зеркало из https://github.com/microsoft/clang-1.git
2043 строки
69 KiB
C++
2043 строки
69 KiB
C++
//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Expr constant evaluator.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/AST/ASTDiagnostic.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include <cstring>
|
|
|
|
using namespace clang;
|
|
using llvm::APSInt;
|
|
using llvm::APFloat;
|
|
|
|
/// EvalInfo - This is a private struct used by the evaluator to capture
|
|
/// information about a subexpression as it is folded. It retains information
|
|
/// about the AST context, but also maintains information about the folded
|
|
/// expression.
|
|
///
|
|
/// If an expression could be evaluated, it is still possible it is not a C
|
|
/// "integer constant expression" or constant expression. If not, this struct
|
|
/// captures information about how and why not.
|
|
///
|
|
/// One bit of information passed *into* the request for constant folding
|
|
/// indicates whether the subexpression is "evaluated" or not according to C
|
|
/// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
|
|
/// evaluate the expression regardless of what the RHS is, but C only allows
|
|
/// certain things in certain situations.
|
|
struct EvalInfo {
|
|
ASTContext &Ctx;
|
|
|
|
/// EvalResult - Contains information about the evaluation.
|
|
Expr::EvalResult &EvalResult;
|
|
|
|
/// AnyLValue - Stack based LValue results are not discarded.
|
|
bool AnyLValue;
|
|
|
|
EvalInfo(ASTContext &ctx, Expr::EvalResult& evalresult,
|
|
bool anylvalue = false)
|
|
: Ctx(ctx), EvalResult(evalresult), AnyLValue(anylvalue) {}
|
|
};
|
|
|
|
|
|
static bool EvaluateLValue(const Expr *E, APValue &Result, EvalInfo &Info);
|
|
static bool EvaluatePointer(const Expr *E, APValue &Result, EvalInfo &Info);
|
|
static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
|
|
static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
|
|
EvalInfo &Info);
|
|
static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
|
|
static bool EvaluateComplex(const Expr *E, APValue &Result, EvalInfo &Info);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Misc utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool EvalPointerValueAsBool(APValue& Value, bool& Result) {
|
|
// FIXME: Is this accurate for all kinds of bases? If not, what would
|
|
// the check look like?
|
|
Result = Value.getLValueBase() || !Value.getLValueOffset().isZero();
|
|
return true;
|
|
}
|
|
|
|
static bool HandleConversionToBool(const Expr* E, bool& Result,
|
|
EvalInfo &Info) {
|
|
if (E->getType()->isIntegralType()) {
|
|
APSInt IntResult;
|
|
if (!EvaluateInteger(E, IntResult, Info))
|
|
return false;
|
|
Result = IntResult != 0;
|
|
return true;
|
|
} else if (E->getType()->isRealFloatingType()) {
|
|
APFloat FloatResult(0.0);
|
|
if (!EvaluateFloat(E, FloatResult, Info))
|
|
return false;
|
|
Result = !FloatResult.isZero();
|
|
return true;
|
|
} else if (E->getType()->hasPointerRepresentation()) {
|
|
APValue PointerResult;
|
|
if (!EvaluatePointer(E, PointerResult, Info))
|
|
return false;
|
|
return EvalPointerValueAsBool(PointerResult, Result);
|
|
} else if (E->getType()->isAnyComplexType()) {
|
|
APValue ComplexResult;
|
|
if (!EvaluateComplex(E, ComplexResult, Info))
|
|
return false;
|
|
if (ComplexResult.isComplexFloat()) {
|
|
Result = !ComplexResult.getComplexFloatReal().isZero() ||
|
|
!ComplexResult.getComplexFloatImag().isZero();
|
|
} else {
|
|
Result = ComplexResult.getComplexIntReal().getBoolValue() ||
|
|
ComplexResult.getComplexIntImag().getBoolValue();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static APSInt HandleFloatToIntCast(QualType DestType, QualType SrcType,
|
|
APFloat &Value, ASTContext &Ctx) {
|
|
unsigned DestWidth = Ctx.getIntWidth(DestType);
|
|
// Determine whether we are converting to unsigned or signed.
|
|
bool DestSigned = DestType->isSignedIntegerType();
|
|
|
|
// FIXME: Warning for overflow.
|
|
uint64_t Space[4];
|
|
bool ignored;
|
|
(void)Value.convertToInteger(Space, DestWidth, DestSigned,
|
|
llvm::APFloat::rmTowardZero, &ignored);
|
|
return APSInt(llvm::APInt(DestWidth, 4, Space), !DestSigned);
|
|
}
|
|
|
|
static APFloat HandleFloatToFloatCast(QualType DestType, QualType SrcType,
|
|
APFloat &Value, ASTContext &Ctx) {
|
|
bool ignored;
|
|
APFloat Result = Value;
|
|
Result.convert(Ctx.getFloatTypeSemantics(DestType),
|
|
APFloat::rmNearestTiesToEven, &ignored);
|
|
return Result;
|
|
}
|
|
|
|
static APSInt HandleIntToIntCast(QualType DestType, QualType SrcType,
|
|
APSInt &Value, ASTContext &Ctx) {
|
|
unsigned DestWidth = Ctx.getIntWidth(DestType);
|
|
APSInt Result = Value;
|
|
// Figure out if this is a truncate, extend or noop cast.
|
|
// If the input is signed, do a sign extend, noop, or truncate.
|
|
Result.extOrTrunc(DestWidth);
|
|
Result.setIsUnsigned(DestType->isUnsignedIntegerType());
|
|
return Result;
|
|
}
|
|
|
|
static APFloat HandleIntToFloatCast(QualType DestType, QualType SrcType,
|
|
APSInt &Value, ASTContext &Ctx) {
|
|
|
|
APFloat Result(Ctx.getFloatTypeSemantics(DestType), 1);
|
|
Result.convertFromAPInt(Value, Value.isSigned(),
|
|
APFloat::rmNearestTiesToEven);
|
|
return Result;
|
|
}
|
|
|
|
namespace {
|
|
class HasSideEffect
|
|
: public StmtVisitor<HasSideEffect, bool> {
|
|
EvalInfo &Info;
|
|
public:
|
|
|
|
HasSideEffect(EvalInfo &info) : Info(info) {}
|
|
|
|
// Unhandled nodes conservatively default to having side effects.
|
|
bool VisitStmt(Stmt *S) {
|
|
return true;
|
|
}
|
|
|
|
bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
|
|
bool VisitDeclRefExpr(DeclRefExpr *E) {
|
|
if (Info.Ctx.getCanonicalType(E->getType()).isVolatileQualified())
|
|
return true;
|
|
return false;
|
|
}
|
|
// We don't want to evaluate BlockExprs multiple times, as they generate
|
|
// a ton of code.
|
|
bool VisitBlockExpr(BlockExpr *E) { return true; }
|
|
bool VisitPredefinedExpr(PredefinedExpr *E) { return false; }
|
|
bool VisitCompoundLiteralExpr(CompoundLiteralExpr *E)
|
|
{ return Visit(E->getInitializer()); }
|
|
bool VisitMemberExpr(MemberExpr *E) { return Visit(E->getBase()); }
|
|
bool VisitIntegerLiteral(IntegerLiteral *E) { return false; }
|
|
bool VisitFloatingLiteral(FloatingLiteral *E) { return false; }
|
|
bool VisitStringLiteral(StringLiteral *E) { return false; }
|
|
bool VisitCharacterLiteral(CharacterLiteral *E) { return false; }
|
|
bool VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) { return false; }
|
|
bool VisitArraySubscriptExpr(ArraySubscriptExpr *E)
|
|
{ return Visit(E->getLHS()) || Visit(E->getRHS()); }
|
|
bool VisitChooseExpr(ChooseExpr *E)
|
|
{ return Visit(E->getChosenSubExpr(Info.Ctx)); }
|
|
bool VisitCastExpr(CastExpr *E) { return Visit(E->getSubExpr()); }
|
|
bool VisitBinAssign(BinaryOperator *E) { return true; }
|
|
bool VisitCompoundAssignOperator(BinaryOperator *E) { return true; }
|
|
bool VisitBinaryOperator(BinaryOperator *E)
|
|
{ return Visit(E->getLHS()) || Visit(E->getRHS()); }
|
|
bool VisitUnaryPreInc(UnaryOperator *E) { return true; }
|
|
bool VisitUnaryPostInc(UnaryOperator *E) { return true; }
|
|
bool VisitUnaryPreDec(UnaryOperator *E) { return true; }
|
|
bool VisitUnaryPostDec(UnaryOperator *E) { return true; }
|
|
bool VisitUnaryDeref(UnaryOperator *E) {
|
|
if (Info.Ctx.getCanonicalType(E->getType()).isVolatileQualified())
|
|
return true;
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
bool VisitUnaryOperator(UnaryOperator *E) { return Visit(E->getSubExpr()); }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LValue Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
class LValueExprEvaluator
|
|
: public StmtVisitor<LValueExprEvaluator, APValue> {
|
|
EvalInfo &Info;
|
|
public:
|
|
|
|
LValueExprEvaluator(EvalInfo &info) : Info(info) {}
|
|
|
|
APValue VisitStmt(Stmt *S) {
|
|
return APValue();
|
|
}
|
|
|
|
APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
|
|
APValue VisitDeclRefExpr(DeclRefExpr *E);
|
|
APValue VisitPredefinedExpr(PredefinedExpr *E) { return APValue(E); }
|
|
APValue VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
|
|
APValue VisitMemberExpr(MemberExpr *E);
|
|
APValue VisitStringLiteral(StringLiteral *E) { return APValue(E); }
|
|
APValue VisitObjCEncodeExpr(ObjCEncodeExpr *E) { return APValue(E); }
|
|
APValue VisitArraySubscriptExpr(ArraySubscriptExpr *E);
|
|
APValue VisitUnaryDeref(UnaryOperator *E);
|
|
APValue VisitUnaryExtension(const UnaryOperator *E)
|
|
{ return Visit(E->getSubExpr()); }
|
|
APValue VisitChooseExpr(const ChooseExpr *E)
|
|
{ return Visit(E->getChosenSubExpr(Info.Ctx)); }
|
|
|
|
APValue VisitCastExpr(CastExpr *E) {
|
|
switch (E->getCastKind()) {
|
|
default:
|
|
return APValue();
|
|
|
|
case CastExpr::CK_NoOp:
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
}
|
|
// FIXME: Missing: __real__, __imag__
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluateLValue(const Expr* E, APValue& Result, EvalInfo &Info) {
|
|
Result = LValueExprEvaluator(Info).Visit(const_cast<Expr*>(E));
|
|
return Result.isLValue();
|
|
}
|
|
|
|
APValue LValueExprEvaluator::VisitDeclRefExpr(DeclRefExpr *E) {
|
|
if (isa<FunctionDecl>(E->getDecl())) {
|
|
return APValue(E);
|
|
} else if (VarDecl* VD = dyn_cast<VarDecl>(E->getDecl())) {
|
|
if (!Info.AnyLValue && !VD->hasGlobalStorage())
|
|
return APValue();
|
|
if (!VD->getType()->isReferenceType())
|
|
return APValue(E);
|
|
// FIXME: Check whether VD might be overridden!
