зеркало из https://github.com/microsoft/clang-1.git
761 строка
25 KiB
C++
761 строка
25 KiB
C++
//===--- Type.cpp - Type representation and manipulation ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements type-related functionality.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Lex/IdentifierTable.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include <sstream>
|
|
|
|
using namespace clang;
|
|
|
|
Type::~Type() {}
|
|
|
|
/// isVoidType - Helper method to determine if this is the 'void' type.
|
|
bool Type::isVoidType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Void;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isObjectType() const {
|
|
if (isa<FunctionType>(CanonicalType))
|
|
return false;
|
|
else if (CanonicalType->isIncompleteType())
|
|
return false;
|
|
else
|
|
return true;
|
|
}
|
|
|
|
bool Type::isDerivedType() const {
|
|
switch (CanonicalType->getTypeClass()) {
|
|
case Pointer:
|
|
case Array:
|
|
case FunctionProto:
|
|
case FunctionNoProto:
|
|
case Reference:
|
|
return true;
|
|
case Tagged: {
|
|
const TagType *TT = cast<TagType>(CanonicalType);
|
|
const Decl::Kind Kind = TT->getDecl()->getKind();
|
|
return Kind == Decl::Struct || Kind == Decl::Union;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool Type::isStructureType() const {
|
|
if (const RecordType *RT = dyn_cast<RecordType>(this))
|
|
if (RT->getDecl()->getKind() == Decl::Struct)
|
|
return true;
|
|
return false;
|
|
}
|
|
bool Type::isUnionType() const {
|
|
if (const RecordType *RT = dyn_cast<RecordType>(this))
|
|
if (RT->getDecl()->getKind() == Decl::Union)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isComplexType() const {
|
|
return isa<ComplexType>(CanonicalType);
|
|
}
|
|
|
|
const FunctionType *Type::getAsFunctionType() const {
|
|
// If this is directly a function type, return it.
|
|
if (const FunctionType *FTy = dyn_cast<FunctionType>(this))
|
|
return FTy;
|
|
|
|
// If this is a typedef for a function type, strip the typedef off without
|
|
// losing all typedef information.
|
|
if (isa<FunctionType>(CanonicalType))
|
|
return cast<FunctionType>(cast<TypedefType>(this)->LookThroughTypedefs());
|
|
return 0;
|
|
}
|
|
|
|
const PointerType *Type::getAsPointerType() const {
|
|
// If this is directly a pointer type, return it.
|
|
if (const PointerType *PTy = dyn_cast<PointerType>(this))
|
|
return PTy;
|
|
|
|
// If this is a typedef for a pointer type, strip the typedef off without
|
|
// losing all typedef information.
|
|
if (isa<PointerType>(CanonicalType))
|
|
return cast<PointerType>(cast<TypedefType>(this)->LookThroughTypedefs());
|
|
return 0;
|
|
}
|
|
|
|
const ReferenceType *Type::getAsReferenceType() const {
|
|
// If this is directly a reference type, return it.
|
|
if (const ReferenceType *RTy = dyn_cast<ReferenceType>(this))
|
|
return RTy;
|
|
|
|
// If this is a typedef for a reference type, strip the typedef off without
|
|
// losing all typedef information.
|
|
if (isa<ReferenceType>(CanonicalType))
|
|
return cast<ReferenceType>(cast<TypedefType>(this)->LookThroughTypedefs());
|
|
return 0;
|
|
}
|
|
|
|
const ArrayType *Type::getAsArrayType() const {
|
|
// If this is directly a reference type, return it.
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
|
|
return ATy;
|
|
|
|
// If this is a typedef for an array type, strip the typedef off without
|
|
// losing all typedef information.
|
|
if (isa<ArrayType>(CanonicalType))
|
|
return cast<ArrayType>(cast<TypedefType>(this)->LookThroughTypedefs());
|
|
return 0;
|
|
}
|
|
|
|
const RecordType *Type::getAsRecordType() const {
|
|
// If this is directly a reference type, return it.
|
|
if (const RecordType *RTy = dyn_cast<RecordType>(this))
|
|
return RTy;
|
|
|
|
// If this is a typedef for an record type, strip the typedef off without
|
|
// losing all typedef information.
