ZeroSt, Pred)) {
DivZeroNode->markAsSink();
if (isFeasibleNotZero)
ImplicitBadDivides.insert(DivZeroNode);
else
ExplicitBadDivides.insert(DivZeroNode);
}
return isFeasibleNotZero ? state : 0;
}
void GRExprEngine::VisitBinaryOperator(BinaryOperator* B,
GRExprEngine::NodeTy* Pred,
GRExprEngine::NodeSet& Dst) {
NodeSet Tmp1;
Expr* LHS = B->getLHS()->IgnoreParens();
Expr* RHS = B->getRHS()->IgnoreParens();
// FIXME: Add proper support for ObjCKVCRefExpr.
if (isa<ObjCKVCRefExpr>(LHS)) {
Visit(RHS, Pred, Dst);
return;
}
if (B->isAssignmentOp())
VisitLValue(LHS, Pred, Tmp1);
else
Visit(LHS, Pred, Tmp1);
for (NodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1 != E1; ++I1) {
SVal LeftV = GetSVal((*I1)->getState(), LHS);
// Process the RHS.
NodeSet Tmp2;
Visit(RHS, *I1, Tmp2);
// With both the LHS and RHS evaluated, process the operation itself.
for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2 != E2; ++I2) {
const GRState* state = GetState(*I2);
const GRState* OldSt = state;
SVal RightV = GetSVal(state, RHS);
BinaryOperator::Opcode Op = B->getOpcode();
switch (Op) {
case BinaryOperator::Assign: {
// EXPERIMENTAL: "Conjured" symbols.
// FIXME: Handle structs.
QualType T = RHS->getType();
if ((RightV.isUnknown() ||
!getConstraintManager().canReasonAbout(RightV))
&& (Loc::IsLocType(T) ||
(T->isScalarType() && T->isIntegerType()))) {
unsigned Count = Builder->getCurrentBlockCount();
RightV = ValMgr.getConjuredSymbolVal(B->getRHS(), Count);
}
// Simulate the effects of a "store": bind the value of the RHS
// to the L-Value represented by the LHS.
EvalStore(Dst, B, LHS, *I2, BindExpr(state, B, RightV), LeftV,
RightV);
continue;
}
case BinaryOperator::Div:
case BinaryOperator::Rem:
// Special checking for integer denominators.
if (RHS->getType()->isIntegerType() &&
RHS->getType()->isScalarType()) {
state = CheckDivideZero(B, state, *I2, RightV);
if (!state) continue;
}
// FALL-THROUGH.
default: {
if (B->isAssignmentOp())
break;
// Process non-assignements except commas or short-circuited
// logical expressions (LAnd and LOr).
SVal Result = EvalBinOp(Op, LeftV, RightV, B->getType());
if (Result.isUnknown()) {
if (OldSt != state) {
// Generate a new node if we have already created a new state.
MakeNode(Dst, B, *I2, state);
}
else
Dst.Add(*I2);
continue;
}
if (Result.isUndef() && !LeftV.isUndef() && !RightV.isUndef()) {
// The operands were *not* undefined, but the result is undefined.
// This is a special node that should be flagged as an error.
if (NodeTy* UndefNode = Builder->generateNode(B, state, *I2)) {
UndefNode->markAsSink();
UndefResults.insert(UndefNode);
}
continue;
}
// Otherwise, create a new node.
MakeNode(Dst, B, *I2, BindExpr(state, B, Result));
continue;
}
}
assert (B->isCompoundAssignmentOp());
switch (Op) {
default:
assert(0 && "Invalid opcode for compound assignment.");
case BinaryOperator::MulAssign: Op = BinaryOperator::Mul; break;
case BinaryOperator::DivAssign: Op = BinaryOperator::Div; break;
case BinaryOperator::RemAssign: Op = BinaryOperator::Rem; break;
case BinaryOperator::AddAssign: Op = BinaryOperator::Add; break;
case BinaryOperator::SubAssign: Op = BinaryOperator::Sub; break;
case BinaryOperator::ShlAssign: Op = BinaryOperator::Shl; break;
case BinaryOperator::ShrAssign: Op = BinaryOperator::Shr; break;
case BinaryOperator::AndAssign: Op = BinaryOperator::And; break;
case BinaryOperator::XorAssign: Op = BinaryOperator::Xor; break;
case BinaryOperator::OrAssign: Op = BinaryOperator::Or; break;
}
// Perform a load (the LHS). This performs the checks for
// null dereferences, and so on.
