clang-1/AST/Type.cpp

761 строка
25 KiB
C++

//===--- Type.cpp - Type representation and manipulation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related functionality.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/IdentifierTable.h"
#include "clang/AST/Type.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/StringExtras.h"
#include <sstream>
using namespace clang;
Type::~Type() {}
/// isVoidType - Helper method to determine if this is the 'void' type.
bool Type::isVoidType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Void;
return false;
}
bool Type::isObjectType() const {
if (isa<FunctionType>(CanonicalType))
return false;
else if (CanonicalType->isIncompleteType())
return false;
else
return true;
}
bool Type::isDerivedType() const {
switch (CanonicalType->getTypeClass()) {
case Pointer:
case Array:
case FunctionProto:
case FunctionNoProto:
case Reference:
return true;
case Tagged: {
const TagType *TT = cast<TagType>(CanonicalType);
const Decl::Kind Kind = TT->getDecl()->getKind();
return Kind == Decl::Struct || Kind == Decl::Union;
}
default:
return false;
}
}
bool Type::isStructureType() const {
if (const RecordType *RT = dyn_cast<RecordType>(this))
if (RT->getDecl()->getKind() == Decl::Struct)
return true;
return false;
}
bool Type::isUnionType() const {
if (const RecordType *RT = dyn_cast<RecordType>(this))
if (RT->getDecl()->getKind() == Decl::Union)
return true;
return false;
}
bool Type::isComplexType() const {
return isa<ComplexType>(CanonicalType);
}
const FunctionType *Type::getAsFunctionType() const {
// If this is directly a function type, return it.
if (const FunctionType *FTy = dyn_cast<FunctionType>(this))
return FTy;
// If this is a typedef for a function type, strip the typedef off without
// losing all typedef information.
if (isa<FunctionType>(CanonicalType))
return cast<FunctionType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const PointerType *Type::getAsPointerType() const {
// If this is directly a pointer type, return it.
if (const PointerType *PTy = dyn_cast<PointerType>(this))
return PTy;
// If this is a typedef for a pointer type, strip the typedef off without
// losing all typedef information.
if (isa<PointerType>(CanonicalType))
return cast<PointerType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const ReferenceType *Type::getAsReferenceType() const {
// If this is directly a reference type, return it.
if (const ReferenceType *RTy = dyn_cast<ReferenceType>(this))
return RTy;
// If this is a typedef for a reference type, strip the typedef off without
// losing all typedef information.
if (isa<ReferenceType>(CanonicalType))
return cast<ReferenceType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const ArrayType *Type::getAsArrayType() const {
// If this is directly a reference type, return it.
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy;
// If this is a typedef for an array type, strip the typedef off without
// losing all typedef information.
if (isa<ArrayType>(CanonicalType))
return cast<ArrayType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const RecordType *Type::getAsRecordType() const {
// If this is directly a reference type, return it.
if (const RecordType *RTy = dyn_cast<RecordType>(this))
return RTy;
// If this is a typedef for an record type, strip the typedef off without
// losing all typedef information.
if (isa<RecordType>(CanonicalType))
return cast<RecordType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const RecordType *Type::getAsStructureType() const {
// If this is directly a structure type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->getKind() == Decl::Struct)
return RT;
}
// If this is a typedef for a structure type, strip the typedef off without
// losing all typedef information.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (RT->getDecl()->getKind() == Decl::Struct)
return cast<RecordType>(cast<TypedefType>(this)->LookThroughTypedefs());
}
return 0;
}
const RecordType *Type::getAsUnionType() const {
// If this is directly a union type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->getKind() == Decl::Union)
return RT;
}
// If this is a typedef for a union type, strip the typedef off without
// losing all typedef information.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (RT->getDecl()->getKind() == Decl::Union)
return cast<RecordType>(cast<TypedefType>(this)->LookThroughTypedefs());
}
return 0;
}
const ComplexType *Type::getAsComplexType() const {
// Are we directly a complex type?