|
|
if (const Expr *Init = VD->getAnyInitializer())
|
|
return Visit(const_cast<Expr *>(Init));
|
|
}
|
|
|
|
return APValue();
|
|
}
|
|
|
|
APValue LValueExprEvaluator::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
|
|
if (!Info.AnyLValue && !E->isFileScope())
|
|
return APValue();
|
|
return APValue(E);
|
|
}
|
|
|
|
APValue LValueExprEvaluator::VisitMemberExpr(MemberExpr *E) {
|
|
APValue result;
|
|
QualType Ty;
|
|
if (E->isArrow()) {
|
|
if (!EvaluatePointer(E->getBase(), result, Info))
|
|
return APValue();
|
|
Ty = E->getBase()->getType()->getAs<PointerType>()->getPointeeType();
|
|
} else {
|
|
result = Visit(E->getBase());
|
|
if (result.isUninit())
|
|
return APValue();
|
|
Ty = E->getBase()->getType();
|
|
}
|
|
|
|
RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
|
|
const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
|
|
|
|
FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
|
|
if (!FD) // FIXME: deal with other kinds of member expressions
|
|
return APValue();
|
|
|
|
if (FD->getType()->isReferenceType())
|
|
return APValue();
|
|
|
|
// FIXME: This is linear time.
|
|
unsigned i = 0;
|
|
for (RecordDecl::field_iterator Field = RD->field_begin(),
|
|
FieldEnd = RD->field_end();
|
|
Field != FieldEnd; (void)++Field, ++i) {
|
|
if (*Field == FD)
|
|
break;
|
|
}
|
|
|
|
result.setLValue(result.getLValueBase(),
|
|
result.getLValueOffset() +
|
|
CharUnits::fromQuantity(RL.getFieldOffset(i) / 8));
|
|
|
|
return result;
|
|
}
|
|
|
|
APValue LValueExprEvaluator::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
|
|
APValue Result;
|
|
|
|
if (!EvaluatePointer(E->getBase(), Result, Info))
|
|
return APValue();
|
|
|
|
APSInt Index;
|
|
if (!EvaluateInteger(E->getIdx(), Index, Info))
|
|
return APValue();
|
|
|
|
CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(E->getType());
|
|
|
|
CharUnits Offset = Index.getSExtValue() * ElementSize;
|
|
Result.setLValue(Result.getLValueBase(),
|
|
Result.getLValueOffset() + Offset);
|
|
return Result;
|
|
}
|
|
|
|
APValue LValueExprEvaluator::VisitUnaryDeref(UnaryOperator *E) {
|
|
APValue Result;
|
|
if (!EvaluatePointer(E->getSubExpr(), Result, Info))
|
|
return APValue();
|
|
return Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pointer Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class PointerExprEvaluator
|
|
: public StmtVisitor<PointerExprEvaluator, APValue> {
|
|
EvalInfo &Info;
|
|
public:
|
|
|
|
PointerExprEvaluator(EvalInfo &info) : Info(info) {}
|
|
|
|
APValue VisitStmt(Stmt *S) {
|
|
return APValue();
|
|
}
|
|
|
|
APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
|
|
|
|
APValue VisitBinaryOperator(const BinaryOperator *E);
|
|
APValue VisitCastExpr(CastExpr* E);
|
|
APValue VisitUnaryExtension(const UnaryOperator *E)
|
|
{ return Visit(E->getSubExpr()); }
|
|
APValue VisitUnaryAddrOf(const UnaryOperator *E);
|
|
APValue VisitObjCStringLiteral(ObjCStringLiteral *E)
|
|
{ return APValue(E); }
|
|
APValue VisitAddrLabelExpr(AddrLabelExpr *E)
|
|
{ return APValue(E); }
|
|
APValue VisitCallExpr(CallExpr *E);
|
|
APValue VisitBlockExpr(BlockExpr *E) {
|
|
if (!E->hasBlockDeclRefExprs())
|
|
return APValue(E);
|
|
return APValue();
|
|
}
|
|
APValue VisitImplicitValueInitExpr(ImplicitValueInitExpr *E)
|
|
{ return APValue((Expr*)0); }
|
|
APValue VisitConditionalOperator(ConditionalOperator *E);
|
|
APValue VisitChooseExpr(ChooseExpr *E)
|
|
{ return Visit(E->getChosenSubExpr(Info.Ctx)); }
|
|
APValue VisitCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *E)
|
|
{ return APValue((Expr*)0); }
|
|
// FIXME: Missing: @protocol, @selector
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluatePointer(const Expr* E, APValue& Result, EvalInfo &Info) {
|
|
if (!E->getType()->hasPointerRepresentation())
|
|
return false;
|
|
Result = PointerExprEvaluator(Info).Visit(const_cast<Expr*>(E));
|
|
return Result.isLValue();
|
|
}
|
|
|
|
APValue PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
|
|
if (E->getOpcode() != BinaryOperator::Add &&
|
|
E->getOpcode() != BinaryOperator::Sub)
|
|
return APValue();
|
|
|
|
const Expr *PExp = E->getLHS();
|
|
const Expr *IExp = E->getRHS();
|
|
if (IExp->getType()->isPointerType())
|
|
std::swap(PExp, IExp);
|
|
|
|
APValue ResultLValue;
|
|
if (!EvaluatePointer(PExp, ResultLValue, Info))
|
|
return APValue();
|
|
|
|
llvm::APSInt AdditionalOffset(32);
|
|
if (!EvaluateInteger(IExp, AdditionalOffset, Info))
|
|
return APValue();
|
|
|
|
QualType PointeeType = PExp->getType()->getAs<PointerType>()->getPointeeType();
|
|
CharUnits SizeOfPointee;
|
|
|
|
// Explicitly handle GNU void* and function pointer arithmetic extensions.
|
|
if (PointeeType->isVoidType() || PointeeType->isFunctionType())
|
|
SizeOfPointee = CharUnits::One();
|
|
else
|
|
SizeOfPointee = Info.Ctx.getTypeSizeInChars(PointeeType);
|
|
|
|
CharUnits Offset = ResultLValue.getLValueOffset();
|
|
|
|
if (E->getOpcode() == BinaryOperator::Add)
|
|
Offset += AdditionalOffset.getLimitedValue() * SizeOfPointee;
|
|
else
|
|
Offset -= AdditionalOffset.getLimitedValue() * SizeOfPointee;
|
|
|
|
return APValue(ResultLValue.getLValueBase(), Offset);
|
|
}
|
|
|
|
APValue PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
|
|
APValue result;
|
|
if (EvaluateLValue(E->getSubExpr(), result, Info))
|
|
return result;
|
|
return APValue();
|
|
}
|
|
|
|
|
|
APValue PointerExprEvaluator::VisitCastExpr(CastExpr* E) {
|
|
Expr* SubExpr = E->getSubExpr();
|
|
|
|
switch (E->getCastKind()) {
|
|
default:
|
|
break;
|
|
|
|
case CastExpr::CK_Unknown: {
|
|
// FIXME: The handling for CK_Unknown is ugly/shouldn't be necessary!
|
|
|
|
// Check for pointer->pointer cast
|
|
if (SubExpr->getType()->isPointerType() ||
|
|
SubExpr->getType()->isObjCObjectPointerType() ||
|
|
SubExpr->getType()->isNullPtrType() ||
|
|
SubExpr->getType()->isBlockPointerType())
|
|
return Visit(SubExpr);
|
|
|
|
if (SubExpr->getType()->isIntegralType()) {
|
|
APValue Result;
|
|
if (!EvaluateIntegerOrLValue(SubExpr, Result, Info))
|
|
break;
|
|
|
|
if (Result.isInt()) {
|
|
Result.getInt().extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType()));
|
|
return APValue(0,
|
|
CharUnits::fromQuantity(Result.getInt().getZExtValue()));
|
|
}
|
|
|
|
// Cast is of an lvalue, no need to change value.
|
|
return Result;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case CastExpr::CK_NoOp:
|
|
case CastExpr::CK_BitCast:
|
|
case CastExpr::CK_AnyPointerToObjCPointerCast:
|
|
case CastExpr::CK_AnyPointerToBlockPointerCast:
|
|
return Visit(SubExpr);
|
|
|
|
case CastExpr::CK_IntegralToPointer: {
|
|
APValue Result;
|
|
if (!EvaluateIntegerOrLValue(SubExpr, Result, Info))
|
|
break;
|
|
|
|
if (Result.isInt()) {
|
|
Result.getInt().extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType()));
|
|
return APValue(0,
|
|
CharUnits::fromQuantity(Result.getInt().getZExtValue()));
|
|
}
|
|
|
|
// Cast is of an lvalue, no need to change value.