|
|
if (isa<RecordType>(CanonicalType))
|
|
return cast<RecordType>(cast<TypedefType>(this)->LookThroughTypedefs());
|
|
return 0;
|
|
}
|
|
|
|
const RecordType *Type::getAsStructureType() const {
|
|
// If this is directly a structure type, return it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
|
|
if (RT->getDecl()->getKind() == Decl::Struct)
|
|
return RT;
|
|
}
|
|
// If this is a typedef for a structure type, strip the typedef off without
|
|
// losing all typedef information.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (RT->getDecl()->getKind() == Decl::Struct)
|
|
return cast<RecordType>(cast<TypedefType>(this)->LookThroughTypedefs());
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const RecordType *Type::getAsUnionType() const {
|
|
// If this is directly a union type, return it.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
|
|
if (RT->getDecl()->getKind() == Decl::Union)
|
|
return RT;
|
|
}
|
|
// If this is a typedef for a union type, strip the typedef off without
|
|
// losing all typedef information.
|
|
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
|
|
if (RT->getDecl()->getKind() == Decl::Union)
|
|
return cast<RecordType>(cast<TypedefType>(this)->LookThroughTypedefs());
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const ComplexType *Type::getAsComplexType() const {
|
|
// Are we directly a complex type?
|
|
if (const ComplexType *CTy = dyn_cast<ComplexType>(this))
|
|
return CTy;
|
|
|
|
// If this is a typedef for a complex type, strip the typedef off without
|
|
// losing all typedef information.
|
|
if (isa<ComplexType>(CanonicalType))
|
|
return cast<ComplexType>(cast<TypedefType>(this)->LookThroughTypedefs());
|
|
|
|
return 0;
|
|
}
|
|
|
|
const VectorType *Type::getAsVectorType() const {
|
|
// Are we directly a vector type?
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(this))
|
|
return VTy;
|
|
|
|
// If this is a typedef for a vector type, strip the typedef off without
|
|
// losing all typedef information.
|
|
if (isa<VectorType>(CanonicalType))
|
|
return cast<VectorType>(cast<TypedefType>(this)->LookThroughTypedefs());
|
|
|
|
return 0;
|
|
}
|
|
|
|
const OCUVectorType *Type::getAsOCUVectorType() const {
|
|
// Are we directly an OpenCU vector type?
|
|
if (const OCUVectorType *VTy = dyn_cast<OCUVectorType>(this))
|
|
return VTy;
|
|
|
|
// If this is a typedef for an OpenCU vector type, strip the typedef off
|
|
// without losing all typedef information.
|
|
if (isa<OCUVectorType>(CanonicalType))
|
|
return cast<OCUVectorType>(cast<TypedefType>(this)->LookThroughTypedefs());
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// C99 6.2.7p1: If both are complete types, then the following additional
|
|
// requirements apply...FIXME (handle compatibility across source files).
|
|
bool Type::tagTypesAreCompatible(QualType lhs, QualType rhs) {
|
|
TagDecl *ldecl = cast<TagType>(lhs.getCanonicalType())->getDecl();
|
|
TagDecl *rdecl = cast<TagType>(rhs.getCanonicalType())->getDecl();
|
|
|
|
if (ldecl->getKind() == Decl::Struct && rdecl->getKind() == Decl::Struct) {
|
|
if (ldecl->getIdentifier() == rdecl->getIdentifier())
|
|
return true;
|
|
}
|
|
if (ldecl->getKind() == Decl::Union && rdecl->getKind() == Decl::Union) {
|
|
if (ldecl->getIdentifier() == rdecl->getIdentifier())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Type::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
|
|
// C99 6.7.5.1p2: For two pointer types to be compatible, both shall be
|
|
// identically qualified and both shall be pointers to compatible types.
|
|
if (lhs.getQualifiers() != rhs.getQualifiers())
|
|
return false;
|
|
|
|
QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
|
|
QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
|
|
|
|
return typesAreCompatible(ltype, rtype);
|
|
}
|
|
|
|
// C++ 5.17p6: When the left opperand of an assignment operator denotes a
|
|
// reference to T, the operation assigns to the object of type T denoted by the
|
|
// reference.
|
|
bool Type::referenceTypesAreCompatible(QualType lhs, QualType rhs) {
|
|
QualType ltype = lhs;
|
|
|
|
if (lhs->isReferenceType())
|
|
ltype = cast<ReferenceType>(lhs.getCanonicalType())->getReferenceeType();
|
|
|
|
QualType rtype = rhs;
|
|
|
|
if (rhs->isReferenceType())
|
|
rtype = cast<ReferenceType>(rhs.getCanonicalType())->getReferenceeType();
|
|
|
|
return typesAreCompatible(ltype, rtype);
|
|
}
|
|
|
|
bool Type::functionTypesAreCompatible(QualType lhs, QualType rhs) {
|
|
const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
|
|
const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
|
|
const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
|
|
const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
|
|
|
|
// first check the return types (common between C99 and K&R).