if (const ComplexType *CTy = dyn_cast<ComplexType>(this))
return CTy;
// If this is a typedef for a complex type, strip the typedef off without
// losing all typedef information.
if (isa<ComplexType>(CanonicalType))
return cast<ComplexType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const VectorType *Type::getAsVectorType() const {
// Are we directly a vector type?
if (const VectorType *VTy = dyn_cast<VectorType>(this))
return VTy;
// If this is a typedef for a vector type, strip the typedef off without
// losing all typedef information.
if (isa<VectorType>(CanonicalType))
return cast<VectorType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
const OCUVectorType *Type::getAsOCUVectorType() const {
// Are we directly an OpenCU vector type?
if (const OCUVectorType *VTy = dyn_cast<OCUVectorType>(this))
return VTy;
// If this is a typedef for an OpenCU vector type, strip the typedef off
// without losing all typedef information.
if (isa<OCUVectorType>(CanonicalType))
return cast<OCUVectorType>(cast<TypedefType>(this)->LookThroughTypedefs());
return 0;
}
// C99 6.2.7p1: If both are complete types, then the following additional
// requirements apply...FIXME (handle compatibility across source files).
bool Type::tagTypesAreCompatible(QualType lhs, QualType rhs) {
TagDecl *ldecl = cast<TagType>(lhs.getCanonicalType())->getDecl();
TagDecl *rdecl = cast<TagType>(rhs.getCanonicalType())->getDecl();
if (ldecl->getKind() == Decl::Struct && rdecl->getKind() == Decl::Struct) {
if (ldecl->getIdentifier() == rdecl->getIdentifier())
return true;
}
if (ldecl->getKind() == Decl::Union && rdecl->getKind() == Decl::Union) {
if (ldecl->getIdentifier() == rdecl->getIdentifier())
return true;
}
return false;
}
bool Type::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
// C99 6.7.5.1p2: For two pointer types to be compatible, both shall be
// identically qualified and both shall be pointers to compatible types.
if (lhs.getQualifiers() != rhs.getQualifiers())
return false;
QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
return typesAreCompatible(ltype, rtype);
}
// C++ 5.17p6: When the left opperand of an assignment operator denotes a
// reference to T, the operation assigns to the object of type T denoted by the
// reference.
bool Type::referenceTypesAreCompatible(QualType lhs, QualType rhs) {
QualType ltype = lhs;
if (lhs->isReferenceType())
ltype = cast<ReferenceType>(lhs.getCanonicalType())->getReferenceeType();
QualType rtype = rhs;
if (rhs->isReferenceType())
rtype = cast<ReferenceType>(rhs.getCanonicalType())->getReferenceeType();
return typesAreCompatible(ltype, rtype);
}
bool Type::functionTypesAreCompatible(QualType lhs, QualType rhs) {
const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
// first check the return types (common between C99 and K&R).
if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
return false;
if (lproto && rproto) { // two C99 style function prototypes
unsigned lproto_nargs = lproto->getNumArgs();
unsigned rproto_nargs = rproto->getNumArgs();
if (lproto_nargs != rproto_nargs)
return false;
// both prototypes have the same number of arguments.
if ((lproto->isVariadic() && !rproto->isVariadic()) ||
(rproto->isVariadic() && !lproto->isVariadic()))
return false;
// The use of ellipsis agree...now check the argument types.
for (unsigned i = 0; i < lproto_nargs; i++)
if (!typesAreCompatible(lproto->getArgType(i), rproto->getArgType(i)))
return false;
return true;
}
if (!lproto && !rproto) // two K&R style function decls, nothing to do.
return true;
// we have a mixture of K&R style with C99 prototypes
const FunctionTypeProto *proto = lproto ? lproto : rproto;
if (proto->isVariadic())
return false;
// FIXME: Each parameter type T in the prototype must be compatible with the
// type resulting from applying the usual argument conversions to T.
return true;
}
bool Type::arrayTypesAreCompatible(QualType lhs, QualType rhs) {
QualType ltype = cast<ArrayType>(lhs.getCanonicalType())->getElementType();
QualType rtype = cast<ArrayType>(rhs.getCanonicalType())->getElementType();
if (!typesAreCompatible(ltype, rtype))
return false;
// FIXME: If both types specify constant sizes, then the sizes must also be
// the same. Even if the sizes are the same, GCC produces an error.
return true;
}
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
/// both shall have the identically qualified version of a compatible type.
