зеркало из https://github.com/microsoft/clang-1.git
329 строки
12 KiB
C++
329 строки
12 KiB
C++
//===------ CXXInheritance.cpp - C++ Inheritance ----------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides routines that help analyzing C++ inheritance hierarchies.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include <algorithm>
|
|
#include <set>
|
|
|
|
using namespace clang;
|
|
|
|
/// \brief Computes the set of declarations referenced by these base
|
|
/// paths.
|
|
void CXXBasePaths::ComputeDeclsFound() {
|
|
assert(NumDeclsFound == 0 && !DeclsFound &&
|
|
"Already computed the set of declarations");
|
|
|
|
std::set<NamedDecl *> Decls;
|
|
for (CXXBasePaths::paths_iterator Path = begin(), PathEnd = end();
|
|
Path != PathEnd; ++Path)
|
|
Decls.insert(*Path->Decls.first);
|
|
|
|
NumDeclsFound = Decls.size();
|
|
DeclsFound = new NamedDecl * [NumDeclsFound];
|
|
std::copy(Decls.begin(), Decls.end(), DeclsFound);
|
|
}
|
|
|
|
CXXBasePaths::decl_iterator CXXBasePaths::found_decls_begin() {
|
|
if (NumDeclsFound == 0)
|
|
ComputeDeclsFound();
|
|
return DeclsFound;
|
|
}
|
|
|
|
CXXBasePaths::decl_iterator CXXBasePaths::found_decls_end() {
|
|
if (NumDeclsFound == 0)
|
|
ComputeDeclsFound();
|
|
return DeclsFound + NumDeclsFound;
|
|
}
|
|
|
|
/// isAmbiguous - Determines whether the set of paths provided is
|
|
/// ambiguous, i.e., there are two or more paths that refer to
|
|
/// different base class subobjects of the same type. BaseType must be
|
|
/// an unqualified, canonical class type.
|
|
bool CXXBasePaths::isAmbiguous(QualType BaseType) {
|
|
assert(BaseType.isCanonical() && "Base type must be the canonical type");
|
|
assert(BaseType.hasQualifiers() == 0 && "Base type must be unqualified");
|
|
std::pair<bool, unsigned>& Subobjects = ClassSubobjects[BaseType];
|
|
return Subobjects.second + (Subobjects.first? 1 : 0) > 1;
|
|
}
|
|
|
|
/// clear - Clear out all prior path information.
|
|
void CXXBasePaths::clear() {
|
|
Paths.clear();
|
|
ClassSubobjects.clear();
|
|
ScratchPath.clear();
|
|
DetectedVirtual = 0;
|
|
}
|
|
|
|
/// @brief Swaps the contents of this CXXBasePaths structure with the
|
|
/// contents of Other.
|
|
void CXXBasePaths::swap(CXXBasePaths &Other) {
|
|
std::swap(Origin, Other.Origin);
|
|
Paths.swap(Other.Paths);
|
|
ClassSubobjects.swap(Other.ClassSubobjects);
|
|
std::swap(FindAmbiguities, Other.FindAmbiguities);
|
|
std::swap(RecordPaths, Other.RecordPaths);
|
|
std::swap(DetectVirtual, Other.DetectVirtual);
|
|
std::swap(DetectedVirtual, Other.DetectedVirtual);
|
|
}
|
|
|
|
bool CXXRecordDecl::isDerivedFrom(CXXRecordDecl *Base) const {
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false,
|
|
/*DetectVirtual=*/false);
|
|
return isDerivedFrom(Base, Paths);
|
|
}
|
|
|
|
bool CXXRecordDecl::isDerivedFrom(CXXRecordDecl *Base, CXXBasePaths &Paths) const {
|
|
if (getCanonicalDecl() == Base->getCanonicalDecl())
|
|
return false;
|
|
|
|
Paths.setOrigin(const_cast<CXXRecordDecl*>(this));
|
|
return lookupInBases(&FindBaseClass, Base->getCanonicalDecl(), Paths);
|
|
}
|
|
|
|
static bool BaseIsNot(const CXXRecordDecl *Base, void *OpaqueTarget) {
|
|
// OpaqueTarget is a CXXRecordDecl*.