|
|
return Result;
|
|
}
|
|
case CastExpr::CK_ArrayToPointerDecay:
|
|
case CastExpr::CK_FunctionToPointerDecay: {
|
|
APValue Result;
|
|
if (EvaluateLValue(SubExpr, Result, Info))
|
|
return Result;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return APValue();
|
|
}
|
|
|
|
APValue PointerExprEvaluator::VisitCallExpr(CallExpr *E) {
|
|
if (E->isBuiltinCall(Info.Ctx) ==
|
|
Builtin::BI__builtin___CFStringMakeConstantString ||
|
|
E->isBuiltinCall(Info.Ctx) ==
|
|
Builtin::BI__builtin___NSStringMakeConstantString)
|
|
return APValue(E);
|
|
return APValue();
|
|
}
|
|
|
|
APValue PointerExprEvaluator::VisitConditionalOperator(ConditionalOperator *E) {
|
|
bool BoolResult;
|
|
if (!HandleConversionToBool(E->getCond(), BoolResult, Info))
|
|
return APValue();
|
|
|
|
Expr* EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
|
|
|
|
APValue Result;
|
|
if (EvaluatePointer(EvalExpr, Result, Info))
|
|
return Result;
|
|
return APValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Vector Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class VectorExprEvaluator
|
|
: public StmtVisitor<VectorExprEvaluator, APValue> {
|
|
EvalInfo &Info;
|
|
APValue GetZeroVector(QualType VecType);
|
|
public:
|
|
|
|
VectorExprEvaluator(EvalInfo &info) : Info(info) {}
|
|
|
|
APValue VisitStmt(Stmt *S) {
|
|
return APValue();
|
|
}
|
|
|
|
APValue VisitParenExpr(ParenExpr *E)
|
|
{ return Visit(E->getSubExpr()); }
|
|
APValue VisitUnaryExtension(const UnaryOperator *E)
|
|
{ return Visit(E->getSubExpr()); }
|
|
APValue VisitUnaryPlus(const UnaryOperator *E)
|
|
{ return Visit(E->getSubExpr()); }
|
|
APValue VisitUnaryReal(const UnaryOperator *E)
|
|
{ return Visit(E->getSubExpr()); }
|
|
APValue VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E)
|
|
{ return GetZeroVector(E->getType()); }
|
|
APValue VisitCastExpr(const CastExpr* E);
|
|
APValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
|
|
APValue VisitInitListExpr(const InitListExpr *E);
|
|
APValue VisitConditionalOperator(const ConditionalOperator *E);
|
|
APValue VisitChooseExpr(const ChooseExpr *E)
|
|
{ return Visit(E->getChosenSubExpr(Info.Ctx)); }
|
|
APValue VisitUnaryImag(const UnaryOperator *E);
|
|
// FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
|
|
// binary comparisons, binary and/or/xor,
|
|
// shufflevector, ExtVectorElementExpr
|
|
// (Note that these require implementing conversions
|
|
// between vector types.)
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
|
|
if (!E->getType()->isVectorType())
|
|
return false;
|
|
Result = VectorExprEvaluator(Info).Visit(const_cast<Expr*>(E));
|
|
return !Result.isUninit();
|
|
}
|
|
|
|
APValue VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
|
|
const VectorType *VTy = E->getType()->getAs<VectorType>();
|
|
QualType EltTy = VTy->getElementType();
|
|
unsigned NElts = VTy->getNumElements();
|
|
unsigned EltWidth = Info.Ctx.getTypeSize(EltTy);
|
|
|
|
const Expr* SE = E->getSubExpr();
|
|
QualType SETy = SE->getType();
|
|
APValue Result = APValue();
|
|
|
|
// Check for vector->vector bitcast and scalar->vector splat.
|
|
if (SETy->isVectorType()) {
|
|
return this->Visit(const_cast<Expr*>(SE));
|
|
} else if (SETy->isIntegerType()) {
|
|
APSInt IntResult;
|
|
if (!EvaluateInteger(SE, IntResult, Info))
|
|
return APValue();
|
|
Result = APValue(IntResult);
|
|
} else if (SETy->isRealFloatingType()) {
|
|
APFloat F(0.0);
|
|
if (!EvaluateFloat(SE, F, Info))
|
|
return APValue();
|
|
Result = APValue(F);
|
|
} else
|
|
return APValue();
|
|
|
|
// For casts of a scalar to ExtVector, convert the scalar to the element type
|
|
// and splat it to all elements.
|
|
if (E->getType()->isExtVectorType()) {
|
|
if (EltTy->isIntegerType() && Result.isInt())
|
|
Result = APValue(HandleIntToIntCast(EltTy, SETy, Result.getInt(),
|
|
Info.Ctx));
|
|
else if (EltTy->isIntegerType())
|
|
Result = APValue(HandleFloatToIntCast(EltTy, SETy, Result.getFloat(),
|
|
Info.Ctx));
|
|
else if (EltTy->isRealFloatingType() && Result.isInt())
|
|
Result = APValue(HandleIntToFloatCast(EltTy, SETy, Result.getInt(),
|
|
Info.Ctx));
|
|
else if (EltTy->isRealFloatingType())
|
|
Result = APValue(HandleFloatToFloatCast(EltTy, SETy, Result.getFloat(),
|
|
Info.Ctx));
|
|
else
|
|
return APValue();
|
|
|
|
// Splat and create vector APValue.
|
|
llvm::SmallVector<APValue, 4> Elts(NElts, Result);
|
|
return APValue(&Elts[0], Elts.size());
|
|
}
|
|
|
|
// For casts of a scalar to regular gcc-style vector type, bitcast the scalar
|
|
// to the vector. To construct the APValue vector initializer, bitcast the
|
|
// initializing value to an APInt, and shift out the bits pertaining to each
|
|
// element.
|
|
APSInt Init;
|
|
Init = Result.isInt() ? Result.getInt() : Result.getFloat().bitcastToAPInt();
|
|
|
|
llvm::SmallVector<APValue, 4> Elts;
|
|
for (unsigned i = 0; i != NElts; ++i) {
|
|
APSInt Tmp = Init;
|
|
Tmp.extOrTrunc(EltWidth);
|
|
|
|
if (EltTy->isIntegerType())
|
|
Elts.push_back(APValue(Tmp));
|
|
else if (EltTy->isRealFloatingType())
|
|
Elts.push_back(APValue(APFloat(Tmp)));
|
|
else
|
|
return APValue();
|
|
|
|
Init >>= EltWidth;
|
|
}
|
|
return APValue(&Elts[0], Elts.size());
|
|
}
|
|
|
|
APValue
|
|
VectorExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
|
|
return this->Visit(const_cast<Expr*>(E->getInitializer()));
|
|
}
|
|
|
|
APValue
|
|
VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
|
|
const VectorType *VT = E->getType()->getAs<VectorType>();
|
|
unsigned NumInits = E->getNumInits();
|
|
unsigned NumElements = VT->getNumElements();
|
|
|
|
QualType EltTy = VT->getElementType();
|
|
llvm::SmallVector<APValue, 4> Elements;
|
|
|
|
for (unsigned i = 0; i < NumElements; i++) {
|
|
if (EltTy->isIntegerType()) {
|
|
llvm::APSInt sInt(32);
|
|
if (i < NumInits) {
|
|
if (!EvaluateInteger(E->getInit(i), sInt, Info))
|
|
return APValue();
|
|
} else {
|
|
sInt = Info.Ctx.MakeIntValue(0, EltTy);
|
|
}
|
|
Elements.push_back(APValue(sInt));
|
|
} else {
|
|
llvm::APFloat f(0.0);
|
|
if (i < NumInits) {
|
|
if (!EvaluateFloat(E->getInit(i), f, Info))
|
|
return APValue();
|
|
} else {
|
|
f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
|
|
}
|
|
Elements.push_back(APValue(f));
|
|
}
|
|
}
|
|
return APValue(&Elements[0], Elements.size());
|
|
}
|
|
|
|
APValue
|
|
VectorExprEvaluator::GetZeroVector(QualType T) {
|
|
const VectorType *VT = T->getAs<VectorType>();
|
|
QualType EltTy = VT->getElementType();
|
|
APValue ZeroElement;
|
|
if (EltTy->isIntegerType())
|
|
ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
|
|
else
|
|
ZeroElement =
|
|
APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
|
|
|
|
llvm::SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
|
|
return APValue(&Elements[0], Elements.size());
|
|
}
|
|
|
|
APValue VectorExprEvaluator::VisitConditionalOperator(const ConditionalOperator *E) {
|
|
bool BoolResult;
|
|
if (!HandleConversionToBool(E->getCond(), BoolResult, Info))
|
|
return APValue();
|
|
|
|
Expr* EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
|
|
|
|
APValue Result;
|
|
if (EvaluateVector(EvalExpr, Result, Info))
|
|
return Result;
|
|
return APValue();
|
|
}
|
|
|
|
APValue VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
|
|
if (!E->getSubExpr()->isEvaluatable(Info.Ctx))
|
|
Info.EvalResult.HasSideEffects = true;
|
|
return GetZeroVector(E->getType());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class IntExprEvaluator
|
|
: public StmtVisitor<IntExprEvaluator, bool> {
|
|
EvalInfo &Info;
|
|
APValue &Result;
|
|
public:
|
|
IntExprEvaluator(EvalInfo &info, APValue &result)
|
|
: Info(info), Result(result) {}
|
|
|
|
bool Success(const llvm::APSInt &SI, const Expr *E) {
|
|
assert(E->getType()->isIntegralType() && "Invalid evaluation result.");
|
|
assert(SI.isSigned() == E->getType()->isSignedIntegerType() &&
|
|
"Invalid evaluation result.");
|
|
assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
|
|
"Invalid evaluation result.");
|
|
Result = APValue(SI);
|
|
return true;
|
|
}
|
|
|
|
bool Success(const llvm::APInt &I, const Expr *E) {
|
|
assert(E->getType()->isIntegralType() && "Invalid evaluation result.");
|
|
assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
|
|
"Invalid evaluation result.");
|
|
Result = APValue(APSInt(I));
|
|
Result.getInt().setIsUnsigned(E->getType()->isUnsignedIntegerType());
|
|
return true;
|
|
}
|
|
|
|
bool Success(uint64_t Value, const Expr *E) {
|
|
assert(E->getType()->isIntegralType() && "Invalid evaluation result.");
|
|
Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
|
|
return true;
|
|
}
|
|
|
|
bool Error(SourceLocation L, diag::kind D, const Expr *E) {
|
|
// Take the first error.