/// C99 6.2.7p1: Two types have compatible types if their types are the
/// same. See 6.7.[2,3,5] for additional rules.
bool Type::typesAreCompatible(QualType lhs, QualType rhs) {
QualType lcanon = lhs.getCanonicalType();
QualType rcanon = rhs.getCanonicalType();
// If two types are identical, they are are compatible
if (lcanon == rcanon)
return true;
// If the canonical type classes don't match, they can't be compatible
if (lcanon->getTypeClass() != rcanon->getTypeClass())
return false;
switch (lcanon->getTypeClass()) {
case Type::Pointer:
return pointerTypesAreCompatible(lcanon, rcanon);
case Type::Reference:
return referenceTypesAreCompatible(lcanon, rcanon);
case Type::Array:
return arrayTypesAreCompatible(lcanon, rcanon);
case Type::FunctionNoProto:
case Type::FunctionProto:
return functionTypesAreCompatible(lcanon, rcanon);
case Type::Tagged: // handle structures, unions
return tagTypesAreCompatible(lcanon, rcanon);
case Type::Builtin:
return false;
default:
assert(0 && "unexpected type");
}
return true; // should never get here...
}
bool Type::isIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongLong;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
if (TT->getDecl()->getKind() == Decl::Enum)
return true;
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isIntegerType();
return false;
}
bool Type::isEnumeralType() const {
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
return TT->getDecl()->getKind() == Decl::Enum;
return false;
}
bool Type::isBooleanType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Bool;
return false;
}
bool Type::isCharType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Char_U ||
BT->getKind() == BuiltinType::UChar ||
BT->getKind() == BuiltinType::Char_S;
return false;
}
bool Type::isSignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Char_S &&
BT->getKind() <= BuiltinType::LongLong;
}
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isSignedIntegerType();
return false;
}
bool Type::isUnsignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::ULongLong;
}
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isUnsignedIntegerType();
return false;
}
bool Type::isFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Float &&
BT->getKind() <= BuiltinType::LongDouble;
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->isFloatingType();
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isFloatingType();
return false;
}
bool Type::isRealFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Float &&
BT->getKind() <= BuiltinType::LongDouble;
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isRealFloatingType();
return false;
}
bool Type::isRealType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
return TT->getDecl()->getKind() == Decl::Enum;
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isRealType();
return false;
}
bool Type::isArithmeticType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() != BuiltinType::Void;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
if (TT->getDecl()->getKind() == Decl::Enum)
return true;
return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
}
bool Type::isScalarType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() != BuiltinType::Void;
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
if (TT->getDecl()->getKind() == Decl::Enum)
return true;
return false;
}
return isa<PointerType>(CanonicalType) || isa<ComplexType>(CanonicalType) ||
isa<VectorType>(CanonicalType);
}
bool Type::isAggregateType() const {
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
if (TT->getDecl()->getKind() == Decl::Struct)
return true;
return false;
}
return CanonicalType->getTypeClass() == Array;
}
// The only variable size types are auto arrays within a function. Structures
// cannot contain a VLA member. They can have a flexible array member, however
// the structure is still constant size (C99 6.7.2.1p16).
bool Type::isConstantSizeType(ASTContext &Ctx, SourceLocation *loc) const {
if (const ArrayType *Ary = dyn_cast<ArrayType>(CanonicalType)) {
assert(Ary->getSizeExpr() && "Incomplete types don't have a size at all!");
// Variable Length Array?