|
|
if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
|
|
return false;
|
|
|
|
if (lproto && rproto) { // two C99 style function prototypes
|
|
unsigned lproto_nargs = lproto->getNumArgs();
|
|
unsigned rproto_nargs = rproto->getNumArgs();
|
|
|
|
if (lproto_nargs != rproto_nargs)
|
|
return false;
|
|
|
|
// both prototypes have the same number of arguments.
|
|
if ((lproto->isVariadic() && !rproto->isVariadic()) ||
|
|
(rproto->isVariadic() && !lproto->isVariadic()))
|
|
return false;
|
|
|
|
// The use of ellipsis agree...now check the argument types.
|
|
for (unsigned i = 0; i < lproto_nargs; i++)
|
|
if (!typesAreCompatible(lproto->getArgType(i), rproto->getArgType(i)))
|
|
return false;
|
|
return true;
|
|
}
|
|
if (!lproto && !rproto) // two K&R style function decls, nothing to do.
|
|
return true;
|
|
|
|
// we have a mixture of K&R style with C99 prototypes
|
|
const FunctionTypeProto *proto = lproto ? lproto : rproto;
|
|
|
|
if (proto->isVariadic())
|
|
return false;
|
|
|
|
// FIXME: Each parameter type T in the prototype must be compatible with the
|
|
// type resulting from applying the usual argument conversions to T.
|
|
return true;
|
|
}
|
|
|
|
bool Type::arrayTypesAreCompatible(QualType lhs, QualType rhs) {
|
|
QualType ltype = cast<ArrayType>(lhs.getCanonicalType())->getElementType();
|
|
QualType rtype = cast<ArrayType>(rhs.getCanonicalType())->getElementType();
|
|
|
|
if (!typesAreCompatible(ltype, rtype))
|
|
return false;
|
|
|
|
// FIXME: If both types specify constant sizes, then the sizes must also be
|
|
// the same. Even if the sizes are the same, GCC produces an error.
|
|
return true;
|
|
}
|
|
|
|
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
|
|
/// both shall have the identically qualified version of a compatible type.
|
|
/// C99 6.2.7p1: Two types have compatible types if their types are the
|
|
/// same. See 6.7.[2,3,5] for additional rules.
|
|
bool Type::typesAreCompatible(QualType lhs, QualType rhs) {
|
|
QualType lcanon = lhs.getCanonicalType();
|
|
QualType rcanon = rhs.getCanonicalType();
|
|
|
|
// If two types are identical, they are are compatible
|
|
if (lcanon == rcanon)
|
|
return true;
|
|
|
|
// If the canonical type classes don't match, they can't be compatible
|
|
if (lcanon->getTypeClass() != rcanon->getTypeClass())
|
|
return false;
|
|
|
|
switch (lcanon->getTypeClass()) {
|
|
case Type::Pointer:
|
|
return pointerTypesAreCompatible(lcanon, rcanon);
|
|
case Type::Reference:
|
|
return referenceTypesAreCompatible(lcanon, rcanon);
|
|
case Type::Array:
|
|
return arrayTypesAreCompatible(lcanon, rcanon);
|
|
case Type::FunctionNoProto:
|
|
case Type::FunctionProto:
|
|
return functionTypesAreCompatible(lcanon, rcanon);
|
|
case Type::Tagged: // handle structures, unions
|
|
return tagTypesAreCompatible(lcanon, rcanon);
|
|
case Type::Builtin:
|
|
return false;
|
|
default:
|
|
assert(0 && "unexpected type");
|
|
}
|
|
return true; // should never get here...