|
|
if (Info.EvalResult.Diag == 0) {
|
|
Info.EvalResult.DiagLoc = L;
|
|
Info.EvalResult.Diag = D;
|
|
Info.EvalResult.DiagExpr = E;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
bool VisitStmt(Stmt *) {
|
|
assert(0 && "This should be called on integers, stmts are not integers");
|
|
return false;
|
|
}
|
|
|
|
bool VisitExpr(Expr *E) {
|
|
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
|
|
}
|
|
|
|
bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
|
|
|
|
bool VisitIntegerLiteral(const IntegerLiteral *E) {
|
|
return Success(E->getValue(), E);
|
|
}
|
|
bool VisitCharacterLiteral(const CharacterLiteral *E) {
|
|
return Success(E->getValue(), E);
|
|
}
|
|
bool VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
|
|
// Per gcc docs "this built-in function ignores top level
|
|
// qualifiers". We need to use the canonical version to properly
|
|
// be able to strip CRV qualifiers from the type.
|
|
QualType T0 = Info.Ctx.getCanonicalType(E->getArgType1());
|
|
QualType T1 = Info.Ctx.getCanonicalType(E->getArgType2());
|
|
return Success(Info.Ctx.typesAreCompatible(T0.getUnqualifiedType(),
|
|
T1.getUnqualifiedType()),
|
|
E);
|
|
}
|
|
|
|
bool CheckReferencedDecl(const Expr *E, const Decl *D);
|
|
bool VisitDeclRefExpr(const DeclRefExpr *E) {
|
|
return CheckReferencedDecl(E, E->getDecl());
|
|
}
|
|
bool VisitMemberExpr(const MemberExpr *E) {
|
|
if (CheckReferencedDecl(E, E->getMemberDecl())) {
|
|
// Conservatively assume a MemberExpr will have side-effects
|
|
Info.EvalResult.HasSideEffects = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool VisitCallExpr(CallExpr *E);
|
|
bool VisitBinaryOperator(const BinaryOperator *E);
|
|
bool VisitUnaryOperator(const UnaryOperator *E);
|
|
bool VisitConditionalOperator(const ConditionalOperator *E);
|
|
|
|
bool VisitCastExpr(CastExpr* E);
|
|
bool VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
|
|
|
|
bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
|
|
return Success(E->getValue(), E);
|
|
}
|
|
|
|
bool VisitGNUNullExpr(const GNUNullExpr *E) {
|
|
return Success(0, E);
|
|
}
|
|
|
|
bool VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
|
|
return Success(0, E);
|
|
}
|
|
|
|
bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
|
|
return Success(0, E);
|
|
}
|
|
|
|
bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
|
|
return Success(E->EvaluateTrait(Info.Ctx), E);
|
|
}
|
|
|
|
bool VisitChooseExpr(const ChooseExpr *E) {
|
|
return Visit(E->getChosenSubExpr(Info.Ctx));
|
|
}
|
|
|
|
bool VisitUnaryReal(const UnaryOperator *E);
|
|
bool VisitUnaryImag(const UnaryOperator *E);
|
|
|
|
private:
|
|
CharUnits GetAlignOfExpr(const Expr *E);
|
|
CharUnits GetAlignOfType(QualType T);
|
|
// FIXME: Missing: array subscript of vector, member of vector
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluateIntegerOrLValue(const Expr* E, APValue &Result, EvalInfo &Info) {
|
|
if (!E->getType()->isIntegralType())
|
|
return false;
|
|
|
|
return IntExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
|
|
}
|
|
|
|
static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) {
|
|
APValue Val;
|
|
if (!EvaluateIntegerOrLValue(E, Val, Info) || !Val.isInt())
|
|
return false;
|
|
Result = Val.getInt();
|
|
return true;
|
|
}
|
|
|
|
bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
|
|
// Enums are integer constant exprs.
|
|
if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
|
|
return Success(ECD->getInitVal(), E);
|
|
|
|
// In C++, const, non-volatile integers initialized with ICEs are ICEs.
|
|
// In C, they can also be folded, although they are not ICEs.
|
|
if (Info.Ctx.getCanonicalType(E->getType()).getCVRQualifiers()
|
|
== Qualifiers::Const) {
|
|
|
|
if (isa<ParmVarDecl>(D))
|
|
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
if (const Expr *Init = VD->getAnyInitializer()) {
|
|
if (APValue *V = VD->getEvaluatedValue()) {
|
|
if (V->isInt())
|
|
return Success(V->getInt(), E);
|
|
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
|
|
}
|
|
|
|
if (VD->isEvaluatingValue())
|
|
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
|
|
|
|
VD->setEvaluatingValue();
|
|
|
|
if (Visit(const_cast<Expr*>(Init))) {
|
|
// Cache the evaluated value in the variable declaration.
|
|
VD->setEvaluatedValue(Result);
|
|
return true;
|
|
}
|
|
|
|
VD->setEvaluatedValue(APValue());
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise, random variable references are not constants.
|
|
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
|
|
}
|
|
|
|
/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
|
|
/// as GCC.
|
|
static int EvaluateBuiltinClassifyType(const CallExpr *E) {
|
|
// The following enum mimics the values returned by GCC.
|
|
// FIXME: Does GCC differ between lvalue and rvalue references here?
|
|
enum gcc_type_class {
|
|
no_type_class = -1,
|
|
void_type_class, integer_type_class, char_type_class,
|
|
enumeral_type_class, boolean_type_class,
|
|
pointer_type_class, reference_type_class, offset_type_class,
|
|
real_type_class, complex_type_class,
|
|
function_type_class, method_type_class,
|
|
record_type_class, union_type_class,
|
|
array_type_class, string_type_class,
|
|
lang_type_class
|
|
};
|
|
|
|
// If no argument was supplied, default to "no_type_class". This isn't
|
|
// ideal, however it is what gcc does.
|
|
if (E->getNumArgs() == 0)
|
|
return no_type_class;
|
|
|
|
QualType ArgTy = E->getArg(0)->getType();
|
|
if (ArgTy->isVoidType())
|
|
return void_type_class;
|
|
else if (ArgTy->isEnumeralType())
|
|
return enumeral_type_class;
|
|
else if (ArgTy->isBooleanType())
|
|
return boolean_type_class;
|
|
else if (ArgTy->isCharType())
|
|
return string_type_class; // gcc doesn't appear to use char_type_class
|
|
else if (ArgTy->isIntegerType())
|
|
return integer_type_class;
|
|
else if (ArgTy->isPointerType())
|
|
return pointer_type_class;
|
|
else if (ArgTy->isReferenceType())
|
|
return reference_type_class;
|
|
else if (ArgTy->isRealType())
|
|
return real_type_class;
|
|
else if (ArgTy->isComplexType())
|
|
return complex_type_class;
|
|
else if (ArgTy->isFunctionType())
|
|
return function_type_class;
|
|
else if (ArgTy->isStructureType())
|
|
return record_type_class;
|
|
else if (ArgTy->isUnionType())
|
|
return union_type_class;
|
|
else if (ArgTy->isArrayType())
|
|
return array_type_class;
|
|
else if (ArgTy->isUnionType())
|
|
return union_type_class;
|
|
else // FIXME: offset_type_class, method_type_class, & lang_type_class?
|
|
assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type");
|
|
return -1;
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitCallExpr(CallExpr *E) {
|
|
switch (E->isBuiltinCall(Info.Ctx)) {
|
|
default:
|
|
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
|
|
|
|
case Builtin::BI__builtin_object_size: {
|
|
const Expr *Arg = E->getArg(0)->IgnoreParens();
|
|
Expr::EvalResult Base;
|
|
|
|
// TODO: Perhaps we should let LLVM lower this?
|
|
if (Arg->EvaluateAsAny(Base, Info.Ctx)
|
|
&& Base.Val.getKind() == APValue::LValue
|
|
&& !Base.HasSideEffects)
|
|
if (const Expr *LVBase = Base.Val.getLValueBase())
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LVBase)) {
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
if (!VD->getType()->isIncompleteType()
|
|
&& VD->getType()->isObjectType()
|
|
&& !VD->getType()->isVariablyModifiedType()
|
|
&& !VD->getType()->isDependentType()) {
|
|
CharUnits Size = Info.Ctx.getTypeSizeInChars(VD->getType());
|
|
CharUnits Offset = Base.Val.getLValueOffset();
|
|
if (!Offset.isNegative() && Offset <= Size)
|
|
Size -= Offset;
|
|
else
|
|
Size = CharUnits::Zero();
|
|
return Success(Size.getQuantity(), E);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If evaluating the argument has side-effects we can't determine
|
|
// the size of the object and lower it to unknown now.