return Ary->getSizeExpr()->isIntegerConstantExpr(Ctx, loc);
}
return true;
}
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
/// - a type that can describe objects, but which lacks information needed to
/// determine its size.
bool Type::isIncompleteType() const {
switch (CanonicalType->getTypeClass()) {
default: return false;
case Builtin:
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
// be completed.
return isVoidType();
case Tagged:
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
// forward declaration, but not a full definition (C99 6.2.5p22).
return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
case Array:
// An array of unknown size is an incomplete type (C99 6.2.5p22).
return cast<ArrayType>(CanonicalType)->getSizeExpr() == 0;
}
}
bool Type::isPromotableIntegerType() const {
const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
if (!BT) return false;
switch (BT->getKind()) {
case BuiltinType::Bool:
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
return true;
default:
return false;
}
}
const char *BuiltinType::getName() const {
switch (getKind()) {
default: assert(0 && "Unknown builtin type!");
case Void: return "void";
case Bool: return "_Bool";
case Char_S: return "char";
case Char_U: return "char";
case SChar: return "signed char";
case Short: return "short";
case Int: return "int";
case Long: return "long";
case LongLong: return "long long";
case UChar: return "unsigned char";
case UShort: return "unsigned short";
case UInt: return "unsigned int";
case ULong: return "unsigned long";
case ULongLong: return "unsigned long long";
case Float: return "float";
case Double: return "double";
case LongDouble: return "long double";
}
}
void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
arg_type_iterator ArgTys,
unsigned NumArgs, bool isVariadic) {
ID.AddPointer(Result.getAsOpaquePtr());
for (unsigned i = 0; i != NumArgs; ++i)
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
ID.AddInteger(isVariadic);
}
void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic());
}
/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
/// potentially looking through *all* consequtive typedefs. This returns the
/// sum of the type qualifiers, so if you have:
/// typedef const int A;
/// typedef volatile A B;
/// looking through the typedefs for B will give you "const volatile A".
///
QualType TypedefType::LookThroughTypedefs() const {
// Usually, there is only a single level of typedefs, be fast in that case.
QualType FirstType = getDecl()->getUnderlyingType();
if (!isa<TypedefType>(FirstType))
return FirstType;
// Otherwise, do the fully general loop.
unsigned TypeQuals = 0;
const TypedefType *TDT = this;
while (1) {
QualType CurType = TDT->getDecl()->getUnderlyingType();
TypeQuals |= CurType.getQualifiers();
TDT = dyn_cast<TypedefType>(CurType);
if (TDT == 0)
return QualType(CurType.getTypePtr(), TypeQuals);
}
}
bool RecordType::classof(const Type *T) {
if (const TagType *TT = dyn_cast<TagType>(T))
return isa<RecordDecl>(TT->getDecl());
return false;
}
//===----------------------------------------------------------------------===//
// Type Printing
//===----------------------------------------------------------------------===//
void QualType::dump(const char *msg) const {
std::string R = "foo";
getAsStringInternal(R);
if (msg)
fprintf(stderr, "%s: %s\n", msg, R.c_str());
else
fprintf(stderr, "%s\n", R.c_str());
}
static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
// Note: funkiness to ensure we get a space only between quals.
bool NonePrinted = true;
if (TypeQuals & QualType::Const)
S += "const", NonePrinted = false;
if (TypeQuals & QualType::Volatile)
S += (NonePrinted+" volatile"), NonePrinted = false;
if (TypeQuals & QualType::Restrict)
S += (NonePrinted+" restrict"), NonePrinted = false;
}
void QualType::getAsStringInternal(std::string &S) const {
if (isNull()) {
S += "NULL TYPE\n";
return;
}
// Print qualifiers as appropriate.
unsigned TQ = getQualifiers();
if (TQ) {
std::string TQS;
AppendTypeQualList(TQS, TQ);
if (!S.empty())
S = TQS + ' ' + S;
else
S = TQS;
}
getTypePtr()->getAsStringInternal(S);
}
void BuiltinType::getAsStringInternal(std::string &S) const {
if (S.empty()) {
S = getName();
} else {
// Prefix the basic type, e.g. 'int X'.