|
|
return Base->getCanonicalDecl() != (const CXXRecordDecl*) OpaqueTarget;
|
|
}
|
|
|
|
bool CXXRecordDecl::isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const {
|
|
return forallBases(BaseIsNot, (void*) Base->getCanonicalDecl());
|
|
}
|
|
|
|
bool CXXRecordDecl::forallBases(ForallBasesCallback *BaseMatches,
|
|
void *OpaqueData,
|
|
bool AllowShortCircuit) const {
|
|
llvm::SmallVector<const CXXRecordDecl*, 8> Queue;
|
|
|
|
const CXXRecordDecl *Record = this;
|
|
bool AllMatches = true;
|
|
while (true) {
|
|
for (CXXRecordDecl::base_class_const_iterator
|
|
I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
|
|
const RecordType *Ty = I->getType()->getAs<RecordType>();
|
|
if (!Ty) {
|
|
if (AllowShortCircuit) return false;
|
|
AllMatches = false;
|
|
continue;
|
|
}
|
|
|
|
CXXRecordDecl *Base =
|
|
cast_or_null<CXXRecordDecl>(Ty->getDecl()->getDefinition());
|
|
if (!Base) {
|
|
if (AllowShortCircuit) return false;
|
|
AllMatches = false;
|
|
continue;
|
|
}
|
|
|
|
Queue.push_back(Base);
|
|
if (!BaseMatches(Base, OpaqueData)) {
|
|
if (AllowShortCircuit) return false;
|
|
AllMatches = false;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (Queue.empty()) break;
|
|
Record = Queue.back(); // not actually a queue.
|
|
Queue.pop_back();
|
|
}
|
|
|
|
return AllMatches;
|
|
}
|
|
|
|
bool CXXRecordDecl::lookupInBases(BaseMatchesCallback *BaseMatches,
|
|
void *UserData,
|
|
CXXBasePaths &Paths) const {
|
|
bool FoundPath = false;
|
|
|
|
// The access of the path down to this record.
|
|
AccessSpecifier AccessToHere = Paths.ScratchPath.Access;
|
|
bool IsFirstStep = Paths.ScratchPath.empty();
|
|
|
|
ASTContext &Context = getASTContext();
|
|
for (base_class_const_iterator BaseSpec = bases_begin(),
|
|
BaseSpecEnd = bases_end(); BaseSpec != BaseSpecEnd; ++BaseSpec) {
|
|
// Find the record of the base class subobjects for this type.
|
|
QualType BaseType = Context.getCanonicalType(BaseSpec->getType())
|
|
.getUnqualifiedType();
|
|
|
|
// C++ [temp.dep]p3:
|
|
// In the definition of a class template or a member of a class template,
|
|
// if a base class of the class template depends on a template-parameter,
|
|
// the base class scope is not examined during unqualified name lookup
|
|
// either at the point of definition of the class template or member or
|
|
// during an instantiation of the class tem- plate or member.
|
|
if (BaseType->isDependentType())
|
|
continue;
|
|
|
|
// Determine whether we need to visit this base class at all,
|
|
// updating the count of subobjects appropriately.
|
|
std::pair<bool, unsigned>& Subobjects = Paths.ClassSubobjects[BaseType];
|
|
bool VisitBase = true;
|
|
bool SetVirtual = false;
|
|
if (BaseSpec->isVirtual()) {
|
|
VisitBase = !Subobjects.first;
|
|
Subobjects.first = true;
|
|
if (Paths.isDetectingVirtual() && Paths.DetectedVirtual == 0) {
|
|
// If this is the first virtual we find, remember it. If it turns out
|
|
// there is no base path here, we'll reset it later.
|
|
Paths.DetectedVirtual = BaseType->getAs<RecordType>();
|
|
SetVirtual = true;
|
|
}
|
|
} else
|
|
++Subobjects.second;
|
|
|
|
if (Paths.isRecordingPaths()) {
|
|
// Add this base specifier to the current path.
|
|
CXXBasePathElement Element;
|
|
Element.Base = &*BaseSpec;
|
|
Element.Class = this;
|
|
if (BaseSpec->isVirtual())
|
|
Element.SubobjectNumber = 0;
|
|
else
|
|
Element.SubobjectNumber = Subobjects.second;
|
|
Paths.ScratchPath.push_back(Element);
|
|
|
|
// Calculate the "top-down" access to this base class.
|
|
// The spec actually describes this bottom-up, but top-down is
|
|
// equivalent because the definition works out as follows:
|
|
// 1. Write down the access along each step in the inheritance
|
|
// chain, followed by the access of the decl itself.
|
|
// For example, in
|
|
// class A { public: int foo; };
|
|
// class B : protected A {};
|
|
// class C : public B {};
|
|
// class D : private C {};
|
|
// we would write:
|
|
// private public protected public
|
|
// 2. If 'private' appears anywhere except far-left, access is denied.