|
|
if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
|
|
if (E->getArg(1)->EvaluateAsInt(Info.Ctx).getZExtValue() <= 1)
|
|
return Success(-1ULL, E);
|
|
return Success(0, E);
|
|
}
|
|
|
|
return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E);
|
|
}
|
|
|
|
case Builtin::BI__builtin_classify_type:
|
|
return Success(EvaluateBuiltinClassifyType(E), E);
|
|
|
|
case Builtin::BI__builtin_constant_p:
|
|
// __builtin_constant_p always has one operand: it returns true if that
|
|
// operand can be folded, false otherwise.
|
|
return Success(E->getArg(0)->isEvaluatable(Info.Ctx), E);
|
|
|
|
case Builtin::BI__builtin_eh_return_data_regno: {
|
|
int Operand = E->getArg(0)->EvaluateAsInt(Info.Ctx).getZExtValue();
|
|
Operand = Info.Ctx.Target.getEHDataRegisterNumber(Operand);
|
|
return Success(Operand, E);
|
|
}
|
|
|
|
case Builtin::BI__builtin_expect:
|
|
return Visit(E->getArg(0));
|
|
}
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
|
|
if (E->getOpcode() == BinaryOperator::Comma) {
|
|
if (!Visit(E->getRHS()))
|
|
return false;
|
|
|
|
// If we can't evaluate the LHS, it might have side effects;
|
|
// conservatively mark it.
|
|
if (!E->getLHS()->isEvaluatable(Info.Ctx))
|
|
Info.EvalResult.HasSideEffects = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
if (E->isLogicalOp()) {
|
|
// These need to be handled specially because the operands aren't
|
|
// necessarily integral
|
|
bool lhsResult, rhsResult;
|
|
|
|
if (HandleConversionToBool(E->getLHS(), lhsResult, Info)) {
|
|
// We were able to evaluate the LHS, see if we can get away with not
|
|
// evaluating the RHS: 0 && X -> 0, 1 || X -> 1
|
|
if (lhsResult == (E->getOpcode() == BinaryOperator::LOr))
|
|
return Success(lhsResult, E);
|
|
|
|
if (HandleConversionToBool(E->getRHS(), rhsResult, Info)) {
|
|
if (E->getOpcode() == BinaryOperator::LOr)
|
|
return Success(lhsResult || rhsResult, E);
|
|
else
|
|
return Success(lhsResult && rhsResult, E);
|
|
}
|
|
} else {
|
|
if (HandleConversionToBool(E->getRHS(), rhsResult, Info)) {
|
|
// We can't evaluate the LHS; however, sometimes the result
|
|
// is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
|
|
if (rhsResult == (E->getOpcode() == BinaryOperator::LOr) ||
|
|
!rhsResult == (E->getOpcode() == BinaryOperator::LAnd)) {
|
|
// Since we weren't able to evaluate the left hand side, it
|
|
// must have had side effects.
|
|
Info.EvalResult.HasSideEffects = true;
|
|
|
|
return Success(rhsResult, E);
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
QualType LHSTy = E->getLHS()->getType();
|
|
QualType RHSTy = E->getRHS()->getType();
|
|
|
|
if (LHSTy->isAnyComplexType()) {
|
|
assert(RHSTy->isAnyComplexType() && "Invalid comparison");
|
|
APValue LHS, RHS;
|
|
|
|
if (!EvaluateComplex(E->getLHS(), LHS, Info))
|
|
return false;
|
|
|
|
if (!EvaluateComplex(E->getRHS(), RHS, Info))
|
|
return false;
|
|
|
|
if (LHS.isComplexFloat()) {
|
|
APFloat::cmpResult CR_r =
|
|
LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
|
|
APFloat::cmpResult CR_i =
|
|
LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
|
|
|
|
if (E->getOpcode() == BinaryOperator::EQ)
|
|
return Success((CR_r == APFloat::cmpEqual &&
|
|
CR_i == APFloat::cmpEqual), E);
|
|
else {
|
|
assert(E->getOpcode() == BinaryOperator::NE &&
|
|
"Invalid complex comparison.");
|
|
return Success(((CR_r == APFloat::cmpGreaterThan ||
|
|
CR_r == APFloat::cmpLessThan) &&
|
|
(CR_i == APFloat::cmpGreaterThan ||
|
|
CR_i == APFloat::cmpLessThan)), E);
|
|
}
|
|
} else {
|
|
if (E->getOpcode() == BinaryOperator::EQ)
|
|
return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
|
|
LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
|
|
else {
|
|
assert(E->getOpcode() == BinaryOperator::NE &&
|
|
"Invalid compex comparison.");
|
|
return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
|
|
LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (LHSTy->isRealFloatingType() &&
|
|
RHSTy->isRealFloatingType()) {
|
|
APFloat RHS(0.0), LHS(0.0);
|
|
|
|
if (!EvaluateFloat(E->getRHS(), RHS, Info))
|
|
return false;
|
|
|
|
if (!EvaluateFloat(E->getLHS(), LHS, Info))
|
|
return false;
|
|
|
|
APFloat::cmpResult CR = LHS.compare(RHS);
|
|
|
|
switch (E->getOpcode()) {
|
|
default:
|
|
assert(0 && "Invalid binary operator!");
|
|
case BinaryOperator::LT:
|
|
return Success(CR == APFloat::cmpLessThan, E);
|
|
case BinaryOperator::GT:
|
|
return Success(CR == APFloat::cmpGreaterThan, E);
|
|
case BinaryOperator::LE:
|
|
return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
|
|
case BinaryOperator::GE:
|
|
return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
|
|
E);
|
|
case BinaryOperator::EQ:
|
|
return Success(CR == APFloat::cmpEqual, E);
|
|
case BinaryOperator::NE:
|
|
return Success(CR == APFloat::cmpGreaterThan
|
|
|| CR == APFloat::cmpLessThan, E);
|
|
}
|
|
}
|
|
|
|
if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
|
|
if (E->getOpcode() == BinaryOperator::Sub || E->isEqualityOp()) {
|
|
APValue LHSValue;
|
|
if (!EvaluatePointer(E->getLHS(), LHSValue, Info))
|
|
return false;
|
|
|
|
APValue RHSValue;
|
|
if (!EvaluatePointer(E->getRHS(), RHSValue, Info))
|
|
return false;
|
|
|
|
// Reject any bases from the normal codepath; we special-case comparisons
|
|
// to null.
|
|
if (LHSValue.getLValueBase()) {
|
|
if (!E->isEqualityOp())
|
|
return false;
|
|
if (RHSValue.getLValueBase() || !RHSValue.getLValueOffset().isZero())
|
|
return false;
|
|
bool bres;
|
|
if (!EvalPointerValueAsBool(LHSValue, bres))
|
|
return false;
|
|
return Success(bres ^ (E->getOpcode() == BinaryOperator::EQ), E);
|
|
} else if (RHSValue.getLValueBase()) {
|
|
if (!E->isEqualityOp())
|
|
return false;
|
|
if (LHSValue.getLValueBase() || !LHSValue.getLValueOffset().isZero())
|
|
return false;
|
|
bool bres;
|
|
if (!EvalPointerValueAsBool(RHSValue, bres))
|
|
return false;
|
|
return Success(bres ^ (E->getOpcode() == BinaryOperator::EQ), E);
|
|
}
|
|
|
|
if (E->getOpcode() == BinaryOperator::Sub) {
|
|
const QualType Type = E->getLHS()->getType();
|
|
const QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
|
|
|
|
CharUnits ElementSize = CharUnits::One();
|
|
if (!ElementType->isVoidType() && !ElementType->isFunctionType())
|
|
ElementSize = Info.Ctx.getTypeSizeInChars(ElementType);
|
|
|
|
CharUnits Diff = LHSValue.getLValueOffset() -
|
|
RHSValue.getLValueOffset();
|
|
return Success(Diff / ElementSize, E);
|
|
}
|
|
bool Result;
|
|
if (E->getOpcode() == BinaryOperator::EQ) {
|
|
Result = LHSValue.getLValueOffset() == RHSValue.getLValueOffset();
|
|
} else {
|
|
Result = LHSValue.getLValueOffset() != RHSValue.getLValueOffset();
|
|
}
|
|
return Success(Result, E);
|
|
}
|
|
}
|
|
if (!LHSTy->isIntegralType() ||
|
|
!RHSTy->isIntegralType()) {
|
|
// We can't continue from here for non-integral types, and they
|
|
// could potentially confuse the following operations.
|
|
return false;
|
|
}
|
|
|
|
// The LHS of a constant expr is always evaluated and needed.
|
|
if (!Visit(E->getLHS()))
|
|
return false; // error in subexpression.
|
|
|
|
APValue RHSVal;
|
|
if (!EvaluateIntegerOrLValue(E->getRHS(), RHSVal, Info))
|
|
return false;
|
|
|
|
// Handle cases like (unsigned long)&a + 4.
|
|
if (E->isAdditiveOp() && Result.isLValue() && RHSVal.isInt()) {
|
|
CharUnits Offset = Result.getLValueOffset();
|
|
CharUnits AdditionalOffset = CharUnits::fromQuantity(
|
|
RHSVal.getInt().getZExtValue());
|
|
if (E->getOpcode() == BinaryOperator::Add)
|
|
Offset += AdditionalOffset;
|
|
else
|
|
Offset -= AdditionalOffset;
|
|
Result = APValue(Result.getLValueBase(), Offset);
|
|
return true;
|
|
}
|
|
|
|
// Handle cases like 4 + (unsigned long)&a
|
|
if (E->getOpcode() == BinaryOperator::Add &&
|
|
RHSVal.isLValue() && Result.isInt()) {
|
|
CharUnits Offset = RHSVal.getLValueOffset();
|
|
Offset += CharUnits::fromQuantity(Result.getInt().getZExtValue());
|
|
Result = APValue(RHSVal.getLValueBase(), Offset);
|
|
return true;
|
|
}
|
|
|
|
// All the following cases expect both operands to be an integer
|
|
if (!Result.isInt() || !RHSVal.isInt())
|
|
return false;
|
|
|
|
APSInt& RHS = RHSVal.getInt();
|
|
|
|
switch (E->getOpcode()) {
|
|
default:
|
|
return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
|
|
case BinaryOperator::Mul: return Success(Result.getInt() * RHS, E);
|
|
case BinaryOperator::Add: return Success(Result.getInt() + RHS, E);
|
|
case BinaryOperator::Sub: return Success(Result.getInt() - RHS, E);
|
|
case BinaryOperator::And: return Success(Result.getInt() & RHS, E);
|
|
case BinaryOperator::Xor: return Success(Result.getInt() ^ RHS, E);
|
|
case BinaryOperator::Or: return Success(Result.getInt() | RHS, E);
|
|
case BinaryOperator::Div:
|
|
if (RHS == 0)
|
|
return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E);
|
|
return Success(Result.getInt() / RHS, E);
|
|
case BinaryOperator::Rem:
|
|
if (RHS == 0)
|
|
return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E);
|
|
return Success(Result.getInt() % RHS, E);
|
|
case BinaryOperator::Shl: {
|
|
// FIXME: Warn about out of range shift amounts!