|
|
}
|
|
|
|
bool Type::isIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongLong;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
if (TT->getDecl()->getKind() == Decl::Enum)
|
|
return true;
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isIntegerType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isEnumeralType() const {
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
return TT->getDecl()->getKind() == Decl::Enum;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isBooleanType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Bool;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isCharType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() == BuiltinType::Char_U ||
|
|
BT->getKind() == BuiltinType::UChar ||
|
|
BT->getKind() == BuiltinType::Char_S;
|
|
return false;
|
|
}
|
|
|
|
bool Type::isSignedIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
|
|
return BT->getKind() >= BuiltinType::Char_S &&
|
|
BT->getKind() <= BuiltinType::LongLong;
|
|
}
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isSignedIntegerType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isUnsignedIntegerType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::ULongLong;
|
|
}
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isUnsignedIntegerType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isFloatingType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Float &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
|
|
return CT->isFloatingType();
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isFloatingType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isRealFloatingType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Float &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isRealFloatingType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isRealType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() >= BuiltinType::Bool &&
|
|
BT->getKind() <= BuiltinType::LongDouble;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
return TT->getDecl()->getKind() == Decl::Enum;
|
|
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
|
|
return VT->getElementType()->isRealType();
|
|
return false;
|
|
}
|
|
|
|
bool Type::isArithmeticType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() != BuiltinType::Void;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType))
|
|
if (TT->getDecl()->getKind() == Decl::Enum)
|
|
return true;
|
|
return isa<ComplexType>(CanonicalType) || isa<VectorType>(CanonicalType);
|
|
}
|
|
|
|
bool Type::isScalarType() const {
|
|
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
|
|
return BT->getKind() != BuiltinType::Void;
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
|
|
if (TT->getDecl()->getKind() == Decl::Enum)
|
|
return true;
|
|
return false;
|
|
}
|
|
return isa<PointerType>(CanonicalType) || isa<ComplexType>(CanonicalType) ||
|
|
isa<VectorType>(CanonicalType);
|
|
}
|
|
|
|
bool Type::isAggregateType() const {
|
|
if (const TagType *TT = dyn_cast<TagType>(CanonicalType)) {
|
|
if (TT->getDecl()->getKind() == Decl::Struct)
|
|
return true;
|
|
return false;
|
|
}
|
|
return CanonicalType->getTypeClass() == Array;
|
|
}
|
|
|
|
// The only variable size types are auto arrays within a function. Structures
|
|
// cannot contain a VLA member. They can have a flexible array member, however
|
|
// the structure is still constant size (C99 6.7.2.1p16).
|
|
bool Type::isConstantSizeType(ASTContext &Ctx, SourceLocation *loc) const {
|
|
if (const ArrayType *Ary = dyn_cast<ArrayType>(CanonicalType)) {
|
|
assert(Ary->getSizeExpr() && "Incomplete types don't have a size at all!");
|
|
// Variable Length Array?
|
|
return Ary->getSizeExpr()->isIntegerConstantExpr(Ctx, loc);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
|
|
/// - a type that can describe objects, but which lacks information needed to
|
|
/// determine its size.
|
|
bool Type::isIncompleteType() const {
|
|
switch (CanonicalType->getTypeClass()) {
|
|
default: return false;
|
|
case Builtin:
|
|
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
|
|
// be completed.
|
|
return isVoidType();
|
|
case Tagged:
|
|
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
|
|
// forward declaration, but not a full definition (C99 6.2.5p22).
|
|
return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
|
|
case Array:
|
|
// An array of unknown size is an incomplete type (C99 6.2.5p22).
|
|
return cast<ArrayType>(CanonicalType)->getSizeExpr() == 0;
|
|
}
|
|
}
|
|
|
|
bool Type::isPromotableIntegerType() const {
|
|
const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
|
|
if (!BT) return false;
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Bool:
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const char *BuiltinType::getName() const {
|
|
switch (getKind()) {
|
|
default: assert(0 && "Unknown builtin type!");
|
|
case Void: return "void";
|
|
case Bool: return "_Bool";
|
|
case Char_S: return "char";
|
|
case Char_U: return "char";
|
|
case SChar: return "signed char";
|
|
case Short: return "short";
|
|
case Int: return "int";
|
|
case Long: return "long";
|
|
case LongLong: return "long long";
|
|
case UChar: return "unsigned char";
|
|
case UShort: return "unsigned short";
|
|
case UInt: return "unsigned int";
|
|
case ULong: return "unsigned long";
|
|
case ULongLong: return "unsigned long long";
|
|
case Float: return "float";
|
|
case Double: return "double";
|
|
case LongDouble: return "long double";
|
|
}
|
|
}
|
|
|
|
void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
|
|
arg_type_iterator ArgTys,
|
|
unsigned NumArgs, bool isVariadic) {
|
|
ID.AddPointer(Result.getAsOpaquePtr());
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
|
|
ID.AddInteger(isVariadic);
|
|
}
|
|
|
|
void FunctionTypeProto::Profile(llvm::FoldingSetNodeID &ID) {
|
|
Profile(ID, getResultType(), arg_type_begin(), NumArgs, isVariadic());
|
|
}
|
|
|
|
/// LookThroughTypedefs - Return the ultimate type this typedef corresponds to
|
|
/// potentially looking through *all* consequtive typedefs. This returns the
|
|
/// sum of the type qualifiers, so if you have:
|
|
/// typedef const int A;
|
|
/// typedef volatile A B;
|
|
/// looking through the typedefs for B will give you "const volatile A".