S = ' ' + S;
S = getName() + S;
}
}
void ComplexType::getAsStringInternal(std::string &S) const {
ElementType->getAsStringInternal(S);
S = "_Complex " + S;
}
void PointerType::getAsStringInternal(std::string &S) const {
S = '*' + S;
// Handle things like 'int (*A)[4];' correctly.
// FIXME: this should include vectors, but vectors use attributes I guess.
if (isa<ArrayType>(PointeeType.getTypePtr()))
S = '(' + S + ')';
PointeeType.getAsStringInternal(S);
}
void ReferenceType::getAsStringInternal(std::string &S) const {
S = '&' + S;
// Handle things like 'int (&A)[4];' correctly.
// FIXME: this should include vectors, but vectors use attributes I guess.
if (isa<ArrayType>(ReferenceeType.getTypePtr()))
S = '(' + S + ')';
ReferenceeType.getAsStringInternal(S);
}
void ArrayType::getAsStringInternal(std::string &S) const {
S += '[';
if (IndexTypeQuals) {
AppendTypeQualList(S, IndexTypeQuals);
S += ' ';
}
if (SizeModifier == Static)
S += "static";
else if (SizeModifier == Star)
S += '*';
S += ']';
ElementType.getAsStringInternal(S);
}
void VectorType::getAsStringInternal(std::string &S) const {
S += " __attribute__((vector_size(";
// FIXME: should multiply by element size somehow.
S += llvm::utostr_32(NumElements*4); // convert back to bytes.
S += ")))";
ElementType.getAsStringInternal(S);
}
void OCUVectorType::getAsStringInternal(std::string &S) const {
S += " __attribute__((ocu_vector_type(";
S += llvm::utostr_32(NumElements);
S += ")))";
ElementType.getAsStringInternal(S);
}
void TypeOfExpr::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(e) X'.
InnerString = ' ' + InnerString;
std::ostringstream s;
getUnderlyingExpr()->printPretty(s);
InnerString = "typeof(" + s.str() + ")" + InnerString;
}
void TypeOfType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(t) X'.
InnerString = ' ' + InnerString;
std::string Tmp;
getUnderlyingType().getAsStringInternal(Tmp);
InnerString = "typeof(" + Tmp + ")" + InnerString;
}
void FunctionTypeNoProto::getAsStringInternal(std::string &S) const {
// If needed for precedence reasons, wrap the inner part in grouping parens.
if (!S.empty())
S = "(" + S + ")";
S += "()";
getResultType().getAsStringInternal(S);
}
void FunctionTypeProto::getAsStringInternal(std::string &S) const {
// If needed for precedence reasons, wrap the inner part in grouping parens.
if (!S.empty())
S = "(" + S + ")";
S += "(";
std::string Tmp;
for (unsigned i = 0, e = getNumArgs(); i != e; ++i) {
if (i) S += ", ";
getArgType(i).getAsStringInternal(Tmp);
S += Tmp;
Tmp.clear();
}
if (isVariadic()) {
if (getNumArgs())
S += ", ";
S += "...";
} else if (getNumArgs() == 0) {
// Do not emit int() if we have a proto, emit 'int(void)'.
S += "void";
}
S += ")";
getResultType().getAsStringInternal(S);
}
void TypedefType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
InnerString = getDecl()->getIdentifier()->getName() + InnerString;
}
void TagType::getAsStringInternal(std::string &InnerString) const {
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
InnerString = ' ' + InnerString;
const char *Kind = getDecl()->getKindName();
const char *ID;
if (const IdentifierInfo *II = getDecl()->getIdentifier())
ID = II->getName();
else
ID = "<anonymous>";
InnerString = std::string(Kind) + " " + ID + InnerString;
}