|
|
unsigned SA =
|
|
(unsigned) RHS.getLimitedValue(Result.getInt().getBitWidth()-1);
|
|
return Success(Result.getInt() << SA, E);
|
|
}
|
|
case BinaryOperator::Shr: {
|
|
unsigned SA =
|
|
(unsigned) RHS.getLimitedValue(Result.getInt().getBitWidth()-1);
|
|
return Success(Result.getInt() >> SA, E);
|
|
}
|
|
|
|
case BinaryOperator::LT: return Success(Result.getInt() < RHS, E);
|
|
case BinaryOperator::GT: return Success(Result.getInt() > RHS, E);
|
|
case BinaryOperator::LE: return Success(Result.getInt() <= RHS, E);
|
|
case BinaryOperator::GE: return Success(Result.getInt() >= RHS, E);
|
|
case BinaryOperator::EQ: return Success(Result.getInt() == RHS, E);
|
|
case BinaryOperator::NE: return Success(Result.getInt() != RHS, E);
|
|
}
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitConditionalOperator(const ConditionalOperator *E) {
|
|
bool Cond;
|
|
if (!HandleConversionToBool(E->getCond(), Cond, Info))
|
|
return false;
|
|
|
|
return Visit(Cond ? E->getTrueExpr() : E->getFalseExpr());
|
|
}
|
|
|
|
CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
|
|
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
|
|
// the result is the size of the referenced type."
|
|
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
|
|
// result shall be the alignment of the referenced type."
|
|
if (const ReferenceType *Ref = T->getAs<ReferenceType>())
|
|
T = Ref->getPointeeType();
|
|
|
|
// Get information about the alignment.
|
|
unsigned CharSize = Info.Ctx.Target.getCharWidth();
|
|
|
|
// __alignof is defined to return the preferred alignment.
|
|
return CharUnits::fromQuantity(
|
|
Info.Ctx.getPreferredTypeAlign(T.getTypePtr()) / CharSize);
|
|
}
|
|
|
|
CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
|
|
E = E->IgnoreParens();
|
|
|
|
// alignof decl is always accepted, even if it doesn't make sense: we default
|
|
// to 1 in those cases.
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
|
|
return Info.Ctx.getDeclAlign(DRE->getDecl(),
|
|
/*RefAsPointee*/true);
|
|
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
|
|
return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
|
|
/*RefAsPointee*/true);
|
|
|
|
return GetAlignOfType(E->getType());
|
|
}
|
|
|
|
|
|
/// VisitSizeAlignOfExpr - Evaluate a sizeof or alignof with a result as the
|
|
/// expression's type.
|
|
bool IntExprEvaluator::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
|
|
// Handle alignof separately.
|
|
if (!E->isSizeOf()) {
|
|
if (E->isArgumentType())
|
|
return Success(GetAlignOfType(E->getArgumentType()).getQuantity(), E);
|
|
else
|
|
return Success(GetAlignOfExpr(E->getArgumentExpr()).getQuantity(), E);
|
|
}
|
|
|
|
QualType SrcTy = E->getTypeOfArgument();
|
|
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
|
|
// the result is the size of the referenced type."
|
|
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
|
|
// result shall be the alignment of the referenced type."
|
|
if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
|
|
SrcTy = Ref->getPointeeType();
|
|
|
|
// sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
|
|
// extension.
|
|
if (SrcTy->isVoidType() || SrcTy->isFunctionType())
|
|
return Success(1, E);
|
|
|
|
// sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
|
|
if (!SrcTy->isConstantSizeType())
|
|
return false;
|
|
|
|
// Get information about the size.
|
|
return Success(Info.Ctx.getTypeSizeInChars(SrcTy).getQuantity(), E);
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
|
|
// Special case unary operators that do not need their subexpression
|
|
// evaluated. offsetof/sizeof/alignof are all special.
|
|
if (E->isOffsetOfOp()) {
|
|
// The AST for offsetof is defined in such a way that we can just
|
|
// directly Evaluate it as an l-value.
|
|
APValue LV;
|
|
if (!EvaluateLValue(E->getSubExpr(), LV, Info))
|
|
return false;
|
|
if (LV.getLValueBase())
|
|
return false;
|
|
return Success(LV.getLValueOffset().getQuantity(), E);
|
|
}
|
|
|
|
if (E->getOpcode() == UnaryOperator::LNot) {
|
|
// LNot's operand isn't necessarily an integer, so we handle it specially.
|
|
bool bres;
|
|
if (!HandleConversionToBool(E->getSubExpr(), bres, Info))
|
|
return false;
|
|
return Success(!bres, E);
|
|
}
|
|
|
|
// Only handle integral operations...
|
|
if (!E->getSubExpr()->getType()->isIntegralType())
|
|
return false;
|
|
|
|
// Get the operand value into 'Result'.
|
|
if (!Visit(E->getSubExpr()))
|
|
return false;
|
|
|
|
switch (E->getOpcode()) {
|
|
default:
|
|
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
|
|
// See C99 6.6p3.
|
|
return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E);
|
|
case UnaryOperator::Extension:
|
|
// FIXME: Should extension allow i-c-e extension expressions in its scope?
|
|
// If so, we could clear the diagnostic ID.
|
|
return true;
|
|
case UnaryOperator::Plus:
|
|
// The result is always just the subexpr.
|
|
return true;
|
|
case UnaryOperator::Minus:
|
|
if (!Result.isInt()) return false;
|
|
return Success(-Result.getInt(), E);
|
|
case UnaryOperator::Not:
|
|
if (!Result.isInt()) return false;
|
|
return Success(~Result.getInt(), E);
|
|
}
|
|
}
|
|
|
|
/// HandleCast - This is used to evaluate implicit or explicit casts where the
|
|
/// result type is integer.
|
|
bool IntExprEvaluator::VisitCastExpr(CastExpr *E) {
|
|
Expr *SubExpr = E->getSubExpr();
|
|
QualType DestType = E->getType();
|
|
QualType SrcType = SubExpr->getType();
|
|
|
|
if (DestType->isBooleanType()) {
|
|
bool BoolResult;
|
|
if (!HandleConversionToBool(SubExpr, BoolResult, Info))
|
|
return false;
|
|
return Success(BoolResult, E);
|
|
}
|
|
|
|
// Handle simple integer->integer casts.
|
|
if (SrcType->isIntegralType()) {
|
|
if (!Visit(SubExpr))
|
|
return false;
|
|
|
|
if (!Result.isInt()) {
|
|
// Only allow casts of lvalues if they are lossless.
|
|
return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
|
|
}
|
|
|
|
return Success(HandleIntToIntCast(DestType, SrcType,
|
|
Result.getInt(), Info.Ctx), E);
|
|
}
|
|
|
|
// FIXME: Clean this up!
|
|
if (SrcType->isPointerType()) {
|
|
APValue LV;
|
|
if (!EvaluatePointer(SubExpr, LV, Info))
|
|
return false;
|
|
|
|
if (LV.getLValueBase()) {
|
|
// Only allow based lvalue casts if they are lossless.
|
|
if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
|
|
return false;
|
|
|
|
Result = LV;
|
|
return true;
|
|
}
|
|
|
|
APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
|
|
SrcType);
|
|
return Success(HandleIntToIntCast(DestType, SrcType, AsInt, Info.Ctx), E);
|
|
}
|
|
|
|
if (SrcType->isArrayType() || SrcType->isFunctionType()) {
|
|
// This handles double-conversion cases, where there's both
|
|
// an l-value promotion and an implicit conversion to int.