|
|
///
|
|
QualType TypedefType::LookThroughTypedefs() const {
|
|
// Usually, there is only a single level of typedefs, be fast in that case.
|
|
QualType FirstType = getDecl()->getUnderlyingType();
|
|
if (!isa<TypedefType>(FirstType))
|
|
return FirstType;
|
|
|
|
// Otherwise, do the fully general loop.
|
|
unsigned TypeQuals = 0;
|
|
const TypedefType *TDT = this;
|
|
while (1) {
|
|
QualType CurType = TDT->getDecl()->getUnderlyingType();
|
|
TypeQuals |= CurType.getQualifiers();
|
|
|
|
TDT = dyn_cast<TypedefType>(CurType);
|
|
if (TDT == 0)
|
|
return QualType(CurType.getTypePtr(), TypeQuals);
|
|
}
|
|
}
|
|
|
|
bool RecordType::classof(const Type *T) {
|
|
if (const TagType *TT = dyn_cast<TagType>(T))
|
|
return isa<RecordDecl>(TT->getDecl());
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Printing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void QualType::dump(const char *msg) const {
|
|
std::string R = "foo";
|
|
getAsStringInternal(R);
|
|
if (msg)
|
|
fprintf(stderr, "%s: %s\n", msg, R.c_str());
|
|
else
|
|
fprintf(stderr, "%s\n", R.c_str());
|
|
}
|
|
|
|
static void AppendTypeQualList(std::string &S, unsigned TypeQuals) {
|
|
// Note: funkiness to ensure we get a space only between quals.
|
|
bool NonePrinted = true;
|
|
if (TypeQuals & QualType::Const)
|
|
S += "const", NonePrinted = false;
|
|
if (TypeQuals & QualType::Volatile)
|
|
S += (NonePrinted+" volatile"), NonePrinted = false;
|
|
if (TypeQuals & QualType::Restrict)
|
|
S += (NonePrinted+" restrict"), NonePrinted = false;
|
|
}
|
|
|
|
void QualType::getAsStringInternal(std::string &S) const {
|
|
if (isNull()) {
|
|
S += "NULL TYPE\n";
|
|
return;
|
|
}
|
|
|
|
// Print qualifiers as appropriate.
|
|
unsigned TQ = getQualifiers();
|
|
if (TQ) {
|
|
std::string TQS;
|
|
AppendTypeQualList(TQS, TQ);
|
|
if (!S.empty())
|
|
S = TQS + ' ' + S;
|
|
else
|
|
S = TQS;
|
|
}
|
|
|
|
getTypePtr()->getAsStringInternal(S);
|
|
}
|
|
|
|
void BuiltinType::getAsStringInternal(std::string &S) const {
|
|
if (S.empty()) {
|
|
S = getName();
|
|
} else {
|
|
// Prefix the basic type, e.g. 'int X'.
|
|
S = ' ' + S;
|
|
S = getName() + S;
|
|
}
|
|
}
|
|
|
|
void ComplexType::getAsStringInternal(std::string &S) const {
|
|
ElementType->getAsStringInternal(S);
|
|
S = "_Complex " + S;
|
|
}
|
|
|
|
void PointerType::getAsStringInternal(std::string &S) const {
|
|
S = '*' + S;
|
|
|
|
// Handle things like 'int (*A)[4];' correctly.
|
|
// FIXME: this should include vectors, but vectors use attributes I guess.
|
|
if (isa<ArrayType>(PointeeType.getTypePtr()))
|
|
S = '(' + S + ')';
|
|
|
|
PointeeType.getAsStringInternal(S);
|
|
}
|
|
|
|
void ReferenceType::getAsStringInternal(std::string &S) const {
|
|
S = '&' + S;
|
|
|
|
// Handle things like 'int (&A)[4];' correctly.