NodeSet Tmp3;
SVal location = GetSVal(state, LHS);
EvalLoad(Tmp3, LHS, *I2, state, location);
for (NodeSet::iterator I3=Tmp3.begin(), E3=Tmp3.end(); I3!=E3; ++I3) {
state = GetState(*I3);
SVal V = GetSVal(state, LHS);
// Check for divide-by-zero.
if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem)
&& RHS->getType()->isIntegerType()
&& RHS->getType()->isScalarType()) {
// CheckDivideZero returns a new state where the denominator
// is assumed to be non-zero.
state = CheckDivideZero(B, state, *I3, RightV);
if (!state)
continue;
}
// Propagate undefined values (left-side).
if (V.isUndef()) {
EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, V), location, V);
continue;
}
// Propagate unknown values (left and right-side).
if (RightV.isUnknown() || V.isUnknown()) {
EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, UnknownVal()),
location, UnknownVal());
continue;
}
// At this point:
//
// The LHS is not Undef/Unknown.
// The RHS is not Unknown.
// Get the computation type.
QualType CTy = cast<CompoundAssignOperator>(B)->getComputationResultType();
CTy = getContext().getCanonicalType(CTy);
QualType CLHSTy = cast<CompoundAssignOperator>(B)->getComputationLHSType();
CLHSTy = getContext().getCanonicalType(CTy);
QualType LTy = getContext().getCanonicalType(LHS->getType());
QualType RTy = getContext().getCanonicalType(RHS->getType());
// Promote LHS.
V = EvalCast(V, CLHSTy);
// Evaluate operands and promote to result type.
if (RightV.isUndef()) {
// Propagate undefined values (right-side).
EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, RightV), location,
RightV);
continue;
}
// Compute the result of the operation.
SVal Result = EvalCast(EvalBinOp(Op, V, RightV, CTy), B->getType());
if (Result.isUndef()) {
// The operands were not undefined, but the result is undefined.
if (NodeTy* UndefNode = Builder->generateNode(B, state, *I3)) {
UndefNode->markAsSink();
UndefResults.insert(UndefNode);
}
continue;
}
// EXPERIMENTAL: "Conjured" symbols.
// FIXME: Handle structs.
SVal LHSVal;
if ((Result.isUnknown() ||
!getConstraintManager().canReasonAbout(Result))
&& (Loc::IsLocType(CTy)
|| (CTy->isScalarType() && CTy->isIntegerType()))) {
unsigned Count = Builder->getCurrentBlockCount();
// The symbolic value is actually for the type of the left-hand side
// expression, not the computation type, as this is the value the
// LValue on the LHS will bind to.
LHSVal = ValMgr.getConjuredSymbolVal(B->getRHS(), LTy, Count);
// However, we need to convert the symbol to the computation type.
Result = (LTy == CTy) ? LHSVal : EvalCast(LHSVal,CTy);
}
else {
// The left-hand side may bind to a different value then the
// computation type.
LHSVal = (LTy == CTy) ? Result : EvalCast(Result,LTy);
}
EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, Result), location,
LHSVal);
}
}
}
}
//===----------------------------------------------------------------------===//
// Transfer-function Helpers.
//===----------------------------------------------------------------------===//
void GRExprEngine::EvalBinOp(ExplodedNodeSet<GRState>& Dst, Expr* Ex,
BinaryOperator::Opcode Op,
NonLoc L, NonLoc R,
ExplodedNode<GRState>* Pred, QualType T) {
GRStateSet OStates;
EvalBinOp(OStates, GetState(Pred), Ex, Op, L, R, T);
for (GRStateSet::iterator I=OStates.begin(), E=OStates.end(); I!=E; ++I)
MakeNode(Dst, Ex, Pred, *I);
}
void GRExprEngine::EvalBinOp(GRStateSet& OStates, const GRState* state,
Expr* Ex, BinaryOperator::Opcode Op,
NonLoc L, NonLoc R, QualType T) {
GRStateSet::AutoPopulate AP(OStates, state);
if (R.isValid()) getTF().EvalBinOpNN(OStates, *this, state, Ex, Op, L, R, T);
}
SVal GRExprEngine::EvalBinOp(BinaryOperator::Opcode Op, SVal L, SVal R,
QualType T) {
if (L.isUndef() || R.isUndef())
return UndefinedVal();
if (L.isUnknown() || R.isUnknown())
return UnknownVal();
if (isa<Loc>(L)) {
if (isa<Loc>(R))
return getTF().EvalBinOp(*this, Op, cast<Loc>(L), cast<Loc>(R));
else
return getTF().EvalBinOp(*this, Op, cast<Loc>(L), cast<NonLoc>(R));
}
if (isa<Loc>(R)) {
// Support pointer arithmetic where the increment/decrement operand
// is on the left and the pointer on the right.
assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub);
// Commute the operands.
return getTF().EvalBinOp(*this, Op, cast<Loc>(R),
cast<NonLoc>(L));
}
else
return getTF().DetermEvalBinOpNN(*this, Op, cast<NonLoc>(L),
cast<NonLoc>(R), T);
}
//===----------------------------------------------------------------------===//
// Visualization.
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
static GRExprEngine* GraphPrintCheckerState;
static SourceManager* GraphPrintSourceManager;
namespace llvm {
template<>
struct VISIBILITY_HIDDEN DOTGraphTraits<GRExprEngine::NodeTy*> :
public DefaultDOTGraphTraits {
static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) {
if (GraphPrintCheckerState->isImplicitNullDeref(N) ||
GraphPrintCheckerState->isExplicitNullDeref(N) ||
GraphPrintCheckerState->isUndefDeref(N) ||
GraphPrintCheckerState->isUndefStore(N) ||
GraphPrintCheckerState->isUndefControlFlow(N) ||
GraphPrintCheckerState->isExplicitBadDivide(N) ||
GraphPrintCheckerState->isImplicitBadDivide(N) ||
GraphPrintCheckerState->isUndefResult(N) ||
GraphPrintCheckerState->isBadCall(N) ||
GraphPrintCheckerState->isUndefArg(N))
return "color=\"red\",style=\"filled\"";
if (GraphPrintCheckerState->isNoReturnCall(N))
return "color=\"blue\",style=\"filled\"";
return "";
}
static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*) {
std::ostringstream Out;
// Program Location.
ProgramPoint Loc = N->getLocation();
switch (Loc.getKind()) {
case ProgramPoint::BlockEntranceKind:
Out << "Block Entrance: B"
<< cast<BlockEntrance>(Loc).getBlock()->getBlockID();
break;
case ProgramPoint::BlockExitKind:
assert (false);
break;
default: {
if (isa<PostStmt>(Loc)) {
const PostStmt& L = cast<PostStmt>(Loc);
Stmt* S = L.getStmt();
SourceLocation SLoc = S->getLocStart();
Out << S->getStmtClassName() << ' ' << (void*) S << ' ';
llvm::raw_os_ostream OutS(Out);
S->printPretty(OutS);
OutS.flush();
if (SLoc.isFileID()) {
Out << "\\lline="
<< GraphPrintSourceManager->getInstantiationLineNumber(SLoc)
<< " col="
<< GraphPrintSourceManager->getInstantiationColumnNumber(SLoc)
<< "\\l";
}
if (isa<PostLoad>(Loc))
Out << "\\lPostLoad\\l;";
else if (isa<PostStore>(Loc))
Out << "\\lPostStore\\l";
else if (isa<PostLValue>(Loc))
Out << "\\lPostLValue\\l";
else if (isa<PostLocationChecksSucceed>(Loc))
Out << "\\lPostLocationChecksSucceed\\l";
else if (isa<PostNullCheckFailed>(Loc))
Out << "\\lPostNullCheckFailed\\l";
if (GraphPrintCheckerState->isImplicitNullDeref(N))
Out << "\\|Implicit-Null Dereference.\\l";
else if (GraphPrintCheckerState->isExplicitNullDeref(N))
Out << "\\|Explicit-Null Dereference.\\l";
else if (GraphPrintCheckerState->isUndefDeref(N))
Out << "\\|Dereference of undefialied value.\\l";
else if (GraphPrintCheckerState->isUndefStore(N))
Out << "\\|Store to Undefined Loc.";
else if (GraphPrintCheckerState->isExplicitBadDivide(N))
Out << "\\|Explicit divide-by zero or undefined value.";
else if (GraphPrintCheckerState->isImplicitBadDivide(N))
Out << "\\|Implicit divide-by zero or undefined value.";
else if (GraphPrintCheckerState->isUndefResult(N))
Out << "\\|Result of operation is undefined.";
else if (GraphPrintCheckerState->isNoReturnCall(N))
Out << "\\|Call to function marked \"noreturn\".";
else if (GraphPrintCheckerState->isBadCall(N))