|
|
APValue LV;
|
|
if (!EvaluateLValue(SubExpr, LV, Info))
|
|
return false;
|
|
|
|
if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(Info.Ctx.VoidPtrTy))
|
|
return false;
|
|
|
|
Result = LV;
|
|
return true;
|
|
}
|
|
|
|
if (SrcType->isAnyComplexType()) {
|
|
APValue C;
|
|
if (!EvaluateComplex(SubExpr, C, Info))
|
|
return false;
|
|
if (C.isComplexFloat())
|
|
return Success(HandleFloatToIntCast(DestType, SrcType,
|
|
C.getComplexFloatReal(), Info.Ctx),
|
|
E);
|
|
else
|
|
return Success(HandleIntToIntCast(DestType, SrcType,
|
|
C.getComplexIntReal(), Info.Ctx), E);
|
|
}
|
|
// FIXME: Handle vectors
|
|
|
|
if (!SrcType->isRealFloatingType())
|
|
return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
|
|
|
|
APFloat F(0.0);
|
|
if (!EvaluateFloat(SubExpr, F, Info))
|
|
return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
|
|
|
|
return Success(HandleFloatToIntCast(DestType, SrcType, F, Info.Ctx), E);
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
|
|
if (E->getSubExpr()->getType()->isAnyComplexType()) {
|
|
APValue LV;
|
|
if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt())
|
|
return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
|
|
return Success(LV.getComplexIntReal(), E);
|
|
}
|
|
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
|
|
bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
|
|
if (E->getSubExpr()->getType()->isComplexIntegerType()) {
|
|
APValue LV;
|
|
if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt())
|
|
return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E);
|
|
return Success(LV.getComplexIntImag(), E);
|
|
}
|
|
|
|
if (!E->getSubExpr()->isEvaluatable(Info.Ctx))
|
|
Info.EvalResult.HasSideEffects = true;
|
|
return Success(0, E);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Float Evaluation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class FloatExprEvaluator
|
|
: public StmtVisitor<FloatExprEvaluator, bool> {
|
|
EvalInfo &Info;
|
|
APFloat &Result;
|
|
public:
|
|
FloatExprEvaluator(EvalInfo &info, APFloat &result)
|
|
: Info(info), Result(result) {}
|
|
|
|
bool VisitStmt(Stmt *S) {
|
|
return false;
|
|
}
|
|
|
|
bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
|
|
bool VisitCallExpr(const CallExpr *E);
|
|
|
|
bool VisitUnaryOperator(const UnaryOperator *E);
|
|
bool VisitBinaryOperator(const BinaryOperator *E);
|
|
bool VisitFloatingLiteral(const FloatingLiteral *E);
|
|
bool VisitCastExpr(CastExpr *E);
|
|
bool VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E);
|
|
bool VisitConditionalOperator(ConditionalOperator *E);
|
|
|
|
bool VisitChooseExpr(const ChooseExpr *E)
|
|
{ return Visit(E->getChosenSubExpr(Info.Ctx)); }
|
|
bool VisitUnaryExtension(const UnaryOperator *E)
|
|
{ return Visit(E->getSubExpr()); }
|
|
|
|
// FIXME: Missing: __real__/__imag__, array subscript of vector,
|
|
// member of vector, ImplicitValueInitExpr
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
|
|
return FloatExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E));
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
|
|
switch (E->isBuiltinCall(Info.Ctx)) {
|
|
default: return false;
|
|
case Builtin::BI__builtin_huge_val:
|
|
case Builtin::BI__builtin_huge_valf:
|
|
case Builtin::BI__builtin_huge_vall:
|
|
case Builtin::BI__builtin_inf:
|
|
case Builtin::BI__builtin_inff:
|
|
case Builtin::BI__builtin_infl: {
|
|
const llvm::fltSemantics &Sem =
|
|
Info.Ctx.getFloatTypeSemantics(E->getType());
|
|
Result = llvm::APFloat::getInf(Sem);
|
|
return true;
|
|
}
|
|
|
|
case Builtin::BI__builtin_nan:
|
|
case Builtin::BI__builtin_nanf:
|
|
case Builtin::BI__builtin_nanl:
|
|
// If this is __builtin_nan() turn this into a nan, otherwise we
|
|
// can't constant fold it.
|
|
if (const StringLiteral *S =
|
|
dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts())) {
|
|
if (!S->isWide()) {
|
|
const llvm::fltSemantics &Sem =
|
|
Info.Ctx.getFloatTypeSemantics(E->getType());
|
|
unsigned Type = 0;
|
|
if (!S->getString().empty() && S->getString().getAsInteger(0, Type))
|
|
return false;
|
|
Result = llvm::APFloat::getNaN(Sem, false, Type);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
|
|
case Builtin::BI__builtin_fabs:
|
|
case Builtin::BI__builtin_fabsf:
|
|
case Builtin::BI__builtin_fabsl:
|
|
if (!EvaluateFloat(E->getArg(0), Result, Info))
|
|
return false;
|
|
|
|
if (Result.isNegative())
|
|
Result.changeSign();
|
|
return true;
|
|
|
|
case Builtin::BI__builtin_copysign:
|
|
case Builtin::BI__builtin_copysignf:
|
|
case Builtin::BI__builtin_copysignl: {
|
|
APFloat RHS(0.);
|
|
if (!EvaluateFloat(E->getArg(0), Result, Info) ||
|
|
!EvaluateFloat(E->getArg(1), RHS, Info))
|
|
return false;
|
|
Result.copySign(RHS);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
|
|
if (E->getOpcode() == UnaryOperator::Deref)
|
|
return false;
|
|
|
|
if (!EvaluateFloat(E->getSubExpr(), Result, Info))
|
|
return false;
|
|
|
|
switch (E->getOpcode()) {
|
|
default: return false;
|
|
case UnaryOperator::Plus:
|
|
return true;
|
|
case UnaryOperator::Minus:
|
|
Result.changeSign();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
|
|
if (E->getOpcode() == BinaryOperator::Comma) {
|
|
if (!EvaluateFloat(E->getRHS(), Result, Info))
|
|
return false;
|
|
|
|
// If we can't evaluate the LHS, it might have side effects;
|
|
// conservatively mark it.
|
|
if (!E->getLHS()->isEvaluatable(Info.Ctx))
|
|
Info.EvalResult.HasSideEffects = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Diagnostics? I really don't understand how the warnings
|
|
// and errors are supposed to work.
|
|
APFloat RHS(0.0);
|
|
if (!EvaluateFloat(E->getLHS(), Result, Info))
|
|
return false;
|
|
if (!EvaluateFloat(E->getRHS(), RHS, Info))
|
|
return false;
|
|
|
|
switch (E->getOpcode()) {
|
|
default: return false;
|
|
case BinaryOperator::Mul:
|
|
Result.multiply(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
case BinaryOperator::Add:
|
|
Result.add(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
case BinaryOperator::Sub:
|
|
Result.subtract(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
case BinaryOperator::Div:
|
|
Result.divide(RHS, APFloat::rmNearestTiesToEven);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
|
|
Result = E->getValue();
|
|
return true;
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitCastExpr(CastExpr *E) {
|
|
Expr* SubExpr = E->getSubExpr();
|
|
|
|
if (SubExpr->getType()->isIntegralType()) {
|
|
APSInt IntResult;
|
|
if (!EvaluateInteger(SubExpr, IntResult, Info))
|
|
return false;
|
|
Result = HandleIntToFloatCast(E->getType(), SubExpr->getType(),
|
|
IntResult, Info.Ctx);
|
|
return true;
|
|
}
|
|
if (SubExpr->getType()->isRealFloatingType()) {
|
|
if (!Visit(SubExpr))
|
|
return false;
|
|
Result = HandleFloatToFloatCast(E->getType(), SubExpr->getType(),
|
|
Result, Info.Ctx);
|
|
return true;
|
|
}
|
|
// FIXME: Handle complex types
|
|
|
|
return false;
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E) {
|
|
Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
|
|
return true;
|
|
}
|
|
|
|
bool FloatExprEvaluator::VisitConditionalOperator(ConditionalOperator *E) {
|
|
bool Cond;
|
|
if (!HandleConversionToBool(E->getCond(), Cond, Info))
|
|
return false;
|
|
|
|
return Visit(Cond ? E->getTrueExpr() : E->getFalseExpr());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Complex Evaluation (for float and integer)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class ComplexExprEvaluator
|
|
: public StmtVisitor<ComplexExprEvaluator, APValue> {
|
|
EvalInfo &Info;
|
|
|
|
public:
|
|
ComplexExprEvaluator(EvalInfo &info) : Info(info) {}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
APValue VisitStmt(Stmt *S) {
|
|
return APValue();
|
|
}
|
|
|
|
APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); }
|
|
|
|
APValue VisitImaginaryLiteral(ImaginaryLiteral *E) {
|
|
Expr* SubExpr = E->getSubExpr();
|
|
|
|
if (SubExpr->getType()->isRealFloatingType()) {
|
|
APFloat Result(0.0);
|
|
|
|
if (!EvaluateFloat(SubExpr, Result, Info))
|
|
return APValue();
|
|
|
|
return APValue(APFloat(Result.getSemantics(), APFloat::fcZero, false),
|
|
Result);
|
|
} else {
|
|
assert(SubExpr->getType()->isIntegerType() &&
|
|
"Unexpected imaginary literal.");
|
|
|
|
llvm::APSInt Result;
|
|
if (!EvaluateInteger(SubExpr, Result, Info))
|
|
return APValue();
|
|
|
|
llvm::APSInt Zero(Result.getBitWidth(), !Result.isSigned());
|
|
Zero = 0;
|
|
return APValue(Zero, Result);
|
|
}
|
|
}
|
|
|
|
APValue VisitCastExpr(CastExpr *E) {
|
|
Expr* SubExpr = E->getSubExpr();
|
|
QualType EltType = E->getType()->getAs<ComplexType>()->getElementType();
|
|
QualType SubType = SubExpr->getType();
|
|
|
|
if (SubType->isRealFloatingType()) {
|
|
APFloat Result(0.0);
|
|
|
|
if (!EvaluateFloat(SubExpr, Result, Info))
|
|
return APValue();
|
|
|
|
if (EltType->isRealFloatingType()) {
|
|
Result = HandleFloatToFloatCast(EltType, SubType, Result, Info.Ctx);
|
|
return APValue(Result,
|
|
APFloat(Result.getSemantics(), APFloat::fcZero, false));
|
|
} else {
|
|
llvm::APSInt IResult;
|
|
IResult = HandleFloatToIntCast(EltType, SubType, Result, Info.Ctx);
|
|
llvm::APSInt Zero(IResult.getBitWidth(), !IResult.isSigned());
|
|
Zero = 0;
|
|
return APValue(IResult, Zero);
|
|
}
|
|
} else if (SubType->isIntegerType()) {
|
|
APSInt Result;
|
|
|
|
if (!EvaluateInteger(SubExpr, Result, Info))
|
|
return APValue();
|
|
|
|
if (EltType->isRealFloatingType()) {
|
|
APFloat FResult =
|
|
HandleIntToFloatCast(EltType, SubType, Result, Info.Ctx);
|
|
return APValue(FResult,
|
|
APFloat(FResult.getSemantics(), APFloat::fcZero, false));
|
|
} else {
|
|
Result = HandleIntToIntCast(EltType, SubType, Result, Info.Ctx);
|
|
llvm::APSInt Zero(Result.getBitWidth(), !Result.isSigned());
|
|
Zero = 0;
|
|
return APValue(Result, Zero);
|
|
}
|
|
} else if (const ComplexType *CT = SubType->getAs<ComplexType>()) {
|
|
APValue Src;
|
|
|
|
if (!EvaluateComplex(SubExpr, Src, Info))
|
|
return APValue();
|
|
|
|
QualType SrcType = CT->getElementType();
|
|
|
|
if (Src.isComplexFloat()) {
|
|
if (EltType->isRealFloatingType()) {
|
|
return APValue(HandleFloatToFloatCast(EltType, SrcType,
|
|
Src.getComplexFloatReal(),
|
|
Info.Ctx),
|
|
HandleFloatToFloatCast(EltType, SrcType,
|
|
Src.getComplexFloatImag(),
|
|
Info.Ctx));
|
|
} else {
|
|
return APValue(HandleFloatToIntCast(EltType, SrcType,
|
|
Src.getComplexFloatReal(),
|
|
Info.Ctx),
|
|
HandleFloatToIntCast(EltType, SrcType,
|
|
Src.getComplexFloatImag(),
|
|
Info.Ctx));
|
|
}
|
|
} else {
|
|
assert(Src.isComplexInt() && "Invalid evaluate result.");
|
|
if (EltType->isRealFloatingType()) {
|
|
return APValue(HandleIntToFloatCast(EltType, SrcType,
|
|
Src.getComplexIntReal(),
|
|
Info.Ctx),
|
|
HandleIntToFloatCast(EltType, SrcType,
|
|
Src.getComplexIntImag(),
|
|
Info.Ctx));
|
|
} else {
|
|
return APValue(HandleIntToIntCast(EltType, SrcType,
|
|
Src.getComplexIntReal(),
|
|
Info.Ctx),
|
|
HandleIntToIntCast(EltType, SrcType,
|
|
Src.getComplexIntImag(),
|
|
Info.Ctx));
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: Handle more casts.