|
|
// FIXME: this should include vectors, but vectors use attributes I guess.
|
|
if (isa<ArrayType>(ReferenceeType.getTypePtr()))
|
|
S = '(' + S + ')';
|
|
|
|
ReferenceeType.getAsStringInternal(S);
|
|
}
|
|
|
|
void ArrayType::getAsStringInternal(std::string &S) const {
|
|
S += '[';
|
|
|
|
if (IndexTypeQuals) {
|
|
AppendTypeQualList(S, IndexTypeQuals);
|
|
S += ' ';
|
|
}
|
|
|
|
if (SizeModifier == Static)
|
|
S += "static";
|
|
else if (SizeModifier == Star)
|
|
S += '*';
|
|
|
|
S += ']';
|
|
|
|
ElementType.getAsStringInternal(S);
|
|
}
|
|
|
|
void VectorType::getAsStringInternal(std::string &S) const {
|
|
S += " __attribute__((vector_size(";
|
|
// FIXME: should multiply by element size somehow.
|
|
S += llvm::utostr_32(NumElements*4); // convert back to bytes.
|
|
S += ")))";
|
|
ElementType.getAsStringInternal(S);
|
|
}
|
|
|
|
void OCUVectorType::getAsStringInternal(std::string &S) const {
|
|
S += " __attribute__((ocu_vector_type(";
|
|
S += llvm::utostr_32(NumElements);
|
|
S += ")))";
|
|
ElementType.getAsStringInternal(S);
|
|
}
|
|
|
|
void TypeOfExpr::getAsStringInternal(std::string &InnerString) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(e) X'.
|
|
InnerString = ' ' + InnerString;
|
|
std::ostringstream s;
|
|
getUnderlyingExpr()->printPretty(s);
|
|
InnerString = "typeof(" + s.str() + ")" + InnerString;
|
|
}
|
|
|
|
void TypeOfType::getAsStringInternal(std::string &InnerString) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typeof(t) X'.
|
|
InnerString = ' ' + InnerString;
|
|
std::string Tmp;
|
|
getUnderlyingType().getAsStringInternal(Tmp);
|
|
InnerString = "typeof(" + Tmp + ")" + InnerString;
|
|
}
|
|
|
|
void FunctionTypeNoProto::getAsStringInternal(std::string &S) const {
|
|
// If needed for precedence reasons, wrap the inner part in grouping parens.
|
|
if (!S.empty())
|
|
S = "(" + S + ")";
|
|
|
|
S += "()";
|
|
getResultType().getAsStringInternal(S);
|
|
}
|
|
|
|
void FunctionTypeProto::getAsStringInternal(std::string &S) const {
|
|
// If needed for precedence reasons, wrap the inner part in grouping parens.
|
|
if (!S.empty())
|
|
S = "(" + S + ")";
|
|
|
|
S += "(";
|
|
std::string Tmp;
|
|
for (unsigned i = 0, e = getNumArgs(); i != e; ++i) {
|
|
if (i) S += ", ";
|
|
getArgType(i).getAsStringInternal(Tmp);
|
|
S += Tmp;
|
|
Tmp.clear();
|
|
}
|
|
|
|
if (isVariadic()) {
|
|
if (getNumArgs())
|
|
S += ", ";
|
|
S += "...";
|
|
} else if (getNumArgs() == 0) {
|
|
// Do not emit int() if we have a proto, emit 'int(void)'.
|
|
S += "void";
|
|
}
|
|
|
|
S += ")";
|
|
getResultType().getAsStringInternal(S);
|
|
}
|
|
|
|
|
|
void TypedefType::getAsStringInternal(std::string &InnerString) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
|
|
InnerString = ' ' + InnerString;
|
|
InnerString = getDecl()->getIdentifier()->getName() + InnerString;
|
|
}
|
|
|
|
void TagType::getAsStringInternal(std::string &InnerString) const {
|
|
if (!InnerString.empty()) // Prefix the basic type, e.g. 'typedefname X'.
|
|
InnerString = ' ' + InnerString;
|
|
|
|
const char *Kind = getDecl()->getKindName();
|
|
const char *ID;
|
|
if (const IdentifierInfo *II = getDecl()->getIdentifier())
|
|
ID = II->getName();
|
|
else
|
|
ID = "<anonymous>";
|
|
|
|
InnerString = std::string(Kind) + " " + ID + InnerString;
|
|
}
|