Out << "\\|Call to NULL/Undefined.";
else if (GraphPrintCheckerState->isUndefArg(N))
Out << "\\|Argument in call is undefined";
break;
}
const BlockEdge& E = cast<BlockEdge>(Loc);
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
<< E.getDst()->getBlockID() << ')';
if (Stmt* T = E.getSrc()->getTerminator()) {
SourceLocation SLoc = T->getLocStart();
Out << "\\|Terminator: ";
llvm::raw_os_ostream OutS(Out);
E.getSrc()->printTerminator(OutS);
OutS.flush();
if (SLoc.isFileID()) {
Out << "\\lline="
<< GraphPrintSourceManager->getInstantiationLineNumber(SLoc)
<< " col="
<< GraphPrintSourceManager->getInstantiationColumnNumber(SLoc);
}
if (isa<SwitchStmt>(T)) {
Stmt* Label = E.getDst()->getLabel();
if (Label) {
if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
Out << "\\lcase ";
llvm::raw_os_ostream OutS(Out);
C->getLHS()->printPretty(OutS);
OutS.flush();
if (Stmt* RHS = C->getRHS()) {
Out << " .. ";
RHS->printPretty(OutS);
OutS.flush();
}
Out << ":";
}
else {
assert (isa<DefaultStmt>(Label));
Out << "\\ldefault:";
}
}
else
Out << "\\l(implicit) default:";
}
else if (isa<IndirectGotoStmt>(T)) {
// FIXME
}
else {
Out << "\\lCondition: ";
if (*E.getSrc()->succ_begin() == E.getDst())
Out << "true";
else
Out << "false";
}
Out << "\\l";
}
if (GraphPrintCheckerState->isUndefControlFlow(N)) {
Out << "\\|Control-flow based on\\lUndefined value.\\l";
}
}
}
Out << "\\|StateID: " << (void*) N->getState() << "\\|";
GRStateRef state(N->getState(), GraphPrintCheckerState->getStateManager());
state.printDOT(Out);
Out << "\\l";
return Out.str();
}
};
} // end llvm namespace
#endif
#ifndef NDEBUG
template <typename ITERATOR>
GRExprEngine::NodeTy* GetGraphNode(ITERATOR I) { return *I; }
template <>
GRExprEngine::NodeTy*
GetGraphNode<llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator>
(llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator I) {
return I->first;
}
#endif
void GRExprEngine::ViewGraph(bool trim) {
#ifndef NDEBUG
if (trim) {
std::vector<NodeTy*> Src;
// Flush any outstanding reports to make sure we cover all the nodes.
// This does not cause them to get displayed.
for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I)
const_cast<BugType*>(*I)->FlushReports(BR);
// Iterate through the reports and get their nodes.
for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) {
for (BugType::const_iterator I2=(*I)->begin(), E2=(*I)->end(); I2!=E2; ++I2) {
const BugReportEquivClass& EQ = *I2;
const BugReport &R = **EQ.begin();
NodeTy *N = const_cast<NodeTy*>(R.getEndNode());
if (N) Src.push_back(N);
}
}
ViewGraph(&Src[0], &Src[0]+Src.size());
}
else {
GraphPrintCheckerState = this;
GraphPrintSourceManager = &getContext().getSourceManager();
llvm::ViewGraph(*G.roots_begin(), "GRExprEngine");
GraphPrintCheckerState = NULL;
GraphPrintSourceManager = NULL;
}
#endif
}
void GRExprEngine::ViewGraph(NodeTy** Beg, NodeTy** End) {
#ifndef NDEBUG
GraphPrintCheckerState = this;
GraphPrintSourceManager = &getContext().getSourceManager();
std::auto_ptr<GRExprEngine::GraphTy> TrimmedG(G.Trim(Beg, End).first);
if (!TrimmedG.get())
llvm::cerr << "warning: Trimmed ExplodedGraph is empty.\n";
else
llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine");
GraphPrintCheckerState = NULL;
GraphPrintSourceManager = NULL;
#endif
}