|
|
return APValue();
|
|
}
|
|
|
|
APValue VisitBinaryOperator(const BinaryOperator *E);
|
|
APValue VisitChooseExpr(const ChooseExpr *E)
|
|
{ return Visit(E->getChosenSubExpr(Info.Ctx)); }
|
|
APValue VisitUnaryExtension(const UnaryOperator *E)
|
|
{ return Visit(E->getSubExpr()); }
|
|
// FIXME Missing: unary +/-/~, binary div, ImplicitValueInitExpr,
|
|
// conditional ?:, comma
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool EvaluateComplex(const Expr *E, APValue &Result, EvalInfo &Info) {
|
|
Result = ComplexExprEvaluator(Info).Visit(const_cast<Expr*>(E));
|
|
assert((!Result.isComplexFloat() ||
|
|
(&Result.getComplexFloatReal().getSemantics() ==
|
|
&Result.getComplexFloatImag().getSemantics())) &&
|
|
"Invalid complex evaluation.");
|
|
return Result.isComplexFloat() || Result.isComplexInt();
|
|
}
|
|
|
|
APValue ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
|
|
APValue Result, RHS;
|
|
|
|
if (!EvaluateComplex(E->getLHS(), Result, Info))
|
|
return APValue();
|
|
|
|
if (!EvaluateComplex(E->getRHS(), RHS, Info))
|
|
return APValue();
|
|
|
|
assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
|
|
"Invalid operands to binary operator.");
|
|
switch (E->getOpcode()) {
|
|
default: return APValue();
|
|
case BinaryOperator::Add:
|
|
if (Result.isComplexFloat()) {
|
|
Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
|
|
APFloat::rmNearestTiesToEven);
|
|
Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
|
|
APFloat::rmNearestTiesToEven);
|
|
} else {
|
|
Result.getComplexIntReal() += RHS.getComplexIntReal();
|
|
Result.getComplexIntImag() += RHS.getComplexIntImag();
|
|
}
|
|
break;
|
|
case BinaryOperator::Sub:
|
|
if (Result.isComplexFloat()) {
|
|
Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
|
|
APFloat::rmNearestTiesToEven);
|
|
Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
|
|
APFloat::rmNearestTiesToEven);
|
|
} else {
|
|
Result.getComplexIntReal() -= RHS.getComplexIntReal();
|
|
Result.getComplexIntImag() -= RHS.getComplexIntImag();
|
|
}
|
|
break;
|
|
case BinaryOperator::Mul:
|
|
if (Result.isComplexFloat()) {
|
|
APValue LHS = Result;
|
|
APFloat &LHS_r = LHS.getComplexFloatReal();
|
|
APFloat &LHS_i = LHS.getComplexFloatImag();
|
|
APFloat &RHS_r = RHS.getComplexFloatReal();
|
|
APFloat &RHS_i = RHS.getComplexFloatImag();
|
|
|
|
APFloat Tmp = LHS_r;
|
|
Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
|
|
Result.getComplexFloatReal() = Tmp;
|
|
Tmp = LHS_i;
|
|
Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
|
|
Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
|
|
|
|
Tmp = LHS_r;
|
|
Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
|
|
Result.getComplexFloatImag() = Tmp;
|
|
Tmp = LHS_i;
|
|
Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
|
|
Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
|
|
} else {
|
|
APValue LHS = Result;
|
|
Result.getComplexIntReal() =
|
|
(LHS.getComplexIntReal() * RHS.getComplexIntReal() -
|
|
LHS.getComplexIntImag() * RHS.getComplexIntImag());
|
|
Result.getComplexIntImag() =
|
|
(LHS.getComplexIntReal() * RHS.getComplexIntImag() +
|
|
LHS.getComplexIntImag() * RHS.getComplexIntReal());
|
|
}
|
|
break;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top level Expr::Evaluate method.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Evaluate - Return true if this is a constant which we can fold using
|
|
/// any crazy technique (that has nothing to do with language standards) that
|
|
/// we want to. If this function returns true, it returns the folded constant
|
|
/// in Result.
|
|
bool Expr::Evaluate(EvalResult &Result, ASTContext &Ctx) const {
|
|
EvalInfo Info(Ctx, Result);
|
|
|
|
if (getType()->isVectorType()) {
|
|
if (!EvaluateVector(this, Result.Val, Info))
|
|
return false;
|
|
} else if (getType()->isIntegerType()) {
|
|
if (!IntExprEvaluator(Info, Result.Val).Visit(const_cast<Expr*>(this)))
|
|
return false;
|
|
} else if (getType()->hasPointerRepresentation()) {
|
|
if (!EvaluatePointer(this, Result.Val, Info))
|
|
return false;
|
|
} else if (getType()->isRealFloatingType()) {
|
|
llvm::APFloat f(0.0);
|
|
if (!EvaluateFloat(this, f, Info))
|
|
return false;
|
|
|
|
Result.Val = APValue(f);
|
|
} else if (getType()->isAnyComplexType()) {
|
|
if (!EvaluateComplex(this, Result.Val, Info))
|
|
return false;
|
|
} else
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Expr::EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const {
|
|
EvalInfo Info(Ctx, Result, true);
|
|
|
|
if (getType()->isVectorType()) {
|
|
if (!EvaluateVector(this, Result.Val, Info))
|
|
return false;
|
|
} else if (getType()->isIntegerType()) {
|
|
if (!IntExprEvaluator(Info, Result.Val).Visit(const_cast<Expr*>(this)))
|
|
return false;
|
|
} else if (getType()->hasPointerRepresentation()) {
|
|
if (!EvaluatePointer(this, Result.Val, Info))
|
|
return false;
|
|
} else if (getType()->isRealFloatingType()) {
|
|
llvm::APFloat f(0.0);
|
|
if (!EvaluateFloat(this, f, Info))
|
|
return false;
|
|
|
|
Result.Val = APValue(f);
|
|
} else if (getType()->isAnyComplexType()) {
|
|
if (!EvaluateComplex(this, Result.Val, Info))
|
|
return false;
|
|
} else
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Expr::EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const {
|
|
EvalResult Scratch;
|
|
EvalInfo Info(Ctx, Scratch);
|
|
|
|
return HandleConversionToBool(this, Result, Info);
|
|
}
|
|
|
|
bool Expr::EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const {
|
|
EvalInfo Info(Ctx, Result);
|
|
|
|
return EvaluateLValue(this, Result.Val, Info) && !Result.HasSideEffects;
|
|
}
|
|
|
|
bool Expr::EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const {
|
|
EvalInfo Info(Ctx, Result, true);
|
|
|
|
return EvaluateLValue(this, Result.Val, Info) && !Result.HasSideEffects;
|
|
}
|
|
|
|
/// isEvaluatable - Call Evaluate to see if this expression can be constant
|
|
/// folded, but discard the result.
|
|
bool Expr::isEvaluatable(ASTContext &Ctx) const {
|
|
EvalResult Result;
|
|
return Evaluate(Result, Ctx) && !Result.HasSideEffects;
|
|
}
|
|
|
|
bool Expr::HasSideEffects(ASTContext &Ctx) const {
|
|
Expr::EvalResult Result;
|
|
EvalInfo Info(Ctx, Result);
|
|
return HasSideEffect(Info).Visit(const_cast<Expr*>(this));
|
|
}
|
|
|
|
APSInt Expr::EvaluateAsInt(ASTContext &Ctx) const {
|
|
EvalResult EvalResult;
|
|
bool Result = Evaluate(EvalResult, Ctx);
|
|
Result = Result;
|
|
assert(Result && "Could not evaluate expression");
|
|
assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
|
|
|
|
return EvalResult.Val.getInt();
|
|
}
|