|
|
// 3. Otherwise, overall access is determined by the most restrictive
|
|
// access in the sequence.
|
|
if (IsFirstStep)
|
|
Paths.ScratchPath.Access = BaseSpec->getAccessSpecifier();
|
|
else
|
|
Paths.ScratchPath.Access
|
|
= MergeAccess(AccessToHere, BaseSpec->getAccessSpecifier());
|
|
}
|
|
|
|
// Track whether there's a path involving this specific base.
|
|
bool FoundPathThroughBase = false;
|
|
|
|
if (BaseMatches(BaseSpec, Paths.ScratchPath, UserData)) {
|
|
// We've found a path that terminates at this base.
|
|
FoundPath = FoundPathThroughBase = true;
|
|
if (Paths.isRecordingPaths()) {
|
|
// We have a path. Make a copy of it before moving on.
|
|
Paths.Paths.push_back(Paths.ScratchPath);
|
|
} else if (!Paths.isFindingAmbiguities()) {
|
|
// We found a path and we don't care about ambiguities;
|
|
// return immediately.
|
|
return FoundPath;
|
|
}
|
|
} else if (VisitBase) {
|
|
CXXRecordDecl *BaseRecord
|
|
= cast<CXXRecordDecl>(BaseSpec->getType()->getAs<RecordType>()
|
|
->getDecl());
|
|
if (BaseRecord->lookupInBases(BaseMatches, UserData, Paths)) {
|
|
// C++ [class.member.lookup]p2:
|
|
// A member name f in one sub-object B hides a member name f in
|
|
// a sub-object A if A is a base class sub-object of B. Any
|
|
// declarations that are so hidden are eliminated from
|
|
// consideration.
|
|
|
|
// There is a path to a base class that meets the criteria. If we're
|
|
// not collecting paths or finding ambiguities, we're done.
|
|
FoundPath = FoundPathThroughBase = true;
|
|
if (!Paths.isFindingAmbiguities())
|
|
return FoundPath;
|
|
}
|
|
}
|
|
|
|
// Pop this base specifier off the current path (if we're
|
|
// collecting paths).
|
|
if (Paths.isRecordingPaths()) {
|
|
Paths.ScratchPath.pop_back();
|
|
}
|
|
|
|
// If we set a virtual earlier, and this isn't a path, forget it again.
|
|
if (SetVirtual && !FoundPathThroughBase) {
|
|
Paths.DetectedVirtual = 0;
|
|
}
|
|
}
|
|
|
|
// Reset the scratch path access.
|
|
Paths.ScratchPath.Access = AccessToHere;
|
|
|
|
return FoundPath;
|
|
}
|
|
|
|
bool CXXRecordDecl::FindBaseClass(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path,
|
|
void *BaseRecord) {
|
|
assert(((Decl *)BaseRecord)->getCanonicalDecl() == BaseRecord &&
|
|
"User data for FindBaseClass is not canonical!");
|
|
return Specifier->getType()->getAs<RecordType>()->getDecl()
|
|
->getCanonicalDecl() == BaseRecord;
|
|
}
|
|
|
|
bool CXXRecordDecl::FindTagMember(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path,
|
|
void *Name) {
|
|
RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
|
|
|
|
DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
|
|
for (Path.Decls = BaseRecord->lookup(N);
|
|
Path.Decls.first != Path.Decls.second;
|
|
++Path.Decls.first) {
|
|
if ((*Path.Decls.first)->isInIdentifierNamespace(IDNS_Tag))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool CXXRecordDecl::FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path,
|
|
void *Name) {
|
|
RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
|
|
|
|
const unsigned IDNS = IDNS_Ordinary | IDNS_Tag | IDNS_Member;
|
|
DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
|
|
for (Path.Decls = BaseRecord->lookup(N);
|
|
Path.Decls.first != Path.Decls.second;
|
|
++Path.Decls.first) {
|
|
if ((*Path.Decls.first)->isInIdentifierNamespace(IDNS))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool CXXRecordDecl::
|
|
FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path,
|
|
void *Name) {
|
|
RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
|
|
|
|
DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
|
|
for (Path.Decls = BaseRecord->lookup(N);
|
|
Path.Decls.first != Path.Decls.second;
|
|
++Path.Decls.first) {
|
|
// FIXME: Refactor the "is it a nested-name-specifier?" check
|
|
if (isa<TypedefDecl>(*Path.Decls.first) ||
|
|
(*Path.Decls.first)->isInIdentifierNamespace(IDNS_Tag))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|